Files
swift-mirror/lib/SILOptimizer/Analysis/CallerAnalysis.cpp
Erik Eckstein b4e6788a38 CallerAnalysis: be more tolerant about missing FunctionInfos.
In theory, the analysis invalidation notifications should assure that every function has a CallerAnalysis::FunctionInfo in `funcInfos`.
But it's not unlikely that we are missing some of those notifications.
We got some not-reproducible crash reports because of missing function infos in CallerAnalysis.
With this change the analysis accepts missing function infos and does the right thing if such an info is missing.

In the long term we should replace CallerAnalysis by FunctionUses, anyway.

rdar://99653954
2022-09-08 16:55:39 +02:00

507 lines
18 KiB
C++

//===--- CallerAnalysis.cpp - Determine callsites to a function ----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-caller-analysis"
#include "swift/SILOptimizer/Analysis/CallerAnalysis.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/YAMLTraits.h"
using namespace swift;
namespace {
using FunctionInfo = CallerAnalysis::FunctionInfo;
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// CallerAnalysis::FunctionInfo
//===----------------------------------------------------------------------===//
CallerAnalysis::FunctionInfo::FunctionInfo(SILFunction *f)
: callerStates(),
// TODO: Make this more aggressive by considering
// final/visibility/etc.
mayHaveIndirectCallers(
f->getDynamicallyReplacedFunction() ||
f->getReferencedAdHocRequirementWitnessFunction() ||
canBeCalledIndirectly(f->getRepresentation())),
mayHaveExternalCallers(f->isPossiblyUsedExternally() ||
f->isAvailableExternally()) {}
//===----------------------------------------------------------------------===//
// CallerAnalysis::ApplySiteFinderVisitor
//===----------------------------------------------------------------------===//
struct CallerAnalysis::ApplySiteFinderVisitor
: SILInstructionVisitor<ApplySiteFinderVisitor, bool> {
CallerAnalysis *analysis;
SILFunction *callerFn;
#ifndef NDEBUG
SmallPtrSet<SILInstruction *, 8> visitedCallSites;
SmallSetVector<SILInstruction *, 8> callSitesThatMustBeVisited;
#endif
ApplySiteFinderVisitor(CallerAnalysis *analysis, SILFunction *callerFn)
: analysis(analysis), callerFn(callerFn) {}
~ApplySiteFinderVisitor();
bool visitSILInstruction(SILInstruction *) { return false; }
bool visitFunctionRefInst(FunctionRefInst *fri) {
return visitFunctionRefBaseInst(fri);
}
bool visitDynamicFunctionRefInst(DynamicFunctionRefInst *fri) {
return visitFunctionRefBaseInst(fri);
}
bool
visitPreviousDynamicFunctionRefInst(PreviousDynamicFunctionRefInst *fri) {
return visitFunctionRefBaseInst(fri);
}
bool visitFunctionRefBaseInst(FunctionRefBaseInst *fri);
void process();
void processApplySites(ArrayRef<ApplySite> applySites);
void processApplySites(ArrayRef<FullApplySite> applySites);
void checkCallSiteInvariants(SILInstruction &i);
};
void CallerAnalysis::ApplySiteFinderVisitor::processApplySites(
ArrayRef<ApplySite> applySites) {
// For now we just verify our invariants. If we need to update other
// non-NDEBUG state related to apply sites, this should be updated.
#ifndef NDEBUG
for (auto applySite : applySites) {
visitedCallSites.insert(applySite.getInstruction());
callSitesThatMustBeVisited.remove(applySite.getInstruction());
}
#endif
}
void CallerAnalysis::ApplySiteFinderVisitor::processApplySites(
ArrayRef<FullApplySite> applySites) {
// For now we just verify our invariants. If we need to update other
// non-NDEBUG state related to apply sites, this should be updated.
#ifndef NDEBUG
for (auto applySite : applySites) {
visitedCallSites.insert(applySite.getInstruction());
callSitesThatMustBeVisited.remove(applySite.getInstruction());
}
#endif
}
CallerAnalysis::ApplySiteFinderVisitor::~ApplySiteFinderVisitor() {
#ifndef NDEBUG
if (callSitesThatMustBeVisited.empty())
return;
llvm::errs() << "Found unhandled call sites!\n";
while (callSitesThatMustBeVisited.size()) {
auto *i = callSitesThatMustBeVisited.pop_back_val();
llvm::errs() << "Inst: " << *i;
}
assert(false && "Unhandled call site?!");
#endif
}
bool CallerAnalysis::ApplySiteFinderVisitor::visitFunctionRefBaseInst(
FunctionRefBaseInst *fri) {
auto optResult = findLocalApplySites(fri);
auto *calleeFn = fri->getInitiallyReferencedFunction();
// First make an edge from our callerInfo to our calleeState for invalidation
// purposes.
analysis->getOrInsertFunctionInfo(callerFn).calleeStates.insert(calleeFn);
// Then grab our callee state and update it with state for this caller.
auto iter = analysis->getOrInsertFunctionInfo(calleeFn).callerStates.
insert({callerFn, {}});
// If we succeeded in inserting a new value, put in an optimistic
// value for escaping.
if (iter.second) {
iter.first->second.isDirectCallerSetComplete = true;
}
// Then check if we found any information at all from our result. If we
// didn't, then mark this as escaping and bail.
if (!optResult.hasValue()) {
iter.first->second.isDirectCallerSetComplete = false;
return true;
}
auto &result = optResult.getValue();
// Ok. We know that we have some sort of information. Merge that information
// into our information.
iter.first->second.isDirectCallerSetComplete &= !result.isEscaping();
if (result.fullApplySites.size()) {
iter.first->second.hasFullApply = true;
processApplySites(llvm::makeArrayRef(result.fullApplySites));
}
if (result.partialApplySites.size()) {
auto optMin = iter.first->second.getNumPartiallyAppliedArguments();
unsigned min = optMin.getValueOr(UINT_MAX);
for (ApplySite partialSite : result.partialApplySites) {
min = std::min(min, partialSite.getNumArguments());
}
iter.first->second.setNumPartiallyAppliedArguments(min);
processApplySites(result.partialApplySites);
}
return true;
}
void CallerAnalysis::ApplySiteFinderVisitor::checkCallSiteInvariants(
SILInstruction &i) {
#ifndef NDEBUG
if (auto apply = FullApplySite::isa(&i)) {
if (apply.getCalleeFunction() && !visitedCallSites.count(&i)) {
callSitesThatMustBeVisited.insert(&i);
}
return;
}
// Make sure that we are in sync with looking for partial apply callees.
if (auto *pai = dyn_cast<PartialApplyInst>(&i)) {
if (pai->getCalleeFunction() && !visitedCallSites.count(&i)) {
callSitesThatMustBeVisited.insert(pai);
}
return;
}
#endif
}
void CallerAnalysis::ApplySiteFinderVisitor::process() {
for (auto &block : *callerFn) {
for (auto &i : block) {
#ifndef NDEBUG
// If this is a call site that we visited as part of seeing a different
// function_ref, skip it. We know that it has been processed correctly.
//
// NOTE: This is only used in NDEBUG builds since we only use this as part
// of the verification that we can find all callees going forward along
// def-use edges that FullApplySite is able to track backwards along
// def-use edges.
if (visitedCallSites.count(&i))
continue;
#endif
// Try to find the apply sites for this specific FRI.
if (visit(&i))
continue;
#ifndef NDEBUG
checkCallSiteInvariants(i);
#endif
}
}
}
//===----------------------------------------------------------------------===//
// CallerAnalysis
//===----------------------------------------------------------------------===//
// NOTE: This is only meant to be used by external users of CallerAnalysis since
// it recomputes our invalidated results. For internal uses, please instead use
// getOrInsertFunctionInfo or unsafeGetFunctionInfo.
const FunctionInfo &CallerAnalysis::getFunctionInfo(SILFunction *f) const {
// Recompute every function in the invalidated function list and empty the
// list.
auto &self = const_cast<CallerAnalysis &>(*this);
if (funcInfos.find(f) == funcInfos.end()) {
(void)self.getOrInsertFunctionInfo(f);
self.recomputeFunctionList.insert(f);
}
self.processRecomputeFunctionList();
return self.unsafeGetFunctionInfo(f);
}
// Private only version of this function for mutable callers that tries to
// initialize a new f.
FunctionInfo &CallerAnalysis::getOrInsertFunctionInfo(SILFunction *f) {
LLVM_DEBUG(llvm::dbgs() << "CallerAnalysis: Creating caller info for: "
<< f->getName() << "\n");
return funcInfos.try_emplace(f, f).first->second;
}
FunctionInfo &CallerAnalysis::unsafeGetFunctionInfo(SILFunction *f) {
auto r = funcInfos.find(f);
assert(r != funcInfos.end() && "Function does not have functionInfo!");
return r->second;
}
const FunctionInfo &
CallerAnalysis::unsafeGetFunctionInfo(SILFunction *f) const {
auto r = funcInfos.find(f);
assert(r != funcInfos.end() && "Function does not have functionInfo!");
return r->second;
}
CallerAnalysis::CallerAnalysis(SILModule *m)
: SILAnalysis(SILAnalysisKind::Caller), mod(*m) {
// When we start we create a function info for each f and add all f to the
// recompute function list.
for (auto &f : mod) {
getOrInsertFunctionInfo(&f);
recomputeFunctionList.insert(&f);
}
}
void CallerAnalysis::processFunctionCallSites(SILFunction *callerFn) {
ApplySiteFinderVisitor visitor(this, callerFn);
visitor.process();
}
void CallerAnalysis::invalidateAllInfo(SILFunction *f, FunctionInfo &fInfo) {
// Then we first eliminate any callees that we point at.
invalidateKnownCallees(f, fInfo);
// And then eliminate any caller edges that we need.
while (fInfo.callerStates.size()) {
auto back = fInfo.callerStates.back();
SILFunction *caller = back.first;
auto &callerInfo = unsafeGetFunctionInfo(caller);
LLVM_DEBUG(llvm::dbgs()
<< " caller-backedge: " << caller->getName() << "\n");
bool foundF = callerInfo.calleeStates.remove(f);
(void)foundF;
assert(foundF && "Bad caller edge pointing at f?");
fInfo.callerStates.pop_back();
}
}
void CallerAnalysis::invalidateKnownCallees(SILFunction *caller,
FunctionInfo &callerInfo) {
LLVM_DEBUG(llvm::dbgs() << "Invalidating caller: " << caller->getName()
<< "\n");
while (callerInfo.calleeStates.size()) {
auto *callee = callerInfo.calleeStates.pop_back_val();
FunctionInfo &calleeInfo = unsafeGetFunctionInfo(callee);
LLVM_DEBUG(llvm::dbgs() << " callee: " << callee->getName() << "\n");
assert(calleeInfo.callerStates.count(caller) &&
"Referenced callee is not fully/partially applied in the caller?!");
// Then remove the caller from this specific callee's info struct
// and to be conservative mark the callee as potentially having an
// escaping use that we do not understand.
calleeInfo.callerStates.erase(caller);
}
}
void CallerAnalysis::invalidateKnownCallees(SILFunction *caller) {
auto iter = funcInfos.find(caller);
if (iter != funcInfos.end()) {
// Look up the callees that our caller refers to and invalidate any
// values that point back at the caller.
invalidateKnownCallees(caller, iter->second);
}
}
void CallerAnalysis::verify(SILFunction *caller) const {
#ifndef NDEBUG
const FunctionInfo &callerInfo = unsafeGetFunctionInfo(caller);
verify(caller, callerInfo);
#endif
}
void CallerAnalysis::verify(SILFunction *function,
const FunctionInfo &functionInfo) const {
#ifndef NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Validating function: " << function->getName()
<< "\n");
for (auto *callee : functionInfo.calleeStates) {
LLVM_DEBUG(llvm::dbgs() << " callee: " << callee->getName() << "\n");
const FunctionInfo &calleeInfo = unsafeGetFunctionInfo(callee);
assert(calleeInfo.callerStates.count(function) &&
"Referenced callee is not fully/partially applied in the caller");
}
// Make sure all caller edges are valid.
for (auto callerPair : functionInfo.callerStates) {
auto *caller = callerPair.first;
LLVM_DEBUG(llvm::dbgs() << " caller: " << caller->getName() << "\n");
const FunctionInfo &callerInfo = unsafeGetFunctionInfo(caller);
assert(callerInfo.calleeStates.count(function) &&
"Referencing caller does not have a callee edge for function");
}
#endif
}
void CallerAnalysis::verify() const {
#ifndef NDEBUG
std::vector<SILFunction *> seenFunctions;
for (auto &fn : mod) {
bool found = funcInfos.count(&fn);
if (!found) {
llvm::errs() << "Missing notification for added function: '"
<< fn.getName() << "'\n";
llvm_unreachable("standard error assertion");
}
seenFunctions.push_back(&fn);
}
sortUnique(seenFunctions);
for (auto &pair : funcInfos) {
bool found = std::binary_search(seenFunctions.begin(), seenFunctions.end(),
pair.first);
if (!found) {
llvm::errs() << "Notification not sent for deleted function: '"
<< pair.first->getName() << "'.";
llvm_unreachable("standard error assertion");
}
verify(pair.first, pair.second);
}
#endif
}
void CallerAnalysis::invalidate() {
for (auto &f : mod) {
// Since we are going over all functions in the module
// invalidateKnownCallees should be sufficient.
invalidateKnownCallees(&f);
// We do not need to clear recompute function list since we know that it can
// at most contain a subset of the functions in the module so the SetVector
// will unique for us.
recomputeFunctionList.insert(&f);
}
}
void CallerAnalysis::notifyWillDeleteFunction(SILFunction *f) {
auto iter = funcInfos.find(f);
if (iter == funcInfos.end())
return;
invalidateAllInfo(f, iter->second);
recomputeFunctionList.remove(f);
// Now that we have invalidated all references to the function, delete it.
funcInfos.erase(iter);
}
//===----------------------------------------------------------------------===//
// CallerAnalysis YAML Dumper
//===----------------------------------------------------------------------===//
namespace {
using llvm::yaml::IO;
using llvm::yaml::MappingTraits;
using llvm::yaml::Output;
using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::SequenceTraits;
/// A special struct that marshals call graph state into a form that
/// is easy for llvm's yaml i/o to dump. Its structure is meant to
/// correspond to how the data should be shown by the printer, so
/// naturally it is slightly redundant.
struct YAMLCallGraphNode {
StringRef calleeName;
bool hasCaller;
unsigned minPartialAppliedArgs;
bool hasOnlyCompleteDirectCallerSets;
bool hasAllCallers;
std::vector<StringRef> partialAppliers;
std::vector<StringRef> fullAppliers;
YAMLCallGraphNode() = delete;
~YAMLCallGraphNode() = default;
YAMLCallGraphNode(const YAMLCallGraphNode &) = delete;
YAMLCallGraphNode(YAMLCallGraphNode &&) = delete;
YAMLCallGraphNode &operator=(const YAMLCallGraphNode &) = delete;
YAMLCallGraphNode &operator=(YAMLCallGraphNode &&) = delete;
YAMLCallGraphNode(StringRef calleeName, bool hasCaller,
unsigned minPartialAppliedArgs,
bool hasOnlyCompleteDirectCallerSets, bool hasAllCallers,
std::vector<StringRef> &&partialAppliers,
std::vector<StringRef> &&fullAppliers)
: calleeName(calleeName), hasCaller(hasCaller),
minPartialAppliedArgs(minPartialAppliedArgs),
hasOnlyCompleteDirectCallerSets(hasOnlyCompleteDirectCallerSets),
hasAllCallers(hasAllCallers),
partialAppliers(std::move(partialAppliers)),
fullAppliers(std::move(fullAppliers)) {}
};
} // end anonymous namespace
namespace llvm {
namespace yaml {
template <> struct MappingTraits<YAMLCallGraphNode> {
static void mapping(IO &io, YAMLCallGraphNode &func) {
io.mapRequired("calleeName", func.calleeName);
io.mapRequired("hasCaller", func.hasCaller);
io.mapRequired("minPartialAppliedArgs", func.minPartialAppliedArgs);
io.mapRequired("hasOnlyCompleteDirectCallerSets",
func.hasOnlyCompleteDirectCallerSets);
io.mapRequired("hasAllCallers", func.hasAllCallers);
io.mapRequired("partialAppliers", func.partialAppliers);
io.mapRequired("fullAppliers", func.fullAppliers);
}
};
} // namespace yaml
} // namespace llvm
void CallerAnalysis::dump() const { print(llvm::errs()); }
void CallerAnalysis::print(const char *filePath) const {
using namespace llvm::sys;
std::error_code error;
llvm::raw_fd_ostream fileOutputStream(filePath, error, fs::OF_Text);
if (error) {
llvm::errs() << "Failed to open path \"" << filePath << "\" for writing.!";
llvm_unreachable("default error handler");
}
print(fileOutputStream);
}
void CallerAnalysis::print(llvm::raw_ostream &os) const {
llvm::yaml::Output yout(os);
// NOTE: We purposely do not iterate over our internal state here to ensure
// that we dump for all functions and that we dump the state we have stored
// with the functions in module order.
for (auto &f : mod) {
const auto &fi = getFunctionInfo(&f);
std::vector<StringRef> partialAppliers;
std::vector<StringRef> fullAppliers;
for (auto &apply : fi.getAllReferencingCallers()) {
if (apply.second.hasFullApply) {
fullAppliers.push_back(apply.first->getName());
}
if (apply.second.getNumPartiallyAppliedArguments().hasValue()) {
partialAppliers.push_back(apply.first->getName());
}
}
YAMLCallGraphNode node(
f.getName(), fi.hasDirectCaller(), fi.getMinPartialAppliedArgs(),
fi.hasOnlyCompleteDirectCallerSets(), fi.foundAllCallers(),
std::move(partialAppliers), std::move(fullAppliers));
yout << node;
}
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
SILAnalysis *swift::createCallerAnalysis(SILModule *mod) {
return new CallerAnalysis(mod);
}