Files
swift-mirror/docs/LangRef.html
John McCall 2f8f05615e Rename TypeOfExpr / TypeOfInst to MetatypeExpr / MetatypeInst.
Introduce a '.metatype' form in the syntax and do some basic
type-checking that I probably haven't done right.  Change
IR-generation for that and GetMetatypeExpr to use code that
actually honors the dynamic type of an expression.

Swift SVN r3053
2012-10-24 07:54:23 +00:00

2872 lines
116 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>Swift Language Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="author" content="Chris Lattner">
<meta name="description"
content="Swift Language Reference Manual.">
<link rel="stylesheet" href="_static/swift.css" type="text/css">
<script type="text/javascript" src="toc.js"></script>
</head>
<body>
<h1>Swift Language Reference</h1>
<p>
<!-- The Table of Contents is automatically inserted in this <div>.
Do not delete this <div>. -->
<div id="nav"></div>
</p>
<!-- ********************************************************************* -->
<h2>Introduction</h2>
<!-- ********************************************************************* -->
<div class="commentary">
In addition to the main spec, there are lots of open ended questions,
justification, and ideas of what best practices should be. That random
discussion is placed in boxes to the right side of the main text (like this
one) to clarify what is normative and what is discussion.
</div>
<p>This is the language reference manual for the Swift language, which is
highly volatile and constantly under development. As the prototype evolves,
this document should be kept up to date with what is actually implemented.</p>
<p>The grammar and structure of the language is defined in BNF form in yellow
boxes. Examples are shown in gray boxes, and assume that the standard library
is in use (unless otherwise specified).</p>
<!-- ===================================================================== -->
<h3>Basic Goals</h3>
<!-- ===================================================================== -->
<div class="commentary">
A non-goal of the Swift project in general is to become some amazing
research project. We really want to focus on delivering a real product,
and having the design and spec co-evolve.
</div>
<p>In no particular order, and not explained well:</p>
<ol>
<li>Support building great frameworks and applications, with a specific focus
on permiting rich and powerful APIs.</li>
<li>Get the defaults right: this reduces the barrier to entry and increases
the odds that the right thing happens.</li>
<li>Through our support for building great APIs, we aim to provide an
expressive and productive language that is fun to program in.</li>
<li>Support low-level system programming. We should want to write compilers,
operating system kernels, and media codecs in Swift. This means that being
able to obtain high performance is really quite important.</li>
<li>Provide really great tools, like an IDE, debugger, profiling, etc.</li>
<li>Where possible, steal great ideas instead of innovating new things that
will work out in unpredictable ways. It turns out that there are a lot
of good ideas already out there.</li>
<li>Memory safe by default: array overrun errors, uninitialized values,
and other problems endemic to C should not occur in Swift, even if it
means some amount of runtime overhead. Eventually these checks will be
disablable for people who want ultimate performance in production
builds.</li>
<li>Efficiently implementable with a static compiler: runtime compilation is
great technology and Swift may eventually get a runtime optimizer, but it
is a strong goal to be able to implement swift with just a static
compiler.</li>
<li>Interoperate as transparently as possible with C, Objective-C, and
C++ without having to write an equivalent of "extern C" for every
referenced definition.</li>
<li>Great support for efficient by-value types.</li>
<li>Elegant and natural syntax, aiming to be familiar and easy to transition
to for "C" people. Differences from the C family should only be done when
it provides a significant win (e.g. eliminate declarator syntax).</li>
<li>Lots of other stuff too.</li>
</ol>
<p>A smaller wishlist goal is to support embedded sub-languages in swift, so
that we don't get the OpenCL-is-like-C-but-very-different-in-many-details
problem.</p>
<!-- ===================================================================== -->
<h3>Basic Approach</h3>
<!-- ===================================================================== -->
<div class="commentary">
Pushing as much of the language as realistic out of the compiler and into
the library is generally good for a few reasons: 1) we end up with a smaller
core language. 2) we force the language that is left to be highly
expressive and extensible. 3) this highly expressive language core can then
be used to build a lot of other great libraries, hopefully many we can't
even anticipate at this point.
</div>
<p>The basic approach in designing and implementing the Swift prototype was to
start at the very bottom of the stack (simple expressions and the trivial
bits of the type system) and incrementally build things up one brick at a
time. There is a big focus on making things as simple as possible and
having a clean internal core. Where it makes sense, sugar is added on top
to make the core more expressive for common situations.</p>
<p>One major aspect that dovetails with expressivity, learnability, and focus
on API development is that much of the language is implemented in a <a
href="#stdlib">standard library</a> (inspired in part by the Haskell
Standard Prelude). This means that things like 'Int' and 'Void' are not
part of the language itself, but are instead part of the standard library.
</p>
<!-- ********************************************************************* -->
<h2>Phases of Translation</h2>
<!-- ********************************************************************* -->
<div class="commentary">
Because Swift doesn't rely on a C-style "lexer hack" to know what is a type
and what is a value, it is possible to fully parse a file without resolving
import declarations.
</div>
<p>Swift has a strict separation between its phases of translation, and the
compiler follows a conceptually simple design. The phases of translation
are:</p>
<ul>
<li><a href="#lexical">Lexing</a>: A translation unit is broken into tokens
according to a (nearly, /**/ comments can be nested) regular grammar.</li>
<li>Parsing and AST Building: The tokens are parsed according to the grammar
set out below. The grammar is context free and does not require any "type
feedback" from the lexer or later stages. During parsing, name binding for
references to local variables and other declarations that are not at
translation unit (and eventually namespace) scope are bound.
</li>
<li><a href="#namebind">Name Binding</a>: At this phase, references to
non-local types and values are bound, and <a href="#decl-import">import
directives</a> are both validated and searched. Name binding can cause
recursive compilation of modules that are referenced but not yet built.
</li>
<li><a href="#typecheck">Type Checking</a>: During this phase all types are
resolved within value definitions, <a href="#expr-call">function
application</a> and <a href="#expr-infix">binary expressions</a> are found
and formed, and overloaded functions are resolved.</li>
<li>Code Generation: The AST is converted the LLVM IR, optimizations are
performed, and machine code generated.</li>
<li>Linking: runtime libraries and referenced modules are linked in.</li>
</ul>
<p>
FIXME: "import swift" implicitly added as the last import in translation unit.
</p>
<!-- ********************************************************************* -->
<h2 id="lexical">Lexical Structure</h2>
<!-- ********************************************************************* -->
<div class="commentary">
Not all characters are "taken" in the language, this is because it is still
growing. As there becomes a reason to assign things into the identifier or
punctuation bucket, we will do so as swift evolves.
</div>
<p>The lexical structure of a Swift file is very simple: the files are
tokenized according to the following productions and categories. As is
usual with most languages, tokenization uses the maximal munch rule and
whitespace separates tokens. This means that "a b" and "ab" lex into
different token streams and are therefore different in the grammar.</p>
<!-- ===================================================================== -->
<h3>Whitespace and Comments</h3>
<!-- ===================================================================== -->
<div class="commentary">
Nested block comments are important because we don't have the nestable
"#if 0" hack from C to rely on.
</div>
<pre class="grammar">
whitespace ::= ' '
whitespace ::= '\n'
whitespace ::= '\r'
whitespace ::= '\t'
whitespace ::= '\0'
comment ::= //.*[\n\r]
comment ::= /* .... */
</pre>
<p>Space, newline, tab, and the nul byte are all considered whitespace and are
discarded, with one exception: a '(' or '[' which does not follow a
non-whitespace character is different kind of token (called
<em>spaced</em>) from one which does not (called <em>unspaced</em>).
A '(' or '[' at the beginning of a file is spaced.</p>
<p>Comments may follow the BCPL style, starting with a "//" and running to the
end of the line, or may be recursively nested /**/ style comments. Comments
are ignored and treated as whitespace.</p>
<!-- ===================================================================== -->
<h3 id="reserved_punctuation">Reserved Punctuation Tokens</h3>
<!-- ===================================================================== -->
<div class="commentary">
The difference between reserved punctuation and identifiers is that you
can't "overload an operator" with one of these names.<br><br>
Note that -&gt; is used for function types "() -&gt; Int", not pointer
dereferencing.
</div>
<pre class="grammar">
lparen-spaced ::= '(' // preceded by space
lparen-unspaced ::= '(' // not preceded by space
lparen-any ::= lparen-spaced
lparen-any ::= lparen-unspaced
lsquare-spaced ::= '[' // preceded by space
lsquare-unspaced ::= '[' // not preceded by space
lsquare-any ::= lsquare-spaced
lsquare-any ::= lsquare-unspaced
punctuation ::= lparen-spaced
punctuation ::= lparen-unspaced
punctuation ::= ')'
punctuation ::= '{'
punctuation ::= '}'
punctuation ::= lsquare-spaced
punctuation ::= lsquare-unspaced
punctuation ::= ']'
punctuation ::= '.'
punctuation ::= ','
punctuation ::= ';'
punctuation ::= ':'
punctuation ::= '='
punctuation ::= '-&gt;'
punctuation ::= '...'
</pre>
<p>These are all reserved punctuation that are lexed into tokens. Most other
punctuation is matched as <a href="#identifier">identifiers</a>.
</p>
<!-- ===================================================================== -->
<h3>Reserved Keywords</h3>
<!-- ===================================================================== -->
<div class="commentary">
The number of keywords is reduced by pushing most functionality
into the library (e.g. "builtin" datatypes like 'Int' and 'Bool'). This
allows us to add new stuff to the library in the future without worrying
about conflicting with the user's namespace.
</div>
<pre class="grammar">
keyword ::= 'do'
keyword ::= 'else'
keyword ::= 'extension'
keyword ::= 'if'
keyword ::= 'import'
keyword ::= 'in'
keyword ::= 'for'
keyword ::= 'func'
keyword ::= 'oneof'
keyword ::= 'static'
keyword ::= 'protocol'
keyword ::= 'return'
keyword ::= 'struct'
keyword ::= 'typealias'
keyword ::= 'var'
keyword ::= 'while'
</pre>
<p>These are the builtin keywords.</p>
<!-- ===================================================================== -->
<h3 id="integer_literal">Integer Literals</h3>
<!-- ===================================================================== -->
<pre class="grammar">
integer_literal ::= [0-9]+
integer_literal ::= 0x[0-9a-fA-F]+
integer_literal ::= 0o[0-7]+
integer_literal ::= 0b[01]+
</pre>
<p>integer_literal tokens represent simple integer values of unspecified
precision.</p>
<!-- ===================================================================== -->
<h3 id="floating_literal">Floating Point Literals</h3>
<!-- ===================================================================== -->
<div class="commentary">
We require a digit after a dot to allow lexing "4.km" as "4 . km" instead of
"4. km". This regex is same as the Java floating point literal regex,
except that we do not allow "4." and do not allow a trailing suffix that
specifies a precision.
</div>
<pre class="grammar">
floating_literal ::= [0-9]+\.[0-9]+
floating_literal ::= [0-9]+(\.[0-9]*)?[eE][+-][0-9]+
floating_literal ::= \.[0-9]+([eE][+-][0-9]+)?
</pre>
<p>floating_literal tokens represent floating point values of unspecified
precision.</p>
<!-- ===================================================================== -->
<h3 id="character_literal">Character Literals</h3>
<!-- ===================================================================== -->
<pre class="grammar">
character_literal ::= '[^"\\\n\r]|character_escape'
character_escape ::= [\][\] | [\]t | [\]n | [\]r | [\]" | [\]'
character_escape ::= [\]x hex hex
character_escape ::= [\]u hex hex hex hex
character_escape ::= [\]U hex hex hex hex hex hex hex hex
hex ::= [0-9a-fA-F]
</pre>
<p>character_literal tokens represent a single character, and are surrounded
by single quotes.</p>
<!-- ===================================================================== -->
<h3 id="string_literal">String Literals</h3>
<!-- ===================================================================== -->
<div class="commentary">
FIXME: Forcing + to concatenate strings is somewhat gross, a proper protocol
would be better.
</div>
<pre class="grammar">
string_literal ::= ["]([^"\\\n\r]|character_escape|escape_expr)*["]
escape_expr ::= [\]escape_expr_body
escape_expr_body ::= [(]escape_expr_body[)]
escape_expr_body ::= [^\n\r"()]
</pre>
<p>string_literal tokens represent a string, and are surrounded by double
quotes. String literals cannot span multiple lines.</p>
<p>String literals may contain embedded expressions in them (known as
"interpolated expressions") subject to some specific lexical constraints:
the expression may not contain a double quote ["], newline [\n], or carriage
return [\r]. All parentheses must be balanced.</p>
<p>In addition to these lexical rules, an interpolated expression must satisfy
the <a href="#expr">expr</a> production of the general swift grammar. This
expression is evaluated, and passed to the constructor for the inferred type
of the string literal. It is concatenated onto any fixed portions of the
string literal with a global "+" operator that is found through normal name
lookup.</p>
<pre class="example">
// Simple string literal.
"Hello world!"
// Interpolated expressions.
"\(min)..\(max)" + "Result is \((4+i)*j)"
</pre>
<!-- ===================================================================== -->
<h3 id="identifier">Identifier Tokens</h3>
<!-- ===================================================================== -->
<div>
<div class="commentary">
FIXME: We need to support unicode identifiers.
<br><br><b>[1]</b> The '=' token is explicitly handled in the grammar elsewhere,
and in general users cannot provide custom definitions for the '=' operator.
This distinctly differs from C++, which allows '=' to be overloaded.
<br><br><b>[2]</b> The '->' token is <a href="#reserved_punctuation">reserved punctuation</a>,
and cannot be used as an operator identifier.
</div>
<pre class="grammar">
identifier ::= [a-zA-Z_][a-zA-Z_$0-9]*
<a name="operator">operator</a> ::= [/=-+*%&lt;&gt;!&amp;|^~]+
<a name="operator">operator</a> ::= \.\.
Note: excludes '=', see <b>[1]</b>
excludes '->', see <b>[2]</b>
'..' is an operator, not two '.'s.
operator-binary ::= operator
operator-prefix ::= operator
operator-postfix ::= operator
left-binder ::= [ \r\n\t\(\[\{,;]
any-identifier ::= identifier | operator
</pre>
<p><tt>operator-binary</tt>, <tt>operator-prefix</tt>, and
<tt>operator-postfix</tt> are distinguished by immediate lexical
context. An operator token is called <i>left-bound</i> if it
is immediately preceded by a character matching <tt>left-binder</tt>.
An operator token is called <i>right-bound</i> if it is immediately
followed by a character matching <tt>right-binder</tt>. An operator
token is an <tt>operator-prefix</tt> if it is right-bound but not
left-bound, an <tt>operator-postfix</tt> if it is left-bound but
not right-bound, and an <tt>operator-binary</tt> in either of the
other two cases.
</p>
<p>When parsing certain grammatical constructs that involve '&lt;' and
'&gt;' (such as <a href="#type-composition">protocol composition
types</a>), an <tt>operator</tt> with a leading '&lt;' or '&gt;' may
be split into two or more tokens: the leading '&lt;' or '&gt;' and
the remainder of the token, which may be an <tt>operator</tt> or
<tt>punctuation</tt> token that may itself be further split. This
rule allows us to parse nested constructs such as
<code>A&lt;B&lt;C&gt;&gt;</code> without requiring spaces between
the closing '&gt;'s.</p>
</div>
<!-- ===================================================================== -->
<h3 id="dollarident">Implementation Identifier Token</h3>
<!-- ===================================================================== -->
<pre class="grammar">
dollarident ::= $[0-9a-zA-Z_$]*
</pre>
<p>Tokens that start with a $ are separate class of identifier, which are
fixed purpose names that are defined by the implementation.
</p>
<!-- ********************************************************************* -->
<h2 id="decl">Declarations</h2>
<!-- ********************************************************************* -->
<pre class="grammar">
decl ::= <a href="#decl-class">decl-class</a>
decl ::= <a href="#decl-constructor">decl-constructor</a>
decl ::= <a href="#decl-destructor">decl-destructor</a>
decl ::= <a href="#decl-extension">decl-extension</a>
decl ::= <a href="#decl-func">decl-func</a>
decl ::= <a href="#decl-import">decl-import</a>
decl ::= <a href="#decl-oneof">decl-oneof</a>
decl ::= <a href="#decl-protocol">decl-protocol</a>
decl ::= <a href="#decl-struct">decl-struct</a>
decl ::= <a href="#decl-typealias">decl-typealias</a>
decl ::= <a href="#decl-var">decl-var</a>
decl ::= <a href="#decl-subscript">decl-subscript</a>
</pre>
<!-- ===================================================================== -->
<h3 id="decl-translation-unit">Translation Unit</h3>
<!-- ===================================================================== -->
<pre class="grammar">
translation-unit ::= <a href="#stmt-brace">stmt-brace-item</a>*
</pre>
<p>The top level of a swift source file is grammatically identical to the
contents of a <a href="#stmt-brace">brace statement</a>. Some declarations
have semantic restrictions that only allow them within a translation unit
though.
</p>
<!-- ===================================================================== -->
<h3 id="decl-import">import Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-import ::= 'import' <a href="#attribute-list">attribute-list</a> any-identifier ('.' any-identifier)*
</pre>
<p>'import' declarations allow named values and types to be accessed with
local names, even when they are defined in other modules and namespaces. See
the section on <a href="#namebind">name binding</a> for more
information on how these work. import declarations are only allowed at
translation unit scope.</p>
<p>'import' directives only impact a single translation unit: imports in one
swift file do not affect name lookup in another file. import directives can
only occur at the top level of a file, not within a function or namespace.</p>
<p>If a single identifier is specified for the import declaration, then the
entire module is imported in its entirety into the current scope. If a
scope (such as a namespace) is named, then all entities in the namespace are
imported. If a specific type or variable is named (e.g. "import swift.Int")
then only the one type and/or value is imported. If the named value is
overloaded, then the entire overload set is imported.</p>
<pre class="example">
<i>// Import all of the top level symbols and types in a package.</i>
import swift
<i>// Import all of the symbols within a namespace.</i>
import swift.io
<i>// Import a single variable, function, type, etc.</i>
import swift.io.bufferedstream
<i>// Import all multiplication overloads.</i>
import swift.*
</pre>
<!-- ===================================================================== -->
<h3 id="decl-extension">extension Declarations</h3>
<!-- ===================================================================== -->
<div class="commentary">
Eventually allow extending classes, even adding data members.
</div>
<pre class="grammar">
decl-extension ::= 'extension' <a href="#type-identifier">type-identifier</a> <a href="#inheritance">inheritance</a>? '{' <a href="#decl">decl</a>* '}'
</pre>
<p>'extension' declarations allow adding member declarations to existing
types, even in other translation units and modules. There are different
semantic rules for each type that is extended.
</p>
<!-- _____________________________________________________________________ -->
<h4 id="decl-extension-oneof-struct"><a href="#decl-oneof">oneof</a>, <a
href="#decl-struct">struct</a>, and <a href="#decl-class">class</a>
declaration extensions</h4>
<p>FIXME: Write this section.</p>
<!-- ===================================================================== -->
<h3 id="decl-var">var Declarations</h3>
<!-- ===================================================================== -->
<pre id="value-specifier" class="grammar">
decl-var ::= 'var' <a href="#attribute-list">attribute-list</a> <a href="#pattern">pattern</a> initializer? (',' pattern initializer?)*
decl-var ::= 'var' <a href="#attribute-list">attribute-list</a> <a href="#identifier">identifier</a> ':' <a href="#type">type-annotation</a> '{' get-set '}'
initializer ::= '=' <a href="#expr">expr</a>
<a name="get-set"></a>get-set ::= get set?
get-set ::= set get
get ::= 'get' <a href="#stmt-brace">stmt-brace</a>
set ::= 'set' set-name? <a href="#stmt-brace">stmt-brace</a>
set-name ::= '(' <a href="#identifier">identifier</a> ')'
</pre>
<p>'var' declarations form the backbone of value declarations in Swift. A var
declaration takes a pattern and an optional initializer, and declares all the
pattern-identifiers in the pattern as variables. If there is an initializer
and the pattern is <a href="#fully_typed_types">fully-typed</a>, the
initializer is converted to the type of the pattern. If there is an
initializer and the pattern is not fully-typed, the type of initializer is
computed independently of the pattern, and the type of the pattern is derived
from the initializer. If no initializer is specified, the pattern must be
fully-typed, and the values are default-initialized.</p>
<p>If there is more than one pattern in a 'var' declaration, they are each
considered independently, as if there were multiple declarations. The
initial attribute-list is shared between all the declared variables.
<p>A var declaration may contain a getter and (optionally) a setter,
which will be used when reading or writing the variable, respectively.
Such a variable does not have any associated storage. A var
declaration with a getter or setter must have a type (call it
<code>T</code>). The getter function, whose body is provided as part
of the <code>var-get</code> clause, has type <code>() -> T</code>.
Similarly, the setter function, whose body is part of the
<code>var-set</code> clause (if provided), has type <code>(T)
-> ()</code>. If the <code>var-set</code> clause contains a <code>var-set-name</code>
clause, the identifier of that clause is used as the name of the
parameter to the setter. Otherwise, the parameter name is "value".</p>
<p>FIXME: Should the type of a pattern which isn't fully typed affect the
type-checking of the expression (i.e. should we compute a structured
dependent type)?</p>
<p>Like all other declarations, var's can optionally have a list of <a
href="#attribute-list">attributes</a> applied to them.</p>
<p>The type of a variable must be
<a href="#materializable"><i>materializable</i></a>. A variable is
an lvalue unless it has a <code>var-get</code> clause but not
<code>var-set</code> clause. </p>
<p>Here are some examples of var declarations:</p>
<pre class="example">
<i>// Simple examples.</i>
var a = 4
var b : Int
var c : Int = 42
<i>// This decodes the tuple return value into independently named parts</i>
<i>// and both 'val' and 'err' are in scope after this line.</i>
var (val, err) = foo()
<i>// Variable getter/setter</i>
var _x : Int = 0
var x_modify_count : Int = 0
var x : Int {
get { return _x }
set {
x_modify_count = x_modify_count + 1
_x = value
}
}
</pre>
<p>Note that both 'get' and 'set' are context-sensitive keywords,
which means that at both global and local scope, there is a syntactic
ambiguity between a variable with a <code>var-get-set</code> clause
and a variable followed by a <code><a
href="#stmt-brace">stmt-brace</a></code>. This ambiguity is resolved
in favor of a variable with a <code>var-get-set</code> clause if the
token following the opening '{' is either 'set' or 'get'.</p>
<!-- ===================================================================== -->
<h3 id="decl-func">func Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-func ::= 'static'? 'func' <a href="#attribute-list">attribute-list</a> <a href="#identifier">any-identifier</a> <a href="#func-signature">func-signature</a> <a href="#stmt-brace">stmt-brace</a>?
</pre>
<p>'func' is a declaration for a function. The argument list and
optional return value are specified by the type production of the function,
and the body is either a brace expression or elided. Like all other
declarations, functions are can have attributes.</p>
<p>If the type is not syntactically a function type (i.e., has no -&gt; in it
at top-level), then the return value is implicitly inferred to be
"<tt>()</tt>". All of the argument and return value names are injected into
the <a href="#namebind_scope">scope</a> of the function body.</p>
<p>A function in an <a href="#decl-extension">extension</a> of some type (or
in other places that are semantically equivalent to an extension) implicitly
get a 'this' argument with these rules ... [todo]</p>
<p>'static' functions are only allowed in an <a
href="#decl-extension">extension</a> of some type (or in other places
that are semantically equivalent to an extension). They indicate that
the function is actually defined on the <a href="#metatype">metatype</a>
for the type, not on the
type itself. Thus it does not implicitly get a first 'this' argument, and
can be used with dot syntax on the metatype.</p>
<p>TODO: Func should be an immutable name binding, it should implicitly add
an attribute immutable when it exists.</p>
<p>TODO: Incoming arguments should be readonly, result should be implicitly
writeonly when we have these attributes.</p>
<!-- _____________________________________________________________________ -->
<h4 id="func-signature">Function signatures</h4>
<pre class="grammar">
func-signature ::= <a href="#pattern-tuple">pattern-tuple</a>+ func-signature-result?
func-signature-result ::= '-&gt;' <a href="#type">type</a>
</pre>
<p>A function signature specifies one or more sets of parameter
patterns, plus an optional result type.</p>
<p>When a result type is not written, it is implicitly the empty tuple type,
<tt>()</tt>.</p>
<p>In the body of the function described by a particular signature,
all the variables bound by all of the parameter patterns are in
scope, and the function must return a value of the result type.</p>
<p>An outermost pattern in a function signature must be <a
href="#fully_typed_types">fully-typed</a> and irrefutable. If a result type is
given, it must also be fully-typed.</p>
<p>The type of a function with signature <tt>(P<sub>0</sub>)(P<sub>1</sub>)..(P<sub><i>n</i></sub>) -&gt; R</tt>
is <tt>T<sub>0</sub> -&gt; T<sub>1</sub> -&gt; .. -&gt; T<sub><i>n</i></sub> -&gt; R</tt>,
where <tt>T<sub><i>i</i></sub></tt> is the bottom-up type of the pattern
<tt>P<sub><i>i</i></sub></tt>. This is called "currying". The
behavior of all the intermediate functions (those which do not
return <tt>R</tt>) is to capture their arguments, plus any
arguments from prior patterns, and returns a function which takes
the next set of arguments. When the "uncurried" function is
called (the one taking <tt>T<sub><i>n</i></sub></tt> and returning
<tt>R</tt>), all of the arguments are then available and the
function body is finally evaluated as normal.</p>
<p>Here are some examples of func definitions:</p>
<pre class="example">
<i>// Implicitly returns (), aka <a href="#stdlib-Void">Void</a></i>
func a() {}
<i>// Same as 'a'</i>
func a1() -&gt; Void {}
<i>// Function pointers to a function expression.</i>
var a2 = func ()-&gt;() {}
var a3 = func () {}
var a4 = func {}
<i>// Really simple function</i>
func c(arg : Int) -&gt; Int { return arg+4 }
<i>// Simple operators.</i>
func [infix_left=190] + (lhs : Int, rhs : Int) -&gt; Int
func [infix_left=160] == (lhs : Int, rhs : Int) -&gt; Bool
<i>// Curried function with multiple return values:</i>
func d(a : Int) (b : Int) -&gt; (res1 : Int, res2 : Int) {
return (a,b)
}
<i>// A more realistic example on a trivial type.</i>
struct bankaccount {
amount : Int
static func bankaccount() -> bankaccount {
// Custom 'constructor' logic goes here.
}
func deposit(arg : Int) {
amount = amount + arg
}
static func someMetaTypeMethod() {}
}
// Dot syntax on metatype.
bankaccount.someMetaTypeMethod()
</pre>
<!-- ===================================================================== -->
<h3 id="decl-typealias">typealias Declarations</h3>
<!-- ===================================================================== -->
<div class="commentary">
We use the keyword "typealias" instead of "typedef" because it really is an
alias for an existing type, not a "definition" of a new type.
</div>
<pre class="grammar">
decl-typealias ::= typealias-head '=' <a href="#type">type</a>
<a name="typealias-head"></a>typealias-head ::= 'typealias' <a href="#identifier">identifier</a> <a href="#inheritance">inheritance</a>?
</pre>
<p>'typealias' makes a named alias of a type, like a typedef in C. From that
point on, the alias may be used in all situations the specified name is. If an <a href="#inheritance">inheritance</a> clause is provided, it specifies protocols to which the aliased type shall conform.</p>
<p>Here are some examples of type aliases:</p>
<pre class="example">
<i>// location is an alias for a tuple of ints.</i>
typealias location = (x : Int, y : Int)
<i>// pair_fn is a function that takes two ints and returns a tuple.</i>
typealias pair_fn = (Int) -&gt; (Int) -&gt; (first : Int, second : Int)
</pre>
<!-- ===================================================================== -->
<h3 id="decl-oneof">oneof Declarations</h3>
<!-- ===================================================================== -->
<div class="commentary">
In actual practice, we expect oneof to be commonly used for "enums" and
"struct" below to be used for data declarations. The use of "oneof" for
discriminated unions will be much less common than its use for "enums". If
there is a compelling reason to, we could add an "enum" sugar for
oneof's.
</div>
<pre class="grammar">
decl-oneof ::= 'oneof' <a href="#attribute-list">attribute-list</a> <a href="#identifier">identifier</a> <a href="#inheritance">inheritance</a>? oneof-body
oneof-body ::= '{' (oneof-element (',' oneof-element)*)? decl* '}'
oneof-element ::= <a href="#identifier">identifier</a>
oneof-element ::= <a href="#identifier">identifier</a> ':' <a href="#type">type-annotation</a>
</pre>
<p>A oneof declaration provides direct access to <a
href="#type-oneof">oneof</a> types with a <a
href="#decl-typealias">typealias</a> declaration specifying a name. Please
see <a href="#type-oneof">oneof types</a> for more information about their
capabilities.</p>
<p>A 'oneof' may include a list of decls after its member types, which is
syntactic sugar for defining an <a href="#decl-extension">extension</a> of
the type. The limitations of an <a
href="#decl-extension-oneof-struct">oneof extensions</a> apply here as
well.</p>
<p>Here are some examples of oneof declarations:</p>
<pre class="example">
<i>// Declare discriminated union with oneof decl.</i>
oneof SomeInts {
None,
One : Int,
Two : (Int, Int)
}
<i>// Declares three "enums".</i>
oneof DataSearchFlags {
None, Backward, Anchored
}
func f1(searchpolicy : DataSearchFlags) <i>// DataSearchFlags is a valid type name</i>
func test1() {
f1(DataSearchFlags.None) <i>// Use of constructor with qualified identifier</i>
f1(.None) <i>// Use of constructor with context sensitive type inference</i>
<i>// "None" has no type argument, so the constructor's type is "DataSearchFlags".</i>
var a : DataSearchFlags = .None
}
oneof SomeMoreInts {
None, <i>// Doesn't conflict with previous "None".</i>
One : Int,
Two : (Int, Int)
}
func f2(a : SomeMoreInts)
func test2() {
<i>// Constructors for oneof element can be used in the obvious way.</i>
f2(.None)
f2(.One(4))
f2(.Two(1, 2))
<i>// Constructor for None has type "SomeMoreInts".</i>
var a : SomeMoreInts = SomeMoreInts.None
<i>// Constructor for One has type "(Int) -&gt; SomeMoreInts".</i>
var b : (Int) -&gt; SomeMoreInts = SomeMoreInts.One
<i>// Constructor for Two has type "(Int,Int) -&gt; SomeMoreInts".</i>
var c : (Int,Int) -&gt; SomeMoreInts = SomeMoreInts.Two
}
</pre>
<!-- ===================================================================== -->
<h3 id="decl-struct">struct Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-struct ::= 'struct' <a href="#attribute-list">attribute-list</a> <a href="#identifier">identifier</a> <a href="#inheritance">inheritance</a>? '{' decl-struct-body '}'
decl-struct-body ::= <a href="#decl">decl</a>*
</pre>
<p>A struct declares a simple value type that can contain data members and
have methods.</p>
<p>The body of a 'struct' is a list of decls. Non-property 'var' decls
declare members with storage in the struct. Other declarations act like
they would in an <a href="#decl-extension">extension</a> of the
struct type.</p>
<p>Here are a few simple examples:</p>
<pre class="example">
struct S1 {
var a : Int, b : Int
}
struct S2 {
var a : Int
func f() -> Int { return b }
var b : Int
}
</pre>
<p>Here are some more realistic examples of structs:</p>
<pre class="example">
struct Point { x : Int, y : Int }
struct Size { width : Int, height : Int }
struct Rect {
origin : Point,
size : Size
typealias CoordinateType = Int
func area() -> Int { return size.width*size.height }
}
func test4() {
var a : Point
var b = Point.Point(1, 2) // Silly but fine.
var c = Point(y = 1, x = 2) // Using metatype.
var x1 = Rect(a, Size(42, 123))
var x2 = Rect(size = Size(width = 42, height=123), origin = a)
var x1_area = x1.width*x1.height
var x1_area2 = x1.area()
}
</pre>
<!-- ===================================================================== -->
<h3 id="decl-class">class Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-class ::= 'class' <a href="#attribute-list">attribute-list</a> <a href="#identifier">identifier</a> <a href="#inheritance">inheritance</a>? '{' decl-class-body '}'
decl-class-body ::= <a href="#decl">decl</a>*
</pre>
<p>A class declares a reference type referring to an object which can contain
data members and have methods. Classes support single inheritance;
a parent class should be listed as the first type in the
inheritance list.</p>
<p>The body of a 'class' is a list of decls. Non-property 'var' decls
declare members with storage in the class. Non-static 'var' and 'func'
decls declare instance members; static 'var' and 'func' decls declare
members of the class itself. Both class and instance members can
be overridden by a derived class.</p>
<p>Type declarations inside a class act essentially the same way as type
declarations outside a class.</p>
<p>FIXME: For the moment, see classes.rst for more details on the
class system.</p>
<p>FIXME: Add a reference to the section on generics.</p>
<p>The only way to create a new instance of a class is with a
<a href="#expr-new">new expression</a>.
<p>Here is a simple example:</p>
<pre class="example">
class C1 {
var a : Int
var b : Int
}
</pre>
<!-- ===================================================================== -->
<h3 id="decl-protocol">Protocol Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-protocol ::= 'protocol' <a href="#attribute-list">attribute-list</a> <a href="#identifier">identifier</a> <a href="#inheritance">inheritance</a>? '{' protocol-member* '}'
</pre>
<p>A protocol declaration describes an abstract interface implemented by
another type. It consists of a set of declarations, which may be instance
methods or properties. A type <i>conforms</i> to a protocol if it
provides declarations that correspond to each of the declarations in
a protocol.</p>
<p>Here are some examples of protocols:</p>
<pre class="example">
protocol Document {
var title : String
}
</pre>
<!-- _____________________________________________________________________ -->
<h4 id="protocol-member-func">'func' protocol elements</h4>
<pre class="grammar">
protocol-member ::= <a href="#decl-func">decl-func</a>
</pre>
<p>'func' members of a protocol define a value of function type that may be
accessed with dot syntax on a value of the protocol's type. The function
gets an implicit "this" argument of the protocol type and shall not
be static.</p>
<!-- _____________________________________________________________________ -->
<h4 id="protocol-member-var">'var' protocol elements</h4>
<pre class="grammar">
protocol-member ::= <a href="#decl-var">decl-var</a>
</pre>
<p>'var' members of a protocol define "property" values that may be accessed
with dot syntax on a value of the protocol's type. The actual
variables have no storage, and will instead by accessed by a getter
and setter. Thus, the variables shall have neither an initializer
nor a getter/setter clause.</p>
<!-- _____________________________________________________________________ -->
<h4 id="protocol-member-subscript">'subscript' protocol elements</h4>
<pre class="grammar">
protocol-member ::= <a href="#subscript-head">subscript-head</a>
</pre>
<p>'subscript' members of a protocol define subscripting operations
that may be accessed with the subscript operator ('[]') applied to a
value of the protocol's type. </p>
<div class="commentary">
TODO: There is currently no way to express a requirement for a
read-only or write-only subscript operation or variable. We may
end up doing this with some kind of 'const' or 'immutable'
attribute.
</div>
<!-- _____________________________________________________________________ -->
<h4 id="protocol-member-typealias">'typealias' protocol elements (associated types)</h4>
<pre class="grammar">
protocol-member ::= <a href="#typealias-head">typealias-head</a>
</pre>
<p>'typealias' members of a protocol define associated types, which
are types used within the description of a protocol (typically in
the inputs and outputs of 'func' members) that vary from one
conforming type to another. When an associated type has an <a
href="#inheritance">inheritance</a> clause, any type meant to
satisfy the associated type requirement must conform to each of the
protocols specified within that inheritance clause.</p>
<pre class="example">
protocol Enumerable {
typename RangeType : Range
func getElements() -> RangeType
}
</pre>
<!-- ===================================================================== -->
<h3 id="decl-subscript">subscript Declarations</h3>
<!-- ===================================================================== -->
<pre id="value-specifier" class="grammar">
decl-subscript ::= subscript-head '{' <a href="#get-set">get-set<a/> '}'
<a id="subscript-head"></a>subscript-head ::= 'subscript' <a href="#attribute-list">attribute-list</a> <a href="#pattern-tuple">pattern-tuple</a> '->' <a href="#type">type</a>
</pre>
<p>A subscript declaration provides support for <a
href="#expr-subscript"> subscripting</a> an object of a particular
type via a getter and (optional) setter. Therefore, subscript
declarations can only appear within a type definition or
extension.</p>
<p> The <tt>pattern-tuple</tt> of a subscript declaration provides
the indices that will be used in the subscript expression, e.g., the
<tt>i</tt> in <tt>a[i]</tt>. This pattern must be fully-typed. The
<tt>type</tt> following the arrow provides the type of element being
accessed, which must be materializable. Subscript declarations can be
overloaded, so long as either the <tt>pattern-tuple</tt> or
<tt>type</tt> differs from other declarations.</p>
<p>The <tt>get-set</tt> clause specifies the getter and setter used
for subscripting. The getter is a function whose input is the type of
the <tt>pattern-tuple</tt> and whose result is the element type.
Similarly, the setter is a function whose result type is <tt>()</tt>
and whose input is the type of the <tt>pattern-tuple</tt> with a
parameter of the element type added to the end of the tuple; the name
of the parameter is the <tt>set-name</tt>, if provided, or
<tt>value</tt> otherwise.
<pre class="example">
<i>// Simple bit vector with storage for 64 boolean values</i>
struct BitVector64 {
bits : Int64
<i>// Allow subscripting with integer subscripts and a boolean result.</i>
subscript (bit : Int) -&gt; Bool {
<i>// Getter tests the given bit</i>
get {
if (bits & (1 &lt;&lt; bit)) != 0 {
return true
}
return false;
}
<i>// Setter sets the given bit to the provided value</i>
set {
var mask = 1 &lt;&lt; bit
if value {
bits = bits | mask
} else {
bits = bits & ~mask
}
}
}
}
var vec : BitVector64
vec[2] = true
if vec[3] {
print("third bit is set\n");
}
</pre>
<!-- ===================================================================== -->
<h3 id="decl-constructor">constructor Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-constructor ::= 'constructor' <a href="#attribute-list">attribute-list</a> <a href="#pattern-tuple">pattern-tuple</a> <a href="#stmt-brace">stmt-brace</a>
</pre>
<p>'constructor' declares a constructor for a class, struct, or oneof. Such
a declaration is used whenever an object is constructed. Specifically,
for classes, it is used when a new expression is written, and for structs
and oneofs, it is used for function application when the "function"
is a metatype.</p>
<p>FIXME: We haven't decided the precise rules for when constructors are
implicitly declared. Default construction doesn't work right for structs
or oneofs. We haven't decided what the restrictions are if a member
isn't default-constructible.</p>
<p>A simple example:</p>
<pre class="example">
struct X {
var member : Int
constructor(x : Int) {
member = x
}
}
var a = X(10)
</pre>
<!-- ===================================================================== -->
<h3 id="decl-destructor">destructor Declarations</h3>
<!-- ===================================================================== -->
<pre class="grammar">
decl-constructor ::= 'destructor' <a href="#attribute-list">attribute-list</a> <a href="#stmt-brace">stmt-brace</a>
</pre>
<p>'destructor' declares a destructor for a class. This function is called
when there are no longer any references to a class object, just before it
is destroyed. Note that destructors can only be declared for classes,
and cannot be declared in extensions.</p>
<p>FIXME: We haven't really decided the precise rules here, but it's probably
a fatal error to either throw an exception or stash a reference to 'this'
in a destructor. Not sure what happens when we cause the reference count
of another object to reach zero inside a destructor. We might eventually
allow destructors in extensions once we have ivars in extensions.</p>
<p>A simple example:</p>
<pre class="example">
class X {
var fd : Int
destructor {
close(fd)
}
}
</pre>
<!-- ===================================================================== -->
<h3 id="attribute-list">Attribute Lists</h3>
<!-- ===================================================================== -->
<pre class="grammar">
attribute-list ::= /*empty*/
attribute-list ::= lsquare-any ']'
attribute-list ::= lsquare-any attribute (',' attribute)* ']'
attribute ::= attribute-infix
attribute ::= attribute-resilience
attribute ::= attribute-byref
attribute ::= attribute-auto_closure
</pre>
<p>An attribute is a (possibly empty) comma separated list of attributes.</p>
<!-- _____________________________________________________________________ -->
<h4 id="attribute-infix">Infix Attributes</h4>
<pre class="grammar">
attribute-infix ::= 'infix_left' '=' <a href="#integer_literal">integer_literal</a>
attribute-infix ::= 'infix_right' '=' <a href="#integer_literal">integer_literal</a>
attribute-infix ::= 'infix '=' <a href="#integer_literal">integer_literal</a>
</pre>
<p>The infix attributes may only be applied to the declaration of a
function of binary operator type whose name is an
<a href="#operator"><tt>operator</tt></a>. The name indicates the
associativity of the operator, either left associative, right associative, or
non-associative.</p>
<p>FIXME: Implement these restrictions.</p>
<!-- _____________________________________________________________________ -->
<h4 id="attribute-resilence">Resilience Attribute</h4>
<pre class="grammar">
attribute-resilience ::= 'resilient'
attribute-resilience ::= 'fragile'
attribute-resilience ::= 'born_fragile'
</pre>
<p>See the resilience design.</p>
<!-- _____________________________________________________________________ -->
<h4 id="attribute-byref">By-Reference Attribute</h4>
<pre class="grammar">
attribute-byref ::= 'byref'
</pre>
<p><tt>byref</tt> is only valid in a <tt>type-annotation</tt> that
appears within either a <a href="#pattern"><tt>pattern</tt></a> of
a <tt>function-signature</tt> or the input type of a function
type.
</p>
<p><tt>byref</tt> indicates that the argument will be passed "by
reference": the bound variable will be an l-value.</p>
<p>The type being annotated must be <a href="#materializable">materializable</a>.
The type after annotation is never materializable.</tt>
<p>FIXME: we probably need a const-like variant, which permits
r-values (and avoids writeback when the l-value is not physical).
We may also need some way of representing <q>this will be
consumed by the nth curry</q>.
</p>
<!-- _____________________________________________________________________ -->
<h4 id="attribute-auto_closure">auto_closure Attribute</h4>
<pre class="grammar">
attribute-auto_closure ::= 'auto_closure'
</pre>
<p>The <tt>auto_closure</tt> attribute modifies a <a
href="#type-function">function type</a>, changing the behavior of any
assignment into (or initialization of) a value with the function type.
Instead of requiring that the rvalue and lvalue have the same function type,
an "auto closing" function type requires its initializer expression to have
the same type as the function's result type, and it implicitly binds a
closure over this expression. This is typically useful for function arguments
that want to capture computation that can be run lazily.</p>
<p><tt>auto_closure</tt> is only valid in a <tt>type-annotation</tt> of a
syntactic function type that is defined to take a syntactic empty tuple.
</p>
<pre class="example">
<i>// An auto closure value. This captures an implicit closure over the</i>
<i>// specified expression, instead of the expression itself.</i>
var a : [auto_closure] () -&gt; Int = 4
<i>// Definition of an 'assert' function. Assertions and logging routines</i>
<i>// often want to conditionally evaluate their argument.</i>
func assert(condition : [auto_closure] () -> Bool)
<i>// Definition of the || operator - it captures its right hand side as</i>
<i>// an autoclosure so it can short-circuit evaluate it.</i>
func [infix_left=110] || (lhs: Bool, rhs: [auto_closure] ()->Bool) -&gt; Bool
<i>// Example uses of these functions:</i>
assert(i &lt; j)
if (a == 0 || b == 42) { ... }
</pre>
<!-- ********************************************************************* -->
<h2 id="type">Types</h2>
<!-- ********************************************************************* -->
<pre class="grammar">
type ::= type-simple
type ::= <a href="#type-function">type-function</a>
type ::= <a href="#type-array">type-array</a>
type-simple ::= <a href="#type-identifier">type-identifier</a>
type-simple ::= <a href="#type-tuple">type-tuple</a>
type-simple ::= <a href="#type-composition">type-composition</a>
type-simple ::= <a href="#type-metatype">type-metatype</a>
type-annotation ::= <a href="#attribute-list">attribute-list</a> type
</pre>
<p>Swift has a small collection of core datatypes that are built into the
compiler. Most datatypes that the user is exposed are defined by the
<a href="#stdlib">standard library</a> or declared as a user defined
types.</p>
<p>
FIXME: Why is array a type instead of type-simple?
</p>
<!-- _____________________________________________________________________ -->
<h3>Metatypes</h3>
<p id="metatype">Each type has a corresponding <i>metatype</i>, with the same
name as the type, that is injected into the standard name lookup scope when
a type is <a href="#decl">declared</a>. This allows access to '<a
href="#decl-func">static functions</a>' through dot syntax. For example:</p>
<pre class="example">
// Declares a type 'foo' as well as its metatype.
struct foo {
static func bar() {}
}
// Declares x to be of type foo. A reference to a name in type context
// refers to the type itself.
var x : foo
// Accesses a static function on the foo metatype. In a value context, the
// name of its type refers to its metatype.
foo.bar()
</pre>
<!-- _____________________________________________________________________ -->
<h3 id="fully_typed_types">Fully-Typed Types</h3>
<p>A type may be <i>fully-typed</i>. A type is fully-typed <i>unless</i> one
of the following conditions hold:</p>
<ol>
<li>It is a function type whose result or input type is not
fully-typed.</li>
<li>It is a tuple type with an element that is not
fully-typed. A tuple element is fully-typed unless it has no
explicit type (which is permitted for defaultable elements) or its
explicit type is not fully-typed. In other words, a type is
fully-typed unless it syntactically contains a tuple element with
no explicit type annotation.</li>
</ol>
<p>A type being 'fully-typed' informally means that the type is specified
directly from its type annotation without needing contextual or other
information to resolve its type.</p>
<!-- _____________________________________________________________________ -->
<h3>Materializable Types</h3>
<p id="materializable">A type may be <i>materializable</i>. A type
is materializable unless it is 1) annotated with
a <a href="#attribute-byref"><tt>byref</tt></a> attribute or 2) a
tuple with a non-materializable element type. In general, variables
must have materializable type.</p>
<!-- ===================================================================== -->
<h3 id="type-identifier">Named Types</h3>
<!-- ===================================================================== -->
<pre class="grammar">
type-identifier ::= <a href="#identifier">identifier</a> ('.' <a href="#identifier">identifier</a>)*
</pre>
<p>Named types may be used simply by using their name. Named types are
introduced by <a href="#decl-typealias">typealias</a> declarations or
through type declarations that expand to one.</p>
<pre class="example">
typealias location = (x : Int, y : Int)
var x : location <i>// use of a named type.</i>
</pre>
<p>Type names may use dot syntax to refer to names types declared in other
modules or types nested within other types.</p>
<pre class="example">
<i>// Direct reference to a member of another module.</i>
var x : swift.Int
</pre>
<!-- ===================================================================== -->
<h3 id="type-tuple">Tuple Types</h3>
<!-- ===================================================================== -->
<div class="commentary">
Tuples are everywhere in Swift: even the argument list of a function is a
tuple of those arguments.
</div>
<pre class="grammar">
type-tuple ::= lparen-any type-tuple-body? ')'
type-tuple-body ::= type-tuple-element (',' type-tuple-element)* '...'?
type-tuple-element ::= identifier <a href="#value-specifier">value-specifier</a>
type-tuple-element ::= <a href="#type">type-annotation</a>
</pre>
<p>Syntactically, tuple types are simply a (possibly empty) list of
elements enclosed in parentheses. A tuple type with a single, anonymous,
undefaulted element is exactly that type: the parentheses are treated as
grouping parentheses.</p>
<p>Tuples are the low-level form of data aggregation in Swift, and are used as
the building block of <a href="#type-function">function</a> argument lists,
multiple return values, <a href="#decl-oneof">oneof</a> bodies, etc. Because
tuples are widely accessible and available everywhere in the language,
aggregate data access and transformation is uniform and powerful.</p>
<p>Each element of a tuple contains an optional name followed by a type and/or
a default value expression, whose type conversion rules work like those in a
var declaration. The name affects swizzling of elements in the tuple when <a
href="#typecheck_conversions">tuple conversions</a> are performed.</p>
<p>For tuples with elements with default values, the default value is
evaluated when converting an expression to that tuple type if it is used, or
when a value of that tuple type is default-initialized. The default value
is not allowed to refer to local declarations. FIXME: Maybe we should relax
this?</p>
<p>If the tuple body ends with '...', the tuple is a varargs tuple. The type
of the last element is changed from T to T[], and there are special rules
for converting an expression to varargs tuple type.</p>
<pre class="example">
<i>// Variable definitions.</i>
var a : ()
var b : (Int, Int)
var c : (x : (), y : Int)
var d : (a : Int, b = 4) <i>// Value is initialized to (0,4)</i>
var e : (a : Int, b = 4) = (1) <i>// Value is initialized to (1,4)</i>
<i>// Tuple type inferred from an initializers:</i>
var m = () <i>// Type = ()</i>
var n = (x = 1, y = 2) <i>// Type = (x : Int, y : Int)</i>
var o = (1, 2, 3) <i>// Type = (Int, Int, Int)</i>
<i>// Function argument and result is a tuple type.</i>
func foo(x : Int, y : Int) -&gt; (val : Int, err : Int)
<i>// oneof and struct declarations with tuple values.</i>
struct S { a : Int, b : Int }
oneof Vertex {
Point2 : (x : Int, y : Int),
Point3 : (x : Int, y : Int, z : Int),
Point4 : (w : Int, x : Int, y : Int, z : Int)
}
</pre>
<!-- ===================================================================== -->
<h3 id="type-function">Function Types</h3>
<!-- ===================================================================== -->
<pre class="grammar">
type-function ::= <a href="#type">type-tuple</a> '-&gt;' <a href="#type">type</a>
</pre>
<p>Function types have a single input and single result type, separated by
an arrow. Because each of the types is allowed to be a tuple, we trivially
support multiple arguments and multiple results. "Function" types are
more properly known as a "closure" type, because they can embody any
context captured when the function value was formed.</p>
<p>The result type of a function type must
be <a href="#materializable">materializable</a>. The argument type of a
function is always required to be parenthesized (a tuple). The behavior
of function types may be modified with the <a
href="#attribute-auto_closure"><tt>auto_closure</tt> attribute</a>.</p>
<p>Because of the grammar structure, a nested function type like
"(a) -&gt; (b) -&gt; c" is parsed as "(a) -&gt; ((b) -&gt; c)". This means
that if
you declare this that you can pass it one argument to get a function that
"takes b and returns c" or you can pass two arguments to "get a c". This
is known as <a href="http://en.wikipedia.org/wiki/Currying">currying</a>.
For example:
</p>
<pre class="example">
<i>// A simple function that takes a tuple and returns Int:</i>
var a : (a : Int, b : Int) -&gt; Int
<i>// A simple function that returns multiple values:</i>
var a : (a : Int, b : Int) -&gt; (val: Int, err: Int)
<i>// Declare a function that returns a function:</i>
var x : (Int) -&gt; (Int) -&gt; Int
<i>// y has type (Int) -&gt; Int</i>
var y = x(1)
<i>// z1 and z2 both has type Int, and both have the same value (assuming
// the function had no side effects).</i>
var z1 = x(1)(2)
var z2 = y(2)
<i>// An auto closure value. This captures an implicit closure over the</i>
<i>// specified expression, instead of the expression itself.</i>
var a : [auto_closure] () -> Int = 4
</pre>
<!-- ===================================================================== -->
<h3 id="type-oneof">oneof Types</h3>
<!-- ===================================================================== -->
<div class="commentary">
'oneof' types are known as <a
href="http://en.wikipedia.org/wiki/Algebraic_data_type">algebraic data
types</a> by the broader programming language community. The name 'oneof'
comes from CLU.
</div>
<p>A oneof type is a simple discriminated union: the runtime representation
of a value of oneof type only has one of the specified elements at a time.</p>
<p>All of the element types of a oneof type must
be <a href="#materializable">materializable</a>.</p>
<p>A oneof type is defined by a <a href="#decl-oneof">oneof decl</a>.
<p>A default initialized value of oneof type is initialized to the first
element type in the list, with the default value for its element type.</p>
<p>The oneof metatype has a member corresponding to each declared element.
For elements with a declared type, this member is a function which can
construct a oneof containing that element. For elements without a
declared type, the member is simply a oneof value for that element. A
oneof value has no accessible members except those explicitly defined
by the user.</p>
<p>A reference to a member of the oneof metatype can be shortened using <a
href="#expr-delayed-identifier">delayed identifier resolution</a>
with <a href="#typecheck_context">context sensitive type inference</a>.
</p>
<p>TODO: Should attributes be allowed on oneof elements?
TODO: Eventually, with generics we'll have equality and inequality operators.
Oneof decls should implicitly define these for their types.
TODO: Need pattern matching and element extraction.
</p>
<!-- ===================================================================== -->
<h3 id="type-array">Array Types</h3>
<!-- ===================================================================== -->
<div class="commentary">
Array types are currently a hack, and only partially implemented in the
compiler. Arrays don't make sense to fully define until we have generics,
because array syntax should just be sugar for a standard library type.
"Int[4]" should just be sugar for array&lt;Int, 4&gt; or whatever.
<br/><br/>Note that array types are parsed inside-out, with the first
bounds clause being the outermost one. This little oddity is required
for the bounds of nested arrays to correspond in sequence to subscript
indexes. That is, given an array "x : Int[5][7][11][13]" and a
chained subscript expression of the form "x[i][j][k][l]", we really
want "i" to be bounded by 5, "j" by 7, and so on. This is probably
the only case where C's rule of "declaration follows use" really makes
sense. There's precedent for this in many languages, including Java and C#.
</div>
<pre class="grammar">
type-array ::= <a href="#type">type-simple</a>
type-array ::= <a href="#type">type-array</a> lsquare-unspaced ']'
type-array ::= <a href="#type">type-array</a> lsquare-unspaced <a href="#expr">expr</a> ']'
</pre>
<p>Array types include a base type and an optional size. Array types indicate
a linear sequence of elements stored consequtively memory. Array elements may
be efficiently indexed in constant time. All array indexes are bounds checked
and out of bound accesses are diagnosed with either a compile time or
runtime failure (TODO: runtime failure mode not specified).</p>
<p>While they look syntactically very similar, an array type with a size has
very different semantics than an array without. In the former case, the type
indicates a declaration of actual storage space. In the later case, the type
indicates a <em>reference</em> to storage space allocated elsewhere of
runtime-specified size.
</p>
<p>FIXME: We should separate out "Arrays" from "Slices". Arrays should always
require a size and is by-value, a slice is a by-ref and never have a
(statically specified) size.</p>
<p>For an array with a size, the size must be more than zero (no
indices would be valid). For now, the array size must be a literal integer.
TODO: Define a notion like C's integer-constant-expression for how constant
folding works.</p>
<p>The element type of an array type must
be <a href="#materializable">materializable</a>.</p>
<p>FIXME: Int[][] not valid because the element type isn't sized. We need
some constraint to reject this, or do we?</p>
<p>Some example array types:</p>
<pre class="example">
<i>// A simple array declaration:</i>
var a : Int[4]
<i>// A reference to another array:</i>
var b : Int[] = a
<i>// Declare a two dimensional array:</i>
var c : Int[4][4]
<i>// Declare a reference to another array, two dimensional:</i>
var d : Int[4][]
<i>// Declare an array of function pointers:</i>
var array_fn_ptrs : (: (Int) -&gt; Int)[42]
var g = array_fn_ptrs[12](4)
<i>// Without parens, this is a function that returns a fixed size array:</i>
var fn_returning_array : (Int) -&gt; Int[42]
var h : Int[42] = fn_returning_array(4)
<i>// You can even have arrays of tuples and other things, these work right
// through composition:</i>
var array_of_tuples : (a : Int, b : Int)[42]
var tuple_of_arrays : (a : Int[42], b : Int[42])
array_of_tuples[12].a = array_of_tuples[13].b
tuple_of_arrays.a[12] = array_of_tuples.b[13]
</pre>
<!-- _____________________________________________________________________ -->
<h3 id="type-metatype">Metatype Types</h3>
<pre class="grammar">
type-metatype ::= type-simple '.' 'metatype'
</pre>
<p>Every type has an associated metatype. A value of the metatype
type is a reference to a global object which describes the type.
Most metatype types are singleton and therefore require no
storage, but metatypes associated with <a href="#decl-class">class
types</a> follow the same subtyping rules as their associated
class types and therefore are not singleton.</p>
<!-- _____________________________________________________________________ -->
<h3 id="type-composition">Protocol Composition Types</h3>
<pre class="grammar">
type-composition ::= 'protocol' '&lt;' type-composition-list? '&gt;'
type-composition-list ::= <a href="#type-identifier">type-identifier</a> (',' <a href="#type-identifier">type-identifier</a>)*
</pre>
<p>A protocol composition type composes together a number of
protocols to describe a type that meets the requirements of each of
those protocols. A protocol composition type <code>protocol&lt;A,
B&gt;</code> is similar to an explicitly-defined protocol that
inherits both <code>A</code> and <code>B</code></p>
<pre class="example">
protocol C : A, B { }
</pre>
<p>but without the need to introduce a new name.</p>
<div class="commentary">
If we drop implicit conformance to protocols, protocol composition
types become much more important, because they allow you to give a
name to a composition without requiring types to explicitly
conform to that name.
</div>
<p>Each of the types named in the
<code>type-composition-list</code> shall refer to either a protocol
or to a protocol composition. The list may be empty, in which case
every type conforms to the empty protocol composition. This is how
the <code>Any</code> type is defined in the standard library.</p>
<pre class="example">
<i>// A value that represents any type</i>
var any : protocol&lt;&gt; = 17
<i>// A value that conforms to both the Document and Range protocols</i>
var doc : protocol&lt;Document,Range&gt;
doc.isEmpty() <i>// uses Range.isEmpty()</i>
doc.title = "Hello" <i>// uses Document.title</i>
</pre>
<!-- _____________________________________________________________________ -->
<h3 id="inheritance">Type Inheritance</h4>
<pre class="grammar">
inheritance ::= ':' <a href="#type-identifier">type-identifier</a> (',' <a href="#type-identifier">type-identifier</a>)*
</pre>
<p>A named type (e.g., a class, struct, oneof, or protocol) can
"inherit" some set of protocols, which implies that any object of
that type conforms to each of those protocols. When a protocol
inherits other protocols, the set of requirements from all of those
protocols is effectivel aggregated into the protocol, and a type that
conforms to the current protocol shall conform to each of the
protocols that it inherits.</p>
<p>When a non-protocol type inherits a protocol, it is specifying
explicitly that it conforms to that protocol. The program is
ill-formed if the type does not conform to the protocol.</p>
<pre class="example">
protocol VersionedDocument : Document { <i>// every VersionedDocument is a Document</i>
func bumpVersion()
}
func print(doc : Document) { <i>/* ... */</i> }
var myDocument : VersionedDocument;
print(myDocument) <i>// okay: a VersionedDocument is a Document</i>
class StoredHTML : VersionedDocument { <i>// okay: StoredHTML conforms to VersionedDocument</i>
var Title : String
func bumpVersion()
}
</pre>
<!-- ********************************************************************* -->
<h2 id="pattern">Patterns</h2>
<!-- ********************************************************************* -->
<div class="commentary">
We intend to have a pattern-matching statement eventually, and
probably a pattern-matching predicate expression. There are several
other places in the language, however, which can also be usefully
expressed in terms of patterns. This has the benefit of allowing
uniform decomposition of tuples.<br><br>
The pattern grammar mirrors the expression grammar, or to be more
specific, the grammar of literals. This is because the conceptual
algorithm for matching a value against a pattern is to try to find
an assignment of values to variables which makes the pattern equal
the value. So every expression form which can be used to build a
value directly should generally have a corresponding pattern form.
<br><br>
For now, however, we do not include literals in the pattern grammar.
</div>
<pre class="grammar">
pattern-atom ::= <a href="#pattern-identifier">pattern-identifier</a>
pattern-atom ::= <a href="#pattern-tuple">pattern-tuple</a>
pattern ::= pattern-atom
pattern ::= <a href="#pattern-typed">pattern-typed</a>
</pre>
<p>The basic pattern grammar is a literal "atom" followed by an
optional type annotation. Type annotations are useful for
documentation, as well as for coercing a matched expression to a
particular kind. They are also required when patterns are used in
a <a href="#func-signature">function signature</a>.</p>
<p>A pattern has a type. A pattern may be "fully-typed", meaning
informally that its type is fully determined by the type
annotations it contains. Some patterns may also derive a type
from their context, be it an enclosing pattern or the way it is
used; this set of situations is not yet fully determined.</p>
<p>A pattern may be "irrefutable", meaning informally that it
matches all values of its type. Patterns in some contexts are
required to be irrefutable.</p>
<!-- ********************************************************************* -->
<h3 id="pattern-typed">Typed Patterns</h3>
<!-- ********************************************************************* -->
<pre class="grammar">
pattern-typed ::= pattern-atom ':' <a href="#type">type-annotation</a>
</pre>
<p>A type annotation constrains a pattern to have a specific type.
An annotated pattern is fully-typed if its annotation type is
fully-typed. It is irrefutable if and only if its subpattern is
irrefutable.</p>
<!-- ********************************************************************* -->
<h3 id="pattern-identifier">Identifier Patterns</h3>
<!-- ********************************************************************* -->
<pre class="grammar">
pattern-identifier ::= <a href="#identifier">identifier</a>
</pre>
<p>An identifier pattern binds a value to a particular name, which is
then a legal variable of the pattern's type within its scope. It is
irrefutable. It is not fully-typed; the type must be inferred from
context.</p>
<p>As a special case, if the identifier is <tt>_</tt> then no variable
comes into scope, and the value matched is lost. Such an identifier
pattern is called an "ignore pattern". An identifier pattern
which is not an ignore pattern is called a "named pattern".</p>
<p>The type of a named pattern must be
<a href="#materializable">materializable</a> unless it appears in a
<a href="#function-signature">function-signature</a> and is directly
a <a href="attribute-byref"><tt>byref</tt></a>-annotated type.</p>
<!-- ********************************************************************* -->
<h3 id="pattern-tuple">Tuple Patterns</h3>
<!-- ********************************************************************* -->
<pre class="grammar">
pattern-tuple ::= '(' pattern-tuple-body? ')'
pattern-tuple-body ::= pattern-tuple-element (',' pattern-tuple-body)* '...'?
pattern-tuple-element ::= pattern
pattern-tuple-element ::= pattern '=' <a href="#expr">expr</a>
</pre>
<p>A tuple pattern is a list of zero or more patterns. Within a
function signature, patterns may also be given a default-value
expression.</p>
<p>A tuple pattern is irrefutable if all its sub-patterns are
irrefutable.</p>
<p>A tuple pattern is fully-typed if all its sub-patterns are
fully-typed, in which case its type is the corresponding tuple
type, where each <tt>type-tuple-element</tt> has the type,
label, and default value of the corresponding <tt>pattern-tuple-element</tt>.
A <tt>pattern-tuple-element</tt> has a label if it is a named
pattern or a type annotation of a named pattern.</p>
<p>A tuple pattern whose body ends in <tt>'...'</tt> is a varargs tuple.
The last element of such a tuple must be a typed pattern, and the type
of that pattern is changed from <tt>T</tt> to <tt>T[]</tt>. The
corresponding tuple type for a varargs tuple is a varargs tuple type.</p>
<p>As a special case, a tuple pattern with one element that has no
label, has no default value, and is not varargs is treated as a
grouping parenthesis: it has the type of its constituent pattern,
not a tuple type.</p>
<!-- ********************************************************************* -->
<h2 id="expr">Expressions</h2>
<!-- ********************************************************************* -->
<div class="commentary">
Support for user-defined operators causes some amount of parsing
to be delayed until after name resolution has occurred. Other
restrictions and disambiguations in the grammar permit the parser
to decide all other aspects of parsing, such as where statements
must be divided.<br><br>
Semicolons in C are generally just clutter. Swift generally tries
to define away the need for them.
</div>
<pre class="grammar">
expr ::= <a href="#expr-unary">expr-unary</a> <a href="#expr-binary">expr-binary</a>*
expr-primary ::= <a href="#expr-literal">expr-literal</a>
expr-primary ::= <a href="#expr-identifier">expr-identifier</a>
expr-primary ::= <a href="#expr-explicit-closure">expr-explicit-closure</a>
expr-primary ::= <a href="#expr-anon-closure-arg">expr-anon-closure-arg</a>
expr-primary ::= <a href="#expr-paren">expr-paren</a>
expr-primary ::= <a href="#expr-delayed-identifier">expr-delayed-identifier</a>
expr-primary ::= <a href="#expr-func">expr-func</a>
expr-postfix ::= expr-primary
expr-postfix ::= expr-postfix <a href="#operator">operator-postfix</a>
expr-postfix ::= <a href="#expr-new">expr-new</a>
expr-postfix ::= <a href="#expr-dot">expr-dot</a>
expr-postfix ::= <a href="#expr-metatype">expr-metatype</a>
expr-postfix ::= <a href="#expr-subscript">expr-subscript</a>
expr-postfix ::= <a href="#expr-call">expr-call</a>
</pre>
<p>At the top level of the expression grammar, expressions are a
sequence of unary expressions joined by binary operators. When
parsing an expr, a binary operator immediately following an
expr-unary continues the expression, and the program is ill-formed
if it is not then followed by another expr-unary. This resolves
an ambiguity which could otherwise arise in statement contexts due
to semicolon elision.</p>
<pre class="example">
5 !- +~123 -+- ~+6
(foo)(())
bar(49+1)
baz()
</pre>
<!-- ===================================================================== -->
<h3 id="expr-binary">Binary Operators</h3>
<!-- ===================================================================== -->
<div class="commentary">
Should this use the expr-identifier production to allow qualified
identifiers? This would allow "foo swift.+ bar". Is ADL or something
like it enough?<br><br>
The ++/-- restriction is an unfortunate hack. It happens because ++ and --
are typically used for their side effect, not their result value. With the
current setup and no other solution, things like:
"<tt>var x = foo() ++y</tt>" get parsed as a single var declaration that
uses a binary ++ operator. Disallowing them is an unsatisfying but
effective solution to this. We should revisit this in the future.
</div>
<pre class="grammar">
expr-binary ::= <a href="#operator">operator-binary</a> <a href="#expr-unary">expr-unary</a>
</pre>
<p>Infix binary expressions are not formed during parsing. Instead,
they are formed after name resolution by building a tree from an
operator-delimited sequence of unary expressions. Precedence and
associativity are determined by the <a href="#attribute-infix">infix</a>
attribute on the resolved names, which must fully agree.</p>
<p>If an operator is used as a binary operator, but name resolution
does not find at least one function of binary operator type, the
expression is ill-formed.</p>
<p>A simple example is:</p>
<pre class="example">
4 + 5 * 123
</pre>
<!-- ===================================================================== -->
<h3 id="expr-unary">Unary Operators</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-unary ::= <a href="#operator">operator-prefix</a>* <a href="#expr">expr-postfix</a>
</pre>
<p>If an operator is used as a unary operator, but name resolution
does not find at least one function that takes a single argument, the
expression is ill-formed.</p>
<p>Simple examples:</p>
<pre class="example">
i = -j
</pre>
<!-- ===================================================================== -->
<h3 id="expr-literal">Literals</h3>
<!-- ===================================================================== -->
<div class="commentary">
The type of a literal is inferred from its context, to allow things like "4"
to be compatible with any width integer type without 'promotion' rules or
casting. In ambiguous cases like "var x = 4", the literals are forced to
a default type specified by the standard library.
</div>
<pre class="grammar">
expr-literal ::= <a href="#integer_literal">integer_literal</a>
expr-literal ::= <a href="#floating_literal">floating_literal</a>
expr-literal ::= <a href="#character_literal">character_literal</a>
expr-literal ::= <a href="#string_literal">string_literal</a>
</pre>
<p>Numeric literals are either integer, floating point, character, or string
depending on its lexical form. The type of the literal is inferred
based on its context. If there is no contextual type information for an
expression, all unresolved types are inferred to 'IntegerLiteralType'
type, to 'FloatLiteralType', to 'CharacterLiteralType', and to
'StringLiteralType', respectively.
If a literal is used and these types are not defined, then the code is
malformed.</p>
<p>A literal is compatible with its inferred type if that type implements an
informal protocol required by literals. This informal protocol requires
that the type have an unambiguous "static" function defined whose
result type is the same as the inferred type, and that takes a single
argument that is either itself literal compatible, or is a <a
href="#builtin">builtin</a> integer type.
</p>
<!-- ===================================================================== -->
<h3 id="expr-identifier">Identifiers</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-identifier ::= <a href="#identifier">identifier</a>
</pre>
<p>A raw identifier refers to a value found via <a
href="#namebind_value_lookup_unqual">unqualified value lookup</a>, and has
the type of the declaration returned by name lookup and overload
resolution. Value declarations are installed with <a
href="#decl-var">var</a> and the syntactic sugar forms like <a
href="decl-func">func</a> declarations.</p>
<!-- ===================================================================== -->
<h3 id="expr-explicit-closure">Explicit Closure Expression</h3>
<!-- ===================================================================== -->
<div class="commentary">
It would be possible to allow { expr } and { stmt-brace-item* } here -
allowing the same syntax as stmt-brace. The
intepretation of this would be that a single expression is evaluated and
returned implicitly, but that a multi-statement sequence would require an
explicit return. This would mean that {4} and {return 4} both do the same
thing. OTOH, it is possibly confusing that {4} and {4;} would have very
different meanings.
</div>
<pre class="grammar">
expr-explicit-closure ::= '{' expr? '}'
</pre>
<p>A closure expression is a super-concise version of <a
href="#expr-func">expr-func</a> for cases where very simple predicates and
other small closures are needed (e.g. sorting and searching predicates).
It uses Swift's aggressive type system to infer both the argument and
return values types for the closure from the context it is used in, and
allows access to the formal arguments of the closure through <a
href="#expr-anon-closure-arg">anonymous closure argument expressions</a>.
In tuples with no body expression, the '()' expression is used as the
result.
</p>
<p>It is illegal to use these expressions when there is insufficient context
to infer the argument and return types of the closure.</p>
<p>Note that expr-explicit-closure is ambiguous with <a
href="#stmt-brace">stmt-brace</a> when used in a another stmt-brace or in
<a href="#decl-translation-unit">translation-unit</a> scope. This
ambiguity is resolved towards stmt-brace, because these context never have
enough contextual information to infer the type of the closure, thus they
would always be a semantic error if parsed that way.</p>
<pre class="example">
<i>// Takes a closure that it calls to determine an ordering relation.</i>
func magic(val : Int, predicate : (a : Int, b : Int) -> Bool)
func f() {
<i>// Compare one way. Closure is inferred to return Bool and take two ints</i>
<i>// from the argument context. This same information infers that $0 and $1</i>
<i>// both have type 'Int'.</i>
magic(42, { $0 &lt; $1 })
<i>// Compare the other way way.</i>
magic(42, { $1 &lt; $0 })
<i>// Error, not enough context to infer the type of $0.</i>
var x = { $0 }
}
</pre>
<!-- ===================================================================== -->
<h3 id="expr-anon-closure-arg">Anonymous Closure Arguments</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-anon-closure-arg ::= <a href="#dollarident">dollarident</a>
</pre>
<p>A use of an identifier whose name fits the "$[0-9]+" regular
expression is a reference to an anonymous closure argument that is formed when
the containing expression is <a href="#typecheck_anon">coerced into a closure
context</a>. All other dollar identifiers are invalid.</p>
<p>This can only be used in the body of an <a
href="#expr-explicit-closure">expr-explicit-closure</a>.
</p>
<!-- ===================================================================== -->
<h3 id="expr-delayed-identifier">Delayed Identifier Resolution</h3>
<!-- ===================================================================== -->
<div class="commentary">
The ".bar" syntax was picked because it is related to the syntax of a fully
qualified "foo.bar" reference.
</div>
<pre class="grammar">
expr-delayed-identifier ::= '.' <a href="#identifier">identifier</a>
</pre>
<p>A delayed identifier expression refers to a constructor of a <a
href="type-oneof">oneof</a> type, without knowing which type it is referring
to. The expression is resolved to a constructor of a concrete type through
context sensitive type inference.</p>
<pre class="example">
oneof Direction { Up, Down }
func search(val : Int, direction : Direction)
func f() {
search(42, .Up)
search(17, .Down)
}
</pre>
<!-- ===================================================================== -->
<h3 id="expr-paren">Parenthesized Expressions</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-paren ::= lparen-any ')'
expr-paren ::= lparen-any expr-paren-element (',' expr-paren-element)* ')'
expr-paren-element ::= (<a href="#identifier">identifier</a> '=')? <a href="#expr">expr</a>
</pre>
<p>Parentheses expressions contain an (optionally empty) list of optionally
named values. Parentheses in an expression context denote one of two
things: 1) grouping parentheses, or 2) a tuple literal.</p>
<p>Grouping parentheses occur when there is exactly one value in the list and
that value does not have a name. In this case, the type of the parenthesis
expression is the type of the single value.</p>
<p>All other cases are tuple literals. The type of the expression is a tuple
type whose elements and order match that of the initializer. If there are
any named elements, those elements become names for the tuple type. A
parenthesis expression with no value has a type of the empty tuple.
</p>
<p>Note that some enclosing productions restrict the <tt>lparen-any</tt> to a
<tt>lparen-unspaced</tt>.</p>
<p>Some examples:</p>
<pre class="example">
<i>// Simple grouping parenthesis.</i>
var a = (4) <i>// Type = Int</i>
var b = (4+a) <i>// Type = Int</i>
<i>// Tuple literals.</i>
var c = () <i>// Type = ()</i>
var d = (4, 5) <i>// Type = (:Int,:Int)</i>
var e = (c, d) <i>// Type = ((), (:Int, :Int))</i>
var f = (x = 4, y = 5) <i>// Type = (x : Int, y : Int)</i>
var g = (4, y = 5, 6) <i>// Type = (:Int, y : Int, :Int)</i>
<i>// Named arguments to functions.</i>
func foo(a : Int, b : Int)
foo(b = 4, a = 1)
</pre>
<!-- ===================================================================== -->
<h3 id="expr-func">Func Expressions</h3>
<!-- ===================================================================== -->
<div class="commentary">
Func expressions will probably not be widely used directly, but they are
the core semantic model underlying 'func' declarations, and can be
convenient for declaring first-class function values that want named
arguments.
</div>
<pre class="grammar">
expr-func ::= 'func' <a href="#func-signature">func-signature</a>? <a href="#stmt-brace">stmt-brace</a>
</pre>
<p>A func expression is an anonymous (unnamed) function literal definition,
which can define named arguments (and whose names are in scope for its
body) and that can refer to values defined in parent scopes.</p>
<p>A func expression captures a reference to any values in parent scopes that
are used.</p>
<p>If the function signature is omitted, it is implicitly <tt>() -> ()</tt>.</p>
<p>TODO: Allow attributes on funcs when useful.</p>
<pre class="example">
<i>// A simple func expression.</i>
var a = func(val : Int) { print(val+1) }
<i>// A recursive func expression.</i>
var fib = func(n : Int) -> Int {
if (n &lt; 2) { return n; }
return fib(n-1)+fib(n-2)
}
</pre>
<!-- ===================================================================== -->
<h3 id="expr-dot">Dot Expressions</h3>
<!-- ===================================================================== -->
<div class="commentary">
"foo.$1" is a pretty ugly way to get to fields of a tuple, but we don't
want to use "foo[1]" (that would encourage people to use variable indexes)
and tuples should generally be accessed with pattern matching anyway.
</div>
<pre class="grammar">
expr-dot ::= <a href="#expr">expr-postfix</a> '.' <a href="#dollarident">dollarident</a>
</pre>
<p>If the base expression has <a href="#type-tuple">tuple type</a>, then the
magic identifier "$[0-9]+" accesses the specified anonymous member of the
tuple. Otherwise, this form is invalid.</p>
<pre class="grammar">
expr-dot ::= <a href="#expr">expr-postfix</a> '.' <a href="#identifier">identifier</a>
</pre>
<p>If the base expression has <a href="#type-tuple">tuple type</a> and if the
identifier is the name of a field in the tuple, then this is a reference to
the specified field.</p>
<p>Otherwise, <a href="#namebind_value_lookup_dot">dot name lookup</a> is
performed, and this expression is treated as function application. This
allows looking up members in modules, metatypes, etc.</p>
<!-- ===================================================================== -->
<h3 id="expr-metatype">Metatype Expressions</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-metatype ::= <a href="#expr">expr-postfix</a> '.' 'metatype'
</pre>
<p>A metatype expression produces the metatype for the dynamic type
of the value of the base expression. The base expression is
converted to an rvalue and evaluated, and then the result is
calculated as follows:</p>
<ul compact>
<li>If the static type of the expression is a class type, the
result of the base expression must be an object of that class,
and the result of the expression is the metatype object for the
dynamic type of the base object.</li>
<li>TODO: metatype of class type?</li>
<li>TODO: existential type?</li>
<li>Otherwise, the result of the expression is the metatype for
the static type of the base expression.</li>
</ul>
<!-- ===================================================================== -->
<h3 id="expr-subscript">Subscript Expressions</h3>
<!-- ===================================================================== -->
<div class="commentary">
There is no "built-in" semantics for subscripting. Rather, all
subscripting semantics is implemented via subscript declarations
in the library.
<br/<br/>We require an unspaced '[' because we want to avoid
ambiguities with expressions or statements starting with '['. We
don't have any of those right now, but it's inevitable that we'll
want something like an array literal, list comprehension, or
statement attribute.
</div>
<pre class="grammar">
expr-subscript ::= <a href="#expr">expr-postfix</a> lsquare-unspaced <a href="#expr">expr</a> ']'
</pre>
<p>A subscript expression invokes a <a
href="#decl-subscript">subscript getter or setter</a> on the type
of the <tt>expr-postfix</tt>. The <tt>expr</tt> is used as the
subscript argument, which will be provided to either the getter or
setter depending on whether the subscript expression is used as an
rvalue (reading) or lvalue (writing), respectively. A subscript
expression that resolves to a subscript declaration with no setter
cannot be modified.</p>
<!-- ===================================================================== -->
<h3 id="expr-new">New Expressions</h3>
<!-- ===================================================================== -->
<div class="commentary">
It's not really clear what the behavior of multiple bounds should be.
<br/><br/>We should probably allow an initializer, which would
have to start with an lparen-unspaced; the semantics would be to
evaluate that constructor for each element constructed.
</div>
<pre class="grammar">
expr-new ::= 'new' <a href="#type">type-identifier</a> expr-new-bounds?
expr-new-bounds ::= expr-new-bound
expr-new-bounds ::= expr-new-bounds expr-new-bound
expr-new-bound ::= lsquare-unspaced <a href="#expr">expr?</a> ']'
</pre>
<p>Allocates and initializes a new array of objects with value
semantics or an individual object with reference semantics. If
any bounds clauses are present, the first clause must have an
expression; subsequent bounds, if present, must be constant under the
<a href="#type-array">usual rules for array types</a>.</p>
<!-- ===================================================================== -->
<h3 id="expr-call">Function Application</h3>
<!-- ===================================================================== -->
<pre class="grammar">
expr-call ::= <a href="#expr">expr-postfix</a> <a href="#expr-paren">expr-paren</a>
</pre>
<p>The leading <tt>'('</tt> of the <tt>expr-paren</tt> must be
a <tt>lparen-unspaced</tt>. This greatly reduces the likelihood of
confusion from semicolon elision, without requiring feedback from
the typechecker or more aggressive whitespace sensitivity.</p>
<p>If the <tt>expr-prefix</tt> refers to a (possibly
parenthesized) name of a type, the <tt>expr-paren</tt> is first
coerced to the type named by <tt>expr-prefix</tt>. If that coercion
fails, then the <tt>expr-prefix</tt> refers to the set of
constructors for that type, which consists of:
<ul>
<li>All of the elements of a oneof type (if any), and</li>
<li>All of the methods with the name as the oneof type, found in
either the original declaration of the oneof type or its extensions.</li>
</ul></p>
<div class="commentary">
Actual type conversions/casts are just normal function calls to
constructors: Int(4.0) just runs the (overloaded) 'Int' function
on its argument.
</div>
<p>Simple examples:</p>
<pre class="example">
<i>// Application of an empty tuple to the function f.</i>
f()
<i>// Application of 4 to the function f.</i>
g(4)
<i>// Application of 4 to the function returned by h().</i>
var h : (Int) -&gt; (Int) -&gt; Int
...
h()(4)
<i>// Two separate statements</i>
i()
(j &lt;+ 2)()
</pre>
<!-- ********************************************************************* -->
<h2 id = "stmt">Statements</h2>
<!-- ********************************************************************* -->
<div class="commentary">
Statements can only exist in contexts that are themselves a stmt.
Statements have no type, they just induce control flow changes. We choose
to use constructs that will be familiar to a broad range of C/Java
programmers.
</div>
<pre class="grammar">
stmt ::= <a href="#stmt-semicolon">stmt-semicolon</a>
stmt ::= <a href="#stmt-assign">stmt-assign</a>
stmt ::= <a href="#stmt-brace">stmt-brace</a>
stmt ::= <a href="#stmt-return">stmt-return</a>
stmt ::= <a href="#stmt-if">stmt-if</a>
stmt ::= <a href="#stmt-while">stmt-while</a>
stmt ::= <a href="#stmt-for-c-style">stmt-for-c-style</a>
stmt ::= <a href="#stmt-for-each">stmt-for-each</a>
</pre>
<p>Statements provide the control flow constructs of function bodies and
top-level code.</p>
<pre class="example">
<i>// A function with some statements.</i>
func fib(v : Int) -&gt; Int {
if v &lt; 2 {
return v
}
return fib(v-1)+fib(v-2)
}
</pre>
<!-- ===================================================================== -->
<h3 id="stmt-semicolon">Semicolon Statement</h3>
<!-- ===================================================================== -->
<div class="commentary">
Allowing semicolons as statements causes us to allow semicolons as statement
separators as well. This, in turn, means that we don't reject code that has
semicolons after each statement, which will be common when people first
start getting used to Swift.
</div>
<pre class="grammar">
stmt-semicolon ::= ';'
</pre>
<p>The semicolon statement has no effect.</p>
<!-- ===================================================================== -->
<h3 id="stmt-assign">Assignment Statement</h3>
<!-- ===================================================================== -->
<div class="commentary">
The requirement that '=' can only be used as a statement means that the
following is inherently illegal:
<pre> if (x = 1)</pre>
It also implies that nested assignments are also illegal:
<pre> x = y = z</pre>
</div>
<pre class="grammar">
stmt-assign ::= <a href="#expr">expr</a> '=' <a href="#expr">expr</a>
</pre>
<p>The assignment statement evaluates its left hand side as some sort of
lvalue, then evaluates the right hand side, the assigns one to the other.
FIXME: The requirements for lvalues should be described, and tied into a
description of lvalue types.
</p>
<!-- ===================================================================== -->
<h3 id="stmt-brace">Brace Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-brace ::= '{' stmt-brace-item* '}'
stmt-brace-item ::= <a href="#decl">decl</a>
stmt-brace-item ::= <a href="#expr">expr</a>
stmt-brace-item ::= <a href="#stmt">stmt</a>
</pre>
<p>The brace statement provides a sequencing operation which evaluates the
members of its body in order. Function bodies and the bodies of control
flow statements use braces. Also, the <a
href="#decl-translation-unit">translation unit</a> itself is effectively and
brace statement without the braces.
</p>
<!-- ===================================================================== -->
<h3 id="stmt-return">'return' Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-return ::= 'return' <a href="#expr">expr</a>
stmt-return ::= 'return'
</pre>
<p>The return statement sets the return value of the current <a
href="#decl-func">func declaration</a> or <a href="#expr-func">func
expression</a> and transfers control out of the function. It sets the
return value by converting the specified expression result (or '()' if
none is specified) to the return type of the 'func'.
</p>
<p>The stmt-return grammar is ambiguous: "{ return 4 }" could be parsed as
{"return" "4"} or as a single statement. Ambiguity here is resolved toward
the first production, because control flow can't transfer to an
subexpression.</p>
<!-- ===================================================================== -->
<h3 id="stmt-if">'if' Statement</h3>
<!-- ===================================================================== -->
<div class="commentary">
We require braces around the body of an 'if' for two reasons: first, it
eliminates the need for parentheses around the condition by making them
visually distinctive. Second, it will eliminate all the dithering about
whether and when people should, or should not, use braces for if bodies.
</div>
<pre class="grammar">
stmt-if ::= 'if' <a href="#expr">expr</a> <a href="#stmt-brace">stmt-brace</a> stmt-if-else?
stmt-if-else ::= 'else' <a href="#stmt-brace">stmt-brace</a>
stmt-if-else ::= 'else' stmt-if
</pre>
<p>'if' statements provide a simple control transfer operations that evaluates
the condition, invokes the 'getLogicValue' member of the result if the result
not a 'Bool', then determines the direction of the branch based on the result.
(Internally, the standard library type 'Bool' has a getLogicValue member that
returns a 'Builtin.Int1'.) It is an error if the type of the expression is
context-dependent or some non-Bool type.
</p>
<p>Some examples include:</p>
<pre class="example">
if true {
/*...*/
}
if X == 4 {
} else {
}
if X == 4 {
} else if X == 5 {
} else {
}
</pre>
<!-- ===================================================================== -->
<h3 id="stmt-while">'while' Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-while ::= 'while' <a href="#expr">expr</a> <a href="#stmt-brace">stmt-brace</a>
</pre>
<p>'while' statements provide simple loop construct which (on each iteration
of the loop) evalutes the condition, invokes the 'getLogicValue' member of
the result if the result not a 'Bool', then determines whether to keep
looping. (Internally, the standard library type 'Bool' has a getLogicValue
member that returns a 'Builtin.Int1'.) It is an error if the type of
the expression is context-dependent or some non-Bool type.
</p>
<p>Some examples include:</p>
<pre class="example">
while true {
/*...*/
}
while X == 4 {
X = 3
}
</pre>
<!-- ===================================================================== -->
<h3 id="stmt-do-while">'do-while' Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-do-while ::= 'do' <a href="#stmt-brace">stmt-brace</a> 'while' '<a href="#expr">expr</a>
</pre>
<p>'do-while' statements provide simple loop construct which (on each
iteration of the loop) evaluates the body, then evaluates the condition,
invoking the 'getLogicValue' member of the result if the result not a 'Bool',
then determines whether to keep looping. (Internally, the standard library
type 'Bool' has a getLogicValue member that returns a 'Builtin.Int1'). It is
an error if the type of the expression is context-dependent or some non-Bool
type.
</p>
<p>Some examples include:</p>
<pre class="example">
do {
/*...*/
} while true
do {
X = 3
} while X == 4
</pre>
<!-- ===================================================================== -->
<h3 id="stmt-for-c-style">C-Style 'for' Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-for-c-style ::= 'for' stmt-for-c-style-init? ';' <a href="#expr">expr</a>? ';' expr-or-stmt-assign? <a href="#stmt-brace">stmt-brace</a>
expr-or-stmt-assign ::= <a href="#expr">expr</a> | <a href="#stmt-assign">stmt-assign</a>
stmt-for-c-style-init ::= <a href="#decl-var">decl-var</a>
stmt-for-c-style-init ::= expr-or-stmt-assign
</pre>
<p>C-Style 'for' statements provide simple loop construct which evaluates the
first part (the initializer) before entering the loop, then evalutes the
second condition as a logic value to determines whether to keep looping.
The third condition is executed at the end of the loop. All three are
evaluated in a new scope that surrounds the for statement.
</p>
<p>Some examples include:</p>
<pre class="example">
for i = 0; i != 10; ++i {
/*...*/
}
for var (i,j) = (0,1); i != 10; ++i {
/*...*/
}
</pre>
<!-- ===================================================================== -->
<h3 id="stmt-for-each">'for-each' Statement</h3>
<!-- ===================================================================== -->
<pre class="grammar">
stmt-for-each ::= 'for' <a href="#pattern">pattern</a> 'in' <a href="#expr">expr</a> <a href="#stmt-brace">stmt-brace</a>
</pre>
<p>Range-based 'for' statements provide iteration over the values in a
container. The <tt>expr</tt> is the container, and shall have a
method <tt>getElements()</tt> that, when called, returns the range
over which the loop will iterate.</p>
<p>The range must, at a minimum, have two methods:
<div class="commentary">
The methods used here constitute an informal protocol. In the
future, we intend to express this via a formal protocol.
</div>
<dl>
<dt><tt>isEmpty() -> Bool</tt></dt>
<dd>Determines whether the range is empty, meaning that the loop
should terminate.</dd>
</dl>
<dt><tt>getFirstAndAdvance() -> T</tt></dt>
<dd>Retrieves the first element in the range then advances to the
next element in the range, reducing the length of the range by
one. The type <tt>T</tt> can be any materializable type, and will
be used to initialize the variables in the <tt>pattern</tt>.</dd>
</dl></p>
<p>Note that each iteration of the loop declares a distinct variable for each
variable in the pattern. For example, in a loop like "for i in 0..10",
if i is captured inside the loop, each iteration captures a different "i",
so there would be a total of ten versions generated each time the loop
runs.</p>
<p>Some examples include:</p>
<pre class="example">
for i in 0..100 {
println(String(i));
}
</pre>
<!-- ********************************************************************* -->
<h2>Protocols</h2>
<!-- ********************************************************************* -->
<!-- ********************************************************************* -->
<h2>Objects</h2>
<!-- ********************************************************************* -->
<!-- ********************************************************************* -->
<h2>Generics</h2>
<!-- ********************************************************************* -->
<!-- ********************************************************************* -->
<h2 id="namebind">Name Binding</h2>
<!-- ********************************************************************* -->
<p>Name binding in swift is performed in different ways depending on what
language entity is being considered:</p>
<p>Value names (for <a
href="#decl-var">var</a> and <a href="#decl-func">func</a> declarations) and
type names (for <a href="#decl-typealias">typealias</a>, <a
href="#decl-oneof">oneof</a>, and <a href="#decl-struct">struct</a>
declarations) follow the same <a href="#namebind_scope">scope</a> and
<a href="#namebind_typevalue_lookup">name lookup</a> rules as described below.
</p>
<p>tuple element names</p>
<p>scope within oneof decls</p>
<p>Context sensitive member references are resolved <a
href="#typecheck_context">during type checking</a>.</p>
<h3 id="namebind_scope">Scopes for Type and Value Names</h3>
<h3 id="namebind_value_lookup_unqual">Name Lookup Unqualified Value Names</h3>
<h3 id="namebind_value_lookup_dot">"dot" Name Lookup Value Names</h3>
<h3 id="namebind_typevalue_lookup">Name Lookup for Type and Value Names</h3>
<p>Basic algo:</p>
<ul>
<li>Search the current scope tree for a local name. Local names cannot be
forward referenced.</li>
<li>Bind to names defined in the current component, including the current
translation unit. TODO: is this a good thing? We could require explicit
imports if we wanted to.</li>
<li>Bind to identifiers that are imported with an import directive. Imports
are searched in order of introduction (top-down). The location of an
import directive in a file (e.g. between func decls) does not affect name
lookup, but the order of imports w.r.t. each other does.</li>
</ul>
<p>Shadowing: Given a ValueDecl D1 in the current module and a ValueDecl D2
in an imported module with the same name and a member of the same type (if
relevant): 1. If D1 is a TypeDecl, D2 is shadowed. 2. If neither D1 nor D2
is a TypeDecl, and they have the same type, D2 is shadowed. If a
declaration in an imported module is shadowed by any declaration in the
current module, it is not found by unqualified global lookup or lookup for
members of a type.</p>
<h3 id="namebind_dot">Name Lookup for Dot Expressions</h3>
<p>
<a href="#expr-dot">Dot Expressions</a> bind to name of tuple elements.
</p>
<!-- ********************************************************************* -->
<h2 id="typecheck">Type Checking</h2>
<!-- ********************************************************************* -->
<p>
Binary expressions, function application, etc.
</p>
<h3 id="typecheck_conversions">Standard Conversions</h3>
<!--
Consider foo(4, 5) when foo is declared to take ((Int,Int=3), Int=6). This
could be parsed as either ((4,5), 6) or ((4,3),5), but the later one is
the "right" answer.
-->
<h3 id="typecheck_anon">Anonymous Argument Resolution</h3>
<h3 id="typecheck_context">Context Sensitive Type Resolution</h3>
<!-- ********************************************************************* -->
<h2 id="stdlib">Standard Library</h2>
<!-- ********************************************************************* -->
<div class="commentary">
It would be really great to have literate swift code someday, that way
this could be generated directly from the code. This would also be powerful
for Swift library developers to be able to depend on being available and
standardized.
</div>
<p>This describes some of the standard swift code as it is being built up.
Since Swift is designed to give power to the library developers, much of
what is normally considered the "language" is actually just implemented in
the library.</p>
<p>All of this code is published by the 'swift' module, which is
implicitly imported into each translation unit, unless some sort of pragma
in the code (attribute on an import?) is used to change or disable this
behavior.</p>
<!-- ===================================================================== -->
<h3 id="builtin">Builtin Module</h3>
<!-- ===================================================================== -->
<p>In the initial Swift implementation, a module named <tt>Builtin</tt> is
imported into every file. Its declarations can only be found by <a
href="#expr-dot">dot syntax</a>. It provides access to a small
number of primitive representation types and operations defined over them
that map directly to LLVM IR.</p>
<p>The existance of and details of this module are a private implementation
detail used by our implementation of the standard library. Swift code
outside the standard library should not be aware of this library, and an
independent implementation of the swift standard library should be
allowed to be implemented without the builtin library if it desires.</p>
<p>For reference below, the description of the standard library uses the
"Builtin." namespace to refer to this module, but independent
implementations could use another implementation if they so desire.</p>
<!-- ===================================================================== -->
<h3 id="stdlib-simple-types">Simple Types</h3>
<!-- ===================================================================== -->
<h4 id="stdlib-Void">Void</h4>
<pre class="stdlib">
<i>// Void is just a type alias for the empty tuple.</i>
typealias Void = ()
</pre>
<div class="commentary">
Having a single standardized integer type that can be used by default
everywhere is important. One advantage Swift has is that by the time it is
in widespread use, 64-bit architectures will be pervasive, and the LLVM
optimizer should grow to be good at shrinking 64-bit integers to 32-bit in
many cases for those 32-bit architectures that persist.
</div>
<h4 id="stdlib-Int">Int, Int8, Int16, Int32, Int64</h4>
<pre class="stdlib">
<i>// Fixed size types are simple structs of the right size.</i>
struct Int8 { value : Builtin.Int8 }
struct Int16 { value : Builtin.Int16 }
struct Int32 { value : Builtin.Int32 }
struct Int64 { value : Builtin.Int64 }
struct Int128 { value : Builtin.Int128 }
<i>// Int is just an alias for the 64-bit integer type.</i>
typealias Int = Int64
</pre>
<h4 id="stdlib-Int">Int, Int8, Int16, Int32, Int64</h4>
<pre class="stdlib">
struct Float { value : Builtin.FPIEEE32 }
struct Double { value : Builtin.FPIEEE64 }
</pre>
<h4 id="stdlib-Bool">Bool, true, false</h4>
<pre class="stdlib">
<i>// Bool is a simple discriminated union.</i>
oneof Bool {
true, false
}
<i>// Allow true and false to be used unqualified.</i>
var true = Bool.true
var false = Bool.false
</pre>
<!-- ===================================================================== -->
<h3 id="stdlib-arithmetic">Arithmetic and Logical Operations</h3>
<!-- ===================================================================== -->
<div class="commentary">
This is all eagerly awaiting the day when we have generics and overloading.
For now, Int is the only arithmetic type :)
</div>
<h4 id="stdlib-arithmetic">Arithmetic Operators</h4>
<pre class="stdlib">
<i>// Simple binary operators, following the same precedence as C.</i>
func [infix_left=200] * (lhs: Int, rhs: Int) -&gt; Int
func [infix_left=200] / (lhs: Int, rhs: Int) -&gt; Int
func [infix_left=200] % (lhs: Int, rhs: Int) -&gt; Int
func [infix_left=190] + (lhs: Int, rhs: Int) -&gt; Int
func [infix_left=190] - (lhs: Int, rhs: Int) -&gt; Int
<i>// In C, &lt;&lt;, &gt;&gt; is 180.</i>
</pre>
<h4 id="stdlib-comparison">Relational and Equality Operators</h4>
<pre class="stdlib">
func [infix_left=170] &lt; : (lhs : Int, rhs : Int) -&gt; Bool
func [infix_left=170] &gt; : (lhs : Int, rhs : Int) -&gt; Bool
func [infix_left=170] &lt;= : (lhs : Int, rhs : Int) -&gt; Bool
func [infix_left=170] &gt;= : (lhs : Int, rhs : Int) -&gt; Bool
func [infix_left=160] == : (lhs : Int, rhs : Int) -&gt; Bool
func [infix_left=160] != : (lhs : Int, rhs : Int) -&gt; Bool
<i>// In C, bitwise logical operators are 130,140,150.</i>
</pre>
<h4 id="stdlib-short-circuit-logical">Short Circuiting Logical Operators</h4>
<pre class="stdlib">
func [infix_left=120] &amp;&amp; (lhs: Bool, rhs: ()-&gt;Bool) -&gt; Bool
func [infix_left=110] || (lhs: Bool, rhs: ()-&gt;Bool) -&gt; Bool
<i>// In C, 100 is ?:</i>
<i>// In C, 90 is =, *=, += etc.</i>
</pre>
<!-- *********************************************************************** -->
<hr>
<address>
<a href="http://jigsaw.w3.org/css-validator/check/referer"><img
src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
<a href="http://validator.w3.org/check/referer"><img
src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
<a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
</address>
</body>
</html>