Files
swift-mirror/include/swift/SIL/SILFunction.h
Slava Pestov d8e1e2e289 SILOptimizer: Fixes for non-fragile references in fragile functions
Two fixes to optimization passes to maintain restrictions about what
[fragile] functions can reference:

- When devirtualizing witness methods, don't devirtualize if the caller
  is fragile and the callee is not. This matches existing logic in
  class devirtualization.

- When performing generic or function signature specialization, don't
  specialize non-fragile functions referenced from fragile functions.

Since @_transparent functions are allowed to call 'static inline'
imported functions, also be sure to mark the foreign-to-native thunk
for such a function as [fragile].

With this patch, the standard library and performance test suite
now build with -enable-resilience.

No new tests for this stuff here -- the existing tests together
with an -enable-resilience build provide coverage.

Closes out <https://bugs.swift.org/browse/SR-267> and
<https://bugs.swift.org/browse/SR-268>.
2016-04-08 02:14:33 -07:00

752 lines
26 KiB
C++

//===--- SILFunction.h - Defines the SILFunction class ----------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILFunction class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILFUNCTION_H
#define SWIFT_SIL_SILFUNCTION_H
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILPrintContext.h"
#include "llvm/ADT/StringMap.h"
/// The symbol name used for the program entry point function.
/// FIXME: Hardcoding this is lame.
#define SWIFT_ENTRY_POINT_FUNCTION "main"
namespace swift {
class ASTContext;
class SILInstruction;
class SILModule;
enum IsBare_t { IsNotBare, IsBare };
enum IsTransparent_t { IsNotTransparent, IsTransparent };
enum Inline_t { InlineDefault, NoInline, AlwaysInline };
enum IsThunk_t { IsNotThunk, IsThunk, IsReabstractionThunk };
class SILSpecializeAttr final :
private llvm::TrailingObjects<SILSpecializeAttr, Substitution> {
friend TrailingObjects;
unsigned numSubs;
SILSpecializeAttr(ArrayRef<Substitution> subs);
public:
static SILSpecializeAttr *create(SILModule &M, ArrayRef<Substitution> subs);
ArrayRef<Substitution> getSubstitutions() const {
return { getTrailingObjects<Substitution>(), numSubs };
}
void print(llvm::raw_ostream &OS) const;
};
/// SILFunction - A function body that has been lowered to SIL. This consists of
/// zero or more SIL SILBasicBlock objects that contain the SILInstruction
/// objects making up the function.
class SILFunction
: public llvm::ilist_node<SILFunction>, public SILAllocated<SILFunction> {
public:
typedef llvm::iplist<SILBasicBlock> BlockListType;
/// The visibility of this method's class (if any).
enum ClassVisibility_t {
/// This is a method in the vtable of a public class.
PublicClass,
/// This is a method in the vtable of an internal class.
InternalClass,
/// All other cases (e.g. this function is not a method).
NotRelevant
};
private:
friend class SILBasicBlock;
friend class SILModule;
/// Module - The SIL module that the function belongs to.
SILModule &Module;
/// The mangled name of the SIL function, which will be propagated
/// to the binary. A pointer into the module's lookup table.
StringRef Name;
/// The lowered type of the function.
CanSILFunctionType LoweredType;
/// The context archetypes of the function.
GenericParamList *ContextGenericParams;
/// The collection of all BasicBlocks in the SILFunction. Empty for external
/// function references.
BlockListType BlockList;
/// The SIL location of the function, which provides a link back to the AST.
/// The function only gets a location after it's been emitted.
Optional<SILLocation> Location;
/// The declcontext of this function.
DeclContext *DeclCtx;
/// The source location and scope of the function.
const SILDebugScope *DebugScope;
/// The function's bare attribute. Bare means that the function is SIL-only
/// and does not require debug info.
unsigned Bare : 1;
/// The function's transparent attribute.
unsigned Transparent : 1; // FIXME: pack this somewhere
/// The function's fragile attribute.
///
/// Fragile means that the function can be inlined into another module.
/// Currently this flag is set for public transparent functions and for all
/// functions in the stdlib.
unsigned Fragile : 1;
/// Specifies if this function is a thunk or a reabstraction thunk.
///
/// The inliner uses this information to avoid inlining (non-trivial)
/// functions into the thunk.
unsigned Thunk : 2;
/// The visibility of the parent class, if this is a method which is contained
/// in the vtable of that class.
unsigned ClassVisibility : 2;
/// The function's global_init attribute.
unsigned GlobalInitFlag : 1;
/// The function's noinline attribute.
unsigned InlineStrategy : 2;
/// The linkage of the function.
unsigned Linkage : NumSILLinkageBits;
/// This flag indicates if a function can be eliminated by dead function
/// elimination. If it is unset, DFE will preserve the function and make
/// it public.
unsigned KeepAsPublic : 1;
/// This flag indicates if a function has a body generated by Clang.
unsigned ForeignBody : 1;
/// This is the number of uses of this SILFunction inside the SIL.
/// It does not include references from debug scopes.
unsigned RefCount = 0;
/// The function's set of semantics attributes.
///
/// TODO: Why is this using a std::string? Why don't we use uniqued
/// StringRefs?
llvm::SmallVector<std::string, 1> SemanticsAttrSet;
/// The function's remaining set of specialize attributes.
std::vector<SILSpecializeAttr*> SpecializeAttrSet;
/// The function's effects attribute.
EffectsKind EffectsKindAttr;
/// True if this function is inlined at least once. This means that the
/// debug info keeps a pointer to this function.
bool Inlined = false;
/// True if this function is a zombie function. This means that the function
/// is dead and not referenced from anywhere inside the SIL. But it is kept
/// for other purposes:
/// *) It is inlined and the debug info keeps a reference to the function.
/// *) It is a dead method of a class which has higher visibility than the
/// method itself. In this case we need to create a vtable stub for it.
bool Zombie = false;
SILFunction(SILModule &module, SILLinkage linkage,
StringRef mangledName, CanSILFunctionType loweredType,
GenericParamList *contextGenericParams,
Optional<SILLocation> loc,
IsBare_t isBareSILFunction,
IsTransparent_t isTrans,
IsFragile_t isFragile,
IsThunk_t isThunk,
ClassVisibility_t classVisibility,
Inline_t inlineStrategy, EffectsKind E,
SILFunction *insertBefore,
const SILDebugScope *debugScope,
DeclContext *DC);
static SILFunction *create(SILModule &M, SILLinkage linkage, StringRef name,
CanSILFunctionType loweredType,
GenericParamList *contextGenericParams,
Optional<SILLocation> loc,
IsBare_t isBareSILFunction,
IsTransparent_t isTrans,
IsFragile_t isFragile,
IsThunk_t isThunk = IsNotThunk,
ClassVisibility_t classVisibility = NotRelevant,
Inline_t inlineStrategy = InlineDefault,
EffectsKind EffectsKindAttr =
EffectsKind::Unspecified,
SILFunction *InsertBefore = nullptr,
const SILDebugScope *DebugScope = nullptr,
DeclContext *DC = nullptr);
public:
~SILFunction();
SILModule &getModule() const { return Module; }
SILType getLoweredType() const {
return SILType::getPrimitiveObjectType(LoweredType);
}
CanSILFunctionType getLoweredFunctionType() const {
return LoweredType;
}
/// Unsafely rewrite the lowered type of this function.
///
/// This routine does not touch the entry block arguments
/// or return instructions; you need to do that yourself
/// if you care.
///
/// This is a hack and should be removed!
void rewriteLoweredTypeUnsafe(CanSILFunctionType newType) {
assert(canBeDeleted());
LoweredType = newType;
}
bool canBeDeleted() const {
return !getRefCount() && !isZombie() && !isKeepAsPublic();
}
/// Return the number of entities referring to this function (other
/// than the SILModule).
unsigned getRefCount() const { return RefCount; }
/// Increment the reference count.
void incrementRefCount() {
RefCount++;
assert(RefCount != 0 && "Overflow of reference count!");
}
/// Decrement the reference count.
void decrementRefCount() {
assert(RefCount != 0 && "Expected non-zero reference count on decrement!");
RefCount--;
}
/// Drops all uses belonging to instructions in this function. The only valid
/// operation performable on this object after this is called is called the
/// destructor or deallocation.
void dropAllReferences() {
for (SILBasicBlock &BB : *this)
BB.dropAllReferences();
}
/// Notify that this function was inlined. This implies that it is still
/// needed for debug info generation, even if it is removed afterwards.
void setInlined() {
assert(!isZombie() && "Can't inline a zombie function");
Inlined = true;
}
/// Returns true if this function was inlined.
bool isInlined() const { return Inlined; }
/// Mark this function as removed from the module's function list, but kept
/// as "zombie" for debug info or vtable stub generation.
void setZombie() {
assert((isInlined() || isExternallyUsedSymbol()) &&
"Function should be deleted instead of getting a zombie");
Zombie = true;
}
/// Returns true if this function is dead, but kept in the module's zombie list.
bool isZombie() const { return Zombie; }
/// Returns the calling convention used by this entry point.
SILFunctionTypeRepresentation getRepresentation() const {
return getLoweredFunctionType()->getRepresentation();
}
/// Returns true if this function has a calling convention that has a self
/// argument.
bool hasSelfParam() const {
return getLoweredFunctionType()->hasSelfParam();
}
/// Returns true if the function has parameters that are consumed by the
// callee.
bool hasOwnedParameters() const {
for (auto &ParamInfo : getLoweredFunctionType()->getParameters()) {
if (ParamInfo.isConsumed())
return true;
}
return false;
}
// Returns true if the function has indirect out parameters.
bool hasIndirectResults() const {
return getLoweredFunctionType()->getNumIndirectResults() > 0;
}
/// Returns true if this function either has a self metadata argument or
/// object that Self metadata may be derived from.
bool hasSelfMetadataParam() const;
/// Return the mangled name of this SILFunction.
StringRef getName() const { return Name; }
/// A convenience function which checks if the function has a specific
/// \p name. It is equivalent to getName() == Name, but as it is not
/// inlined it can be called from the debugger.
bool hasName(const char *Name) const;
/// True if this is a declaration of a function defined in another module.
bool isExternalDeclaration() const { return BlockList.empty(); }
/// Returns true if this is a definition of a function defined in this module.
bool isDefinition() const { return !isExternalDeclaration(); }
/// Get this function's linkage attribute.
SILLinkage getLinkage() const { return SILLinkage(Linkage); }
/// Set the function's linkage attribute.
void setLinkage(SILLinkage linkage) { Linkage = unsigned(linkage); }
/// Returns true if this function can be inlined into a fragile function
/// body.
bool hasValidLinkageForFragileInline() const {
return isFragile() || isThunk() == IsReabstractionThunk;
}
/// Returns true if this function can be referenced from a fragile function
/// body.
bool hasValidLinkageForFragileRef() const;
/// Get's the effective linkage which is used to derive the llvm linkage.
/// Usually this is the same as getLinkage(), except in one case: if this
/// function is a method in a class which has higher visibility than the
/// method itself, the function can be referenced from vtables of derived
/// classes in other compilation units.
SILLinkage getEffectiveSymbolLinkage() const {
SILLinkage L = getLinkage();
switch (getClassVisibility()) {
case NotRelevant:
break;
case InternalClass:
if (L == SILLinkage::Private)
return SILLinkage::Hidden;
break;
case PublicClass:
if (L == SILLinkage::Private || L == SILLinkage::Hidden)
return SILLinkage::Public;
break;
}
return L;
}
/// Helper method which returns true if this function has "external" linkage.
bool isAvailableExternally() const {
return swift::isAvailableExternally(getLinkage());
}
/// Helper method which returns true if the linkage of the SILFunction
/// indicates that the objects definition might be required outside the
/// current SILModule.
bool isPossiblyUsedExternally() const;
/// In addition to isPossiblyUsedExternally() it returns also true if this
/// is a (private or internal) vtable method which can be referenced by
/// vtables of derived classes outside the compilation unit.
bool isExternallyUsedSymbol() const;
/// Get the DeclContext of this function. (Debug info only).
DeclContext *getDeclContext() const { return DeclCtx; }
void setDeclContext(Decl *D);
void setDeclContext(Expr *E);
void setDeclCtx(DeclContext *D) { DeclCtx = D; }
/// \returns True if the function is marked with the @_semantics attribute
/// and has special semantics that the optimizer can use to optimize the
/// function.
bool hasSemanticsAttrs() const { return SemanticsAttrSet.size() > 0; }
/// \returns True if the function has a semantic attribute that starts with a
/// specific string.
///
/// TODO: This needs a better name.
bool hasSemanticsAttrThatStartsWith(StringRef S) {
return count_if(getSemanticsAttrs(), [&S](const std::string &Attr) -> bool {
return StringRef(Attr).startswith(S);
});
}
/// \returns the semantics tag that describes this function.
ArrayRef<std::string> getSemanticsAttrs() const { return SemanticsAttrSet; }
/// \returns True if the function has the semantics flag \p Value;
bool hasSemanticsAttr(StringRef Value) const {
return count(SemanticsAttrSet, Value);
}
/// Add the given semantics attribute to the attr list set.
void addSemanticsAttr(StringRef Ref) {
if (hasSemanticsAttr(Ref))
return;
SemanticsAttrSet.push_back(Ref);
std::sort(SemanticsAttrSet.begin(), SemanticsAttrSet.end());
}
/// Remove the semantics
void removeSemanticsAttr(StringRef Ref) {
auto Iter =
std::remove(SemanticsAttrSet.begin(), SemanticsAttrSet.end(), Ref);
SemanticsAttrSet.erase(Iter);
}
/// \returns the range of specialize attributes.
ArrayRef<SILSpecializeAttr*> getSpecializeAttrs() const {
return SpecializeAttrSet;
}
/// Removes all specialize attributes from this function.
void clearSpecializeAttrs() { SpecializeAttrSet.clear(); }
void addSpecializeAttr(SILSpecializeAttr *attr) {
SpecializeAttrSet.push_back(attr);
}
/// \returns True if the function is optimizable (i.e. not marked as no-opt),
/// or is raw SIL (so that the mandatory passes still run).
bool shouldOptimize() const;
/// Initialize the source location of the function.
void setLocation(SILLocation L) { Location = L; }
/// Check if the function has a location.
/// FIXME: All functions should have locations, so this method should not be
/// necessary.
bool hasLocation() const {
return Location.hasValue();
}
/// Get the source location of the function.
SILLocation getLocation() const {
assert(Location.hasValue());
return Location.getValue();
}
/// Initialize the debug scope of the function.
void setDebugScope(const SILDebugScope *DS) { DebugScope = DS; }
/// Get the source location of the function.
const SILDebugScope *getDebugScope() const { return DebugScope; }
/// Get this function's bare attribute.
IsBare_t isBare() const { return IsBare_t(Bare); }
void setBare(IsBare_t isB) { Bare = isB; }
/// Get this function's transparent attribute.
IsTransparent_t isTransparent() const { return IsTransparent_t(Transparent); }
void setTransparent(IsTransparent_t isT) { Transparent = isT; }
/// Get this function's fragile attribute.
IsFragile_t isFragile() const { return IsFragile_t(Fragile); }
void setFragile(IsFragile_t isFrag) { Fragile = isFrag; }
/// Get this function's thunk attribute.
IsThunk_t isThunk() const { return IsThunk_t(Thunk); }
void setThunk(IsThunk_t isThunk) { Thunk = isThunk; }
/// Get the class visibility (relevant for class methods).
ClassVisibility_t getClassVisibility() const {
return ClassVisibility_t(ClassVisibility);
}
/// Get this function's noinline attribute.
Inline_t getInlineStrategy() const { return Inline_t(InlineStrategy); }
void setInlineStrategy(Inline_t inStr) { InlineStrategy = inStr; }
/// \return the function side effects information.
EffectsKind getEffectsKind() const { return EffectsKindAttr; }
/// \return True if the function is annotated with the @effects attribute.
bool hasEffectsKind() const {
return EffectsKindAttr != EffectsKind::Unspecified;
}
/// \brief Set the function side effect information.
void setEffectsKind(EffectsKind E) {
EffectsKindAttr = E;
}
/// Get this function's global_init attribute.
///
/// The implied semantics are:
/// - side-effects can occur any time before the first invocation.
/// - all calls to the same global_init function have the same side-effects.
/// - any operation that may observe the initializer's side-effects must be
/// preceded by a call to the initializer.
///
/// This is currently true if the function is an addressor that was lazily
/// generated from a global variable access. Note that the initialization
/// function itself does not need this attribute. It is private and only
/// called within the addressor.
bool isGlobalInit() const { return GlobalInitFlag; }
void setGlobalInit(bool isGI) { GlobalInitFlag = isGI; }
bool isKeepAsPublic() const { return KeepAsPublic; }
void setKeepAsPublic(bool keep) { KeepAsPublic = keep; }
/// Get this function's foreign body attribute.
HasForeignBody_t hasForeignBody() const { return HasForeignBody_t(ForeignBody); }
void setForeignBody(HasForeignBody_t foreign) { ForeignBody = foreign; }
/// Retrieve the generic parameter list containing the contextual archetypes
/// of the function.
///
/// FIXME: We should remove this in favor of lazy archetype instantiation
/// using the 'getArchetype' and 'mapTypeIntoContext' interfaces.
GenericParamList *getContextGenericParams() const {
return ContextGenericParams;
}
void setContextGenericParams(GenericParamList *params) {
ContextGenericParams = params;
}
/// Map the given type, which is based on an interface SILFunctionType and may
/// therefore be dependent, to a type based on the context archetypes of this
/// SILFunction.
Type mapTypeIntoContext(Type type) const;
/// Map the given type, which is based on an interface SILFunctionType and may
/// therefore be dependent, to a type based on the context archetypes of this
/// SILFunction.
SILType mapTypeIntoContext(SILType type) const;
/// Map the given type, which is based on a contextual SILFunctionType and may
/// therefore contain context archetypes, to an interface type.
Type mapTypeOutOfContext(Type type) const;
/// Converts the given function definition to a declaration.
void convertToDeclaration();
/// Return the identity substitutions necessary to forward this call if it is
/// generic.
ArrayRef<Substitution> getForwardingSubstitutions();
//===--------------------------------------------------------------------===//
// Block List Access
//===--------------------------------------------------------------------===//
BlockListType &getBlocks() { return BlockList; }
const BlockListType &getBlocks() const { return BlockList; }
typedef BlockListType::iterator iterator;
typedef BlockListType::const_iterator const_iterator;
bool empty() const { return BlockList.empty(); }
iterator begin() { return BlockList.begin(); }
iterator end() { return BlockList.end(); }
const_iterator begin() const { return BlockList.begin(); }
const_iterator end() const { return BlockList.end(); }
unsigned size() const { return BlockList.size(); }
SILBasicBlock &front() { return *begin(); }
const SILBasicBlock &front() const { return *begin(); }
SILBasicBlock *createBasicBlock();
/// Splice the body of \p F into this function at end.
void spliceBody(SILFunction *F) {
getBlocks().splice(begin(), F->getBlocks());
}
/// Return the unique basic block containing a return inst if it
/// exists. Otherwise, returns end.
iterator findReturnBB() {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ReturnInst>(TI);
});
}
/// Return the unique basic block containing a return inst if it
/// exists. Otherwise, returns end.
const_iterator findReturnBB() const {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ReturnInst>(TI);
});
}
/// Return the unique basic block containing a throw inst if it
/// exists. Otherwise, returns end.
iterator findThrowBB() {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ThrowInst>(TI);
});
}
/// Return the unique basic block containing a throw inst if it
/// exists. Otherwise, returns end.
const_iterator findThrowBB() const {
return std::find_if(begin(), end(),
[](const SILBasicBlock &BB) -> bool {
const TermInst *TI = BB.getTerminator();
return isa<ThrowInst>(TI);
});
}
//===--------------------------------------------------------------------===//
// Argument Helper Methods
//===--------------------------------------------------------------------===//
SILArgument *getArgument(unsigned i) {
assert(!empty() && "Cannot get argument of a function without a body");
return begin()->getBBArg(i);
}
const SILArgument *getArgument(unsigned i) const {
assert(!empty() && "Cannot get argument of a function without a body");
return begin()->getBBArg(i);
}
ArrayRef<SILArgument *> getArguments() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getBBArgs();
}
ArrayRef<SILArgument *> getIndirectResults() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getBBArgs().slice(0,
getLoweredFunctionType()->getNumIndirectResults());
}
ArrayRef<SILArgument *> getArgumentsWithoutIndirectResults() const {
assert(!empty() && "Cannot get arguments of a function without a body");
return begin()->getBBArgs().slice(
getLoweredFunctionType()->getNumIndirectResults());
}
const SILArgument *getSelfArgument() const {
assert(hasSelfParam() && "This method can only be called if the "
"SILFunction has a self parameter");
return getArguments().back();
}
const SILArgument *getSelfMetadataArgument() const {
assert(hasSelfMetadataParam() && "This method can only be called if the "
"SILFunction has a self-metadata parameter");
return getArguments().back();
}
//===--------------------------------------------------------------------===//
// Miscellaneous
//===--------------------------------------------------------------------===//
/// verify - Run the IR verifier to make sure that the SILFunction follows
/// invariants.
void verify(bool SingleFunction=true) const;
/// Pretty-print the SILFunction.
void dump(bool Verbose) const;
void dump() const;
/// Pretty-print the SILFunction.
/// Useful for dumping the function when running in a debugger.
/// Warning: no error handling is done. Fails with an assert if the file
/// cannot be opened.
void dump(const char *FileName) const;
/// Pretty-print the SILFunction to the tream \p OS.
///
/// \param Verbose Dump SIL location information in verbose mode.
void print(raw_ostream &OS, bool Verbose = false) const {
SILPrintContext PrintCtx(OS, Verbose);
print(PrintCtx);
}
/// Pretty-print the SILFunction with the context \p PrintCtx.
void print(SILPrintContext &PrintCtx) const;
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void printName(raw_ostream &OS) const;
/// Assigns consecutive numbers to all SILValues in the function.
void numberValues(llvm::DenseMap<const ValueBase*,
unsigned> &ValueToNumberMap) const;
ASTContext &getASTContext() const;
/// This function is meant for use from the debugger. You can just say 'call
/// F->viewCFG()' and a ghostview window should pop up from the program,
/// displaying the CFG of the current function with the code for each basic
/// block inside. This depends on there being a 'dot' and 'gv' program in
/// your path.
void viewCFG() const;
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SILFunction &F) {
F.print(OS);
return OS;
}
} // end swift namespace
//===----------------------------------------------------------------------===//
// ilist_traits for SILFunction
//===----------------------------------------------------------------------===//
namespace llvm {
template <>
struct ilist_traits<::swift::SILFunction> :
public ilist_default_traits<::swift::SILFunction> {
typedef ::swift::SILFunction SILFunction;
private:
mutable ilist_half_node<SILFunction> Sentinel;
public:
SILFunction *createSentinel() const {
return static_cast<SILFunction*>(&Sentinel);
}
void destroySentinel(SILFunction *) const {}
SILFunction *provideInitialHead() const { return createSentinel(); }
SILFunction *ensureHead(SILFunction*) const { return createSentinel(); }
static void noteHead(SILFunction*, SILFunction*) {}
static void deleteNode(SILFunction *V) { V->~SILFunction(); }
private:
void createNode(const SILFunction &);
};
} // end llvm namespace
#endif