Files
swift-mirror/lib/AST/ASTVerifier.cpp
2025-11-07 14:01:35 -08:00

3951 lines
132 KiB
C++

//===--- Verifier.cpp - AST Invariant Verification ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements a verifier of AST invariants.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/AvailabilityScope.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Effects.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignAsyncConvention.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/MacroDiscriminatorContext.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <type_traits>
using namespace swift;
namespace {
template<typename T>
struct ASTNodeBase {};
#define EXPR(ID, PARENT) \
template<> \
struct ASTNodeBase<ID ## Expr *> { \
typedef PARENT BaseTy; \
};
#define ABSTRACT_EXPR(ID, PARENT) EXPR(ID, PARENT)
#include "swift/AST/ExprNodes.def"
#define STMT(ID, PARENT) \
template<> \
struct ASTNodeBase<ID ## Stmt *> { \
typedef PARENT BaseTy; \
};
#include "swift/AST/StmtNodes.def"
#define DECL(ID, PARENT) \
template<> \
struct ASTNodeBase<ID ## Decl *> { \
typedef PARENT BaseTy; \
};
#define ABSTRACT_DECL(ID, PARENT) DECL(ID, PARENT)
#include "swift/AST/DeclNodes.def"
#define PATTERN(ID, PARENT) \
template<> \
struct ASTNodeBase<ID ## Pattern *> { \
typedef PARENT BaseTy; \
};
#include "swift/AST/PatternNodes.def"
template <typename Ty>
struct is_apply_expr
: public std::integral_constant<
bool,
std::is_same<Ty, CallExpr>::value ||
std::is_same<Ty, PrefixUnaryExpr>::value ||
std::is_same<Ty, PostfixUnaryExpr>::value ||
std::is_same<Ty, BinaryExpr>::value ||
std::is_same<Ty, DotSyntaxCallExpr>::value ||
std::is_same<Ty, ConstructorRefCallExpr>::value> {};
template <typename Ty>
struct is_subscript_expr
: public std::integral_constant<
bool, std::is_same<Ty, SubscriptExpr>::value ||
std::is_same<Ty, DynamicSubscriptExpr>::value> {};
template <typename Ty>
struct is_autoclosure_expr
: public std::integral_constant<bool,
std::is_same<Ty, AutoClosureExpr>::value> {
};
template <typename Ty>
struct is_apply_subscript_or_autoclosure_expr
: public std::integral_constant<bool, is_apply_expr<Ty>::value ||
is_subscript_expr<Ty>::value ||
is_autoclosure_expr<Ty>::value> {
};
template <typename Verifier, typename Kind>
ASTWalker::PreWalkResult<Expr *> dispatchVisitPreExprHelper(
Verifier &V,
typename std::enable_if<
is_apply_expr<typename std::remove_pointer<Kind>::type>::value,
Kind>::type node) {
if (V.shouldVerify(node)) {
// Record any inout_to_pointer or array_to_pointer that we see in
// the proper position.
V.maybeRecordValidPointerConversion(node->getArgs());
return ASTWalker::Action::Continue(node);
}
V.cleanup(node);
return ASTWalker::Action::SkipNode(node);
}
template <typename Verifier, typename Kind>
ASTWalker::PreWalkResult<Expr *> dispatchVisitPreExprHelper(
Verifier &V,
typename std::enable_if<
is_subscript_expr<typename std::remove_pointer<Kind>::type>::value,
Kind>::type node) {
if (V.shouldVerify(node)) {
// Record any inout_to_pointer or array_to_pointer that we see in
// the proper position.
V.maybeRecordValidPointerConversion(node->getArgs());
return ASTWalker::Action::Continue(node);
}
V.cleanup(node);
return ASTWalker::Action::SkipNode(node);
}
template <typename Verifier, typename Kind>
ASTWalker::PreWalkResult<Expr *> dispatchVisitPreExprHelper(
Verifier &V,
typename std::enable_if<
is_autoclosure_expr<typename std::remove_pointer<Kind>::type>::value,
Kind>::type node) {
if (V.shouldVerify(node)) {
// Record any inout_to_pointer or array_to_pointer that we see in
// the proper position.
V.maybeRecordValidPointerConversionForArg(node->getSingleExpressionBody());
return ASTWalker::Action::Continue(node);
}
V.cleanup(node);
return ASTWalker::Action::SkipNode(node);
}
template <typename Verifier, typename Kind>
ASTWalker::PreWalkResult<Expr *> dispatchVisitPreExprHelper(
Verifier &V, typename std::enable_if<
!is_apply_subscript_or_autoclosure_expr<
typename std::remove_pointer<Kind>::type>::value,
Kind>::type node) {
if (V.shouldVerify(node)) {
return ASTWalker::Action::Continue(node);
}
V.cleanup(node);
return ASTWalker::Action::SkipNode(node);
}
namespace {
// Retrieve the "overridden" declaration of this declaration, but only if
// it's already been computed.
template <typename T> T *getOverriddenDeclIfAvailable(T *decl) {
if (!decl->overriddenDeclsComputed())
return nullptr;
return cast_or_null<T>(decl->getOverriddenDecl());
}
} // namespace
class Verifier : public ASTWalker {
PointerUnion<ModuleDecl *, SourceFile *> M;
ASTContext &Ctx;
llvm::raw_ostream &Out;
const bool HadError;
SmallVector<bool, 8> InImplicitBraceStmt;
/// The stack of functions we're visiting.
SmallVector<DeclContext *, 4> Functions;
/// The stack of scopes we're visiting.
using ScopeLike = llvm::PointerUnion<DeclContext *, BraceStmt *>;
SmallVector<ScopeLike, 4> Scopes;
/// The stack of declaration contexts we're visiting. The primary
/// archetypes from the innermost generic environment are in scope.
SmallVector<DeclContext *, 2> Generics;
/// The set of all opened existential and opened pack element generic
/// environments that are currently in scope.
llvm::DenseSet<GenericEnvironment *> LocalGenerics;
/// We track the pack expansion expressions in ForEachStmts, because
/// their local generics remain in scope until the end of the statement.
llvm::DenseSet<PackExpansionExpr *> ForEachPatternSequences;
/// The stack of optional evaluations active at this point.
SmallVector<OptionalEvaluationExpr *, 4> OptionalEvaluations;
/// The set of opaque value expressions active at this point.
llvm::DenseMap<OpaqueValueExpr *, unsigned> OpaqueValues;
/// The set of inout to pointer expr that match the following pattern:
///
/// (call-expr
/// (brace-stmt
/// ... maybe other arguments ...
/// (inject_into_optional
/// (inout_to_pointer ...))
/// ... maybe other arguments ...))
///
/// Any other inout to pointer expr that we see is invalid and the verifier
/// will assert.
llvm::DenseSet<InOutToPointerExpr *> ValidInOutToPointerExprs;
llvm::DenseSet<ArrayToPointerExpr *> ValidArrayToPointerExprs;
/// A key into ClosureDiscriminators is a combination of a
/// ("canonicalized") local DeclContext* and a flag for whether to
/// use the explicit closure sequence (false) or the implicit
/// closure sequence (true).
typedef llvm::PointerIntPair<DeclContext *, 1, bool> ClosureDiscriminatorKey;
llvm::DenseMap<ClosureDiscriminatorKey, SmallBitVector>
ClosureDiscriminators;
DeclContext *CanonicalTopLevelSubcontext = nullptr;
typedef std::pair</*MacroDiscriminatorContext*/const void *, Identifier>
MacroExpansionDiscriminatorKey;
llvm::DenseMap<MacroExpansionDiscriminatorKey, SmallBitVector>
MacroExpansionDiscriminators;
Verifier(PointerUnion<ModuleDecl *, SourceFile *> M, DeclContext *DC)
: M(M),
Ctx(isa<ModuleDecl *>(M) ? cast<ModuleDecl *>(M)->getASTContext()
: cast<SourceFile *>(M)->getASTContext()),
Out(llvm::errs()), HadError(Ctx.hadError()) {
pushScope(DC);
}
/// Emit an error message and abort, optionally dumping the expression.
/// \param E if non-null, the expression to dump() followed by a new-line.
void error(llvm::StringRef msg, Expr *E = nullptr) {
Out << msg << "\n";
if (E) {
E->dump(Out);
Out << "\n";
}
abort();
}
ModuleDecl *getModuleContext() const {
if (auto sourceFile = M.dyn_cast<SourceFile *>())
return sourceFile->getParentModule();
return cast<ModuleDecl *>(M);
}
public:
Verifier(ModuleDecl *M, DeclContext *DC)
: Verifier(PointerUnion<ModuleDecl *, SourceFile *>(M), DC) {}
Verifier(SourceFile &SF, DeclContext *DC) : Verifier(&SF, DC) {}
static Verifier forDecl(const Decl *D) {
DeclContext *DC = D->getDeclContext();
DeclContext *topDC = DC->getModuleScopeContext();
if (auto SF = dyn_cast<SourceFile>(topDC))
return Verifier(*SF, DC);
return Verifier(topDC->getParentModule(), DC);
}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::None;
}
PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
switch (E->getKind()) {
#define DISPATCH(ID) return dispatchVisitPreExpr(static_cast<ID##Expr*>(E))
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
DISPATCH(ID);
#define UNCHECKED_EXPR(ID, PARENT) \
case ExprKind::ID: \
assert((HadError || !isa<SourceFile *>(M) || \
cast<SourceFile *>(M)->ASTStage < SourceFile::TypeChecked) && \
#ID "in wrong phase"); \
DISPATCH(ID);
#include "swift/AST/ExprNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PostWalkResult<Expr *> walkToExprPost(Expr *E) override {
switch (E->getKind()) {
#define DISPATCH(ID) return dispatchVisitPost(static_cast<ID##Expr*>(E))
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
DISPATCH(ID);
#define UNCHECKED_EXPR(ID, PARENT) \
case ExprKind::ID: \
assert((HadError || !isa<SourceFile *>(M) || \
cast<SourceFile *>(M)->ASTStage < SourceFile::TypeChecked) && \
#ID "in wrong phase"); \
DISPATCH(ID);
#include "swift/AST/ExprNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PreWalkResult<Stmt *> walkToStmtPre(Stmt *S) override {
switch (S->getKind()) {
#define DISPATCH(ID) return dispatchVisitPreStmt(static_cast<ID##Stmt*>(S))
#define STMT(ID, PARENT) \
case StmtKind::ID: \
DISPATCH(ID);
#include "swift/AST/StmtNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PostWalkResult<Stmt *> walkToStmtPost(Stmt *S) override {
switch (S->getKind()) {
#define DISPATCH(ID) return dispatchVisitPost(static_cast<ID##Stmt*>(S))
#define STMT(ID, PARENT) \
case StmtKind::ID: \
DISPATCH(ID);
#include "swift/AST/StmtNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PreWalkResult<Pattern *> walkToPatternPre(Pattern *P) override {
switch (P->getKind()) {
#define DISPATCH(ID) \
return dispatchVisitPrePattern(static_cast<ID##Pattern*>(P))
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
DISPATCH(ID);
#include "swift/AST/PatternNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PostWalkResult<Pattern *> walkToPatternPost(Pattern *P) override {
switch (P->getKind()) {
#define DISPATCH(ID) \
return dispatchVisitPost(static_cast<ID##Pattern*>(P))
#define PATTERN(ID, PARENT) \
case PatternKind::ID: \
DISPATCH(ID);
#include "swift/AST/PatternNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PreWalkAction walkToDeclPre(Decl *D) override {
switch (D->getKind()) {
#define DISPATCH(ID) return dispatchVisitPre(static_cast<ID##Decl*>(D))
#define DECL(ID, PARENT) \
case DeclKind::ID: \
DISPATCH(ID);
#include "swift/AST/DeclNodes.def"
#undef DISPATCH
}
llvm_unreachable("not all cases handled!");
}
PostWalkAction walkToDeclPost(Decl *D) override {
switch (D->getKind()) {
#define DISPATCH(ID) return dispatchVisitPost(static_cast<ID##Decl*>(D)).Action
#define DECL(ID, PARENT) \
case DeclKind::ID: \
DISPATCH(ID);
#include "swift/AST/DeclNodes.def"
#undef DISPATCH
}
llvm_unreachable("Unhandled declaration kind");
}
/// Helper template for dispatching pre-visitation.
/// If we're visiting in pre-order, don't validate the node yet;
/// just check whether we should stop further descent.
template <class T> PreWalkAction dispatchVisitPre(T node) {
if (shouldVerify(node))
return Action::Continue();
cleanup(node);
return Action::SkipNode();
}
/// Helper template for dispatching pre-visitation.
///
/// If we're visiting in pre-order, don't validate the node yet;
/// just check whether we should stop further descent.
template <class T> PreWalkResult<Expr *> dispatchVisitPreExpr(T node) {
return dispatchVisitPreExprHelper<Verifier, T>(*this, node);
}
/// Helper template for dispatching pre-visitation.
/// If we're visiting in pre-order, don't validate the node yet;
/// just check whether we should stop further descent.
template <class T> PreWalkResult<Stmt *> dispatchVisitPreStmt(T node) {
if (shouldVerify(node))
return Action::Continue(node);
cleanup(node);
return Action::SkipNode(node);
}
/// Helper template for dispatching pre-visitation.
/// If we're visiting in pre-order, don't validate the node yet;
/// just check whether we should stop further descent.
template <class T>
PreWalkResult<Pattern *> dispatchVisitPrePattern(T node) {
if (shouldVerify(node))
return Action::Continue(node);
cleanup(node);
return Action::SkipNode(node);
}
/// Helper template for dispatching post-visitation.
template <class T> PostWalkResult<T> dispatchVisitPost(T node) {
// Verify source ranges if the AST node was parsed from source.
auto *SF = M.dyn_cast<SourceFile *>();
if (SF) {
// If we are inside an implicit BraceStmt, don't verify source
// locations. LLDB creates implicit BraceStmts which contain a mix of
// generated/user-written code.
if (InImplicitBraceStmt.empty() || !InImplicitBraceStmt.back())
checkSourceRanges(node);
}
// Check that nodes marked invalid have the correct type.
checkErrors(node);
// Always verify the node as a parsed node.
verifyParsed(node);
// If we've checked types already, do some extra verification.
if (!SF || SF->ASTStage >= SourceFile::TypeChecked) {
verifyCheckedAlways(node);
if (!HadError && shouldVerifyChecked(node))
verifyChecked(node);
}
// Clean up anything that we've placed into a stack to check.
cleanup(node);
// Always continue.
return Action::Continue(node);
}
// Default cases for whether we should verify within the given subtree.
bool shouldVerify(Expr *E) { return true; }
bool shouldVerify(Stmt *S) { return true; }
bool shouldVerify(Pattern *S) { return true; }
bool shouldVerify(Decl *S) { return true; }
bool shouldVerify(TypeAliasDecl *typealias) {
// Don't verify type aliases formed by the debugger; they violate some
// AST invariants involving archetypes.
if (typealias->isDebuggerAlias()) return false;
return true;
}
// Default cases for whether we should verify a checked subtree.
bool shouldVerifyChecked(Expr *E) {
if (!E->getType()) {
// For @objc enums, we serialize the pre-type-checked integer
// literal raw values, and thus when they are deserialized
// they do not have a type on them.
if (!isa<IntegerLiteralExpr>(E) && !isa<MacroExpansionExpr>(E)) {
Out << "expression has no type\n";
E->dump(Out);
abort();
}
}
return true;
}
bool shouldVerifyChecked(Stmt *S) { return true; }
bool shouldVerifyChecked(Pattern *S) { return true; }
bool shouldVerifyChecked(Decl *S) { return true; }
// Only verify functions if they have bodies we can safely walk.
// FIXME: This is a bit of a hack; we should be able to check the
// invariants of a parsed body as well.
bool shouldVerify(AbstractFunctionDecl *afd) {
switch (afd->getBodyKind()) {
case AbstractFunctionDecl::BodyKind::None:
case AbstractFunctionDecl::BodyKind::TypeChecked:
case AbstractFunctionDecl::BodyKind::SILSynthesize:
case AbstractFunctionDecl::BodyKind::Deserialized:
return true;
case AbstractFunctionDecl::BodyKind::Unparsed:
case AbstractFunctionDecl::BodyKind::Parsed:
case AbstractFunctionDecl::BodyKind::Synthesize:
if (auto SF = dyn_cast<SourceFile>(afd->getModuleScopeContext())) {
return SF->ASTStage < SourceFile::TypeChecked;
}
return false;
}
llvm_unreachable("unhandled kind");
}
// Default cases for cleaning up as we exit a node.
void cleanup(Expr *E) { }
void cleanup(Stmt *S) { }
void cleanup(Pattern *P) { }
void cleanup(Decl *D) { }
// Base cases for the various stages of verification.
void verifyParsed(Expr *E) {}
void verifyParsed(Stmt *S) {}
void verifyParsed(Pattern *P) {}
void verifyParsed(Decl *D) {
PrettyStackTraceDecl debugStack("verifying ", D);
if (!D->getDeclContext()) {
Out << "every Decl should have a DeclContext\n";
abort();
}
if (auto *DC = dyn_cast<DeclContext>(D)) {
if (D->getDeclContext() != DC->getParent()) {
Out << "Decl's DeclContext not in sync with DeclContext's parent\n";
D->getDeclContext()->printContext(Out);
DC->getParent()->printContext(Out);
abort();
}
}
}
template<typename T>
void verifyParsedBase(T ASTNode) {
verifyParsed(cast<typename ASTNodeBase<T>::BaseTy>(ASTNode));
}
/// @{
/// These verification functions are always run on type checked ASTs
/// (even if there were errors).
void verifyCheckedAlways(Expr *E) {
if (E->getType())
verifyChecked(E->getType());
}
void verifyCheckedAlways(Stmt *S) {}
void verifyCheckedAlways(Pattern *P) {
if (P->hasType() && !P->getDelayedInterfaceType())
verifyChecked(P->getType());
}
void verifyCheckedAlways(Decl *D) {
}
template<typename T>
void verifyCheckedAlwaysBase(T ASTNode) {
verifyCheckedAlways(cast<typename ASTNodeBase<T>::BaseTy>(ASTNode));
}
/// @}
/// @{
/// These verification functions are run on type checked ASTs if there were
/// no errors.
void verifyChecked(Expr *E) {
// Some imported expressions don't have types, even in checked mode.
// TODO: eliminate all these
if (!E->getType()) {
// For @objc enums, we serialize the pre-type-checked integer
// literal raw values, and thus when they are deserialized
// they do not have a type on them.
if (!isa<IntegerLiteralExpr>(E)) {
Out << "expression has no type\n";
E->dump(Out);
abort();
}
return;
}
}
void verifyChecked(Pattern *P) {
if (!P->hasType()) {
Out << "pattern has no type\n";
P->dump(Out);
abort();
}
}
void verifyChecked(Stmt *S) {}
void verifyChecked(Decl *D) {}
void verifyChecked(Type type) {
llvm::SmallPtrSet<ArchetypeType *, 4> visitedArchetypes;
verifyChecked(type, visitedArchetypes);
}
void
verifyChecked(Type type,
llvm::SmallPtrSetImpl<ArchetypeType *> &visitedArchetypes) {
if (!type)
return;
// Check for type variables that escaped the type checker.
if (type->hasTypeVariable()) {
Out << "a type variable escaped the type checker\n";
abort();
}
// Check for invalid pack expansion shape types.
if (auto *expansion = type->getAs<PackExpansionType>()) {
auto countType = expansion->getCountType();
if (!(countType->is<PackType>() ||
countType->is<PackArchetypeType>() ||
countType->isRootParameterPack())) {
Out << "non-pack shape type: " << countType->getString() << "\n";
abort();
}
}
if (!type->hasArchetype())
return;
bool foundError = type->getCanonicalType().findIf([&](Type type) -> bool {
if (auto archetype = type->getAs<ArchetypeType>()) {
// Opaque archetypes are globally available. We don't need to check
// them here.
if (isa<OpaqueTypeArchetypeType>(archetype))
return false;
// Only visit each archetype once.
if (!visitedArchetypes.insert(archetype).second)
return false;
// We should know about archetypes corresponding to opened
// existential archetypes.
if (isa<LocalArchetypeType>(archetype)) {
if (LocalGenerics.count(archetype->getGenericEnvironment()) == 0) {
Out << "Found local archetype " << archetype
<< " outside its defining scope\n";
return true;
}
return false;
}
// Otherwise, the archetype needs to be from this scope.
if (Generics.empty() || !Generics.back()) {
Out << "AST verification error: archetype outside of generic "
"context: " << archetype << "\n";
return true;
}
// Get the archetype's generic signature.
GenericEnvironment *archetypeEnv = archetype->getGenericEnvironment();
auto archetypeSig = archetypeEnv->getGenericSignature();
auto genericCtx = Generics.back();
GenericSignature genericSig = genericCtx->getGenericSignatureOfContext();
if (genericSig.getPointer() != archetypeSig.getPointer()) {
Out << "Archetype " << archetype->getString() << " not allowed "
<< "in this context\n";
Out << "Archetype generic signature: "
<< archetypeSig->getAsString() << "\n";
Out << "Context generic signature: "
<< genericSig->getAsString() << "\n";
return true;
}
// Mapping the archetype out and back in should produce the
// same archetype.
auto interfaceType = archetype->getInterfaceType();
auto contextType = archetypeEnv->mapTypeIntoContext(interfaceType);
if (!contextType->isEqual(archetype)) {
Out << "Archetype " << archetype->getString() << " does not appear"
<< " inside its own generic environment\n";
Out << "Interface type: " << interfaceType.getString() << "\n";
Out << "Contextual type: " << contextType.getString() << "\n";
return true;
}
}
return false;
});
if (foundError)
abort();
}
template<typename T>
void verifyCheckedBase(T ASTNode) {
verifyChecked(cast<typename ASTNodeBase<T>::BaseTy>(ASTNode));
}
/// @}
// Specialized verifiers.
void pushScope(DeclContext *scope) {
Scopes.push_back(scope);
Generics.push_back(scope);
}
void pushScope(BraceStmt *scope) {
Scopes.push_back(scope);
}
void popScope(DeclContext *scope) {
assert(cast<DeclContext *>(Scopes.back()) == scope);
assert(Generics.back() == scope);
Scopes.pop_back();
Generics.pop_back();
}
void popScope(BraceStmt *scope) {
assert(cast<BraceStmt *>(Scopes.back()) == scope);
Scopes.pop_back();
}
void pushFunction(DeclContext *functionScope) {
pushScope(functionScope);
Functions.push_back(functionScope);
}
void popFunction(DeclContext *functionScope) {
assert(Functions.back() == functionScope);
Functions.pop_back();
popScope(functionScope);
}
#define FUNCTION_LIKE(NODE) \
bool shouldVerify(NODE *fn) { \
pushFunction(fn); \
return shouldVerify(cast<ASTNodeBase<NODE*>::BaseTy>(fn));\
} \
void cleanup(NODE *fn) { \
popFunction(fn); \
}
#define TYPE_LIKE(NODE) \
bool shouldVerify(NODE *dc) { \
pushScope(dc); \
if (dc->hasLazyMembers()) \
return false; \
if (dc->hasUnparsedMembers()) \
return false; \
return shouldVerify(cast<ASTNodeBase<NODE*>::BaseTy>(dc));\
} \
void cleanup(NODE *dc) { \
popScope(dc); \
}
FUNCTION_LIKE(AbstractClosureExpr)
FUNCTION_LIKE(ConstructorDecl)
FUNCTION_LIKE(DestructorDecl)
FUNCTION_LIKE(FuncDecl)
FUNCTION_LIKE(EnumElementDecl)
FUNCTION_LIKE(SubscriptDecl)
FUNCTION_LIKE(MacroDecl)
TYPE_LIKE(NominalTypeDecl)
TYPE_LIKE(ExtensionDecl)
#undef TYPE_LIKE
#undef FUNCTION_LIKE
bool shouldVerify(BraceStmt *BS) {
pushScope(BS);
InImplicitBraceStmt.push_back(BS->isImplicit());
return shouldVerify(cast<Stmt>(BS));
}
void cleanup(BraceStmt *BS) {
InImplicitBraceStmt.pop_back();
popScope(BS);
}
bool shouldVerify(ForEachStmt *S) {
if (!shouldVerify(cast<Stmt>(S)))
return false;
if (auto *expansion =
dyn_cast<PackExpansionExpr>(S->getParsedSequence())) {
if (!shouldVerify(expansion)) {
return false;
}
assert(ForEachPatternSequences.count(expansion) == 0);
ForEachPatternSequences.insert(expansion);
}
if (!S->getElementExpr())
return true;
assert(!OpaqueValues.count(S->getElementExpr()));
OpaqueValues[S->getElementExpr()] = 0;
return true;
}
void cleanup(ForEachStmt *S) {
if (auto *expansion =
dyn_cast<PackExpansionExpr>(S->getParsedSequence())) {
assert(ForEachPatternSequences.count(expansion) != 0);
ForEachPatternSequences.erase(expansion);
// Clean up for real.
cleanup(expansion);
}
if (!S->getElementExpr())
return;
assert(OpaqueValues.count(S->getElementExpr()));
OpaqueValues.erase(S->getElementExpr());
}
bool shouldVerify(InterpolatedStringLiteralExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
if (!expr->getInterpolationExpr())
return true;
assert(!OpaqueValues.count(expr->getInterpolationExpr()));
OpaqueValues[expr->getInterpolationExpr()] = 0;
return true;
}
void cleanup(InterpolatedStringLiteralExpr *expr) {
if (!expr->getInterpolationExpr())
return;
assert(OpaqueValues.count(expr->getInterpolationExpr()));
OpaqueValues.erase(expr->getInterpolationExpr());
}
bool shouldVerify(PropertyWrapperValuePlaceholderExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
assert(expr->getOpaqueValuePlaceholder());
assert(!OpaqueValues.count(expr->getOpaqueValuePlaceholder()));
OpaqueValues[expr->getOpaqueValuePlaceholder()] = 0;
return true;
}
void cleanup(PropertyWrapperValuePlaceholderExpr *expr) {
assert(OpaqueValues.count(expr->getOpaqueValuePlaceholder()));
OpaqueValues.erase(expr->getOpaqueValuePlaceholder());
}
void pushLocalGenerics(GenericEnvironment *env) {
assert(LocalGenerics.count(env)==0);
LocalGenerics.insert(env);
}
void popLocalGenerics(GenericEnvironment *env) {
assert(LocalGenerics.count(env)==1);
LocalGenerics.erase(env);
}
bool shouldVerify(OpenExistentialExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
// In rare instances we clear the opaque value because we no
// longer have a subexpression that references it.
if (!expr->getOpaqueValue())
return true;
assert(!OpaqueValues.count(expr->getOpaqueValue()));
OpaqueValues[expr->getOpaqueValue()] = 0;
pushLocalGenerics(expr->getOpenedArchetype()->getGenericEnvironment());
return true;
}
void cleanup(OpenExistentialExpr *expr) {
// In rare instances we clear the opaque value because we no
// longer have a subexpression that references it.
if (!expr->getOpaqueValue())
return;
assert(OpaqueValues.count(expr->getOpaqueValue()));
OpaqueValues.erase(expr->getOpaqueValue());
popLocalGenerics(expr->getOpenedArchetype()->getGenericEnvironment());
}
bool shouldVerify(PackExpansionExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
// Don't push local generics again when we visit the expr inside
// the ForEachStmt.
if (auto *genericEnv = expr->getGenericEnvironment())
if (ForEachPatternSequences.count(expr) == 0)
pushLocalGenerics(genericEnv);
return true;
}
void cleanup(PackExpansionExpr *expr) {
// If this is a pack iteration pattern, don't pop local generics
// until we exit the ForEachStmt.
if (auto *genericEnv = expr->getGenericEnvironment())
if (ForEachPatternSequences.count(expr) == 0)
popLocalGenerics(genericEnv);
}
bool shouldVerify(MakeTemporarilyEscapableExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
assert(!OpaqueValues.count(expr->getOpaqueValue()));
OpaqueValues[expr->getOpaqueValue()] = 0;
return true;
}
void cleanup(MakeTemporarilyEscapableExpr *expr) {
assert(OpaqueValues.count(expr->getOpaqueValue()));
OpaqueValues.erase(expr->getOpaqueValue());
}
// Register the OVEs in a DestructureTupleExpr.
bool shouldVerify(DestructureTupleExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
for (auto *opaqueElt : expr->getDestructuredElements()) {
assert(!OpaqueValues.count(opaqueElt));
OpaqueValues[opaqueElt] = 0;
}
return true;
}
void cleanup(DestructureTupleExpr *expr) {
for (auto *opaqueElt : expr->getDestructuredElements()) {
assert(OpaqueValues.count(opaqueElt));
OpaqueValues.erase(opaqueElt);
}
}
// Keep a stack of the currently-live optional evaluations.
bool shouldVerify(OptionalEvaluationExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
OptionalEvaluations.push_back(expr);
return true;
}
void cleanup(OptionalEvaluationExpr *expr) {
assert(OptionalEvaluations.back() == expr);
OptionalEvaluations.pop_back();
}
// Register the OVEs in a collection upcast.
bool shouldVerify(CollectionUpcastConversionExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
if (auto keyConversion = expr->getKeyConversion())
OpaqueValues[keyConversion.OrigValue] = 0;
if (auto valueConversion = expr->getValueConversion())
OpaqueValues[valueConversion.OrigValue] = 0;
return true;
}
void cleanup(CollectionUpcastConversionExpr *expr) {
if (auto keyConversion = expr->getKeyConversion())
OpaqueValues.erase(keyConversion.OrigValue);
if (auto valueConversion = expr->getValueConversion())
OpaqueValues.erase(valueConversion.OrigValue);
}
/// Canonicalize the given DeclContext pointer, in terms of
/// producing something that can be looked up in
/// ClosureDiscriminators.
DeclContext *getCanonicalDeclContext(DeclContext *DC) {
// All we really need to do is use a single TopLevelCodeDecl.
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(DC)) {
if (!CanonicalTopLevelSubcontext)
CanonicalTopLevelSubcontext = topLevel;
return CanonicalTopLevelSubcontext;
}
// TODO: check for uniqueness of initializer contexts?
return DC;
}
/// Return the appropriate discriminator set for a closure expression.
SmallBitVector &getClosureDiscriminators(AbstractClosureExpr *closure) {
auto dc = getCanonicalDeclContext(closure->getParent());
bool isAutoClosure = isa<AutoClosureExpr>(closure);
return ClosureDiscriminators[ClosureDiscriminatorKey(dc, isAutoClosure)];
}
void verifyCheckedAlways(ValueDecl *D) {
if (D->hasInterfaceType())
verifyChecked(D->getInterfaceType());
if (D->hasAccess()) {
PrettyStackTraceDecl debugStack("verifying access", D);
if (!D->getASTContext().isAccessControlDisabled()) {
if (D->getFormalAccessScope().isPublic() &&
D->getFormalAccess() < AccessLevel::Public) {
Out << "non-public decl has no formal access scope\n";
D->dump(Out);
abort();
}
}
if (D->getEffectiveAccess() == AccessLevel::Private) {
Out << "effective access should use 'fileprivate' for 'private'\n";
D->dump(Out);
abort();
}
}
if (auto Overridden = getOverriddenDeclIfAvailable(D)) {
if (D->getDeclContext() == Overridden->getDeclContext()) {
PrettyStackTraceDecl debugStack("verifying overridden", D);
Out << "cannot override a decl in the same DeclContext";
D->dump(Out);
Overridden->dump(Out);
abort();
}
if (!isa<ClassDecl>(D->getDeclContext()) &&
!isa<ProtocolDecl>(D->getDeclContext()) &&
!isa<ExtensionDecl>(D->getDeclContext())) {
PrettyStackTraceDecl debugStack("verifying override", D);
Out << "'override' attribute outside of a class or protocol\n";
D->dump(Out);
abort();
}
}
verifyCheckedAlwaysBase(D);
}
void verifyCheckedAlways(NominalTypeDecl *D) {
verifyCheckedAlwaysBase(D);
}
bool shouldVerifyChecked(ThrowStmt *S) {
return shouldVerifyChecked(S->getSubExpr());
}
DeclContext *getInnermostDC() const {
for (auto scope : llvm::reverse(Scopes)) {
if (auto dc = scope.dyn_cast<DeclContext *>())
return dc;
}
return nullptr;
}
void verifyChecked(ThrowStmt *S) {
Type thrownError;
SourceLoc loc = S->getThrowLoc();
if (loc.isValid()) {
auto catchNode = ASTScope::lookupCatchNode(getModuleContext(), loc);
if (catchNode) {
if (auto thrown = catchNode.getThrownErrorTypeInContext(Ctx)) {
thrownError = *thrown;
} else {
thrownError = Ctx.getNeverType();
}
} else {
thrownError = checkExceptionTypeExists("throw expression");
}
} else {
return;
}
checkSameType(S->getSubExpr()->getType(), thrownError, "throw operand");
verifyCheckedBase(S);
}
bool shouldVerifyChecked(ReturnStmt *S) {
return !S->hasResult() || shouldVerifyChecked(S->getResult());
}
void verifyChecked(ReturnStmt *S) {
auto func = Functions.back();
Type resultType;
bool hasInOutResult = false;
if (auto *FD = dyn_cast<FuncDecl>(func)) {
resultType = FD->getResultInterfaceType();
resultType = FD->mapTypeIntoContext(resultType);
hasInOutResult = FD->getInterfaceType()
->castTo<AnyFunctionType>()
->getExtInfo()
.hasInOutResult();
} else if (auto closure = dyn_cast<AbstractClosureExpr>(func)) {
resultType = closure->getResultType();
} else if (isa<ConstructorDecl>(func)) {
resultType = TupleType::getEmpty(Ctx);
} else {
resultType = TupleType::getEmpty(Ctx);
}
if (S->hasResult()) {
auto result = S->getResult();
auto returnType = result->getType();
// Make sure that the return has the same type as the function.
if (hasInOutResult) {
resultType = InOutType::get(resultType);
}
checkSameType(resultType, returnType, "return type");
} else {
// Make sure that the function has a Void result type.
checkSameType(resultType, TupleType::getEmpty(Ctx), "return type");
}
verifyCheckedBase(S);
}
void verifyChecked(DeferStmt *S) {
auto FT = S->getTempDecl()->getInterfaceType()->castTo<AnyFunctionType>();
assert(FT->isNoEscape() && "Defer statements must not escape");
(void)FT;
verifyCheckedBase(S);
}
void verifyChecked(FailStmt *S) {
// Dig out the initializer we're in (if we are).
ConstructorDecl *ctor = nullptr;
if (!Functions.empty()) {
ctor = dyn_cast<ConstructorDecl>(Functions.back());
}
// Fail statements are only permitted in initializers.
if (!ctor) {
Out << "'fail' statement outside of initializer\n";
abort();
}
if (!ctor->isFailable() && !ctor->isInvalid()) {
Out << "non-failable initializer contains a 'fail' statement\n";
ctor->dump(Out);
abort();
}
}
void checkConditionElement(const StmtConditionElement &elt) {
switch (elt.getKind()) {
case StmtConditionElement::CK_Availability:
case StmtConditionElement::CK_HasSymbol:
break;
case StmtConditionElement::CK_Boolean: {
auto *E = elt.getBoolean();
if (shouldVerifyChecked(E))
checkSameType(E->getType(), Ctx.getBoolType(), "condition type");
break;
}
case StmtConditionElement::CK_PatternBinding:
if (shouldVerifyChecked(elt.getPattern()) &&
shouldVerifyChecked(elt.getInitializer())) {
checkSameType(elt.getPattern()->getType(),
elt.getInitializer()->getType(),
"conditional binding type");
}
break;
}
}
void checkCondition(StmtCondition C) {
for (auto elt : C)
checkConditionElement(elt);
}
void verifyChecked(IfStmt *S) {
checkCondition(S->getCond());
verifyCheckedBase(S);
}
void verifyChecked(GuardStmt *S) {
checkCondition(S->getCond());
verifyCheckedBase(S);
}
void verifyChecked(WhileStmt *S) {
checkCondition(S->getCond());
verifyCheckedBase(S);
}
Type checkAssignDest(Expr *Dest) {
if (auto *TE = dyn_cast<TupleExpr>(Dest)) {
SmallVector<TupleTypeElt, 4> lhsTupleTypes;
for (unsigned i = 0; i != TE->getNumElements(); ++i) {
Type SubType = checkAssignDest(TE->getElement(i));
lhsTupleTypes.push_back(TupleTypeElt(SubType, TE->getElementName(i)));
}
return TupleType::get(lhsTupleTypes, Ctx);
}
return checkLValue(Dest->getType(), "LHS of assignment");
}
void verifyChecked(DeclRefExpr *E) {
if (E->getType()->is<InOutType>()) {
PrettyStackTraceExpr debugStack(Ctx, "verifying decl reference", E);
Out << "reference with inout type "
<< E->getType().getString() << "\n";
E->dump(Out);
Out << "\n";
abort();
}
if (E->getType()->is<GenericFunctionType>()) {
PrettyStackTraceExpr debugStack(Ctx, "verifying decl reference", E);
Out << "unspecialized reference with polymorphic type "
<< E->getType().getString() << "\n";
E->dump(Out);
Out << "\n";
abort();
}
if (E->getDecl() && !ABIRoleInfo(E->getDecl()).providesAPI()) {
PrettyStackTraceExpr debugStack(Ctx, "verifying decl reference", E);
Out << "reference to ABI-only decl in user code\n";
E->dump(Out);
Out << "\n";
E->getDecl()->dump(Out);
Out << "\n";
abort();
}
verifyCheckedBase(E);
}
void verifyParsed(OverloadedDeclRefExpr *E) {
for (auto D : E->getDecls()) {
if (!ABIRoleInfo(D).providesAPI()) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying overloaded decl reference", E);
Out << "reference to ABI-only decl in user code\n";
E->dump(Out);
Out << "\n";
D->dump(Out);
Out << "\n";
abort();
}
}
verifyParsedBase(E);
}
void verifyChecked(AssignExpr *S) {
Type lhsTy = checkAssignDest(S->getDest());
checkSameType(lhsTy, S->getSrc()->getType(), "assignment operands");
verifyCheckedBase(S);
}
void verifyChecked(EnumIsCaseExpr *E) {
auto nom = E->getSubExpr()->getType()->getAnyNominal();
if (!nom || !isa<EnumDecl>(nom)) {
Out << "enum_is_decl operand is not an enum: ";
E->getSubExpr()->getType().print(Out);
Out << '\n';
abort();
}
if (nom != E->getEnumElement()->getParentEnum()) {
Out << "enum_is_decl case is not member of enum:\n";
Out << " case: ";
E->getEnumElement()->print(Out);
Out << "\n type: ";
E->getSubExpr()->getType().print(Out);
Out << '\n';
abort();
}
}
void verifyChecked(TupleExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying TupleExpr", E);
const TupleType *exprTy = E->getType()->castTo<TupleType>();
for_each(exprTy->getElements().begin(), exprTy->getElements().end(),
E->getElements().begin(),
[this](const TupleTypeElt &field, const Expr *elt) {
if (!field.getType()->isEqual(elt->getType())) {
Out << "tuple_expr element type mismatch:\n";
Out << " field: ";
Out << field.getType() << "\n";
Out << " element: ";
Out << elt->getType() << "\n";
abort();
}
});
verifyCheckedBase(E);
}
void verifyChecked(InOutExpr *E) {
Type srcObj = checkLValue(E->getSubExpr()->getType(),
"result of InOutExpr");
auto DestTy = E->getType()->castTo<InOutType>()->getObjectType();
checkSameType(DestTy, srcObj, "object types for InOutExpr");
verifyCheckedBase(E);
}
void verifyChecked(SingleValueStmtExpr *E) {
using Kind = IsSingleValueStmtResult::Kind;
switch (E->getStmt()->mayProduceSingleValue(Ctx).getKind()) {
case Kind::NoResult:
// These are allowed as long as the type is Void.
checkSameType(
E->getType(), Ctx.getVoidType(),
"SingleValueStmtExpr with no expression branches must be Void");
break;
case Kind::UnterminatedBranches:
case Kind::NonExhaustiveIf:
case Kind::NonExhaustiveDoCatch:
case Kind::UnhandledStmt:
case Kind::CircularReference:
case Kind::HasLabel:
case Kind::InvalidJumps:
// These should have been diagnosed.
Out << "invalid SingleValueStmtExpr should be been diagnosed:\n";
E->dump(Out);
Out << "\n";
abort();
case Kind::Valid:
break;
}
}
void verifyParsed(AbstractClosureExpr *E) {
Type Ty = E->getType();
if (!Ty)
return;
if (Ty->hasError())
return;
if (!Ty->is<FunctionType>()) {
PrettyStackTraceExpr debugStack(Ctx, "verifying closure", E);
Out << "a closure should have a function type";
E->dump(Out);
Out << "\n";
abort();
}
verifyParsedBase(E);
}
void verifyChecked(AbstractClosureExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying closure", E);
assert(cast<DeclContext *>(Scopes.back()) == E);
assert(E->getParent()->isLocalContext() &&
"closure expression was not in local context!");
// Check that the discriminator is unique in its context.
auto &discriminatorSet = getClosureDiscriminators(E);
unsigned discriminator = E->getDiscriminator();
if (discriminator >= discriminatorSet.size()) {
discriminatorSet.resize(discriminator+1);
discriminatorSet.set(discriminator);
} else if (discriminatorSet.test(discriminator)) {
Out << "a closure must have a unique discriminator in its context\n";
E->dump(Out);
Out << "\n";
abort();
} else {
discriminatorSet.set(discriminator);
}
// If the enclosing scope is a DC directly, rather than a local scope,
// then the closure should be parented by an Initializer. Otherwise,
// it should be parented by the innermost function.
auto enclosingScope = Scopes[Scopes.size() - 2];
auto enclosingDC = enclosingScope.dyn_cast<DeclContext*>();
if (enclosingDC && !isa<AbstractClosureExpr>(enclosingDC)){
auto parentDC = E->getParent();
if (!isa<Initializer>(parentDC)) {
Out << "a closure in non-local context should be parented "
"by an initializer or REPL context";
E->dump(Out);
Out << "\n";
abort();
} else if (parentDC->getParent() != enclosingDC) {
Out << "closure in non-local context not grandparented by its "
"enclosing function";
E->dump(Out);
Out << "\n";
abort();
}
} else if (Functions.size() >= 2 &&
Functions[Functions.size() - 2] != E->getParent()) {
Out << "closure in local context not parented by its "
"enclosing function";
E->dump(Out);
Out << "\n";
abort();
}
if (E->getDiscriminator() == AbstractClosureExpr::InvalidDiscriminator) {
Out << "a closure expression should have a valid discriminator\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(MetatypeConversionExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying MetatypeConversion", E);
auto destTy = checkMetatypeType(E->getType(),
"result of MetatypeConversionExpr");
auto srcTy = checkMetatypeType(E->getSubExpr()->getType(),
"source of MetatypeConversionExpr");
if (destTy->isEqual(srcTy)) {
Out << "trivial MetatypeConversionExpr:\n";
E->dump(Out);
Out << "\n";
abort();
}
checkTrivialSubtype(E, srcTy, destTy, "MetatypeConversionExpr");
verifyCheckedBase(E);
}
void verifyChecked(ClassMetatypeToObjectExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying ClassMetatypeToObject", E);
auto srcTy = checkMetatypeType(E->getSubExpr()->getType(),
"source of ClassMetatypeToObject");
if (!srcTy->mayHaveSuperclass()) {
Out << "ClassMetatypeToObject with non-class metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!E->getType()->isEqual(Ctx.getAnyObjectType())) {
Out << "ClassMetatypeToObject does not produce AnyObject:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(ExistentialMetatypeToObjectExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying ExistentialMetatypeToObject", E);
auto srcTy = checkMetatypeType(E->getSubExpr()->getType(),
"source of ExistentialMetatypeToObject");
if (!E->getSubExpr()->getType()->is<ExistentialMetatypeType>()) {
Out << "ExistentialMetatypeToObject with non-existential "
"metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!srcTy->isClassExistentialType()) {
Out << "ExistentialMetatypeToObject with non-class existential "
"metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!E->getType()->isEqual(Ctx.getAnyObjectType())) {
Out << "ExistentialMetatypeToObject does not produce AnyObject:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(ProtocolMetatypeToObjectExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying ProtocolMetatypeToObject", E);
auto srcTy = checkMetatypeType(E->getSubExpr()->getType(),
"source of ProtocolMetatypeToObject");
if (E->getSubExpr()->getType()->is<ExistentialMetatypeType>()) {
Out << "ProtocolMetatypeToObject with existential "
"metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!srcTy->isExistentialType()) {
Out << "ProtocolMetatypeToObject with non-existential metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
auto layout = srcTy->getExistentialLayout();
if (layout.explicitSuperclass ||
!layout.isObjC() ||
layout.getProtocols().size() != 1) {
Out << "ProtocolMetatypeToObject with non-ObjC-protocol metatype:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!E->getType()->getClassOrBoundGenericClass()) {
Out << "ProtocolMetatypeToObject does not produce class:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(PointerToPointerExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying PointerToPointer", E);
auto fromElement = E->getSubExpr()->getType()->getAnyPointerElementType();
auto toElement = E->getType()->getAnyPointerElementType();
if (!fromElement || !toElement) {
Out << "PointerToPointer does not convert between pointer types:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(InOutToPointerExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying InOutToPointer", E);
if (!ValidInOutToPointerExprs.count(E)) {
Out << "InOutToPointerExpr in unexpected position!\n";
E->dump(Out);
Out << "\n";
abort();
}
auto fromElement = E->getSubExpr()->getType()->getInOutObjectType();
auto toElement = E->getType()->getAnyPointerElementType();
if (!E->getSubExpr()->getType()->is<InOutType>() && !toElement) {
Out << "InOutToPointer does not convert from inout to pointer:\n";
E->dump(Out);
Out << "\n";
abort();
}
// Ensure we don't convert an array to a void pointer this way.
if (fromElement->isArray() && toElement->isVoid()) {
Out << "InOutToPointer is converting an array to a void pointer; "
"ArrayToPointer should be used instead:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(ArrayToPointerExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying ArrayToPointer", E);
if (!ValidArrayToPointerExprs.count(E)) {
Out << "ArrayToPointer in invalid position?!\n";
E->dump(Out);
Out << "\n";
abort();
}
// The source may be optionally inout.
auto fromArray = E->getSubExpr()->getType()->getInOutObjectType();
if (!fromArray->isArray()) {
Out << "ArrayToPointer does not convert from array:\n";
E->dump(Out);
Out << "\n";
abort();
}
auto toElement = E->getType()->getAnyPointerElementType();
if (!toElement) {
Out << "ArrayToPointer does not convert to pointer:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(StringToPointerExpr *E) {
PrettyStackTraceExpr debugStack(Ctx,
"verifying StringToPointer", E);
if (!E->getSubExpr()->getType()->isString()) {
Out << "StringToPointer does not convert from string:\n";
E->dump(Out);
Out << "\n";
abort();
}
PointerTypeKind PTK;
auto toElement = E->getType()->getAnyPointerElementType(PTK);
if (!toElement) {
Out << "StringToPointer does not convert to pointer:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (PTK != PTK_UnsafePointer && PTK != PTK_UnsafeRawPointer) {
Out << "StringToPointer converts to non-const pointer:\n";
E->dump(Out);
Out << "\n";
abort();
}
}
void verifyChecked(CollectionUpcastConversionExpr *E) {
verifyChecked(E->getSubExpr());
verifyCheckedBase(E);
}
void verifyChecked(DerivedToBaseExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying DerivedToBaseExpr", E);
auto destTy = E->getType();
auto srcTy = E->getSubExpr()->getType();
if (destTy->isEqual(srcTy)) {
Out << "trivial DerivedToBaseExpr:\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!destTy->getClassOrBoundGenericClass() ||
!(srcTy->getClassOrBoundGenericClass() ||
srcTy->is<DynamicSelfType>())) {
Out << "DerivedToBaseExpr does not involve class types:\n";
E->dump(Out);
Out << "\n";
abort();
}
checkTrivialSubtype(E, srcTy, destTy, "DerivedToBaseExpr");
verifyCheckedBase(E);
}
bool shouldVerify(ErasureExpr *expr) {
if (!shouldVerify(cast<Expr>(expr)))
return false;
for (auto &elt : expr->getArgumentConversions()) {
assert(!OpaqueValues.count(elt.OrigValue));
OpaqueValues[elt.OrigValue] = 0;
}
return true;
}
void cleanup(ErasureExpr *expr) {
for (auto &elt : expr->getArgumentConversions()) {
assert(OpaqueValues.count(elt.OrigValue));
OpaqueValues.erase(elt.OrigValue);
}
}
void verifyChecked(ErasureExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying ErasureExpr", E);
if (!E->getType()->isAnyExistentialType()) {
Out << "ErasureExpr result is not an existential: ";
E->getType()->print(Out);
Out << "\n";
abort();
}
auto erasedTy = E->getType();
auto concreteTy = E->getSubExpr()->getType();
// Erasure can be from concrete to existential or from existential to more
// general existential. If we look through metatypes then we're forced
// into one or the other by context; otherwise, it doesn't matter.
enum {
AnyErasure,
ConcreteErasureOnly,
ExistentialErasureOnly,
} knownConcreteErasure = AnyErasure;
// Existential metatypes should be erased from (existential or concrete)
// metatypes.
while (auto meta = erasedTy->getAs<ExistentialMetatypeType>()) {
erasedTy = meta->getInstanceType();
if (auto concreteMeta = concreteTy->getAs<MetatypeType>()) {
// If this is already forced to be an existential erasure, we
// shouldn't be here, since (P & Q).Protocol.Type doesn't exist as
// a type.
assert(knownConcreteErasure != ExistentialErasureOnly);
knownConcreteErasure = ConcreteErasureOnly;
concreteTy = concreteMeta->getInstanceType();
} else if (concreteTy->is<ExistentialMetatypeType>()) {
// If this is already forced to be a concrete erasure (say we're going
// from (P & Q).Type.Protocol to P.Type.Type), then this is invalid,
// because it would require the existential metatype to be
// "self-conforming" to the protocol's static requirements (in other
// words, (P & Q).Type.self would have to be able to witness all of P's
// static requirements), which is currently never the case.
if (knownConcreteErasure == true) {
Out << "ErasureExpr concrete metatype is not a subtype of the "
"existential metatype\n"
"Destination type: ";
E->getType()->print(Out);
Out << "\nSource type: ";
E->getSubExpr()->getType()->print(Out);
Out << "\n";
abort();
}
knownConcreteErasure = ExistentialErasureOnly;
concreteTy = concreteMeta->getInstanceType();
} else {
// Anything else wouldn't be a valid erasure to an existential
// metatype.
Out << "ErasureExpr from non-metatype to existential metatype\n"
"Destination type: ";
E->getType()->print(Out);
Out << "\nSource type: ";
E->getSubExpr()->getType()->print(Out);
Out << "\n";
abort();
}
}
auto erasedLayout = erasedTy->getCanonicalType()->getExistentialLayout();
// An existential-to-existential erasure ought to reduce the set of
// constraints.
if (knownConcreteErasure != ConcreteErasureOnly
&& concreteTy->isExistentialType()) {
// TODO
} else {
// Check class constraints.
if (erasedLayout.requiresClass()) {
// A class constraint can be satisfied by a class, class-constrained
// archetype, or a class-constrained existential with no witness table
// requirements.
bool canBeClass;
if (concreteTy->mayHaveSuperclass()) {
canBeClass = true;
} else if (concreteTy->isExistentialType()) {
auto concreteLayout = concreteTy->getCanonicalType()
->getExistentialLayout();
canBeClass = concreteLayout.getKind() == ExistentialLayout::Kind::Class
&& !concreteLayout.containsSwiftProtocol;
} else {
canBeClass = false;
}
if (!canBeClass) {
Out << "ErasureExpr from non-class to existential that requires a "
"class\n"
"Destination type: ";
E->getType()->print(Out);
Out << "\nSource type: ";
E->getSubExpr()->getType()->print(Out);
Out << "\n";
abort();
}
}
auto superclass = erasedLayout.getSuperclass();
if (superclass
&& !superclass->isExactSuperclassOf(concreteTy)) {
Out << "ErasureExpr from class to existential with a superclass "
"constraint that does not match the class\n"
"Destination type: ";
E->getType()->print(Out);
Out << "\nSource type: ";
E->getSubExpr()->getType()->print(Out);
Out << "\n";
abort();
}
// A concrete-to-existential erasure should have conformances on hand
// for all of the existential's requirements.
auto conformances = E->getConformances();
for (auto proto : erasedLayout.getProtocols()) {
if (std::find_if(conformances.begin(), conformances.end(),
[&](ProtocolConformanceRef ref) -> bool {
return ref.getProtocol() == proto->getDecl();
})
== conformances.end()) {
Out << "ErasureExpr is missing conformance for required protocol\n";
E->getType()->print(Out);
Out << "\nSource type: ";
E->getSubExpr()->getType()->print(Out);
Out << "\n";
abort();
}
// TODO: Verify that the conformance applies to the type?
}
// TODO: Check layout constraints?
}
}
void verifyChecked(AnyHashableErasureExpr *E) {
auto anyHashableDecl = Ctx.getAnyHashableDecl();
if (!anyHashableDecl) {
Out << "AnyHashable declaration could not be found\n";
abort();
}
auto hashableDecl = Ctx.getProtocol(KnownProtocolKind::Hashable);
if (!hashableDecl) {
Out << "Hashable declaration could not be found\n";
abort();
}
checkSameType(E->getType(),
anyHashableDecl->getDeclaredInterfaceType(),
"AnyHashableErasureExpr and the standard AnyHashable type");
if (E->getConformance().getProtocol() != hashableDecl) {
Out << "conformance on AnyHashableErasureExpr was not for Hashable\n";
E->getConformance().dump(Out);
abort();
}
verifyConformance(E->getSubExpr()->getType(), E->getConformance());
verifyCheckedBase(E);
}
void verifyChecked(UnreachableExpr *E) {
if (!E->getSubExpr()->getType()->isStructurallyUninhabited()) {
Out << "UnreachableExpr must have an uninhabited sub-expression: ";
E->getSubExpr()->dump(Out);
abort();
}
}
void verifyChecked(TupleElementExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying TupleElementExpr", E);
Type resultType = E->getType();
Type baseType = E->getBase()->getType();
checkSameLValueness(baseType, resultType,
"base and result of TupleElementExpr");
TupleType *tupleType = baseType->getAs<TupleType>();
if (!tupleType) {
Out << "base of TupleElementExpr does not have tuple type: ";
E->getBase()->getType().print(Out);
Out << "\n";
abort();
}
if (E->getFieldNumber() >= tupleType->getNumElements()) {
Out << "field index " << E->getFieldNumber()
<< " for TupleElementExpr is out of range [0,"
<< tupleType->getNumElements() << ")\n";
abort();
}
checkSameType(resultType, tupleType->getElementType(E->getFieldNumber()),
"TupleElementExpr and the corresponding tuple element");
verifyCheckedBase(E);
}
void maybeRecordValidPointerConversionForArg(Expr *argExpr) {
auto *subExpr = argExpr;
unsigned optionalDepth = 0;
// FIXME: This doesn't seem like a particularly robust
// approach to tracking whether pointer conversions
// always appear as call arguments.
while (true) {
// Look through optional evaluations.
if (auto *optionalEval = dyn_cast<OptionalEvaluationExpr>(subExpr)) {
subExpr = optionalEval->getSubExpr();
++optionalDepth;
continue;
}
// Look through injections into Optional<Pointer>.
if (auto *injectIntoOpt = dyn_cast<InjectIntoOptionalExpr>(subExpr)) {
subExpr = injectIntoOpt->getSubExpr();
continue;
}
// FIXME: This is only handling the value conversion, not
// the key conversion. What this verifier check
// should probably do is just track whether we're
// currently visiting arguments of an apply when we
// find these conversions.
if (auto *upcast = dyn_cast<CollectionUpcastConversionExpr>(subExpr)) {
subExpr = upcast->getValueConversion().Conversion;
continue;
}
// If the argument is a concrete variadic expansion, let's check its
// every element.
if (auto *variadicExpansion = dyn_cast<VarargExpansionExpr>(subExpr)) {
if (auto *implicitArray =
dyn_cast<ArrayExpr>(variadicExpansion->getSubExpr())) {
for (auto *element : implicitArray->getElements()) {
maybeRecordValidPointerConversionForArg(element);
}
return;
}
}
break;
}
auto checkIsBindOptional = [&](Expr *expr) {
for (unsigned depth = optionalDepth; depth; --depth) {
if (auto bind = dyn_cast<BindOptionalExpr>(expr)) {
expr = bind->getSubExpr();
} else {
Out << "malformed optional pointer conversion\n";
argExpr->dump(Out);
Out << '\n';
abort();
}
}
};
// Record inout-to-pointer conversions.
if (auto *inOutToPtr = dyn_cast<InOutToPointerExpr>(subExpr)) {
ValidInOutToPointerExprs.insert(inOutToPtr);
checkIsBindOptional(inOutToPtr->getSubExpr());
return;
}
// Record array-to-pointer conversions.
if (auto *arrayToPtr = dyn_cast<ArrayToPointerExpr>(subExpr)) {
ValidArrayToPointerExprs.insert(arrayToPtr);
checkIsBindOptional(arrayToPtr->getSubExpr());
return;
}
}
void maybeRecordValidPointerConversion(ArgumentList *argList) {
for (auto arg : *argList)
maybeRecordValidPointerConversionForArg(arg.getExpr());
}
void verifyChecked(ApplyExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying ApplyExpr", E);
FunctionType *FT = E->getFn()->getType()->getAs<FunctionType>();
if (!FT) {
Out << "callee of apply expression does not have function type:";
E->getFn()->getType().print(Out);
Out << "\n";
abort();
}
Type ResultExprTy = E->getType();
if (!ResultExprTy->isEqual(FT->getResult())) {
Out << "result of ApplyExpr does not match result type of callee:";
E->getType().print(Out);
Out << " vs. ";
FT->getResult()->print(Out);
Out << "\n";
abort();
}
if (!E->getArgs()->matches(FT->getParams())) {
Out << "Argument list does not match parameters in ApplyExpr:"
"\nArgument list: ";
E->getArgs()->dump(Out);
Out << "\nParameter types: ";
AnyFunctionType::printParams(FT->getParams(), Out);
Out << "\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!E->isThrowsSet()) {
Out << "apply expression is not marked as throwing or non-throwing\n";
E->dump(Out);
Out << "\n";
abort();
} else if (E->throws() && !FT->isThrowing() && !E->implicitlyThrows()) {
PolymorphicEffectKind rethrowingKind = PolymorphicEffectKind::Invalid;
if (auto DRE = dyn_cast<DeclRefExpr>(E->getFn())) {
if (auto fnDecl = dyn_cast<AbstractFunctionDecl>(DRE->getDecl())) {
rethrowingKind = fnDecl->getPolymorphicEffectKind(EffectKind::Throws);
}
} else if (auto OCDRE = dyn_cast<OtherConstructorDeclRefExpr>(E->getFn())) {
if (auto fnDecl = dyn_cast<AbstractFunctionDecl>(OCDRE->getDecl())) {
rethrowingKind = fnDecl->getPolymorphicEffectKind(EffectKind::Throws);
}
}
if (rethrowingKind != PolymorphicEffectKind::ByConformance &&
rethrowingKind != PolymorphicEffectKind::Always) {
Out << "apply expression is marked as throwing, but function operand"
"does not have a throwing function type\n";
E->dump(Out);
Out << "\n";
abort();
}
}
verifyCheckedBase(E);
}
void verifyChecked(MemberRefExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying MemberRefExpr", E);
if (!E->getMember()) {
Out << "Member reference is missing declaration\n";
E->dump(Out);
Out << "\n";
abort();
}
if (!isa<VarDecl>(E->getMember().getDecl())) {
Out << "Member reference to a non-VarDecl\n";
E->dump(Out);
Out << "\n";
abort();
}
auto baseType = E->getBase()->getType();
if (baseType->is<InOutType>()) {
Out << "Member reference to an inout type\n";
E->dump(Out);
Out << "\n";
abort();
}
// The base of a member reference cannot be an existential type.
if (baseType->getWithoutSpecifierType()->isExistentialType()) {
Out << "Member reference into an unopened existential type\n";
E->dump(Out);
Out << "\n";
abort();
}
// FIXME: Check container/member types through substitutions.
verifyCheckedBase(E);
}
void verifyChecked(DynamicMemberRefExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying DynamicMemberRefExpr", E);
// The base of a dynamic member reference cannot be an
// existential type.
if (E->getBase()->getType()->getWithoutSpecifierType()
->isAnyExistentialType()) {
Out << "Member reference into an unopened existential type\n";
E->dump(Out);
Out << "\n";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(SubscriptExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying SubscriptExpr", E);
if (!E->hasDecl()) {
Out << "Subscript expression is missing subscript declaration";
abort();
}
// The base of a subscript cannot be an existential type.
if (E->getBase()->getType()->getWithoutSpecifierType()
->isAnyExistentialType()) {
Out << "Member reference into an unopened existential type\n";
E->dump(Out);
Out << "\n";
abort();
}
// FIXME: Check base/member types through substitutions.
verifyCheckedBase(E);
}
void verifyChecked(DynamicSubscriptExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying DynamicSubscriptExpr", E);
// The base of a subscript cannot be an existential type.
if (E->getBase()->getType()->getWithoutSpecifierType()
->isAnyExistentialType()) {
Out << "Member reference into an unopened existential type\n";
E->dump(Out);
Out << "\n";
abort();
}
// FIXME: Check base/member types through substitutions.
verifyCheckedBase(E);
}
void checkOptionalObjectType(Type optionalType,
Type objectType,
Expr *E) {
auto optionalRVType = optionalType->getRValueType();
auto objectRVType = objectType->getRValueType();
checkSameType(objectRVType, optionalRVType->getOptionalObjectType(),
"optional object type");
if (objectType->is<LValueType>() != optionalType->is<LValueType>()) {
Out << "optional operation must preserve lvalue-ness of base\n";
E->dump(Out);
abort();
}
}
void verifyChecked(OptionalEvaluationExpr *E) {
if (E->getType()->hasLValueType()) {
Out << "Optional evaluation should not produce an lvalue";
E->dump(Out);
abort();
}
checkSameType(E->getType(), E->getSubExpr()->getType(),
"OptionalEvaluation cannot change type");
}
void verifyChecked(BindOptionalExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying BindOptionalExpr", E);
if (E->getDepth() >= OptionalEvaluations.size()) {
Out << "BindOptional expression is out of its depth\n";
E->dump(Out);
abort();
}
checkOptionalObjectType(E->getSubExpr()->getType(),
E->getType(), E);
verifyCheckedBase(E);
}
void verifyChecked(CheckedCastExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying CheckCastExpr", E);
if (!E->isResolved()) {
Out << "CheckedCast kind not resolved\n";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(CoerceExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying CoerceExpr", E);
checkSameType(E->getType(), E->getSubExpr()->getType(),
"coercion type and subexpression type");
verifyCheckedBase(E);
}
void verifyChecked(IdentityExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying IdentityExpr", E);
if (!E->getType()->isEqual(E->getSubExpr()->getType())) {
Out << "Unexpected types in IdentityExpr\n";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(AnyTryExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying AnyTryExpr", E);
if (!isa<OptionalTryExpr>(E)) {
checkSameType(E->getType(), E->getSubExpr()->getType(),
"AnyTryExpr and sub-expression");
}
verifyCheckedBase(E);
}
void verifyChecked(OptionalTryExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying OptionalTryExpr", E);
if (Ctx.LangOpts.isSwiftVersionAtLeast(5)) {
checkSameType(E->getType(), E->getSubExpr()->getType(),
"OptionalTryExpr and sub-expression");
}
else {
Type unwrappedType = E->getType()->getOptionalObjectType();
if (!unwrappedType) {
Out << "OptionalTryExpr result type is not optional\n";
abort();
}
checkSameType(unwrappedType, E->getSubExpr()->getType(),
"OptionalTryExpr and sub-expression");
}
verifyCheckedBase(E);
}
void verifyChecked(DestructureTupleExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying DestructureTupleExpr", E);
auto getInputElementType = [&](unsigned i) {
return (E->getSubExpr()->getType()->castTo<TupleType>()
->getElementType(i));
};
auto getOpaqueElementType = [&](unsigned i) -> Type {
return E->getDestructuredElements()[i]->getType();
};
for (unsigned i = 0, e = E->getDestructuredElements().size(); i != e; ++i) {
Type inputType = getInputElementType(i);
Type opaqueType = getOpaqueElementType(i);
if (!inputType->isEqual(opaqueType)) {
Out << "Input type mismatch in DestructureTupleExpr\n";
inputType->dump(Out);
opaqueType->dump(Out);
abort();
}
}
if (!E->getResultExpr()->getType()->isEqual(E->getType())) {
Out << "Result type mismatch in DestructureTupleExpr\n";
E->getResultExpr()->getType()->dump(Out);
E->getType()->dump(Out);
}
verifyCheckedBase(E);
}
void verifyChecked(DynamicTypeExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying DynamicTypeExpr", E);
auto metatype = E->getType()->getAs<AnyMetatypeType>();
if (!metatype) {
Out << "DynamicTypeExpr must have metatype type\n";
abort();
}
auto instance = metatype->getInstanceType();
if (auto existential = metatype->getAs<ExistentialMetatypeType>())
instance = existential->getExistentialInstanceType();
checkSameType(E->getBase()->getType(), instance,
"base type of .Type expression");
verifyCheckedBase(E);
}
void verifyChecked(InjectIntoOptionalExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying InjectIntoOptionalExpr",
E);
auto valueType = E->getType()->getOptionalObjectType();
if (!valueType) {
Out << "InjectIntoOptionalExpr is not of Optional type";
abort();
}
if (!E->getSubExpr()->getType()->isEqual(valueType)) {
Out << "InjectIntoOptionalExpr operand is not of the value type";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(TernaryExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying TernaryExpr", E);
auto condTy = E->getCondExpr()->getType();
if (!condTy->isBool()) {
Out << "TernaryExpr condition is not Bool\n";
abort();
}
checkSameType(E->getThenExpr()->getType(),
E->getElseExpr()->getType(),
"then and else branches of a TernaryExpr");
verifyCheckedBase(E);
}
void verifyChecked(SuperRefExpr *expr) {
verifyCheckedBase(expr);
}
void verifyChecked(TypeExpr *expr) {
if (!expr->getType()->is<AnyMetatypeType>()) {
Out << "TypeExpr must have metatype type\n";
abort();
}
verifyCheckedBase(expr);
}
void verifyChecked(ForceValueExpr *E) {
checkOptionalObjectType(E->getSubExpr()->getType(),
E->getType(), E);
verifyCheckedBase(E);
}
void verifyChecked(OpaqueValueExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying OpaqueValueExpr", E);
if (!OpaqueValues.count(E)) {
Out << "OpaqueValueExpr not introduced at this point in AST\n";
abort();
}
++OpaqueValues[E];
// Make sure opaque values are uniquely-referenced.
if (OpaqueValues[E] > 1) {
Out << "Multiple references to unique OpaqueValueExpr\n";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(MakeTemporarilyEscapableExpr *E) {
PrettyStackTraceExpr debugStack(
Ctx, "verifying MakeTemporarilyEscapableExpr", E);
// Expression type should match subexpression.
if (!E->getType()->isEqual(E->getSubExpr()->getType())) {
Out << "MakeTemporarilyEscapableExpr type does not match subexpression";
abort();
}
auto call = dyn_cast<CallExpr>(E->getSubExpr());
if (!call) {
Out << "MakeTemporarilyEscapableExpr subexpression is not a call\n";
abort();
}
auto callFnTy = call->getFn()->getType()->getAs<FunctionType>();
if (!callFnTy) {
Out << "MakeTemporarilyEscapableExpr call does not call function\n";
abort();
}
if (!callFnTy->getExtInfo().isNoEscape()) {
Out << "MakeTemporarilyEscapableExpr called function is not noescape\n";
abort();
}
auto *unaryArg = call->getArgs()->getUnaryExpr();
if (!unaryArg) {
Out << "MakeTemporarilyEscapableExpr doesn't have a unary argument\n";
abort();
}
if (!unaryArg->getType()->is<FunctionType>()) {
Out << "MakeTemporarilyEscapableExpr call argument is not a function\n";
abort();
}
// Closure and opaque value should both be functions, with the closure
// noescape and the opaque value escapable but otherwise matching.
auto closureFnTy =
E->getNonescapingClosureValue()->getType()->getAs<FunctionType>();
if (!closureFnTy) {
Out << "MakeTemporarilyEscapableExpr closure type is not a closure\n";
abort();
}
auto opaqueValueFnTy =
E->getOpaqueValue()->getType()->getAs<FunctionType>();
if (!opaqueValueFnTy) {
Out << "MakeTemporarilyEscapableExpr opaque value type is not a "
"closure\n";
abort();
}
auto closureFnNoEscape =
closureFnTy->withExtInfo(closureFnTy->getExtInfo().withNoEscape());
auto opaqueValueNoEscape = opaqueValueFnTy->withExtInfo(
opaqueValueFnTy->getExtInfo().withNoEscape());
if (!closureFnNoEscape->isEqual(opaqueValueNoEscape)) {
Out << "MakeTemporarilyEscapableExpr closure and opaque value type "
"don't match\n";
abort();
}
}
void verifyChecked(KeyPathApplicationExpr *E) {
PrettyStackTraceExpr debugStack(
Ctx, "verifying KeyPathApplicationExpr", E);
auto baseTy = E->getBase()->getType();
auto keyPathTy = E->getKeyPath()->getType();
auto resultTy = E->getType();
if (keyPathTy->isAnyKeyPath()) {
// AnyKeyPath application is <T> rvalue T -> rvalue Any?
if (baseTy->is<LValueType>()) {
Out << "AnyKeyPath application base is not an rvalue\n";
abort();
}
auto resultObjTy = resultTy->getOptionalObjectType();
if (!resultObjTy || !resultObjTy->isAny()) {
Out << "AnyKeyPath application result must be Any?\n";
abort();
}
return;
} else if (auto bgt = keyPathTy->getAs<BoundGenericType>()) {
if (keyPathTy->isPartialKeyPath()) {
// PartialKeyPath<T> application is rvalue T -> rvalue Any
if (!baseTy->isEqual(bgt->getGenericArgs()[0])) {
Out << "PartialKeyPath application base doesn't match type\n";
abort();
}
if (!resultTy->isAny()) {
Out << "PartialKeyPath application result must be Any?\n";
abort();
}
return;
} else if (keyPathTy->isKeyPath()) {
// KeyPath<T, U> application is rvalue T -> rvalue U
if (!baseTy->isEqual(bgt->getGenericArgs()[0])) {
Out << "KeyPath application base doesn't match type\n";
abort();
}
if (!resultTy->isEqual(bgt->getGenericArgs()[1])) {
Out << "KeyPath application result doesn't match type\n";
abort();
}
return;
} else if (keyPathTy->isWritableKeyPath()) {
// WritableKeyPath<T, U> application is
// lvalue T -> lvalue U
// or rvalue T -> rvalue U
if (baseTy->is<LValueType>()) {
if (!resultTy->is<LValueType>()) {
Out << "WritableKeyPath base and result don't match lvalue-ness\n";
abort();
}
baseTy = baseTy->getRValueType();
resultTy = resultTy->getRValueType();
}
if (!baseTy->isEqual(bgt->getGenericArgs()[0])) {
Out << "WritableKeyPath application base doesn't match type\n";
abort();
}
if (!resultTy->isEqual(bgt->getGenericArgs()[1])) {
Out << "WritableKeyPath application result doesn't match type\n";
abort();
}
return;
} else if (keyPathTy->isReferenceWritableKeyPath()) {
// ReferenceWritableKeyPath<T, U> application is
// rvalue T -> lvalue U
// or lvalue T -> lvalue U
// or rvalue T -> rvalue U
if (baseTy->is<LValueType>()) {
if (!resultTy->is<LValueType>()) {
Out << "ReferenceWritableKeyPath base and result don't "
"match lvalue-ness\n";
abort();
}
baseTy = baseTy->getRValueType();
resultTy = resultTy->getRValueType();
} else {
resultTy = resultTy->getRValueType();
}
if (!baseTy->isEqual(bgt->getGenericArgs()[0])) {
Out << "ReferenceWritableKeyPath application base doesn't "
"match type\n";
abort();
}
if (!resultTy->isEqual(bgt->getGenericArgs()[1])) {
Out << "ReferenceWritableKeyPath application result doesn't "
"match type\n";
abort();
}
return;
}
}
Out << "invalid key path type\n";
abort();
}
void verifyChecked(LoadExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying LoadExpr", E);
auto *subExpr = E->getSubExpr();
if (isa<ParenExpr>(subExpr) || isa<ForceValueExpr>(subExpr)) {
Out << "Immediate ParenExpr/ForceValueExpr should precede a LoadExpr\n";
E->dump(Out);
Out << "\n";
abort();
}
verifyCheckedBase(E);
}
void verifyChecked(BorrowExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying BorrowExpr", E);
auto toType = E->getType();
auto fromType = E->getSubExpr()->getType();
// FIXME: doesStorageProduceLValue should not return false for a 'let',
// so that you can borrow from it.
if (!fromType->hasLValueType())
error("borrow source must be an l-value", E);
// Result type can be either l-value or r-value.
// Ensure underlying type matches.
if (fromType->getRValueType()->getCanonicalType() !=
toType->getRValueType()->getCanonicalType())
error("borrow should not be performing a cast", E);
}
void verifyChecked(ABISafeConversionExpr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verify ABISafeConversionExpr", E);
auto toType = E->getType();
auto fromType = E->getSubExpr()->getType();
if (!fromType->hasLValueType())
error("conversion source must be an l-value", E);
if (!toType->hasLValueType())
error("conversion result must be an l-value", E);
{
// At the moment, "ABI Safe" means concurrency features can be stripped.
// Since we don't know how deeply the stripping is happening, to verify
// in a fuzzy way, strip everything to see if they're the same type.
auto strippedFrom = fromType->getRValueType()
->stripConcurrency(/*recurse*/true,
/*dropGlobalActor*/true);
auto strippedTo = toType->getRValueType()
->stripConcurrency(/*recurse*/true,
/*dropGlobalActor*/true);
if (!strippedFrom->isEqual(strippedTo))
error("possibly non-ABI safe conversion", E);
}
}
void verifyChecked(MacroExpansionExpr *expansion) {
// If there is a substitute decl, we'll end up checking that instead.
if (expansion->getSubstituteDecl())
return;
MacroExpansionDiscriminatorKey key{
MacroDiscriminatorContext::getParentOf(expansion).getOpaqueValue(),
expansion->getMacroName().getBaseName().getIdentifier()
};
auto &discriminatorSet = MacroExpansionDiscriminators[key];
unsigned discriminator = expansion->getDiscriminator();
if (discriminator >= discriminatorSet.size()) {
discriminatorSet.resize(discriminator+1);
discriminatorSet.set(discriminator);
} else if (discriminatorSet.test(discriminator)) {
Out << "a macro expansion must have a unique discriminator "
<< "in its context\n";
expansion->dump(Out);
Out << "\n";
abort();
} else {
discriminatorSet.set(discriminator);
}
}
void verifyChecked(MacroExpansionDecl *expansion) {
MacroExpansionDiscriminatorKey key{
MacroDiscriminatorContext::getParentOf(expansion).getOpaqueValue(),
expansion->getMacroName().getBaseName().getIdentifier()
};
auto &discriminatorSet = MacroExpansionDiscriminators[key];
unsigned discriminator = expansion->getDiscriminator();
if (discriminator >= discriminatorSet.size()) {
discriminatorSet.resize(discriminator+1);
discriminatorSet.set(discriminator);
} else if (discriminatorSet.test(discriminator)) {
Out << "a macro expansion must have a unique discriminator "
<< "in its context\n";
expansion->dump(Out);
Out << "\n";
abort();
} else {
discriminatorSet.set(discriminator);
}
}
void verifyChecked(ValueDecl *VD) {
if (VD->getInterfaceType()->hasError()) {
Out << "checked decl cannot have error type\n";
VD->dump(Out);
abort();
}
// Make sure that there are no archetypes in the interface type.
if (!isa<VarDecl>(VD) && VD->getInterfaceType()->hasArchetype()) {
Out << "Interface type contains archetypes\n";
VD->dump(Out);
abort();
}
if (VD->hasAccess()) {
if (VD->getFormalAccess() == AccessLevel::Open) {
if (!isa<ClassDecl>(VD) && !VD->isSyntacticallyOverridable()) {
Out << "decl cannot be 'open'\n";
VD->dump(Out);
abort();
}
if (VD->isFinal()) {
Out << "decl cannot be both 'open' and 'final'\n";
VD->dump(Out);
abort();
}
}
}
verifyCheckedBase(VD);
}
LazyInitializerWalking getLazyInitializerWalkingBehavior() override {
// We don't want to walk into lazy initializers because they should
// have been reparented to their synthesized getter, which will
// invalidate various invariants.
return LazyInitializerWalking::None;
}
void verifyChecked(PatternBindingDecl *binding) {
// Look at all of the VarDecls being bound.
for (auto idx : range(binding->getNumPatternEntries()))
if (auto *P = binding->getPattern(idx))
P->forEachVariable([&](VarDecl *VD) {
// ParamDecls never get PBD's.
assert(!isa<ParamDecl>(VD) && "ParamDecl has a PatternBindingDecl?");
});
}
void verifyChecked(AbstractStorageDecl *ASD) {
if (ASD->hasAccess() && ASD->isSettable(nullptr)) {
auto setterAccess = ASD->getSetterFormalAccess();
auto *setter = ASD->getAccessor(AccessorKind::Set);
if (setter && setter->getFormalAccess() != setterAccess) {
Out << "AbstractStorageDecl's setter access is out of sync"
" with the access actually on the setter\n";
abort();
}
}
if (auto getter = ASD->getAccessor(AccessorKind::Get)) {
if (getter->isMutating() != ASD->isGetterMutating()) {
Out << "AbstractStorageDecl::isGetterMutating is out of sync"
" with whether the getter is actually mutating\n";
abort();
}
}
if (auto setter = ASD->getAccessor(AccessorKind::Set)) {
if (setter->isMutating() != ASD->isSetterMutating()) {
Out << "AbstractStorageDecl::isSetterMutating is out of sync"
" with whether the setter is actually mutating\n";
abort();
}
}
if (auto addressor = ASD->getAccessor(AccessorKind::Address)) {
if (addressor->isMutating() != ASD->isGetterMutating()) {
Out << "AbstractStorageDecl::isGetterMutating is out of sync"
" with whether immutable addressor is mutating";
abort();
}
}
if (auto reader = ASD->getAccessor(AccessorKind::Read)) {
if (reader->isMutating() != ASD->isGetterMutating()) {
Out << "AbstractStorageDecl::isGetterMutating is out of sync"
" with whether read accessor is mutating";
abort();
}
}
if (auto addressor = ASD->getAccessor(AccessorKind::MutableAddress)) {
if (addressor->isMutating() != ASD->isSetterMutating()) {
Out << "AbstractStorageDecl::isSetterMutating is out of sync"
" with whether mutable addressor is mutating";
abort();
}
}
if (auto modifier = ASD->getAccessor(AccessorKind::Modify)) {
if (modifier->isMutating() !=
(ASD->isSetterMutating() || ASD->isGetterMutating())) {
Out << "AbstractStorageDecl::isSetterMutating is out of sync"
" with whether modify addressor is mutating";
abort();
}
}
// if (auto *VD = dyn_cast<VarDecl>(ASD->getStorage())) {
// const bool foundIt =
// llvm::any_of(vd->getAllAccessors(),
// [&](AccessorDecl *VDA) { return VDA == ASD; });
// Out << "Accessor for a VarDecl must be listed in its accessors";
// abort();
// }
verifyCheckedBase(ASD);
}
void verifyChecked(VarDecl *var) {
if (!var->hasInterfaceType())
return;
// The types for imported vars are produced lazily and
// could fail to import.
if (var->getClangDecl() && var->isInvalid())
return;
PrettyStackTraceDecl debugStack("verifying VarDecl", var);
// Variables must have materializable type.
if (!var->getInterfaceType()->isMaterializable()) {
Out << "VarDecl has non-materializable type: ";
var->getInterfaceType().print(Out);
Out << "\n";
abort();
}
// Catch cases where there's a missing generic environment.
if (var->getTypeInContext()->hasError()) {
Out << "VarDecl is missing a Generic Environment: ";
var->getInterfaceType().print(Out);
Out << "\n";
abort();
}
// The fact that this is *directly* be a reference storage type
// cuts the code down quite a bit in getTypeOfReference.
if (var->getAttrs().hasAttribute<ReferenceOwnershipAttr>() !=
isa<ReferenceStorageType>(var->getInterfaceType().getPointer())) {
if (var->getAttrs().hasAttribute<ReferenceOwnershipAttr>()) {
Out << "VarDecl has an ownership attribute, but its type"
" is not a ReferenceStorageType: ";
} else {
Out << "VarDecl has no ownership attribute, but its type"
" is a ReferenceStorageType: ";
}
var->getInterfaceType().print(Out);
abort();
}
Type typeForAccessors = var->getValueInterfaceType();
if (const FuncDecl *getter = var->getAccessor(AccessorKind::Get)) {
if (getter->getParameters()->size() != 0) {
Out << "property getter has parameters\n";
abort();
}
if (getter->hasInterfaceType()) {
Type getterResultType = getter->getResultInterfaceType();
if (!getterResultType->isEqual(typeForAccessors)) {
Out << "property and getter have mismatched types: '";
typeForAccessors.print(Out);
Out << "' vs. '";
getterResultType.print(Out);
Out << "'\n";
abort();
}
}
}
if (const FuncDecl *setter = var->getAccessor(AccessorKind::Set)) {
if (setter->hasInterfaceType()) {
if (!setter->getResultInterfaceType()->isVoid()) {
Out << "property setter has non-Void result type\n";
abort();
}
if (setter->getParameters()->size() == 0) {
Out << "property setter has no parameters\n";
abort();
}
if (setter->getParameters()->size() != 1) {
Out << "property setter has 2+ parameters\n";
abort();
}
const ParamDecl *param = setter->getParameters()->get(0);
Type paramType = param->getInterfaceType();
if (!paramType->isEqual(typeForAccessors)) {
Out << "property and setter param have mismatched types:\n";
typeForAccessors.dump(Out, 2);
Out << "vs.\n";
paramType.dump(Out, 2);
abort();
}
}
}
if (var->isImplicitlyUnwrappedOptional()) {
auto varTy = var->getValueInterfaceType();
// FIXME: Update to look for plain Optional once
// ImplicitlyUnwrappedOptional is removed
if (!varTy->getOptionalObjectType()) {
Out << "implicitly unwrapped optional attribute should only be set on VarDecl "
"with optional type\n";
abort();
}
}
if (auto *caseStmt =
dyn_cast_or_null<CaseStmt>(var->getRecursiveParentPatternStmt())) {
// In a type checked AST, a case stmt that is a recursive parent pattern
// stmt of a var decl, must have bound decls. This is because we
// guarantee that all case label items bind corresponding patterns and
// the case body var decls of a case stmt are created from the var decls
// of the first case label items.
if (!caseStmt->hasCaseBodyVariables()) {
Out << "parent CaseStmt of VarDecl does not have any case body "
"decls?!\n";
abort();
}
}
verifyCheckedBase(var);
}
// Dump a reference to the given declaration.
void dumpRef(Decl *decl) {
if (auto value = dyn_cast<ValueDecl>(decl))
value->dumpRef(Out);
else if (auto ext = dyn_cast<ExtensionDecl>(decl)) {
Out << "extension of ";
if (ext->getExtendedType())
ext->getExtendedType().print(Out);
}
}
/// Verify that the given conformance makes sense for the given
/// type.
void verifyConformance(Type type, ProtocolConformanceRef conformance) {
if (conformance.isAbstract()) {
if (!type->is<ArchetypeType>() && !type->isAnyExistentialType()) {
Out << "type " << type
<< " should not have an abstract conformance to "
<< conformance.getProtocol()->getName();
abort();
}
return;
}
if (!type->isEqual(conformance.getConcrete()->getType())) {
Out << "conforming type does not match conformance\n";
Out << "conforming type:\n";
type.dump(Out, 2);
Out << "\nconformance:\n";
conformance.getConcrete()->dump(Out, 2);
Out << "\n";
abort();
}
}
void verifyChecked(SubstitutionMap substitutions){
// FIXME: Check replacement types without forcing anything.
}
/// Check the given explicit protocol conformance.
void verifyConformance(Decl *decl, ProtocolConformance *conformance) {
PrettyStackTraceDecl debugStack("verifying protocol conformance", decl);
if (!conformance) {
// FIXME: Eventually, this should itself be a verification
// failure.
return;
}
switch (conformance->getState()) {
case ProtocolConformanceState::Complete:
// More checking below.
break;
case ProtocolConformanceState::Incomplete:
// Ignore incomplete conformances; we didn't need them.
return;
case ProtocolConformanceState::Checking:
dumpRef(decl);
Out << " has a protocol conformance that is still being checked "
<< conformance->getProtocol()->getName().str() << "\n";
abort();
}
auto normal = dyn_cast<NormalProtocolConformance>(conformance);
if (!normal)
return;
// If the conformance is lazily resolved, don't check it; that can cause
// massive deserialization at a point where the compiler cannot handle it.
if (normal->isLazilyLoaded()) return;
// Translate the owning declaration into a DeclContext.
auto *nominal = dyn_cast<NominalTypeDecl>(decl);
DeclContext *conformingDC;
if (nominal) {
conformingDC = nominal;
} else {
auto ext = cast<ExtensionDecl>(decl);
conformingDC = ext;
nominal = ext->getExtendedNominal();
}
auto proto = conformance->getProtocol();
if (normal->getDeclContext() != conformingDC) {
Out << "AST verification error: conformance of "
<< nominal->getName().str() << " to protocol "
<< proto->getName().str() << " is in the wrong context.\n"
<< "Owning context:\n";
conformingDC->printContext(Out);
Out << "Conformance context:\n";
normal->getDeclContext()->printContext(Out);
abort();
}
// Tracking for those Objective-C requirements that have witnesses.
llvm::SmallDenseSet<std::pair<ObjCSelector, char>> hasObjCWitnessMap;
bool populatedObjCWitnesses = false;
auto populateObjCWitnesses = [&] {
if (populatedObjCWitnesses)
return;
populatedObjCWitnesses = true;
for (auto req : proto->getMembers()) {
if (auto reqFunc = dyn_cast<AbstractFunctionDecl>(req)) {
if (normal->hasWitness(reqFunc)) {
hasObjCWitnessMap.insert(
{reqFunc->getObjCSelector(), reqFunc->isInstanceMember()});
}
}
}
};
// Check whether there is a witness with the same selector and kind as
// this requirement.
auto hasObjCWitness = [&](ValueDecl *req) {
if (!proto->isObjC())
return false;
auto func = dyn_cast<AbstractFunctionDecl>(req);
if (!func)
return false;
populateObjCWitnesses();
std::pair<ObjCSelector, char> key(
func->getObjCSelector(), func->isInstanceMember());
return hasObjCWitnessMap.count(key) > 0;
};
// Check that a normal protocol conformance is complete.
for (auto member : proto->getMembers()) {
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
if (!normal->hasTypeWitness(assocType)) {
dumpRef(decl);
Out << " is missing type witness for "
<< conformance->getProtocol()->getName().str()
<< "." << assocType->getName().str()
<< "\n";
abort();
}
// Make sure that the replacement type only uses archetypes allowed
// in the context where the normal conformance exists.
auto replacementType =
normal->getTypeWitnessUncached(assocType).getWitnessType();
Verifier(M, normal->getDeclContext())
.verifyChecked(replacementType);
continue;
}
// No witness necessary for type aliases
if (isa<TypeAliasDecl>(member))
continue;
// If this is an accessor for something, ignore it.
if (isa<AccessorDecl>(member))
continue;
if (auto req = dyn_cast<ValueDecl>(member)) {
if (!normal->hasWitness(req)) {
if ((req->isUnavailable() ||
req->getAttrs().hasAttribute<OptionalAttr>()) &&
proto->isObjC()) {
continue;
}
// Check if *any* witness matches the Objective-C selector.
if (hasObjCWitness(req))
continue;
dumpRef(decl);
Out << " is missing witness for "
<< conformance->getProtocol()->getName().str()
<< "." << req->getBaseName()
<< "\n";
abort();
}
continue;
}
}
}
void verifyChecked(GenericTypeDecl *generic) {
verifyCheckedBase(generic);
}
void verifyChecked(NominalTypeDecl *nominal) {
// Make sure that the protocol conformances are complete.
// Only do so within the source file of the nominal type,
// because anywhere else this can trigger new type-check requests.
if (auto sf = M.dyn_cast<SourceFile *>()) {
if (nominal->getParentSourceFile() == sf) {
for (auto conformance : nominal->getLocalConformances()) {
verifyConformance(nominal, conformance);
}
}
}
verifyCheckedBase(nominal);
}
void verifyCheckedAlways(GenericTypeParamDecl *GTPD) {
PrettyStackTraceDecl debugStack("verifying GenericTypeParamDecl", GTPD);
const DeclContext *DC = GTPD->getDeclContext();
// Skip verification of deserialized generic param decls that have the
// file set as their parent. This happens when they have not yet had their
// correct parent set.
// FIXME: This is a hack to workaround the fact that we don't necessarily
// parent a GenericTypeParamDecl if we just deserialize its type.
if (auto *fileDC = dyn_cast<FileUnit>(DC)) {
if (fileDC->getKind() == FileUnitKind::SerializedAST)
return;
}
if (!DC->isInnermostContextGeneric()) {
Out << "DeclContext of GenericTypeParamDecl does not have "
"generic params\n";
abort();
}
GenericParamList *paramList =
static_cast<const GenericContext *>(DC)->getGenericParams();
if (!paramList) {
Out << "DeclContext of GenericTypeParamDecl does not have "
"generic params\n";
abort();
}
if (paramList->getOuterParameters() &&
!isa<ExtensionDecl>(DC)) {
Out << "GenericParamList can only have outer parameters in an "
"extension\n";
abort();
}
unsigned currentDepth = DC->getGenericContextDepth();
if (currentDepth < GTPD->getDepth()) {
// If this is actually an opaque type's generic parameter, we're okay.
if (auto value = dyn_cast_or_null<ValueDecl>(DC->getAsDecl())) {
auto opaqueDecl = dyn_cast<OpaqueTypeDecl>(value);
if (!opaqueDecl)
opaqueDecl = value->getOpaqueResultTypeDecl();
if (opaqueDecl) {
if (GTPD->getDepth() ==
opaqueDecl->getOpaqueGenericParams().front()->getDepth()) {
return;
}
}
}
Out << "GenericTypeParamDecl has incorrect depth\n";
abort();
}
while (currentDepth > GTPD->getDepth()) {
paramList = paramList->getOuterParameters();
--currentDepth;
}
assert(paramList && "this is guaranteed by the parameter list's depth");
if (paramList->size() <= GTPD->getIndex() ||
paramList->getParams()[GTPD->getIndex()] != GTPD) {
if (llvm::is_contained(paramList->getParams(), GTPD))
Out << "GenericTypeParamDecl has incorrect index\n";
else
Out << "GenericTypeParamDecl not found in GenericParamList; "
"incorrect depth or wrong DeclContext\n";
abort();
}
verifyCheckedBase(GTPD);
}
void verifyChecked(ExtensionDecl *ext) {
// Make sure that the protocol conformances are complete.
for (auto conformance : ext->getLocalConformances()) {
verifyConformance(ext, conformance);
}
// Make sure extension binding succeeded.
if (!ext->hasBeenBound()) {
Out << "ExtensionDecl was not bound\n";
abort();
}
verifyCheckedBase(ext);
}
void verifyParsed(EnumElementDecl *UED) {
PrettyStackTraceDecl debugStack("verifying EnumElementDecl", UED);
if (!isa<EnumDecl>(UED->getDeclContext())) {
Out << "EnumElementDecl has wrong DeclContext";
abort();
}
verifyParsedBase(UED);
}
void verifyParsed(EnumCaseDecl *D) {
PrettyStackTraceDecl debugStack("verifying EnumCaseDecl", D);
if (!D->getAttrs().isEmpty()) {
Out << "EnumCaseDecl should not have attributes";
abort();
}
verifyParsedBase(D);
}
void verifyParsed(AbstractFunctionDecl *AFD) {
PrettyStackTraceDecl debugStack("verifying AbstractFunctionDecl", AFD);
// All of the parameter names should match.
if (!isa<DestructorDecl>(AFD)) { // Destructor has no non-self params.
auto paramNames = AFD->getName().getArgumentNames();
bool checkParamNames = (bool)AFD->getName();
auto *firstParams = AFD->getParameters();
if (checkParamNames &&
paramNames.size() != firstParams->size()) {
Out << "Function name does not match its argument pattern ("
<< paramNames.size() << " elements instead of "
<< firstParams->size() << ")\n";
AFD->dump(Out);
abort();
}
// This doesn't use for_each because paramNames shouldn't be checked
// when the function is anonymous.
for (size_t i = 0, e = firstParams->size(); i < e; ++i) {
auto &param = firstParams->get(i);
if (checkParamNames &&
param->getArgumentName() != paramNames[i]) {
Out << "Function full name doesn't match parameter's arg name\n";
AFD->dump(Out);
abort();
}
}
}
verifyParsedBase(AFD);
}
void verifyParsed(ConstructorDecl *CD) {
PrettyStackTraceDecl debugStack("verifying ConstructorDecl", CD);
verifyParsedBase(CD);
}
void verifyChecked(ProtocolDecl *PD) {
PrettyStackTraceDecl debugStack("verifying ProtocolDecl", PD);
if (PD->isObjC() && !PD->requiresClass()) {
Out << "@objc protocols should be class protocols as well";
abort();
}
verifyCheckedBase(PD);
}
void verifyChecked(ConstructorDecl *CD) {
PrettyStackTraceDecl debugStack("verifying ConstructorDecl", CD);
auto *ND = CD->getDeclContext()->getSelfNominalTypeDecl();
if (!isa<ClassDecl>(ND) && !isa<StructDecl>(ND) && !isa<EnumDecl>(ND) &&
!isa<ProtocolDecl>(ND) && !CD->isInvalid()) {
Out << "ConstructorDecls outside structs, classes or enums "
"should be marked invalid";
abort();
}
// Verify that the optionality of the result type of the
// initializer matches the failability of the initializer.
if (!CD->isInvalid() &&
!CD->getDeclContext()->getDeclaredInterfaceType()->isOptional()) {
bool resultIsOptional = (bool) CD->getResultInterfaceType()
->getOptionalObjectType();
auto declIsOptional = CD->isFailable();
if (resultIsOptional != declIsOptional) {
Out << "Initializer has result optionality/failability mismatch\n";
CD->dump(llvm::errs());
abort();
}
// Also check the interface type.
if (auto genericFn
= CD->getInterfaceType()->getAs<GenericFunctionType>()) {
resultIsOptional = (bool) genericFn->getResult()
->castTo<AnyFunctionType>()
->getResult()
->getOptionalObjectType();
if (resultIsOptional != declIsOptional) {
Out << "Initializer has result optionality/failability mismatch\n";
CD->dump(llvm::errs());
abort();
}
}
}
if (CD->isFailable()) {
auto resultTy = CD->getResultInterfaceType();
if (!resultTy->getOptionalObjectType()) {
Out << "implicitly unwrapped optional attribute should only be set "
"on constructors with optional return types\n";
CD->dump(llvm::errs());
abort();
}
} else {
if (CD->isImplicitlyUnwrappedOptional()) {
Out << "Expected failable constructor if result is IUO\n";
CD->dump(llvm::errs());
abort();
}
}
verifyCheckedBase(CD);
}
void verifyParsed(DestructorDecl *DD) {
PrettyStackTraceDecl debugStack("verifying DestructorDecl", DD);
if (DD->isGeneric()) {
Out << "DestructorDecl cannot be generic";
abort();
}
verifyParsedBase(DD);
}
void verifyChecked(AbstractFunctionDecl *AFD) {
PrettyStackTraceDecl debugStack("verifying AbstractFunctionDecl", AFD);
if (!AFD->hasInterfaceType())
return;
// If this function is generic or is within a generic context, it should
// have an interface type.
if (AFD->isGenericContext() !=
AFD->getInterfaceType()->is<GenericFunctionType>()) {
Out << "Functions in generic context must have an interface type\n";
AFD->dump(Out);
abort();
}
// If the function has a generic interface type, it should also have a
// generic signature.
if (AFD->isGenericContext() !=
(!AFD->getGenericSignature().isNull())) {
Out << "Functions in generic context must have a generic signature\n";
AFD->dump(Out);
abort();
}
// If there is an interface type, it shouldn't have any unresolved
// dependent member types.
// FIXME: This is a general property of the type system.
auto interfaceTy = AFD->getInterfaceType();
if (auto unresolvedDependentTy
= interfaceTy->findUnresolvedDependentMemberType()) {
Out << "Unresolved dependent member type ";
unresolvedDependentTy->print(Out);
abort();
}
// Check that type members have an interface type of the form
// (Self) -> (Args...) -> Result.
if (AFD->hasImplicitSelfDecl()) {
if (!interfaceTy->castTo<AnyFunctionType>()
->getResult()->is<FunctionType>()) {
Out << "Interface type of method must return a function";
interfaceTy->dump(Out);
abort();
}
}
// Asynchronous @objc methods must have a foreign async convention.
if (AFD->isObjC() &&
static_cast<bool>(AFD->getForeignAsyncConvention())
!= AFD->hasAsync()) {
if (AFD->hasAsync())
Out << "@objc method async but does not have a foreign async "
<< "convention";
else
Out << "@objc method has a foreign async convention but is not "
<< "async";
abort();
}
// Synchronous throwing @objc methods must have a foreign error
// convention.
if (AFD->isObjC() &&
!AFD->hasAsync() &&
static_cast<bool>(AFD->getForeignErrorConvention())
!= AFD->hasThrows()) {
if (AFD->hasThrows())
Out << "@objc method throws but does not have a foreign error "
<< "convention";
else
Out << "@objc method has a foreign error convention but does not "
<< "throw";
abort();
}
// If a decl has the Throws bit set, the ThrowsLoc should be valid,
// and vice versa, unless the decl was imported, de-serialized, or
// implicit.
if (!AFD->isImplicit() &&
isa<SourceFile>(AFD->getModuleScopeContext()) &&
(AFD->getThrowsLoc().isValid() != AFD->hasThrows())) {
Out << "function 'throws' location does not match 'throws' flag\n";
AFD->dump(Out);
abort();
}
// If a decl has the Throws bit set, the function type should throw,
// and vice versa.
auto fnTy = AFD->getInterfaceType()->castTo<AnyFunctionType>();
if (AFD->hasImplicitSelfDecl())
fnTy = fnTy->getResult()->castTo<FunctionType>();
if (AFD->hasThrows() != fnTy->getExtInfo().isThrowing()) {
Out << "function 'throws' flag does not match function type\n";
AFD->dump(Out);
abort();
}
if (AFD->getForeignErrorConvention()
&& !AFD->isObjC() && !AFD->getAttrs().hasAttribute<CDeclAttr>()) {
Out << "foreign error convention on non-@objc, non-@_cdecl function\n";
AFD->dump(Out);
abort();
}
verifyCheckedBase(AFD);
}
void verifyChecked(DestructorDecl *DD) {
PrettyStackTraceDecl debugStack("verifying DestructorDecl", DD);
auto *ND = DD->getDeclContext()->getSelfNominalTypeDecl();
if (!isa<ClassDecl>(ND) && ND->canBeCopyable() && !DD->isInvalid()) {
Out << "DestructorDecls outside classes/move only types should be "
"marked invalid\n";
abort();
}
verifyCheckedBase(DD);
}
void verifyChecked(FuncDecl *FD) {
PrettyStackTraceDecl debugStack("verifying FuncDecl", FD);
// Note that there's nothing inherently wrong with wanting to use this on
// non-accessors in the future, but you should visit all call sites and
// make sure we do the right thing, because this flag conflates several
// different behaviors.
if (FD->hasForcedStaticDispatch()) {
auto *AD = dyn_cast<AccessorDecl>(FD);
if (AD == nullptr) {
Out << "hasForcedStaticDispatch() set on non-accessor\n";
abort();
}
if (AD->getStorage()->requiresOpaqueAccessor(AD->getAccessorKind())) {
Out << "hasForcedStaticDispatch() set on accessor that's opaque "
"for its storage\n";
abort();
}
}
if (FD->isMutating()) {
if (!FD->isInstanceMember()) {
Out << "mutating function is not an instance member\n";
abort();
}
if (FD->getDeclContext()->getSelfClassDecl()) {
Out << "mutating function in a class\n";
abort();
}
const ParamDecl *selfParam = FD->getImplicitSelfDecl(
/*createIfNeeded=*/false);
if (selfParam && !selfParam->isInOut()) {
Out << "mutating function does not have inout 'self'\n";
abort();
}
} else {
const ParamDecl *selfParam = FD->getImplicitSelfDecl(
/*createIfNeeded=*/false);
if (selfParam && selfParam->isInOut()) {
Out << "non-mutating function has inout 'self'\n";
abort();
}
}
if (FD->isImplicitlyUnwrappedOptional()) {
auto resultTy = FD->getResultInterfaceType();
if (!resultTy->getOptionalObjectType()) {
Out << "implicitly unwrapped optional attribute should only be set "
"on functions with optional return types\n";
abort();
}
}
verifyCheckedBase(FD);
}
void verifyChecked(AccessorDecl *FD) {
PrettyStackTraceDecl debugStack("verifying AccessorDecl", FD);
auto *storageDecl = FD->getStorage();
if (!storageDecl) {
Out << "Missing storage decl\n";
abort();
}
if (FD->isGetterOrSetter()) {
if (FD->isFinal() != storageDecl->isFinal()) {
Out << "Property and accessor do not match for 'final'\n";
abort();
}
if (FD->isDynamic() != storageDecl->isDynamic() &&
// We allow a non dynamic setter if there is a dynamic
// _modify/modify, observer, or mutable addressor.
!(FD->isSetter() &&
(storageDecl->getWriteImpl() == WriteImplKind::Modify ||
storageDecl->getWriteImpl() == WriteImplKind::Modify2 ||
storageDecl->getWriteImpl() ==
WriteImplKind::StoredWithObservers ||
storageDecl->getWriteImpl() == WriteImplKind::MutableAddress) &&
storageDecl->shouldUseNativeDynamicDispatch()) &&
// We allow a non dynamic getter if there is a dynamic read.
!(FD->isGetter() &&
(storageDecl->getReadImpl() == ReadImplKind::Read ||
storageDecl->getReadImpl() == ReadImplKind::Read2 ||
storageDecl->getReadImpl() == ReadImplKind::Address) &&
storageDecl->shouldUseNativeDynamicDispatch())) {
Out << "Property and accessor do not match for 'dynamic'\n";
abort();
}
if (FD->isDynamic()) {
if (FD->isObjC() != storageDecl->isObjC()) {
Out << "Property and accessor do not match for '@objc'\n";
abort();
}
}
}
auto storedAccessor = storageDecl->getAccessor(FD->getAccessorKind());
if (storedAccessor != FD) {
Out << "storage declaration has different accessor for this kind\n";
abort();
}
verifyCheckedBase(FD);
}
void verifyParsed(FuncDecl *FD) {
PrettyStackTraceDecl debugStack("verifying FuncDecl", FD);
verifyParsedBase(FD);
}
void verifyParsed(AccessorDecl *FD) {
PrettyStackTraceDecl debugStack("verifying AccessorDecl", FD);
verifyParsedBase(FD);
}
void verifyChecked(ClassDecl *CD) {
PrettyStackTraceDecl debugStack("verifying ClassDecl", CD);
if (!CD->hasLazyMembers()) {
unsigned NumDestructors = 0;
for (auto Member : CD->getMembers()) {
if (isa<DestructorDecl>(Member)) {
++NumDestructors;
}
}
if (NumDestructors > 1) {
Out << "every class should have at most one destructor, "
"explicitly provided or created by the type checker\n";
abort();
}
}
verifyCheckedBase(CD);
}
void verifyParsed(AssociatedTypeDecl *ATD) {
PrettyStackTraceDecl debugStack("verifying AssociatedTypeDecl", ATD);
auto *DC = ATD->getDeclContext();
if (!isa<NominalTypeDecl>(DC) ||
!isa<ProtocolDecl>(cast<NominalTypeDecl>(DC))) {
Out << "AssociatedTypeDecl should only occur inside a protocol\n";
abort();
}
verifyParsedBase(ATD);
}
void verifyParsed(TuplePattern *TP) {
PrettyStackTracePattern debugStack(Ctx, "verifying TuplePattern", TP);
verifyParsedBase(TP);
}
void verifyChecked(TuplePattern *TP) {
PrettyStackTracePattern debugStack(Ctx, "verifying TuplePattern", TP);
verifyCheckedBase(TP);
}
/// Look through a possible l-value type, returning true if it was
/// an l-value.
bool lookThroughLValue(Type &type, bool &isInOut) {
if (LValueType *lv = type->getAs<LValueType>()) {
Type objectType = lv->getObjectType();
if (objectType->is<LValueType>()) {
Out << "type is an lvalue of lvalue type: ";
type.print(Out);
Out << "\n";
}
isInOut = false;
type = objectType;
return true;
}
if (InOutType *io = type->getAs<InOutType>()) {
Type objectType = io->getObjectType();
if (objectType->is<InOutType>()) {
Out << "type is an inout of inout type: ";
type.print(Out);
Out << "\n";
}
isInOut = true;
type = objectType;
return true;
}
return false;
}
/// The two types are required to either both be l-values or
/// both not be l-values. They are adjusted to not be l-values.
/// Returns true if they are both l-values.
bool checkSameLValueness(Type &T0, Type &T1,
const char *what) {
bool Q0, Q1;
bool isLValue0 = lookThroughLValue(T0, Q0);
bool isLValue1 = lookThroughLValue(T1, Q1);
if (isLValue0 != isLValue1) {
Out << "lvalue-ness of " << what << " do not match: "
<< isLValue0 << ", " << isLValue1 << "\n";
abort();
}
if (isLValue0 && Q0 != Q1) {
Out << "qualification of " << what << " do not match\n";
abort();
}
return isLValue0;
}
Type checkLValue(Type T, const char *what) {
LValueType *LV = T->getAs<LValueType>();
if (LV)
return LV->getObjectType();
Out << "type is not an l-value in " << what << ": ";
T.print(Out);
Out << "\n";
abort();
}
// Verification utilities.
Type checkMetatypeType(Type type, const char *what) {
auto metatype = type->getAs<AnyMetatypeType>();
if (metatype) return metatype->getInstanceType();
Out << what << " is not a metatype: ";
type.print(Out);
Out << "\n";
abort();
}
void checkSameType(Type T0, Type T1, const char *what) {
if (T0->isEqual(T1))
return;
Out << "different types for " << what << ": ";
T0.print(Out);
Out << " vs. ";
T1.print(Out);
Out << "\n";
abort();
}
void checkTrivialSubtype(Expr *E, Type srcTy, Type destTy,
const char *what) {
if (srcTy->isEqual(destTy)) return;
if (auto srcMetatype = srcTy->getAs<AnyMetatypeType>()) {
if (auto destMetatype = destTy->getAs<AnyMetatypeType>()) {
return checkTrivialSubtype(E,
srcMetatype->getInstanceType(),
destMetatype->getInstanceType(),
what);
}
goto fail;
}
// If the destination is a class, walk the supertypes of the source.
if (destTy->getClassOrBoundGenericClass()) {
if (!destTy->isBindableToSuperclassOf(srcTy)) {
srcTy.print(Out);
Out << " is not a superclass of ";
destTy.print(Out);
Out << " for " << what << "\n";
abort();
}
return;
}
// FIXME: Tighten up checking for conversions to protocol types.
if (destTy->isExistentialType())
return;
fail:
Out << "subtype conversion in " << what << " is invalid: ";
srcTy.print(Out);
Out << " to ";
destTy.print(Out);
Out << "\n";
E->dump(Out);
abort();
}
Type checkExceptionTypeExists(const char *where) {
if (!Ctx.getErrorDecl()) {
Out << "exception type does not exist in " << where << "\n";
abort();
}
return Ctx.getErrorExistentialType();
}
bool isGoodSourceRange(SourceRange SR) {
if (SR.isInvalid())
return false;
(void) Ctx.SourceMgr.findBufferContainingLoc(SR.Start);
(void) Ctx.SourceMgr.findBufferContainingLoc(SR.End);
return true;
}
template<typename T>
void checkSourceRangesBase(T ASTNode) {
checkSourceRanges(cast<typename ASTNodeBase<T>::BaseTy>(ASTNode));
}
void checkSourceRanges(Expr *E) {
PrettyStackTraceExpr debugStack(Ctx, "verifying ranges", E);
if (!E->getSourceRange().isValid()) {
// We don't care about source ranges on implicitly-generated
// expressions.
if (E->isImplicit())
return;
Out << "invalid source range for expression: ";
E->dump(Out);
Out << "\n";
abort();
}
if (!isGoodSourceRange(E->getSourceRange())) {
Out << "bad source range for expression: ";
E->dump(Out);
Out << "\n";
abort();
}
// FIXME: Re-visit this to always do the check.
if (!E->isImplicit())
checkSourceRanges(E->getSourceRange(), Parent,
[&]{ E->dump(Out); } );
}
void checkSourceRanges(Stmt *S) {
PrettyStackTraceStmt debugStack(Ctx, "verifying ranges", S);
if (!S->getSourceRange().isValid()) {
// We don't care about source ranges on implicitly-generated
// statements.
if (S->isImplicit())
return;
Out << "invalid source range for statement: ";
S->dump(Out);
Out << "\n";
abort();
}
if (!isGoodSourceRange(S->getSourceRange())) {
Out << "bad source range for statement: ";
S->dump(Out);
Out << "\n";
abort();
}
checkSourceRanges(S->getSourceRange(), Parent,
[&]{ S->dump(Out); });
}
void checkSourceRanges(Pattern *P) {
PrettyStackTracePattern debugStack(Ctx, "verifying ranges", P);
// We don't care about source ranges on implicitly-generated
// patterns.
if (P->isImplicit())
return;
if (!P->getSourceRange().isValid()) {
Out << "invalid source range for pattern: ";
P->print(Out);
Out << "\n";
abort();
}
if (!isGoodSourceRange(P->getSourceRange())) {
Out << "bad source range for pattern: ";
P->print(Out);
Out << "\n";
abort();
}
checkSourceRanges(P->getSourceRange(), Parent,
[&]{ P->print(Out); });
}
void assertValidRegion(Decl *D) {
auto R = D->getSourceRange();
if (R.isValid() && Ctx.SourceMgr.isBeforeInBuffer(R.End, R.Start)) {
Out << "invalid type source range for decl: ";
D->print(Out);
Out << "\n";
abort();
}
}
void checkSourceRanges(ParamDecl *PD) {
assertValidRegion(PD);
}
void checkSourceRanges(Decl *D) {
PrettyStackTraceDecl debugStack("verifying ranges", D);
const auto SR = D->getSourceRange();
// We don't care about source ranges on implicitly-generated
// decls.
if (D->isImplicit())
return;
if (!SR.isValid()) {
Out << "invalid source range for decl: ";
D->print(Out);
Out << "\n";
abort();
}
// ASTScope lookup depends on Decls having correct ordering.
// Move the order check to isGoodSourceRange after extending
// the invariant to Exprs, etc., per rdar://53637494
if (Ctx.SourceMgr.isBeforeInBuffer(SR.End, SR.Start)) {
Out << "backwards source range for decl: ";
D->print(Out);
Out << "\n";
abort();
}
checkSourceRanges(SR, Parent, [&] { D->print(Out); });
}
/// Verify that the given source ranges is contained within the
/// parent's source range.
void checkSourceRanges(SourceRange Current, ASTWalker::ParentTy Parent,
llvm::function_ref<void()> printEntity) {
SourceRange Enclosing;
if (Parent.isNull())
return;
// An alternative enclosing scope, used for macro expansions.
SourceRange AltEnclosing;
if (Parent.getAsModule()) {
return;
} else if (Decl *D = Parent.getAsDecl()) {
Enclosing = D->getSourceRange();
// If the current source range is in a macro expansion buffer, its enclosing
// context can be in the source file where the macro expansion originated. In
// this case, grab the source range of the original ASTNode that was expanded.
if (!Ctx.SourceMgr.rangeContains(Enclosing, Current)) {
auto *expansionBuffer =
D->getModuleContext()->getSourceFileContainingLocation(Current.Start);
if (auto expansionRange = expansionBuffer->getMacroInsertionRange()) {
Current = expansionRange;
}
}
if (D->isImplicit())
return;
// FIXME: This is not working well for decl parents.
// But it must work when using lazy ASTScopes for IterableDeclContexts
if (!isa<IterableDeclContext>(D))
return;
} else if (Stmt *S = Parent.getAsStmt()) {
Enclosing = S->getSourceRange();
if (S->isImplicit())
return;
} else if (Pattern *P = Parent.getAsPattern()) {
Enclosing = P->getSourceRange();
if (P->isImplicit())
return;
} else if (Expr *E = Parent.getAsExpr()) {
// FIXME: This hack is required because the inclusion check below
// doesn't compares the *start* of the ranges, not the end of the
// ranges. In the case of an interpolated string literal expr, the
// subexpressions are contained within the string token. This means
// that comparing the start of the string token to the end of an
// embedded expression will fail.
if (isa<InterpolatedStringLiteralExpr>(E))
return;
if (E->isImplicit())
return;
if (auto expansion = dyn_cast<MacroExpansionExpr>(E)) {
if (auto rewritten = expansion->getRewritten())
AltEnclosing = rewritten->getSourceRange();
}
Enclosing = E->getSourceRange();
} else if (TypeRepr *TyR = Parent.getAsTypeRepr()) {
Enclosing = TyR->getSourceRange();
} else {
llvm_unreachable("impossible parent node");
}
if (AltEnclosing.isInvalid()) {
// A preamble macro introduces child nodes directly into the tree.
auto *sourceFile =
getModuleContext()->getSourceFileContainingLocation(Current.Start);
if (sourceFile &&
sourceFile->getFulfilledMacroRole() == MacroRole::Preamble) {
AltEnclosing = Current;
}
}
if (!Ctx.SourceMgr.rangeContains(Enclosing, Current) &&
!(AltEnclosing.isValid() &&
Ctx.SourceMgr.rangeContains(AltEnclosing, Current))) {
Out << "child source range not contained within its parent: ";
printEntity();
Out << "\n parent range: ";
Enclosing.print(Out, Ctx.SourceMgr);
Out << "\n child range: ";
Current.print(Out, Ctx.SourceMgr);
Out << "\n";
abort();
}
}
void checkErrors(Expr *E) {}
void checkErrors(Stmt *S) {}
void checkErrors(Pattern *P) {}
void checkErrors(Decl *D) {}
void checkErrors(ValueDecl *D) {}
};
} // end anonymous namespace
static bool shouldVerifyGivenContext(const ASTContext &ctx) {
using ASTVerifierOverrideKind = LangOptions::ASTVerifierOverrideKind;
switch (ctx.LangOpts.ASTVerifierOverride) {
case ASTVerifierOverrideKind::EnableVerifier:
return true;
case ASTVerifierOverrideKind::DisableVerifier:
return false;
case ASTVerifierOverrideKind::NoOverride:
#ifndef NDEBUG
// asserts. Default behavior is to run.
return true;
#else
// no-asserts. Default behavior is not to run the verifier.
return false;
#endif
}
llvm_unreachable("Covered switch isn't covered?!");
}
void swift::verify(SourceFile &SF) {
if (!shouldVerifyGivenContext(SF.getASTContext()))
return;
Verifier verifier(SF, &SF);
SF.walk(verifier);
// Verify the AvailabilityScope hierarchy.
if (auto scope = SF.getAvailabilityScope()) {
scope->verify(SF.getASTContext());
}
}
bool swift::shouldVerify(const Decl *D, const ASTContext &Context) {
return shouldVerifyGivenContext(Context);
}
void swift::verify(Decl *D) {
if (!shouldVerifyGivenContext(D->getASTContext()))
return;
Verifier V = Verifier::forDecl(D);
D->walk(V);
}