Files
swift-mirror/lib/IDE/CodeCompletion.cpp
Rintaro Ishizaki 33ee4d609f [CodeCompletion] 'ContextFreeCodeCompletionResult' factory method
Convert 'ContextFreeCodeCompletionResult' constructor overloads to
'create()' factory methods. This is the consistent interface with
'CodeCompletionString'. NFC
2022-02-18 09:58:26 -08:00

7645 lines
274 KiB
C++

//===--- CodeCompletion.cpp - Code completion implementation --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/CodeCompletion.h"
#include "CodeCompletionDiagnostics.h"
#include "CodeCompletionResultBuilder.h"
#include "ExprContextAnalysis.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Comment.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/USRGeneration.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LLVM.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Frontend/FrontendOptions.h"
#include "swift/IDE/CodeCompletionCache.h"
#include "swift/IDE/CodeCompletionResultPrinter.h"
#include "swift/IDE/Utils.h"
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Sema/CodeCompletionTypeChecking.h"
#include "swift/Syntax/SyntaxKind.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Comment.h"
#include "clang/AST/CommentVisitor.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "clang/Index/USRGeneration.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <string>
using namespace swift;
using namespace ide;
using DeclFilter = std::function<bool(ValueDecl *, DeclVisibilityKind)>;
static bool DefaultFilter(ValueDecl* VD, DeclVisibilityKind Kind) {
return true;
}
static bool KeyPathFilter(ValueDecl* decl, DeclVisibilityKind) {
return isa<TypeDecl>(decl) ||
(isa<VarDecl>(decl) && decl->getDeclContext()->isTypeContext());
}
static bool SwiftKeyPathFilter(ValueDecl* decl, DeclVisibilityKind) {
switch(decl->getKind()){
case DeclKind::Var:
case DeclKind::Subscript:
return true;
default:
return false;
}
}
std::string swift::ide::removeCodeCompletionTokens(
StringRef Input, StringRef TokenName, unsigned *CompletionOffset) {
assert(TokenName.size() >= 1);
*CompletionOffset = ~0U;
std::string CleanFile;
CleanFile.reserve(Input.size());
const std::string Token = std::string("#^") + TokenName.str() + "^#";
for (const char *Ptr = Input.begin(), *End = Input.end();
Ptr != End; ++Ptr) {
const char C = *Ptr;
if (C == '#' && Ptr <= End - Token.size() &&
StringRef(Ptr, Token.size()) == Token) {
Ptr += Token.size() - 1;
*CompletionOffset = CleanFile.size();
CleanFile += '\0';
continue;
}
if (C == '#' && Ptr <= End - 2 && Ptr[1] == '^') {
do {
++Ptr;
} while (Ptr < End && *Ptr != '#');
if (Ptr == End)
break;
continue;
}
CleanFile += C;
}
return CleanFile;
}
llvm::StringRef swift::ide::copyString(llvm::BumpPtrAllocator &Allocator,
llvm::StringRef Str) {
char *Buffer = Allocator.Allocate<char>(Str.size());
std::copy(Str.begin(), Str.end(), Buffer);
return llvm::StringRef(Buffer, Str.size());
}
const char *swift::ide::copyCString(llvm::BumpPtrAllocator &Allocator,
llvm::StringRef Str) {
char *Buffer = Allocator.Allocate<char>(Str.size() + 1);
std::copy(Str.begin(), Str.end(), Buffer);
Buffer[Str.size()] = '\0';
return Buffer;
}
CodeCompletionString::CodeCompletionString(ArrayRef<Chunk> Chunks) {
std::uninitialized_copy(Chunks.begin(), Chunks.end(),
getTrailingObjects<Chunk>());
NumChunks = Chunks.size();
}
CodeCompletionString *CodeCompletionString::create(llvm::BumpPtrAllocator &Allocator,
ArrayRef<Chunk> Chunks) {
void *CCSMem = Allocator.Allocate(totalSizeToAlloc<Chunk>(Chunks.size()),
alignof(CodeCompletionString));
return new (CCSMem) CodeCompletionString(Chunks);
}
void CodeCompletionString::print(raw_ostream &OS) const {
unsigned PrevNestingLevel = 0;
SmallVector<StringRef, 3> closeTags;
auto chunks = getChunks();
for (auto I = chunks.begin(), E = chunks.end(); I != E; ++I) {
while (I->endsPreviousNestedGroup(PrevNestingLevel)) {
OS << closeTags.pop_back_val();
--PrevNestingLevel;
}
switch (I->getKind()) {
using ChunkKind = Chunk::ChunkKind;
case ChunkKind::AccessControlKeyword:
case ChunkKind::DeclAttrKeyword:
case ChunkKind::DeclAttrParamKeyword:
case ChunkKind::OverrideKeyword:
case ChunkKind::EffectsSpecifierKeyword:
case ChunkKind::DeclIntroducer:
case ChunkKind::Text:
case ChunkKind::LeftParen:
case ChunkKind::RightParen:
case ChunkKind::LeftBracket:
case ChunkKind::RightBracket:
case ChunkKind::LeftAngle:
case ChunkKind::RightAngle:
case ChunkKind::Dot:
case ChunkKind::Ellipsis:
case ChunkKind::Comma:
case ChunkKind::ExclamationMark:
case ChunkKind::QuestionMark:
case ChunkKind::Ampersand:
case ChunkKind::Equal:
case ChunkKind::Whitespace:
case ChunkKind::Keyword:
case ChunkKind::Attribute:
case ChunkKind::BaseName:
case ChunkKind::TypeIdSystem:
case ChunkKind::TypeIdUser:
case ChunkKind::CallArgumentName:
case ChunkKind::CallArgumentColon:
case ChunkKind::CallArgumentType:
case ChunkKind::ParameterDeclExternalName:
case ChunkKind::ParameterDeclLocalName:
case ChunkKind::ParameterDeclColon:
case ChunkKind::DeclAttrParamColon:
case ChunkKind::GenericParameterName:
if (I->isAnnotation())
OS << "['" << I->getText() << "']";
else
OS << I->getText();
break;
case ChunkKind::CallArgumentInternalName:
OS << "(" << I->getText() << ")";
break;
case ChunkKind::CallArgumentClosureType:
OS << "##" << I->getText();
break;
case ChunkKind::OptionalBegin:
case ChunkKind::CallArgumentBegin:
case ChunkKind::GenericParameterBegin:
OS << "{#";
closeTags.emplace_back("#}");
break;
case ChunkKind::DynamicLookupMethodCallTail:
case ChunkKind::OptionalMethodCallTail:
OS << I->getText();
break;
case ChunkKind::GenericParameterClauseBegin:
case ChunkKind::GenericRequirementClauseBegin:
case ChunkKind::CallArgumentTypeBegin:
case ChunkKind::DefaultArgumentClauseBegin:
case ChunkKind::ParameterDeclBegin:
case ChunkKind::EffectsSpecifierClauseBegin:
case ChunkKind::DeclResultTypeClauseBegin:
case ChunkKind::ParameterDeclTypeBegin:
case ChunkKind::AttributeAndModifierListBegin:
case ChunkKind::CallArgumentDefaultBegin:
assert(I->getNestingLevel() == PrevNestingLevel + 1);
closeTags.emplace_back("");
break;
case ChunkKind::TypeAnnotationBegin:
OS << "[#";
closeTags.emplace_back("#]");
break;
case ChunkKind::TypeAnnotation:
OS << "[#" << I->getText() << "#]";
break;
case ChunkKind::CallArgumentClosureExpr:
OS << " {" << I->getText() << "|}";
break;
case ChunkKind::BraceStmtWithCursor:
OS << " {|}";
break;
}
PrevNestingLevel = I->getNestingLevel();
}
while (PrevNestingLevel > 0) {
OS << closeTags.pop_back_val();
--PrevNestingLevel;
}
assert(closeTags.empty());
}
void CodeCompletionString::dump() const {
llvm::raw_ostream &OS = llvm::errs();
OS << "Chunks: \n";
for (auto &chunk : getChunks()) {
OS << "- ";
for (unsigned i = 0, e = chunk.getNestingLevel(); i != e; ++i)
OS << "| ";
OS << "(";
switch (chunk.getKind()) {
#define CASE(K) case Chunk::ChunkKind::K: OS << #K; break;
CASE(AccessControlKeyword)
CASE(DeclAttrKeyword)
CASE(DeclAttrParamKeyword)
CASE(OverrideKeyword)
CASE(EffectsSpecifierKeyword)
CASE(DeclIntroducer)
CASE(Keyword)
CASE(Attribute)
CASE(Text)
CASE(BaseName)
CASE(OptionalBegin)
CASE(LeftParen)
CASE(RightParen)
CASE(LeftBracket)
CASE(RightBracket)
CASE(LeftAngle)
CASE(RightAngle)
CASE(Dot)
CASE(Ellipsis)
CASE(Comma)
CASE(ExclamationMark)
CASE(QuestionMark)
CASE(Ampersand)
CASE(Equal)
CASE(Whitespace)
CASE(GenericParameterClauseBegin)
CASE(GenericRequirementClauseBegin)
CASE(GenericParameterBegin)
CASE(GenericParameterName)
CASE(CallArgumentBegin)
CASE(CallArgumentName)
CASE(CallArgumentInternalName)
CASE(CallArgumentColon)
CASE(DeclAttrParamColon)
CASE(CallArgumentType)
CASE(CallArgumentTypeBegin)
CASE(CallArgumentDefaultBegin)
CASE(TypeIdSystem)
CASE(TypeIdUser)
CASE(CallArgumentClosureType)
CASE(CallArgumentClosureExpr)
CASE(DynamicLookupMethodCallTail)
CASE(OptionalMethodCallTail)
CASE(ParameterDeclBegin)
CASE(ParameterDeclExternalName)
CASE(ParameterDeclLocalName)
CASE(ParameterDeclColon)
CASE(ParameterDeclTypeBegin)
CASE(DefaultArgumentClauseBegin)
CASE(EffectsSpecifierClauseBegin)
CASE(DeclResultTypeClauseBegin)
CASE(AttributeAndModifierListBegin)
CASE(TypeAnnotation)
CASE(TypeAnnotationBegin)
CASE(BraceStmtWithCursor)
}
if (chunk.isAnnotation())
OS << " [annotation]";
if (chunk.hasText()) {
OS << " \"";
OS.write_escaped(chunk.getText());
OS << "\"";
}
OS << ")\n";
}
}
ContextFreeCodeCompletionResult *
ContextFreeCodeCompletionResult::createPatternOrBuiltInOperatorResult(
llvm::BumpPtrAllocator &Allocator, CodeCompletionResultKind Kind,
CodeCompletionString *CompletionString,
CodeCompletionOperatorKind KnownOperatorKind, StringRef BriefDocComment,
CodeCompletionResultType ResultType,
ContextFreeNotRecommendedReason NotRecommended,
CodeCompletionDiagnosticSeverity DiagnosticSeverity,
StringRef DiagnosticMessage) {
return new (Allocator) ContextFreeCodeCompletionResult(
Kind, /*AssociatedKind=*/0, KnownOperatorKind,
/*IsSystem=*/false, CompletionString, /*ModuleName=*/"", BriefDocComment,
/*AssociatedUSRs=*/{}, ResultType, NotRecommended, DiagnosticSeverity,
DiagnosticMessage);
}
ContextFreeCodeCompletionResult *
ContextFreeCodeCompletionResult::createKeywordResult(
llvm::BumpPtrAllocator &Allocator, CodeCompletionKeywordKind Kind,
CodeCompletionString *CompletionString, StringRef BriefDocComment,
CodeCompletionResultType ResultType) {
return new (Allocator) ContextFreeCodeCompletionResult(
CodeCompletionResultKind::Keyword, static_cast<uint8_t>(Kind),
CodeCompletionOperatorKind::None, /*IsSystem=*/false, CompletionString,
/*ModuleName=*/"", BriefDocComment,
/*AssociatedUSRs=*/{}, ResultType, ContextFreeNotRecommendedReason::None,
CodeCompletionDiagnosticSeverity::None, /*DiagnosticMessage=*/"");
}
ContextFreeCodeCompletionResult *
ContextFreeCodeCompletionResult::createLiteralResult(
llvm::BumpPtrAllocator &Allocator, CodeCompletionLiteralKind LiteralKind,
CodeCompletionString *CompletionString,
CodeCompletionResultType ResultType) {
return new (Allocator) ContextFreeCodeCompletionResult(
CodeCompletionResultKind::Literal, static_cast<uint8_t>(LiteralKind),
CodeCompletionOperatorKind::None,
/*IsSystem=*/false, CompletionString, /*ModuleName=*/"",
/*BriefDocComment=*/"",
/*AssociatedUSRs=*/{}, ResultType, ContextFreeNotRecommendedReason::None,
CodeCompletionDiagnosticSeverity::None, /*DiagnosticMessage=*/"");
}
ContextFreeCodeCompletionResult *
ContextFreeCodeCompletionResult::createDeclResult(
llvm::BumpPtrAllocator &Allocator, CodeCompletionString *CompletionString,
const Decl *AssociatedDecl, StringRef ModuleName, StringRef BriefDocComment,
ArrayRef<StringRef> AssociatedUSRs, CodeCompletionResultType ResultType,
ContextFreeNotRecommendedReason NotRecommended,
CodeCompletionDiagnosticSeverity DiagnosticSeverity,
StringRef DiagnosticMessage) {
assert(AssociatedDecl && "should have a decl");
return new (Allocator) ContextFreeCodeCompletionResult(
CodeCompletionResultKind::Declaration,
static_cast<uint8_t>(getCodeCompletionDeclKind(AssociatedDecl)),
CodeCompletionOperatorKind::None, getDeclIsSystem(AssociatedDecl),
CompletionString, ModuleName, BriefDocComment, AssociatedUSRs, ResultType,
NotRecommended, DiagnosticSeverity, DiagnosticMessage);
}
CodeCompletionDeclKind
ContextFreeCodeCompletionResult::getCodeCompletionDeclKind(const Decl *D) {
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::MissingMember:
case DeclKind::OpaqueType:
llvm_unreachable("not expecting such a declaration result");
case DeclKind::Module:
return CodeCompletionDeclKind::Module;
case DeclKind::TypeAlias:
return CodeCompletionDeclKind::TypeAlias;
case DeclKind::AssociatedType:
return CodeCompletionDeclKind::AssociatedType;
case DeclKind::GenericTypeParam:
return CodeCompletionDeclKind::GenericTypeParam;
case DeclKind::Enum:
return CodeCompletionDeclKind::Enum;
case DeclKind::Struct:
return CodeCompletionDeclKind::Struct;
case DeclKind::Class:
if (cast<ClassDecl>(D)->isActor()) {
return CodeCompletionDeclKind::Actor;
} else {
return CodeCompletionDeclKind::Class;
}
case DeclKind::Protocol:
return CodeCompletionDeclKind::Protocol;
case DeclKind::Var:
case DeclKind::Param: {
auto DC = D->getDeclContext();
if (DC->isTypeContext()) {
if (cast<VarDecl>(D)->isStatic())
return CodeCompletionDeclKind::StaticVar;
else
return CodeCompletionDeclKind::InstanceVar;
}
if (DC->isLocalContext())
return CodeCompletionDeclKind::LocalVar;
return CodeCompletionDeclKind::GlobalVar;
}
case DeclKind::Constructor:
return CodeCompletionDeclKind::Constructor;
case DeclKind::Destructor:
return CodeCompletionDeclKind::Destructor;
case DeclKind::Accessor:
case DeclKind::Func: {
auto DC = D->getDeclContext();
auto FD = cast<FuncDecl>(D);
if (DC->isTypeContext()) {
if (FD->isStatic())
return CodeCompletionDeclKind::StaticMethod;
return CodeCompletionDeclKind::InstanceMethod;
}
if (FD->isOperator()) {
if (auto op = FD->getOperatorDecl()) {
switch (op->getKind()) {
case DeclKind::PrefixOperator:
return CodeCompletionDeclKind::PrefixOperatorFunction;
case DeclKind::PostfixOperator:
return CodeCompletionDeclKind::PostfixOperatorFunction;
case DeclKind::InfixOperator:
return CodeCompletionDeclKind::InfixOperatorFunction;
default:
llvm_unreachable("unexpected operator kind");
}
} else {
return CodeCompletionDeclKind::InfixOperatorFunction;
}
}
return CodeCompletionDeclKind::FreeFunction;
}
case DeclKind::InfixOperator:
return CodeCompletionDeclKind::InfixOperatorFunction;
case DeclKind::PrefixOperator:
return CodeCompletionDeclKind::PrefixOperatorFunction;
case DeclKind::PostfixOperator:
return CodeCompletionDeclKind::PostfixOperatorFunction;
case DeclKind::PrecedenceGroup:
return CodeCompletionDeclKind::PrecedenceGroup;
case DeclKind::EnumElement:
return CodeCompletionDeclKind::EnumElement;
case DeclKind::Subscript:
return CodeCompletionDeclKind::Subscript;
}
llvm_unreachable("invalid DeclKind");
}
bool ContextFreeCodeCompletionResult::getDeclIsSystem(const Decl *D) {
return D->getModuleContext()->isSystemModule();
}
void CodeCompletionResult::printPrefix(raw_ostream &OS) const {
llvm::SmallString<64> Prefix;
switch (getKind()) {
case CodeCompletionResultKind::Declaration:
Prefix.append("Decl");
switch (getAssociatedDeclKind()) {
case CodeCompletionDeclKind::Class:
Prefix.append("[Class]");
break;
case CodeCompletionDeclKind::Actor:
Prefix.append("[Actor]");
break;
case CodeCompletionDeclKind::Struct:
Prefix.append("[Struct]");
break;
case CodeCompletionDeclKind::Enum:
Prefix.append("[Enum]");
break;
case CodeCompletionDeclKind::EnumElement:
Prefix.append("[EnumElement]");
break;
case CodeCompletionDeclKind::Protocol:
Prefix.append("[Protocol]");
break;
case CodeCompletionDeclKind::TypeAlias:
Prefix.append("[TypeAlias]");
break;
case CodeCompletionDeclKind::AssociatedType:
Prefix.append("[AssociatedType]");
break;
case CodeCompletionDeclKind::GenericTypeParam:
Prefix.append("[GenericTypeParam]");
break;
case CodeCompletionDeclKind::Constructor:
Prefix.append("[Constructor]");
break;
case CodeCompletionDeclKind::Destructor:
Prefix.append("[Destructor]");
break;
case CodeCompletionDeclKind::Subscript:
Prefix.append("[Subscript]");
break;
case CodeCompletionDeclKind::StaticMethod:
Prefix.append("[StaticMethod]");
break;
case CodeCompletionDeclKind::InstanceMethod:
Prefix.append("[InstanceMethod]");
break;
case CodeCompletionDeclKind::PrefixOperatorFunction:
Prefix.append("[PrefixOperatorFunction]");
break;
case CodeCompletionDeclKind::PostfixOperatorFunction:
Prefix.append("[PostfixOperatorFunction]");
break;
case CodeCompletionDeclKind::InfixOperatorFunction:
Prefix.append("[InfixOperatorFunction]");
break;
case CodeCompletionDeclKind::FreeFunction:
Prefix.append("[FreeFunction]");
break;
case CodeCompletionDeclKind::StaticVar:
Prefix.append("[StaticVar]");
break;
case CodeCompletionDeclKind::InstanceVar:
Prefix.append("[InstanceVar]");
break;
case CodeCompletionDeclKind::LocalVar:
Prefix.append("[LocalVar]");
break;
case CodeCompletionDeclKind::GlobalVar:
Prefix.append("[GlobalVar]");
break;
case CodeCompletionDeclKind::Module:
Prefix.append("[Module]");
break;
case CodeCompletionDeclKind::PrecedenceGroup:
Prefix.append("[PrecedenceGroup]");
break;
}
break;
case CodeCompletionResultKind::Keyword:
Prefix.append("Keyword");
switch (getKeywordKind()) {
case CodeCompletionKeywordKind::None:
break;
#define KEYWORD(X) case CodeCompletionKeywordKind::kw_##X: \
Prefix.append("[" #X "]"); \
break;
#define POUND_KEYWORD(X) case CodeCompletionKeywordKind::pound_##X: \
Prefix.append("[#" #X "]"); \
break;
#include "swift/Syntax/TokenKinds.def"
}
break;
case CodeCompletionResultKind::Pattern:
Prefix.append("Pattern");
break;
case CodeCompletionResultKind::Literal:
Prefix.append("Literal");
switch (getLiteralKind()) {
case CodeCompletionLiteralKind::ArrayLiteral:
Prefix.append("[Array]");
break;
case CodeCompletionLiteralKind::BooleanLiteral:
Prefix.append("[Boolean]");
break;
case CodeCompletionLiteralKind::ColorLiteral:
Prefix.append("[_Color]");
break;
case CodeCompletionLiteralKind::ImageLiteral:
Prefix.append("[_Image]");
break;
case CodeCompletionLiteralKind::DictionaryLiteral:
Prefix.append("[Dictionary]");
break;
case CodeCompletionLiteralKind::IntegerLiteral:
Prefix.append("[Integer]");
break;
case CodeCompletionLiteralKind::NilLiteral:
Prefix.append("[Nil]");
break;
case CodeCompletionLiteralKind::StringLiteral:
Prefix.append("[String]");
break;
case CodeCompletionLiteralKind::Tuple:
Prefix.append("[Tuple]");
break;
}
break;
case CodeCompletionResultKind::BuiltinOperator:
Prefix.append("BuiltinOperator");
break;
}
Prefix.append("/");
switch (getSemanticContext()) {
case SemanticContextKind::None:
Prefix.append("None");
break;
case SemanticContextKind::Local:
Prefix.append("Local");
break;
case SemanticContextKind::CurrentNominal:
Prefix.append("CurrNominal");
break;
case SemanticContextKind::Super:
Prefix.append("Super");
break;
case SemanticContextKind::OutsideNominal:
Prefix.append("OutNominal");
break;
case SemanticContextKind::CurrentModule:
Prefix.append("CurrModule");
break;
case SemanticContextKind::OtherModule:
Prefix.append("OtherModule");
if (!getModuleName().empty())
Prefix.append((Twine("[") + getModuleName() + "]").str());
break;
}
if (getFlair().toRaw()) {
Prefix.append("/Flair[");
bool isFirstFlair = true;
#define PRINT_FLAIR(KIND, NAME) \
if (getFlair().contains(CodeCompletionFlairBit::KIND)) { \
if (isFirstFlair) { isFirstFlair = false; } \
else { Prefix.append(","); } \
Prefix.append(NAME); \
}
PRINT_FLAIR(ExpressionSpecific, "ExprSpecific");
PRINT_FLAIR(SuperChain, "SuperChain");
PRINT_FLAIR(ArgumentLabels, "ArgLabels");
PRINT_FLAIR(CommonKeywordAtCurrentPosition, "CommonKeyword")
PRINT_FLAIR(RareKeywordAtCurrentPosition, "RareKeyword")
PRINT_FLAIR(RareTypeAtCurrentPosition, "RareType")
PRINT_FLAIR(ExpressionAtNonScriptOrMainFileScope, "ExprAtFileScope")
Prefix.append("]");
}
if (isNotRecommended())
Prefix.append("/NotRecommended");
if (isSystem())
Prefix.append("/IsSystem");
if (NumBytesToErase != 0) {
Prefix.append("/Erase[");
Prefix.append(Twine(NumBytesToErase).str());
Prefix.append("]");
}
switch (getExpectedTypeRelation()) {
case CodeCompletionResultTypeRelation::Invalid:
Prefix.append("/TypeRelation[Invalid]");
break;
case CodeCompletionResultTypeRelation::Identical:
Prefix.append("/TypeRelation[Identical]");
break;
case CodeCompletionResultTypeRelation::Convertible:
Prefix.append("/TypeRelation[Convertible]");
break;
case CodeCompletionResultTypeRelation::NotApplicable:
case CodeCompletionResultTypeRelation::Unknown:
case CodeCompletionResultTypeRelation::Unrelated:
break;
}
Prefix.append(": ");
while (Prefix.size() < 36) {
Prefix.append(" ");
}
OS << Prefix;
}
void CodeCompletionResult::dump() const {
printPrefix(llvm::errs());
getCompletionString()->print(llvm::errs());
llvm::errs() << "\n";
}
CodeCompletionResult *
CodeCompletionResult::withFlair(CodeCompletionFlair NewFlair,
CodeCompletionResultSink &Sink) const {
return new (*Sink.Allocator) CodeCompletionResult(
ContextFree, SemanticContext, NewFlair, NumBytesToErase, TypeDistance,
NotRecommended, DiagnosticSeverity, DiagnosticMessage);
}
CodeCompletionResult *
CodeCompletionResult::withContextFreeResultSemanticContextAndFlair(
const ContextFreeCodeCompletionResult &NewContextFree,
SemanticContextKind NewSemanticContext, CodeCompletionFlair NewFlair,
CodeCompletionResultSink &Sink) const {
return new (*Sink.Allocator) CodeCompletionResult(
NewContextFree, NewSemanticContext, NewFlair, NumBytesToErase,
TypeDistance, NotRecommended, DiagnosticSeverity, DiagnosticMessage);
}
void CodeCompletionResultBuilder::withNestedGroup(
CodeCompletionString::Chunk::ChunkKind Kind,
llvm::function_ref<void()> body) {
++CurrentNestingLevel;
addSimpleChunk(Kind);
body();
--CurrentNestingLevel;
}
void CodeCompletionResultBuilder::addChunkWithText(
CodeCompletionString::Chunk::ChunkKind Kind, StringRef Text) {
addChunkWithTextNoCopy(Kind, copyString(*Sink.Allocator, Text));
}
void CodeCompletionResultBuilder::setAssociatedDecl(const Decl *D) {
assert(Kind == CodeCompletionResultKind::Declaration);
AssociatedDecl = D;
if (auto *ClangD = D->getClangDecl())
CurrentModule = ClangD->getImportedOwningModule();
// FIXME: macros
// FIXME: imported header module
if (!CurrentModule) {
ModuleDecl *MD = D->getModuleContext();
// If this is an underscored cross-import overlay, map it to the underlying
// module that declares it instead.
if (ModuleDecl *Declaring = MD->getDeclaringModuleIfCrossImportOverlay())
MD = Declaring;
CurrentModule = MD;
}
if (D->getAttrs().getDeprecated(D->getASTContext()))
setContextFreeNotRecommended(ContextFreeNotRecommendedReason::Deprecated);
else if (D->getAttrs().getSoftDeprecated(D->getASTContext()))
setContextFreeNotRecommended(
ContextFreeNotRecommendedReason::SoftDeprecated);
if (D->getClangNode()) {
if (auto *ClangD = D->getClangDecl()) {
const auto &ClangContext = ClangD->getASTContext();
if (const clang::RawComment *RC =
ClangContext.getRawCommentForAnyRedecl(ClangD)) {
setBriefDocComment(RC->getBriefText(ClangContext));
}
}
} else {
setBriefDocComment(AssociatedDecl->getBriefComment());
}
}
namespace {
/// 'ASTPrinter' printing to 'CodeCompletionString' with appropriate ChunkKind.
/// This is mainly used for printing types and override completions.
class CodeCompletionStringPrinter : public ASTPrinter {
protected:
using ChunkKind = CodeCompletionString::Chunk::ChunkKind;
private:
CodeCompletionResultBuilder &Builder;
SmallString<16> Buffer;
ChunkKind CurrChunkKind = ChunkKind::Text;
ChunkKind NextChunkKind = ChunkKind::Text;
SmallVector<PrintStructureKind, 2> StructureStack;
unsigned int TypeDepth = 0;
bool InPreamble = false;
bool isCurrentStructureKind(PrintStructureKind Kind) const {
return !StructureStack.empty() && StructureStack.back() == Kind;
}
bool isInType() const {
return TypeDepth > 0;
}
Optional<ChunkKind>
getChunkKindForPrintNameContext(PrintNameContext context) const {
switch (context) {
case PrintNameContext::Keyword:
if(isCurrentStructureKind(PrintStructureKind::EffectsSpecifiers)) {
return ChunkKind::EffectsSpecifierKeyword;
}
return ChunkKind::Keyword;
case PrintNameContext::IntroducerKeyword:
return ChunkKind::DeclIntroducer;
case PrintNameContext::Attribute:
return ChunkKind::Attribute;
case PrintNameContext::FunctionParameterExternal:
if (isInType()) {
return None;
}
return ChunkKind::ParameterDeclExternalName;
case PrintNameContext::FunctionParameterLocal:
if (isInType()) {
return None;
}
return ChunkKind::ParameterDeclLocalName;
default:
return None;
}
}
Optional<ChunkKind>
getChunkKindForStructureKind(PrintStructureKind Kind) const {
switch (Kind) {
case PrintStructureKind::FunctionParameter:
if (isInType()) {
return None;
}
return ChunkKind::ParameterDeclBegin;
case PrintStructureKind::DefaultArgumentClause:
return ChunkKind::DefaultArgumentClauseBegin;
case PrintStructureKind::DeclGenericParameterClause:
return ChunkKind::GenericParameterClauseBegin;
case PrintStructureKind::DeclGenericRequirementClause:
return ChunkKind::GenericRequirementClauseBegin;
case PrintStructureKind::EffectsSpecifiers:
return ChunkKind::EffectsSpecifierClauseBegin;
case PrintStructureKind::DeclResultTypeClause:
return ChunkKind::DeclResultTypeClauseBegin;
case PrintStructureKind::FunctionParameterType:
return ChunkKind::ParameterDeclTypeBegin;
default:
return None;
}
}
void startNestedGroup(ChunkKind Kind) {
flush();
Builder.CurrentNestingLevel++;
Builder.addSimpleChunk(Kind);
}
void endNestedGroup() {
flush();
Builder.CurrentNestingLevel--;
}
protected:
void setNextChunkKind(ChunkKind Kind) {
NextChunkKind = Kind;
}
public:
CodeCompletionStringPrinter(CodeCompletionResultBuilder &Builder) : Builder(Builder) {}
~CodeCompletionStringPrinter() {
// Flush the remainings.
flush();
}
void flush() {
if (Buffer.empty())
return;
Builder.addChunkWithText(CurrChunkKind, Buffer);
Buffer.clear();
}
/// Start \c AttributeAndModifierListBegin group. This must be called before
/// any attributes/modifiers printed to the output when printing an override
/// compleion.
void startPreamble() {
assert(!InPreamble);
startNestedGroup(ChunkKind::AttributeAndModifierListBegin);
InPreamble = true;
}
/// End the current \c AttributeAndModifierListBegin group if it's still open.
/// This is automatically called before the main part of the signature.
void endPremable() {
if (!InPreamble)
return;
InPreamble = false;
endNestedGroup();
}
/// Implement \c ASTPrinter .
public:
void printText(StringRef Text) override {
// Detect ': ' and ', ' in parameter clauses.
// FIXME: Is there a better way?
if (isCurrentStructureKind(PrintStructureKind::FunctionParameter) &&
Text == ": ") {
setNextChunkKind(ChunkKind::ParameterDeclColon);
} else if (
isCurrentStructureKind(PrintStructureKind::FunctionParameterList) &&
Text == ", ") {
setNextChunkKind(ChunkKind::Comma);
}
if (CurrChunkKind != NextChunkKind) {
// If the next desired kind is different from the current buffer, flush
// the current buffer.
flush();
CurrChunkKind = NextChunkKind;
}
Buffer.append(Text);
}
void printTypeRef(
Type T, const TypeDecl *TD, Identifier Name,
PrintNameContext NameContext = PrintNameContext::Normal) override {
NextChunkKind = TD->getModuleContext()->isSystemModule()
? ChunkKind::TypeIdSystem
: ChunkKind::TypeIdUser;
ASTPrinter::printTypeRef(T, TD, Name, NameContext);
NextChunkKind = ChunkKind::Text;
}
void printDeclLoc(const Decl *D) override {
endPremable();
setNextChunkKind(ChunkKind::BaseName);
}
void printDeclNameEndLoc(const Decl *D) override {
setNextChunkKind(ChunkKind::Text);
}
void printNamePre(PrintNameContext context) override {
if (context == PrintNameContext::IntroducerKeyword)
endPremable();
if (auto Kind = getChunkKindForPrintNameContext(context))
setNextChunkKind(*Kind);
}
void printNamePost(PrintNameContext context) override {
if (getChunkKindForPrintNameContext(context))
setNextChunkKind(ChunkKind::Text);
}
void printTypePre(const TypeLoc &TL) override {
++TypeDepth;
}
void printTypePost(const TypeLoc &TL) override {
assert(TypeDepth > 0);
--TypeDepth;
}
void printStructurePre(PrintStructureKind Kind, const Decl *D) override {
StructureStack.push_back(Kind);
if (auto chunkKind = getChunkKindForStructureKind(Kind))
startNestedGroup(*chunkKind);
}
void printStructurePost(PrintStructureKind Kind, const Decl *D) override {
if (getChunkKindForStructureKind(Kind))
endNestedGroup();
assert(Kind == StructureStack.back());
StructureStack.pop_back();
}
};
} // namespcae
void CodeCompletionResultBuilder::addCallArgument(
Identifier Name, Identifier LocalName, Type Ty, Type ContextTy,
bool IsVarArg, bool IsInOut, bool IsIUO, bool IsAutoClosure,
bool UseUnderscoreLabel, bool IsLabeledTrailingClosure, bool HasDefault) {
++CurrentNestingLevel;
using ChunkKind = CodeCompletionString::Chunk::ChunkKind;
addSimpleChunk(ChunkKind::CallArgumentBegin);
if (shouldAnnotateResults()) {
if (!Name.empty() || !LocalName.empty()) {
llvm::SmallString<16> EscapedKeyword;
if (!Name.empty()) {
addChunkWithText(
CodeCompletionString::Chunk::ChunkKind::CallArgumentName,
escapeKeyword(Name.str(), false, EscapedKeyword));
if (!LocalName.empty() && Name != LocalName) {
addChunkWithTextNoCopy(ChunkKind::Text, " ");
getLastChunk().setIsAnnotation();
addChunkWithText(ChunkKind::CallArgumentInternalName,
escapeKeyword(LocalName.str(), false, EscapedKeyword));
getLastChunk().setIsAnnotation();
}
} else {
assert(!LocalName.empty());
addChunkWithTextNoCopy(ChunkKind::CallArgumentName, "_");
getLastChunk().setIsAnnotation();
addChunkWithTextNoCopy(ChunkKind::Text, " ");
getLastChunk().setIsAnnotation();
addChunkWithText(ChunkKind::CallArgumentInternalName,
escapeKeyword(LocalName.str(), false, EscapedKeyword));
}
addChunkWithTextNoCopy(ChunkKind::CallArgumentColon, ": ");
}
} else {
if (!Name.empty()) {
llvm::SmallString<16> EscapedKeyword;
addChunkWithText(
CodeCompletionString::Chunk::ChunkKind::CallArgumentName,
escapeKeyword(Name.str(), false, EscapedKeyword));
addChunkWithTextNoCopy(
CodeCompletionString::Chunk::ChunkKind::CallArgumentColon, ": ");
} else if (UseUnderscoreLabel) {
addChunkWithTextNoCopy(
CodeCompletionString::Chunk::ChunkKind::CallArgumentName, "_");
addChunkWithTextNoCopy(
CodeCompletionString::Chunk::ChunkKind::CallArgumentColon, ": ");
} else if (!LocalName.empty()) {
// Use local (non-API) parameter name if we have nothing else.
llvm::SmallString<16> EscapedKeyword;
addChunkWithText(
CodeCompletionString::Chunk::ChunkKind::CallArgumentInternalName,
escapeKeyword(LocalName.str(), false, EscapedKeyword));
addChunkWithTextNoCopy(
CodeCompletionString::Chunk::ChunkKind::CallArgumentColon, ": ");
}
}
// 'inout' arguments are printed specially.
if (IsInOut) {
addChunkWithTextNoCopy(
CodeCompletionString::Chunk::ChunkKind::Ampersand, "&");
Ty = Ty->getInOutObjectType();
}
// If the parameter is of the type @autoclosure ()->output, then the
// code completion should show the parameter of the output type
// instead of the function type ()->output.
if (IsAutoClosure) {
// 'Ty' may be ErrorType.
if (auto funcTy = Ty->getAs<FunctionType>())
Ty = funcTy->getResult();
}
PrintOptions PO;
PO.SkipAttributes = true;
PO.PrintOptionalAsImplicitlyUnwrapped = IsIUO;
PO.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::WithoutOpaqueKeyword;
if (ContextTy)
PO.setBaseType(ContextTy);
if (shouldAnnotateResults()) {
withNestedGroup(ChunkKind::CallArgumentTypeBegin, [&]() {
CodeCompletionStringPrinter printer(*this);
auto TL = TypeLoc::withoutLoc(Ty);
printer.printTypePre(TL);
Ty->print(printer, PO);
printer.printTypePost(TL);
});
} else {
std::string TypeName = Ty->getString(PO);
addChunkWithText(ChunkKind::CallArgumentType, TypeName);
}
if (HasDefault) {
withNestedGroup(ChunkKind::CallArgumentDefaultBegin, []() {
// Possibly add the actual value in the future
});
}
// Look through optional types and type aliases to find out if we have
// function type.
Ty = Ty->lookThroughAllOptionalTypes();
if (auto AFT = Ty->getAs<AnyFunctionType>()) {
// If this is a closure type, add ChunkKind::CallArgumentClosureType or
// ChunkKind::CallArgumentClosureExpr for labeled trailing closures.
PrintOptions PO;
PO.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::None;
PO.SkipAttributes = true;
PO.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::WithoutOpaqueKeyword;
PO.AlwaysTryPrintParameterLabels = true;
if (ContextTy)
PO.setBaseType(ContextTy);
if (IsLabeledTrailingClosure) {
// Expand the closure body.
SmallString<32> buffer;
llvm::raw_svector_ostream OS(buffer);
bool firstParam = true;
for (const auto &param : AFT->getParams()) {
if (!firstParam)
OS << ", ";
firstParam = false;
if (param.hasLabel()) {
OS << param.getLabel();
} else if (param.hasInternalLabel()) {
OS << param.getInternalLabel();
} else {
OS << "<#";
if (param.isInOut())
OS << "inout ";
OS << param.getPlainType()->getString(PO);
if (param.isVariadic())
OS << "...";
OS << "#>";
}
}
if (!firstParam)
OS << " in";
addChunkWithText(
CodeCompletionString::Chunk::ChunkKind::CallArgumentClosureExpr,
OS.str());
} else {
// Add the closure type.
addChunkWithText(
CodeCompletionString::Chunk::ChunkKind::CallArgumentClosureType,
AFT->getString(PO));
}
}
if (IsVarArg)
addEllipsis();
--CurrentNestingLevel;
}
void CodeCompletionResultBuilder::addTypeAnnotation(Type T, PrintOptions PO,
StringRef suffix) {
T = T->getReferenceStorageReferent();
// Replace '()' with 'Void'.
if (T->isVoid())
T = T->getASTContext().getVoidDecl()->getDeclaredInterfaceType();
if (shouldAnnotateResults()) {
withNestedGroup(CodeCompletionString::Chunk::ChunkKind::TypeAnnotationBegin,
[&]() {
CodeCompletionStringPrinter printer(*this);
auto TL = TypeLoc::withoutLoc(T);
printer.printTypePre(TL);
T->print(printer, PO);
printer.printTypePost(TL);
if (!suffix.empty())
printer.printText(suffix);
});
} else {
auto str = T.getString(PO);
if (!suffix.empty())
str += suffix.str();
addTypeAnnotation(str);
}
}
StringRef CodeCompletionContext::copyString(StringRef Str) {
return ::copyString(*CurrentResults.Allocator, Str);
}
bool shouldCopyAssociatedUSRForDecl(const ValueDecl *VD) {
// Avoid trying to generate a USR for some declaration types.
if (isa<AbstractTypeParamDecl>(VD) && !isa<AssociatedTypeDecl>(VD))
return false;
if (isa<ParamDecl>(VD))
return false;
if (isa<ModuleDecl>(VD))
return false;
if (VD->hasClangNode() && !VD->getClangDecl())
return false;
return true;
}
template <typename FnTy>
static void walkValueDeclAndOverriddenDecls(const Decl *D, const FnTy &Fn) {
if (auto *VD = dyn_cast<ValueDecl>(D)) {
Fn(VD);
walkOverriddenDecls(VD, Fn);
}
}
ArrayRef<StringRef> copyAssociatedUSRs(llvm::BumpPtrAllocator &Allocator,
const Decl *D) {
llvm::SmallVector<StringRef, 4> USRs;
walkValueDeclAndOverriddenDecls(D, [&](llvm::PointerUnion<const ValueDecl*,
const clang::NamedDecl*> OD) {
llvm::SmallString<128> SS;
bool Ignored = true;
if (auto *OVD = OD.dyn_cast<const ValueDecl*>()) {
if (shouldCopyAssociatedUSRForDecl(OVD)) {
llvm::raw_svector_ostream OS(SS);
Ignored = printValueDeclUSR(OVD, OS);
}
} else if (auto *OND = OD.dyn_cast<const clang::NamedDecl*>()) {
Ignored = clang::index::generateUSRForDecl(OND, SS);
}
if (!Ignored)
USRs.push_back(copyString(Allocator, SS));
});
if (!USRs.empty())
return copyArray(Allocator, ArrayRef<StringRef>(USRs));
return ArrayRef<StringRef>();
}
CodeCompletionResult::CodeCompletionResult(
const ContextFreeCodeCompletionResult &ContextFree,
SemanticContextKind SemanticContext, CodeCompletionFlair Flair,
uint8_t NumBytesToErase, const ExpectedTypeContext *TypeContext,
const DeclContext *DC, ContextualNotRecommendedReason NotRecommended,
CodeCompletionDiagnosticSeverity DiagnosticSeverity,
StringRef DiagnosticMessage)
: ContextFree(ContextFree), SemanticContext(SemanticContext),
Flair(Flair.toRaw()), NotRecommended(NotRecommended),
DiagnosticSeverity(DiagnosticSeverity),
DiagnosticMessage(DiagnosticMessage), NumBytesToErase(NumBytesToErase),
TypeDistance(
ContextFree.getResultType().calculateTypeRelation(TypeContext, DC)) {}
CodeCompletionOperatorKind
ContextFreeCodeCompletionResult::getCodeCompletionOperatorKind(
const CodeCompletionString *str) {
StringRef name = str->getFirstTextChunk(/*includeLeadingPunctuation=*/true);
using CCOK = CodeCompletionOperatorKind;
using OpPair = std::pair<StringRef, CCOK>;
// This list must be kept in alphabetical order.
static OpPair ops[] = {
std::make_pair("!", CCOK::Bang),
std::make_pair("!=", CCOK::NotEq),
std::make_pair("!==", CCOK::NotEqEq),
std::make_pair("%", CCOK::Modulo),
std::make_pair("%=", CCOK::ModuloEq),
std::make_pair("&", CCOK::Amp),
std::make_pair("&&", CCOK::AmpAmp),
std::make_pair("&*", CCOK::AmpStar),
std::make_pair("&+", CCOK::AmpPlus),
std::make_pair("&-", CCOK::AmpMinus),
std::make_pair("&=", CCOK::AmpEq),
std::make_pair("(", CCOK::LParen),
std::make_pair("*", CCOK::Star),
std::make_pair("*=", CCOK::StarEq),
std::make_pair("+", CCOK::Plus),
std::make_pair("+=", CCOK::PlusEq),
std::make_pair("-", CCOK::Minus),
std::make_pair("-=", CCOK::MinusEq),
std::make_pair(".", CCOK::Dot),
std::make_pair("...", CCOK::DotDotDot),
std::make_pair("..<", CCOK::DotDotLess),
std::make_pair("/", CCOK::Slash),
std::make_pair("/=", CCOK::SlashEq),
std::make_pair("<", CCOK::Less),
std::make_pair("<<", CCOK::LessLess),
std::make_pair("<<=", CCOK::LessLessEq),
std::make_pair("<=", CCOK::LessEq),
std::make_pair("=", CCOK::Eq),
std::make_pair("==", CCOK::EqEq),
std::make_pair("===", CCOK::EqEqEq),
std::make_pair(">", CCOK::Greater),
std::make_pair(">=", CCOK::GreaterEq),
std::make_pair(">>", CCOK::GreaterGreater),
std::make_pair(">>=", CCOK::GreaterGreaterEq),
std::make_pair("?.", CCOK::QuestionDot),
std::make_pair("^", CCOK::Caret),
std::make_pair("^=", CCOK::CaretEq),
std::make_pair("|", CCOK::Pipe),
std::make_pair("|=", CCOK::PipeEq),
std::make_pair("||", CCOK::PipePipe),
std::make_pair("~=", CCOK::TildeEq),
};
static auto opsSize = sizeof(ops) / sizeof(ops[0]);
auto I = std::lower_bound(
ops, &ops[opsSize], std::make_pair(name, CCOK::None),
[](const OpPair &a, const OpPair &b) { return a.first < b.first; });
if (I == &ops[opsSize] || I->first != name)
return CCOK::Unknown;
return I->second;
}
CodeCompletionResult *CodeCompletionResultBuilder::takeResult() {
auto *CCS = CodeCompletionString::create(*Sink.Allocator, Chunks);
CodeCompletionDiagnosticSeverity ContextFreeDiagnosticSeverity =
CodeCompletionDiagnosticSeverity::None;
StringRef ContextFreeDiagnosticMessage;
if (ContextFreeNotRecReason != ContextFreeNotRecommendedReason::None) {
// FIXME: We should generate the message lazily.
if (const auto *VD = dyn_cast<ValueDecl>(AssociatedDecl)) {
CodeCompletionDiagnosticSeverity severity;
SmallString<256> message;
llvm::raw_svector_ostream messageOS(message);
if (!getContextFreeCompletionDiagnostics(ContextFreeNotRecReason, VD,
severity, messageOS)) {
ContextFreeDiagnosticSeverity = severity;
ContextFreeDiagnosticMessage = copyString(*Sink.Allocator, message);
}
}
}
/// This variable should be initialized by all the switch cases below.
ContextFreeCodeCompletionResult *ContextFreeResult = nullptr;
switch (Kind) {
case CodeCompletionResultKind::Declaration: {
StringRef ModuleName;
if (CurrentModule) {
if (Sink.LastModule.first == CurrentModule.getOpaqueValue()) {
ModuleName = Sink.LastModule.second;
} else {
if (auto *C = CurrentModule.dyn_cast<const clang::Module *>()) {
ModuleName = copyString(*Sink.Allocator, C->getFullModuleName());
} else {
ModuleName = copyString(
*Sink.Allocator,
CurrentModule.get<const swift::ModuleDecl *>()->getName().str());
}
Sink.LastModule.first = CurrentModule.getOpaqueValue();
Sink.LastModule.second = ModuleName;
}
}
ContextFreeResult = ContextFreeCodeCompletionResult::createDeclResult(
*Sink.Allocator, CCS, AssociatedDecl, ModuleName,
copyString(*Sink.Allocator, BriefDocComment),
copyAssociatedUSRs(*Sink.Allocator, AssociatedDecl), ResultType,
ContextFreeNotRecReason, ContextFreeDiagnosticSeverity,
ContextFreeDiagnosticMessage);
break;
}
case CodeCompletionResultKind::Keyword:
ContextFreeResult = ContextFreeCodeCompletionResult::createKeywordResult(
*Sink.Allocator, KeywordKind, CCS,
copyString(*Sink.Allocator, BriefDocComment), ResultType);
break;
case CodeCompletionResultKind::BuiltinOperator:
case CodeCompletionResultKind::Pattern:
ContextFreeResult =
ContextFreeCodeCompletionResult::createPatternOrBuiltInOperatorResult(
*Sink.Allocator, Kind, CCS, CodeCompletionOperatorKind::None,
copyString(*Sink.Allocator, BriefDocComment), ResultType,
ContextFreeNotRecReason, ContextFreeDiagnosticSeverity,
ContextFreeDiagnosticMessage);
break;
case CodeCompletionResultKind::Literal:
assert(LiteralKind.hasValue());
ContextFreeResult = ContextFreeCodeCompletionResult::createLiteralResult(
*Sink.Allocator, *LiteralKind, CCS, ResultType);
break;
}
CodeCompletionDiagnosticSeverity ContextualDiagnosticSeverity =
CodeCompletionDiagnosticSeverity::None;
StringRef ContextualDiagnosticMessage;
if (ContextualNotRecReason != ContextualNotRecommendedReason::None) {
// FIXME: We should generate the message lazily.
if (const auto *VD = dyn_cast<ValueDecl>(AssociatedDecl)) {
CodeCompletionDiagnosticSeverity severity;
SmallString<256> message;
llvm::raw_svector_ostream messageOS(message);
if (!getContextualCompletionDiagnostics(ContextualNotRecReason, VD,
severity, messageOS)) {
ContextualDiagnosticSeverity = severity;
ContextualDiagnosticMessage = copyString(*Sink.Allocator, message);
}
}
}
assert(ContextFreeResult != nullptr &&
"ContextFreeResult should have been constructed by the switch above");
CodeCompletionResult *result = new (*Sink.Allocator) CodeCompletionResult(
*ContextFreeResult, SemanticContext, Flair, NumBytesToErase, TypeContext,
DC, ContextualNotRecReason, ContextualDiagnosticSeverity,
ContextualDiagnosticMessage);
return result;
}
void CodeCompletionResultBuilder::finishResult() {
if (!Cancelled)
Sink.Results.push_back(takeResult());
}
Optional<unsigned> CodeCompletionString::getFirstTextChunkIndex(
bool includeLeadingPunctuation) const {
for (auto i : indices(getChunks())) {
const Chunk &C = getChunks()[i];
switch (C.getKind()) {
using ChunkKind = Chunk::ChunkKind;
case ChunkKind::Text:
// Skip white-space only chunks.
if (C.getText().find_first_not_of(" \r\n") == StringRef::npos)
continue;
return i;
case ChunkKind::CallArgumentName:
case ChunkKind::CallArgumentInternalName:
case ChunkKind::ParameterDeclExternalName:
case ChunkKind::ParameterDeclLocalName:
case ChunkKind::ParameterDeclColon:
case ChunkKind::GenericParameterClauseBegin:
case ChunkKind::GenericRequirementClauseBegin:
case ChunkKind::GenericParameterName:
case ChunkKind::LeftParen:
case ChunkKind::LeftBracket:
case ChunkKind::Equal:
case ChunkKind::DeclAttrParamKeyword:
case ChunkKind::DeclAttrKeyword:
case ChunkKind::Keyword:
case ChunkKind::Attribute:
case ChunkKind::BaseName:
case ChunkKind::TypeIdSystem:
case ChunkKind::TypeIdUser:
case ChunkKind::CallArgumentBegin:
case ChunkKind::DefaultArgumentClauseBegin:
case ChunkKind::ParameterDeclBegin:
case ChunkKind::EffectsSpecifierClauseBegin:
case ChunkKind::DeclResultTypeClauseBegin:
case ChunkKind::AttributeAndModifierListBegin:
return i;
case ChunkKind::Dot:
case ChunkKind::ExclamationMark:
case ChunkKind::QuestionMark:
if (includeLeadingPunctuation)
return i;
continue;
case ChunkKind::RightParen:
case ChunkKind::RightBracket:
case ChunkKind::LeftAngle:
case ChunkKind::RightAngle:
case ChunkKind::Ellipsis:
case ChunkKind::Comma:
case ChunkKind::Ampersand:
case ChunkKind::Whitespace:
case ChunkKind::AccessControlKeyword:
case ChunkKind::OverrideKeyword:
case ChunkKind::EffectsSpecifierKeyword:
case ChunkKind::DeclIntroducer:
case ChunkKind::CallArgumentColon:
case ChunkKind::CallArgumentTypeBegin:
case ChunkKind::CallArgumentType:
case ChunkKind::CallArgumentDefaultBegin:
case ChunkKind::CallArgumentClosureType:
case ChunkKind::CallArgumentClosureExpr:
case ChunkKind::ParameterDeclTypeBegin:
case ChunkKind::DeclAttrParamColon:
case ChunkKind::OptionalBegin:
case ChunkKind::GenericParameterBegin:
case ChunkKind::DynamicLookupMethodCallTail:
case ChunkKind::OptionalMethodCallTail:
case ChunkKind::TypeAnnotation:
case ChunkKind::TypeAnnotationBegin:
continue;
case ChunkKind::BraceStmtWithCursor:
llvm_unreachable("should have already extracted the text");
}
}
return None;
}
StringRef
CodeCompletionString::getFirstTextChunk(bool includeLeadingPunctuation) const {
Optional<unsigned> Idx = getFirstTextChunkIndex(includeLeadingPunctuation);
if (Idx.hasValue())
return getChunks()[*Idx].getText();
return StringRef();
}
std::vector<CodeCompletionResult *>
CodeCompletionContext::sortCompletionResults(
ArrayRef<CodeCompletionResult *> Results) {
std::vector<CodeCompletionResult *> SortedResults(Results.begin(),
Results.end());
struct ResultAndName {
CodeCompletionResult *result;
std::string name;
};
// Caching the name of each field is important to avoid unnecessary calls to
// CodeCompletionString::getName().
std::vector<ResultAndName> nameCache(SortedResults.size());
for (unsigned i = 0, n = SortedResults.size(); i < n; ++i) {
auto *result = SortedResults[i];
nameCache[i].result = result;
llvm::raw_string_ostream OS(nameCache[i].name);
printCodeCompletionResultFilterName(*result, OS);
OS.flush();
}
// Sort nameCache, and then transform SortedResults to return the pointers in
// order.
std::sort(nameCache.begin(), nameCache.end(),
[](const ResultAndName &LHS, const ResultAndName &RHS) {
int Result = StringRef(LHS.name).compare_insensitive(RHS.name);
// If the case insensitive comparison is equal, then secondary
// sort order should be case sensitive.
if (Result == 0)
Result = LHS.name.compare(RHS.name);
return Result < 0;
});
llvm::transform(nameCache, SortedResults.begin(),
[](const ResultAndName &entry) { return entry.result; });
return SortedResults;
}
namespace {
class CodeCompletionCallbacksImpl : public CodeCompletionCallbacks {
CodeCompletionContext &CompletionContext;
CodeCompletionConsumer &Consumer;
CodeCompletionExpr *CodeCompleteTokenExpr = nullptr;
CompletionKind Kind = CompletionKind::None;
Expr *ParsedExpr = nullptr;
SourceLoc DotLoc;
TypeLoc ParsedTypeLoc;
DeclContext *CurDeclContext = nullptr;
DeclAttrKind AttrKind;
/// In situations when \c SyntaxKind hints or determines
/// completions, i.e. a precedence group attribute, this
/// can be set and used to control the code completion scenario.
SyntaxKind SyntxKind;
int AttrParamIndex;
bool IsInSil = false;
bool HasSpace = false;
bool ShouldCompleteCallPatternAfterParen = true;
bool PreferFunctionReferencesToCalls = false;
bool AttTargetIsIndependent = false;
bool IsAtStartOfLine = false;
Optional<DeclKind> AttTargetDK;
Optional<StmtKind> ParentStmtKind;
SmallVector<StringRef, 3> ParsedKeywords;
SourceLoc introducerLoc;
std::vector<std::pair<std::string, bool>> SubModuleNameVisibilityPairs;
void addSuperKeyword(CodeCompletionResultSink &Sink) {
auto *DC = CurDeclContext->getInnermostTypeContext();
if (!DC)
return;
auto *CD = DC->getSelfClassDecl();
if (!CD)
return;
Type ST = CD->getSuperclass();
if (ST.isNull() || ST->is<ErrorType>())
return;
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::CurrentNominal,
{});
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(CurDeclContext)) {
if (AFD->getOverriddenDecl() != nullptr) {
Builder.addFlair(CodeCompletionFlairBit::CommonKeywordAtCurrentPosition);
}
}
Builder.setKeywordKind(CodeCompletionKeywordKind::kw_super);
Builder.addKeyword("super");
Builder.addTypeAnnotation(ST, PrintOptions());
}
Optional<std::pair<Type, ConcreteDeclRef>> typeCheckParsedExpr() {
assert(ParsedExpr && "should have an expression");
// Figure out the kind of type-check we'll be performing.
auto CheckKind = CompletionTypeCheckKind::Normal;
if (Kind == CompletionKind::KeyPathExprObjC)
CheckKind = CompletionTypeCheckKind::KeyPath;
// If we've already successfully type-checked the expression for some
// reason, just return the type.
// FIXME: if it's ErrorType but we've already typechecked we shouldn't
// typecheck again. rdar://21466394
if (CheckKind == CompletionTypeCheckKind::Normal &&
ParsedExpr->getType() && !ParsedExpr->getType()->is<ErrorType>()) {
return getReferencedDecl(ParsedExpr);
}
ConcreteDeclRef ReferencedDecl = nullptr;
Expr *ModifiedExpr = ParsedExpr;
if (auto T = getTypeOfCompletionContextExpr(P.Context, CurDeclContext,
CheckKind, ModifiedExpr,
ReferencedDecl)) {
// FIXME: even though we don't apply the solution, the type checker may
// modify the original expression. We should understand what effect that
// may have on code completion.
ParsedExpr = ModifiedExpr;
return std::make_pair(*T, ReferencedDecl);
}
return None;
}
/// \returns true on success, false on failure.
bool typecheckParsedType() {
assert(ParsedTypeLoc.getTypeRepr() && "should have a TypeRepr");
if (ParsedTypeLoc.wasValidated() && !ParsedTypeLoc.isError()) {
return true;
}
const auto ty = swift::performTypeResolution(
ParsedTypeLoc.getTypeRepr(), P.Context,
/*isSILMode=*/false,
/*isSILType=*/false,
CurDeclContext->getGenericEnvironmentOfContext(),
/*GenericParams=*/nullptr,
CurDeclContext,
/*ProduceDiagnostics=*/false);
if (!ty->hasError()) {
ParsedTypeLoc.setType(CurDeclContext->mapTypeIntoContext(ty));
return true;
}
ParsedTypeLoc.setType(ty);
// It doesn't type check as a type, so see if it's a qualifying module name.
if (auto *ITR = dyn_cast<IdentTypeRepr>(ParsedTypeLoc.getTypeRepr())) {
const auto &componentRange = ITR->getComponentRange();
// If it has more than one component, it can't be a module name.
if (std::distance(componentRange.begin(), componentRange.end()) != 1)
return false;
const auto &component = componentRange.front();
ImportPath::Module::Builder builder(
component->getNameRef().getBaseIdentifier(),
component->getLoc());
if (auto Module = Context.getLoadedModule(builder.get()))
ParsedTypeLoc.setType(ModuleType::get(Module));
return true;
}
return false;
}
public:
CodeCompletionCallbacksImpl(Parser &P,
CodeCompletionContext &CompletionContext,
CodeCompletionConsumer &Consumer)
: CodeCompletionCallbacks(P), CompletionContext(CompletionContext),
Consumer(Consumer) {
}
void setAttrTargetDeclKind(Optional<DeclKind> DK) override {
if (DK == DeclKind::PatternBinding)
DK = DeclKind::Var;
else if (DK == DeclKind::Param)
// For params, consider the attribute is always for the decl.
AttTargetIsIndependent = false;
if (!AttTargetIsIndependent)
AttTargetDK = DK;
}
void completeDotExpr(CodeCompletionExpr *E, SourceLoc DotLoc) override;
void completeStmtOrExpr(CodeCompletionExpr *E) override;
void completePostfixExprBeginning(CodeCompletionExpr *E) override;
void completeForEachSequenceBeginning(CodeCompletionExpr *E) override;
void completePostfixExpr(Expr *E, bool hasSpace) override;
void completePostfixExprParen(Expr *E, Expr *CodeCompletionE) override;
void completeExprKeyPath(KeyPathExpr *KPE, SourceLoc DotLoc) override;
void completeTypeDeclResultBeginning() override;
void completeTypeSimpleBeginning() override;
void completeTypeIdentifierWithDot(IdentTypeRepr *ITR) override;
void completeTypeIdentifierWithoutDot(IdentTypeRepr *ITR) override;
void completeCaseStmtKeyword() override;
void completeCaseStmtBeginning(CodeCompletionExpr *E) override;
void completeDeclAttrBeginning(bool Sil, bool isIndependent) override;
void completeDeclAttrParam(DeclAttrKind DK, int Index) override;
void completeEffectsSpecifier(bool hasAsync, bool hasThrows) override;
void completeInPrecedenceGroup(SyntaxKind SK) override;
void completeNominalMemberBeginning(
SmallVectorImpl<StringRef> &Keywords, SourceLoc introducerLoc) override;
void completeAccessorBeginning(CodeCompletionExpr *E) override;
void completePoundAvailablePlatform() override;
void completeImportDecl(ImportPath::Builder &Path) override;
void completeUnresolvedMember(CodeCompletionExpr *E,
SourceLoc DotLoc) override;
void completeCallArg(CodeCompletionExpr *E, bool isFirst) override;
void completeLabeledTrailingClosure(CodeCompletionExpr *E,
bool isAtStartOfLine) override;
bool canPerformCompleteLabeledTrailingClosure() const override {
return true;
}
void completeReturnStmt(CodeCompletionExpr *E) override;
void completeYieldStmt(CodeCompletionExpr *E,
Optional<unsigned> yieldIndex) override;
void completeAfterPoundExpr(CodeCompletionExpr *E,
Optional<StmtKind> ParentKind) override;
void completeAfterPoundDirective() override;
void completePlatformCondition() override;
void completeGenericRequirement() override;
void completeAfterIfStmt(bool hasElse) override;
void completeStmtLabel(StmtKind ParentKind) override;
void completeForEachPatternBeginning(bool hasTry, bool hasAwait) override;
void completeTypeAttrBeginning() override;
void doneParsing() override;
private:
void addKeywords(CodeCompletionResultSink &Sink, bool MaybeFuncBody);
bool trySolverCompletion(bool MaybeFuncBody);
};
} // end anonymous namespace
namespace {
static bool isTopLevelSubcontext(const DeclContext *DC) {
for (; DC && DC->isLocalContext(); DC = DC->getParent()) {
switch (DC->getContextKind()) {
case DeclContextKind::TopLevelCodeDecl:
return true;
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::EnumElementDecl:
return false;
default:
continue;
}
}
return false;
}
static KnownProtocolKind
protocolForLiteralKind(CodeCompletionLiteralKind kind) {
switch (kind) {
case CodeCompletionLiteralKind::ArrayLiteral:
return KnownProtocolKind::ExpressibleByArrayLiteral;
case CodeCompletionLiteralKind::BooleanLiteral:
return KnownProtocolKind::ExpressibleByBooleanLiteral;
case CodeCompletionLiteralKind::ColorLiteral:
return KnownProtocolKind::ExpressibleByColorLiteral;
case CodeCompletionLiteralKind::ImageLiteral:
return KnownProtocolKind::ExpressibleByImageLiteral;
case CodeCompletionLiteralKind::DictionaryLiteral:
return KnownProtocolKind::ExpressibleByDictionaryLiteral;
case CodeCompletionLiteralKind::IntegerLiteral:
return KnownProtocolKind::ExpressibleByIntegerLiteral;
case CodeCompletionLiteralKind::NilLiteral:
return KnownProtocolKind::ExpressibleByNilLiteral;
case CodeCompletionLiteralKind::StringLiteral:
return KnownProtocolKind::ExpressibleByUnicodeScalarLiteral;
case CodeCompletionLiteralKind::Tuple:
llvm_unreachable("no such protocol kind");
}
llvm_unreachable("Unhandled CodeCompletionLiteralKind in switch.");
}
static Type
defaultTypeLiteralKind(CodeCompletionLiteralKind kind, ASTContext &Ctx) {
switch (kind) {
case CodeCompletionLiteralKind::BooleanLiteral:
return Ctx.getBoolType();
case CodeCompletionLiteralKind::IntegerLiteral:
return Ctx.getIntType();
case CodeCompletionLiteralKind::StringLiteral:
return Ctx.getStringType();
case CodeCompletionLiteralKind::ArrayLiteral:
return Ctx.getArrayDecl()->getDeclaredType();
case CodeCompletionLiteralKind::DictionaryLiteral:
return Ctx.getDictionaryDecl()->getDeclaredType();
case CodeCompletionLiteralKind::NilLiteral:
case CodeCompletionLiteralKind::ColorLiteral:
case CodeCompletionLiteralKind::ImageLiteral:
case CodeCompletionLiteralKind::Tuple:
return Type();
}
llvm_unreachable("Unhandled CodeCompletionLiteralKind in switch.");
}
/// Whether funcType has a single argument (not including defaulted arguments)
/// that is of type () -> ().
static bool hasTrivialTrailingClosure(const FuncDecl *FD,
AnyFunctionType *funcType) {
ParameterListInfo paramInfo(funcType->getParams(), FD,
/*skipCurriedSelf*/ FD->hasCurriedSelf());
if (paramInfo.size() - paramInfo.numNonDefaultedParameters() == 1) {
auto param = funcType->getParams().back();
if (!param.isAutoClosure()) {
if (auto Fn = param.getOldType()->getAs<AnyFunctionType>()) {
return Fn->getParams().empty() && Fn->getResult()->isVoid();
}
}
}
return false;
}
/// Returns \c true if \p DC can handles async call.
static bool canDeclContextHandleAsync(const DeclContext *DC) {
if (auto *func = dyn_cast<AbstractFunctionDecl>(DC))
return func->isAsyncContext();
if (auto *closure = dyn_cast<ClosureExpr>(DC)) {
// See if the closure has 'async' function type.
if (auto closureType = closure->getType())
if (auto fnType = closureType->getAs<AnyFunctionType>())
if (fnType->isAsync())
return true;
// If the closure doesn't contain any async call in the body, closure itself
// doesn't have 'async' type even if 'async' closure is expected.
// func foo(fn: () async -> Void)
// foo { <HERE> }
// In this case, the closure is wrapped with a 'FunctionConversionExpr'
// which has 'async' function type.
struct AsyncClosureChecker: public ASTWalker {
const ClosureExpr *Target;
bool Result = false;
AsyncClosureChecker(const ClosureExpr *Target) : Target(Target) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (E == Target)
return {false, E};
if (auto conversionExpr = dyn_cast<FunctionConversionExpr>(E)) {
if (conversionExpr->getSubExpr() == Target) {
if (conversionExpr->getType()->is<AnyFunctionType>() &&
conversionExpr->getType()->castTo<AnyFunctionType>()->isAsync())
Result = true;
return {false, E};
}
}
return {true, E};
}
} checker(closure);
closure->getParent()->walkContext(checker);
return checker.Result;
}
return false;
}
/// Returns \c true only if the completion is happening for top-level
/// declrarations. i.e.:
///
/// if condition {
/// #false#
/// }
/// expr.#false#
///
/// #true#
///
/// struct S {
/// #false#
/// func foo() {
/// #false#
/// }
/// }
static bool isCodeCompletionAtTopLevel(const DeclContext *DC) {
if (DC->isModuleScopeContext())
return true;
// CC token at top-level is parsed as an expression. If the only element
// body of the TopLevelCodeDecl is a CodeCompletionExpr without a base
// expression, the user might be writing a top-level declaration.
if (const TopLevelCodeDecl *TLCD = dyn_cast<const TopLevelCodeDecl>(DC)) {
auto body = TLCD->getBody();
if (!body || body->empty())
return true;
if (body->getElements().size() > 1)
return false;
auto expr = body->getFirstElement().dyn_cast<Expr *>();
if (!expr)
return false;
if (CodeCompletionExpr *CCExpr = dyn_cast<CodeCompletionExpr>(expr)) {
if (CCExpr->getBase() == nullptr)
return true;
}
}
return false;
}
/// Returns \c true if the completion is happening in local context such as
/// inside function bodies. i.e.:
///
/// if condition {
/// #true#
/// }
/// expr.#true#
///
/// #false#
///
/// struct S {
/// #false#
/// func foo() {
/// #true#
/// }
/// }
static bool isCompletionDeclContextLocalContext(DeclContext *DC) {
if (!DC->isLocalContext())
return false;
if (isCodeCompletionAtTopLevel(DC))
return false;
return true;
}
/// Return \c true if the completion happens at top-level of a library file.
static bool isCodeCompletionAtTopLevelOfLibraryFile(const DeclContext *DC) {
if (DC->getParentSourceFile()->isScriptMode())
return false;
return isCodeCompletionAtTopLevel(DC);
}
/// Build completions by doing visible decl lookup from a context.
class CompletionLookup final : public swift::VisibleDeclConsumer {
CodeCompletionResultSink &Sink;
ASTContext &Ctx;
const DeclContext *CurrDeclContext;
ModuleDecl *CurrModule;
ClangImporter *Importer;
CodeCompletionContext *CompletionContext;
enum class LookupKind {
ValueExpr,
ValueInDeclContext,
EnumElement,
Type,
TypeInDeclContext,
ImportFromModule,
GenericRequirement,
};
LookupKind Kind;
/// Type of the user-provided expression for LookupKind::ValueExpr
/// completions.
Type ExprType;
/// Whether the expr is of statically inferred metatype.
bool IsStaticMetatype = false;
/// User-provided base type for LookupKind::Type completions.
Type BaseType;
/// Expected types of the code completion expression.
ExpectedTypeContext expectedTypeContext;
bool CanCurrDeclContextHandleAsync = false;
bool HaveDot = false;
bool IsUnwrappedOptional = false;
SourceLoc DotLoc;
bool NeedLeadingDot = false;
bool NeedOptionalUnwrap = false;
unsigned NumBytesToEraseForOptionalUnwrap = 0;
bool HaveLParen = false;
bool IsSuperRefExpr = false;
bool IsSelfRefExpr = false;
bool IsKeyPathExpr = false;
bool IsSwiftKeyPathExpr = false;
bool IsAfterSwiftKeyPathRoot = false;
bool IsDynamicLookup = false;
bool IsCrossActorReference = false;
bool PreferFunctionReferencesToCalls = false;
bool HaveLeadingSpace = false;
bool CheckForDuplicates = false;
llvm::DenseSet<std::pair<const Decl *, Type>> PreviouslySeen;
bool IncludeInstanceMembers = false;
/// True if we are code completing inside a static method.
bool InsideStaticMethod = false;
/// Innermost method that the code completion point is in.
const AbstractFunctionDecl *CurrentMethod = nullptr;
Optional<SemanticContextKind> ForcedSemanticContext = None;
bool IsUnresolvedMember = false;
public:
bool FoundFunctionCalls = false;
bool FoundFunctionsWithoutFirstKeyword = false;
private:
bool isForCaching() const {
return Kind == LookupKind::ImportFromModule;
}
void foundFunction(const AbstractFunctionDecl *AFD) {
FoundFunctionCalls = true;
const DeclName Name = AFD->getName();
auto ArgNames = Name.getArgumentNames();
if (ArgNames.empty())
return;
if (ArgNames[0].empty())
FoundFunctionsWithoutFirstKeyword = true;
}
void foundFunction(const AnyFunctionType *AFT) {
FoundFunctionCalls = true;
auto Params = AFT->getParams();
if (Params.empty())
return;
if (Params.size() == 1 && !Params[0].hasLabel()) {
FoundFunctionsWithoutFirstKeyword = true;
return;
}
if (!Params[0].hasLabel())
FoundFunctionsWithoutFirstKeyword = true;
}
/// Returns \c true if \p TAD is usable as a first type of a requirement in
/// \c where clause for a context.
/// \p selfTy must be a \c Self type of the context.
static bool canBeUsedAsRequirementFirstType(Type selfTy, TypeAliasDecl *TAD) {
auto T = TAD->getDeclaredInterfaceType();
auto subMap = selfTy->getMemberSubstitutionMap(TAD->getParentModule(), TAD);
T = T.subst(subMap)->getCanonicalType();
ArchetypeType *archeTy = T->getAs<ArchetypeType>();
if (!archeTy)
return false;
archeTy = archeTy->getRoot();
// For protocol, the 'archeTy' should match with the 'baseTy' which is the
// dynamic 'Self' type of the protocol. For nominal decls, 'archTy' should
// be one of the generic params in 'selfTy'. Search 'archeTy' in 'baseTy'.
return selfTy.findIf([&](Type T) { return archeTy->isEqual(T); });
}
public:
struct RequestedResultsTy {
const ModuleDecl *TheModule;
bool OnlyTypes;
bool OnlyPrecedenceGroups;
bool NeedLeadingDot;
bool IncludeModuleQualifier;
static RequestedResultsTy fromModule(const ModuleDecl *TheModule) {
return { TheModule, false, false, false, true };
}
RequestedResultsTy onlyTypes() const {
return { TheModule, true, false, NeedLeadingDot, IncludeModuleQualifier };
}
RequestedResultsTy onlyPrecedenceGroups() const {
assert(!OnlyTypes && "onlyTypes() already includes precedence groups");
return { TheModule, false, true, false, true };
}
RequestedResultsTy needLeadingDot(bool NeedDot) const {
return {
TheModule, OnlyTypes, OnlyPrecedenceGroups, NeedDot,
IncludeModuleQualifier
};
}
RequestedResultsTy withModuleQualifier(bool IncludeModule) const {
return {
TheModule, OnlyTypes, OnlyPrecedenceGroups, NeedLeadingDot,
IncludeModule
};
}
static RequestedResultsTy toplevelResults() {
return { nullptr, false, false, false, true };
}
};
std::vector<RequestedResultsTy> RequestedCachedResults;
public:
CompletionLookup(CodeCompletionResultSink &Sink,
ASTContext &Ctx,
const DeclContext *CurrDeclContext,
CodeCompletionContext *CompletionContext = nullptr)
: Sink(Sink), Ctx(Ctx), CurrDeclContext(CurrDeclContext),
CurrModule(CurrDeclContext ? CurrDeclContext->getParentModule()
: nullptr),
Importer(static_cast<ClangImporter *>(CurrDeclContext->getASTContext().
getClangModuleLoader())),
CompletionContext(CompletionContext) {
// Determine if we are doing code completion inside a static method.
if (CurrDeclContext) {
CurrentMethod = CurrDeclContext->getInnermostMethodContext();
if (auto *FD = dyn_cast_or_null<FuncDecl>(CurrentMethod))
InsideStaticMethod = FD->isStatic();
CanCurrDeclContextHandleAsync = canDeclContextHandleAsync(CurrDeclContext);
}
}
void setHaveDot(SourceLoc DotLoc) {
HaveDot = true;
this->DotLoc = DotLoc;
}
void setIsUnwrappedOptional(bool value) {
IsUnwrappedOptional = value;
}
void setIsStaticMetatype(bool value) {
IsStaticMetatype = value;
}
void setExpectedTypes(ArrayRef<Type> Types,
bool isImplicitSingleExpressionReturn,
bool preferNonVoid = false) {
expectedTypeContext.setIsImplicitSingleExpressionReturn(
isImplicitSingleExpressionReturn);
expectedTypeContext.setPreferNonVoid(preferNonVoid);
expectedTypeContext.setPossibleTypes(Types);
}
void setIdealExpectedType(Type Ty) { expectedTypeContext.setIdealType(Ty); }
CodeCompletionContext::TypeContextKind typeContextKind() const {
if (expectedTypeContext.empty() &&
!expectedTypeContext.getPreferNonVoid()) {
return CodeCompletionContext::TypeContextKind::None;
} else if (expectedTypeContext.isImplicitSingleExpressionReturn()) {
return CodeCompletionContext::TypeContextKind::SingleExpressionBody;
} else {
return CodeCompletionContext::TypeContextKind::Required;
}
}
bool needDot() const {
return NeedLeadingDot;
}
void setHaveLParen(bool Value) {
HaveLParen = Value;
}
void setIsSuperRefExpr(bool Value = true) {
IsSuperRefExpr = Value;
}
void setIsSelfRefExpr(bool value) { IsSelfRefExpr = value; }
void setIsKeyPathExpr() {
IsKeyPathExpr = true;
}
void shouldCheckForDuplicates(bool value = true) {
CheckForDuplicates = value;
}
void setIsSwiftKeyPathExpr(bool onRoot) {
IsSwiftKeyPathExpr = true;
IsAfterSwiftKeyPathRoot = onRoot;
}
void setIsDynamicLookup() {
IsDynamicLookup = true;
}
void setPreferFunctionReferencesToCalls() {
PreferFunctionReferencesToCalls = true;
}
void setHaveLeadingSpace(bool value) { HaveLeadingSpace = value; }
void includeInstanceMembers() {
IncludeInstanceMembers = true;
}
bool isHiddenModuleName(Identifier Name) {
return (Name.str().startswith("_") ||
Name == Ctx.SwiftShimsModuleName ||
Name.str() == SWIFT_ONONE_SUPPORT);
}
void addSubModuleNames(std::vector<std::pair<std::string, bool>>
&SubModuleNameVisibilityPairs) {
for (auto &Pair : SubModuleNameVisibilityPairs) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
SemanticContextKind::None, expectedTypeContext);
auto MD = ModuleDecl::create(Ctx.getIdentifier(Pair.first), Ctx);
Builder.setAssociatedDecl(MD);
Builder.addBaseName(MD->getNameStr());
Builder.addTypeAnnotation("Module");
if (Pair.second)
Builder.setContextualNotRecommended(
ContextualNotRecommendedReason::RedundantImport);
}
}
void collectImportedModules(llvm::StringSet<> &directImportedModules,
llvm::StringSet<> &allImportedModules) {
SmallVector<ImportedModule, 16> Imported;
SmallVector<ImportedModule, 16> FurtherImported;
CurrDeclContext->getParentSourceFile()->getImportedModules(
Imported,
{ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::ImplementationOnly});
for (ImportedModule &imp : Imported)
directImportedModules.insert(imp.importedModule->getNameStr());
while (!Imported.empty()) {
ModuleDecl *MD = Imported.back().importedModule;
Imported.pop_back();
if (!allImportedModules.insert(MD->getNameStr()).second)
continue;
FurtherImported.clear();
MD->getImportedModules(FurtherImported,
ModuleDecl::ImportFilterKind::Exported);
Imported.append(FurtherImported.begin(), FurtherImported.end());
}
}
void addModuleName(ModuleDecl *MD,
Optional<ContextualNotRecommendedReason> R = None) {
// Don't add underscored cross-import overlay modules.
if (MD->getDeclaringModuleIfCrossImportOverlay())
return;
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration, SemanticContextKind::None,
expectedTypeContext);
Builder.setAssociatedDecl(MD);
auto moduleName = MD->getName();
// This checks if module aliasing was used. For example, when editing
// `import ...`, and `-module-alias Foo=Bar` was passed, we want to show
// Foo as an option to import, instead of Bar (name of the binary), as
// Foo is the name that should appear in source files.
auto aliasedName = Ctx.getRealModuleName(moduleName, ASTContext::ModuleAliasLookupOption::aliasFromRealName);
if (aliasedName != moduleName && // check if module aliasing was applied
!aliasedName.empty()) { // check an alias mapped to the binary name exists
moduleName = aliasedName; // if so, use the aliased name
}
Builder.addBaseName(moduleName.str());
Builder.addTypeAnnotation("Module");
if (R)
Builder.setContextualNotRecommended(*R);
}
void addImportModuleNames() {
SmallVector<Identifier, 0> ModuleNames;
Ctx.getVisibleTopLevelModuleNames(ModuleNames);
llvm::StringSet<> directImportedModules;
llvm::StringSet<> allImportedModules;
collectImportedModules(directImportedModules, allImportedModules);
auto mainModuleName = CurrModule->getName();
for (auto ModuleName : ModuleNames) {
if (ModuleName == mainModuleName || isHiddenModuleName(ModuleName))
continue;
auto MD = ModuleDecl::create(ModuleName, Ctx);
Optional<ContextualNotRecommendedReason> Reason = None;
// Imported modules are not recommended.
if (directImportedModules.contains(MD->getNameStr())) {
Reason = ContextualNotRecommendedReason::RedundantImport;
} else if (allImportedModules.contains(MD->getNameStr())) {
Reason = ContextualNotRecommendedReason::RedundantImportIndirect;
}
addModuleName(MD, Reason);
}
}
SemanticContextKind getSemanticContext(const Decl *D,
DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (ForcedSemanticContext)
return *ForcedSemanticContext;
switch (Reason) {
case DeclVisibilityKind::LocalVariable:
case DeclVisibilityKind::FunctionParameter:
case DeclVisibilityKind::GenericParameter:
return SemanticContextKind::Local;
case DeclVisibilityKind::MemberOfCurrentNominal:
return SemanticContextKind::CurrentNominal;
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
return SemanticContextKind::Super;
case DeclVisibilityKind::MemberOfOutsideNominal:
return SemanticContextKind::OutsideNominal;
case DeclVisibilityKind::VisibleAtTopLevel:
if (CurrDeclContext && D->getModuleContext() == CurrModule) {
// Treat global variables from the same source file as local when
// completing at top-level.
if (isa<VarDecl>(D) && isTopLevelSubcontext(CurrDeclContext) &&
D->getDeclContext()->getParentSourceFile() ==
CurrDeclContext->getParentSourceFile()) {
return SemanticContextKind::Local;
} else {
return SemanticContextKind::CurrentModule;
}
} else {
return SemanticContextKind::OtherModule;
}
case DeclVisibilityKind::DynamicLookup:
switch (dynamicLookupInfo.getKind()) {
case DynamicLookupInfo::None:
llvm_unreachable("invalid DynamicLookupInfo::Kind for dynamic lookup");
case DynamicLookupInfo::AnyObject:
// AnyObject results can come from different modules, including the
// current module, but we always assign them the OtherModule semantic
// context. These declarations are uniqued by signature, so it is
// totally random (determined by the hash function) which of the
// equivalent declarations (across multiple modules) we will get.
return SemanticContextKind::OtherModule;
case DynamicLookupInfo::KeyPathDynamicMember:
// Use the visibility of the underlying declaration.
// FIXME: KeyPath<AnyObject, U> !?!?
assert(dynamicLookupInfo.getKeyPathDynamicMember().originalVisibility !=
DeclVisibilityKind::DynamicLookup);
return getSemanticContext(
D, dynamicLookupInfo.getKeyPathDynamicMember().originalVisibility,
{});
}
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
llvm_unreachable("should not see this kind");
}
llvm_unreachable("unhandled kind");
}
bool isUnresolvedMemberIdealType(Type Ty) {
assert(Ty);
if (!IsUnresolvedMember)
return false;
Type idealTy = expectedTypeContext.getIdealType();
if (!idealTy)
return false;
/// Consider optional object type is the ideal.
/// For exmaple:
/// enum MyEnum { case foo, bar }
/// func foo(_: MyEnum?)
/// fooo(.<HERE>)
/// Prefer '.foo' and '.bar' over '.some' and '.none'.
idealTy = idealTy->lookThroughAllOptionalTypes();
return idealTy->isEqual(Ty);
}
void addValueBaseName(CodeCompletionResultBuilder &Builder,
DeclBaseName Name) {
auto NameStr = Name.userFacingName();
bool shouldEscapeKeywords;
if (Name.isSpecial()) {
// Special names (i.e. 'init') are always displayed as its user facing
// name.
shouldEscapeKeywords = false;
} else if (ExprType) {
// After dot. User can write any keyword after '.' except for `init` and
// `self`. E.g. 'func `init`()' must be called by 'expr.`init`()'.
shouldEscapeKeywords = NameStr == "self" || NameStr == "init";
} else {
// As primary expresson. We have to escape almost every keywords except
// for 'self' and 'Self'.
shouldEscapeKeywords = NameStr != "self" && NameStr != "Self";
}
if (!shouldEscapeKeywords) {
Builder.addBaseName(NameStr);
} else {
SmallString<16> buffer;
Builder.addBaseName(Builder.escapeKeyword(NameStr, true, buffer));
}
}
void addLeadingDot(CodeCompletionResultBuilder &Builder) {
if (NeedOptionalUnwrap) {
Builder.setNumBytesToErase(NumBytesToEraseForOptionalUnwrap);
Builder.addQuestionMark();
Builder.addLeadingDot();
return;
}
if (needDot())
Builder.addLeadingDot();
}
void addTypeAnnotation(CodeCompletionResultBuilder &Builder, Type T,
GenericSignature genericSig = GenericSignature()) {
PrintOptions PO;
PO.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::WithoutOpaqueKeyword;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
PO.setBaseType(typeContext->getDeclaredTypeInContext());
Builder.addTypeAnnotation(eraseArchetypes(T, genericSig), PO);
Builder.setResultType(T);
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
void addTypeAnnotationForImplicitlyUnwrappedOptional(
CodeCompletionResultBuilder &Builder, Type T,
GenericSignature genericSig = GenericSignature(),
bool dynamicOrOptional = false) {
std::string suffix;
// FIXME: This retains previous behavior, but in reality the type of dynamic
// lookups is IUO, not Optional as it is for the @optional attribute.
if (dynamicOrOptional) {
T = T->getOptionalObjectType();
suffix = "?";
}
PrintOptions PO;
PO.PrintOptionalAsImplicitlyUnwrapped = true;
PO.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::WithoutOpaqueKeyword;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
PO.setBaseType(typeContext->getDeclaredTypeInContext());
Builder.addTypeAnnotation(eraseArchetypes(T, genericSig), PO, suffix);
Builder.setResultType(T);
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
/// For printing in code completion results, replace archetypes with
/// protocol compositions.
///
/// FIXME: Perhaps this should be an option in PrintOptions instead.
Type eraseArchetypes(Type type, GenericSignature genericSig) {
if (!genericSig)
return type;
auto buildProtocolComposition = [&](ArrayRef<ProtocolDecl *> protos) -> Type {
SmallVector<Type, 2> types;
for (auto proto : protos)
types.push_back(proto->getDeclaredInterfaceType());
return ProtocolCompositionType::get(Ctx, types,
/*HasExplicitAnyObject=*/false);
};
if (auto *genericFuncType = type->getAs<GenericFunctionType>()) {
SmallVector<AnyFunctionType::Param, 8> erasedParams;
for (const auto &param : genericFuncType->getParams()) {
auto erasedTy = eraseArchetypes(param.getPlainType(), genericSig);
erasedParams.emplace_back(param.withType(erasedTy));
}
return GenericFunctionType::get(genericSig,
erasedParams,
eraseArchetypes(genericFuncType->getResult(), genericSig),
genericFuncType->getExtInfo());
}
return type.transform([&](Type t) -> Type {
// FIXME: Code completion should only deal with one or the other,
// and not both.
if (auto *archetypeType = t->getAs<ArchetypeType>()) {
// Don't erase opaque archetype.
if (isa<OpaqueTypeArchetypeType>(archetypeType) &&
archetypeType->isRoot())
return t;
auto protos = archetypeType->getConformsTo();
if (!protos.empty())
return buildProtocolComposition(protos);
}
if (t->isTypeParameter()) {
const auto protos = genericSig->getRequiredProtocols(t);
if (!protos.empty())
return buildProtocolComposition(protos);
}
return t;
});
}
Type getTypeOfMember(const ValueDecl *VD,
DynamicLookupInfo dynamicLookupInfo) {
switch (dynamicLookupInfo.getKind()) {
case DynamicLookupInfo::None:
return getTypeOfMember(VD, this->ExprType);
case DynamicLookupInfo::AnyObject:
return getTypeOfMember(VD, Type());
case DynamicLookupInfo::KeyPathDynamicMember: {
auto &keyPathInfo = dynamicLookupInfo.getKeyPathDynamicMember();
// Map the result of VD to keypath member lookup results.
// Given:
// struct Wrapper<T> {
// subscript<U>(dynamicMember: KeyPath<T, U>) -> Wrapped<U> { get }
// }
// struct Circle {
// var center: Point { get }
// var radius: Length { get }
// }
//
// Consider 'Wrapper<Circle>.center'.
// 'VD' is 'Circle.center' decl.
// 'keyPathInfo.subscript' is 'Wrapper<T>.subscript' decl.
// 'keyPathInfo.baseType' is 'Wrapper<Circle>' type.
// FIXME: Handle nested keypath member lookup.
// i.e. cases where 'ExprType' != 'keyPathInfo.baseType'.
auto *SD = keyPathInfo.subscript;
const auto elementTy = SD->getElementInterfaceType();
if (!elementTy->hasTypeParameter())
return elementTy;
// Map is:
// { τ_0_0(T) => Circle
// τ_1_0(U) => U }
auto subs = keyPathInfo.baseType->getMemberSubstitutions(SD);
// If the keyPath result type has type parameters, that might affect the
// subscript result type.
auto keyPathResultTy = getResultTypeOfKeypathDynamicMember(SD)->
mapTypeOutOfContext();
if (keyPathResultTy->hasTypeParameter()) {
auto keyPathRootTy = getRootTypeOfKeypathDynamicMember(SD).
subst(QueryTypeSubstitutionMap{subs},
LookUpConformanceInModule(CurrModule));
// The result type of the VD.
// i.e. 'Circle.center' => 'Point'.
auto innerResultTy = getTypeOfMember(VD, keyPathRootTy);
if (auto paramTy = keyPathResultTy->getAs<GenericTypeParamType>()) {
// Replace keyPath result type in the map with the inner result type.
// i.e. Make the map as:
// { τ_0_0(T) => Circle
// τ_1_0(U) => Point }
auto key =
paramTy->getCanonicalType()->castTo<GenericTypeParamType>();
subs[key] = innerResultTy;
} else {
// FIXME: Handle the case where the KeyPath result is generic.
// e.g. 'subscript<U>(dynamicMember: KeyPath<T, Box<U>>) -> Bag<U>'
// For now, just return the inner type.
return innerResultTy;
}
}
// Substitute the element type of the subscript using modified map.
// i.e. 'Wrapped<U>' => 'Wrapped<Point>'.
return elementTy.subst(QueryTypeSubstitutionMap{subs},
LookUpConformanceInModule(CurrModule));
}
}
llvm_unreachable("Unhandled DynamicLookupInfo Kind in switch");
}
Type getTypeOfMember(const ValueDecl *VD, Type ExprType) {
Type T = VD->getInterfaceType();
assert(!T.isNull());
if (ExprType) {
Type ContextTy = VD->getDeclContext()->getDeclaredInterfaceType();
if (ContextTy) {
// Look through lvalue types and metatypes
Type MaybeNominalType = ExprType->getRValueType();
if (auto Metatype = MaybeNominalType->getAs<MetatypeType>())
MaybeNominalType = Metatype->getInstanceType();
if (auto SelfType = MaybeNominalType->getAs<DynamicSelfType>())
MaybeNominalType = SelfType->getSelfType();
// For optional protocol requirements and dynamic dispatch,
// strip off optionality from the base type, but only if
// we're not actually completing a member of Optional.
if (!ContextTy->getOptionalObjectType() &&
MaybeNominalType->getOptionalObjectType())
MaybeNominalType = MaybeNominalType->getOptionalObjectType();
// For dynamic lookup don't substitute in the base type.
if (MaybeNominalType->isAnyObject())
return T;
// FIXME: Sometimes ExprType is the type of the member here,
// and not the type of the base. That is inconsistent and
// should be cleaned up.
if (!MaybeNominalType->mayHaveMembers())
return T;
// We can't do anything if the base type has unbound generic parameters.
if (MaybeNominalType->hasUnboundGenericType())
return T;
// For everything else, substitute in the base type.
auto Subs = MaybeNominalType->getMemberSubstitutionMap(CurrModule, VD);
// For a GenericFunctionType, we only want to substitute the
// param/result types, as otherwise we might end up with a bad generic
// signature if there are UnresolvedTypes present in the base type. Note
// we pass in DesugarMemberTypes so that we see the actual concrete type
// witnesses instead of type alias types.
if (auto *GFT = T->getAs<GenericFunctionType>()) {
T = GFT->substGenericArgs(Subs, SubstFlags::DesugarMemberTypes);
} else {
T = T.subst(Subs, SubstFlags::DesugarMemberTypes);
}
}
}
return T;
}
Type getAssociatedTypeType(const AssociatedTypeDecl *ATD) {
Type BaseTy = BaseType;
if (!BaseTy)
BaseTy = ExprType;
if (!BaseTy && CurrDeclContext)
BaseTy = CurrDeclContext->getInnermostTypeContext()
->getDeclaredTypeInContext();
if (BaseTy) {
BaseTy = BaseTy->getInOutObjectType()->getMetatypeInstanceType();
if (auto NTD = BaseTy->getAnyNominal()) {
auto *Module = NTD->getParentModule();
auto Conformance = Module->lookupConformance(
BaseTy, ATD->getProtocol());
if (Conformance.isConcrete()) {
return Conformance.getConcrete()->getTypeWitness(
const_cast<AssociatedTypeDecl *>(ATD));
}
}
}
return Type();
}
void analyzeActorIsolation(
const ValueDecl *VD, Type T, bool &implicitlyAsync,
Optional<ContextualNotRecommendedReason> &NotRecommended) {
auto isolation = getActorIsolation(const_cast<ValueDecl *>(VD));
switch (isolation.getKind()) {
case ActorIsolation::ActorInstance: {
// TODO: implicitlyThrowing here for distributed
if (IsCrossActorReference) {
implicitlyAsync = true;
// TODO: 'NotRecommended' if this is a r-value reference.
}
break;
}
case ActorIsolation::GlobalActorUnsafe:
// For "unsafe" global actor isolation, automatic 'async' only happens
// if the context has adopted concurrency.
if (!CanCurrDeclContextHandleAsync &&
!completionContextUsesConcurrencyFeatures(CurrDeclContext) &&
!CurrDeclContext->getParentModule()->isConcurrencyChecked()) {
return;
}
LLVM_FALLTHROUGH;
case ActorIsolation::GlobalActor: {
auto contextIsolation = getActorIsolationOfContext(
const_cast<DeclContext *>(CurrDeclContext));
if (contextIsolation != isolation) {
implicitlyAsync = true;
}
break;
}
case ActorIsolation::Unspecified:
case ActorIsolation::Independent:
return;
}
// If the reference is 'async', all types must be 'Sendable'.
if (CurrDeclContext->getParentModule()->isConcurrencyChecked() &&
implicitlyAsync && T) {
auto *M = CurrDeclContext->getParentModule();
if (isa<VarDecl>(VD)) {
if (!isSendableType(M, T)) {
NotRecommended = ContextualNotRecommendedReason::CrossActorReference;
}
} else {
assert(isa<FuncDecl>(VD) || isa<SubscriptDecl>(VD));
// Check if the result and the param types are all 'Sendable'.
auto *AFT = T->castTo<AnyFunctionType>();
if (!isSendableType(M, AFT->getResult())) {
NotRecommended = ContextualNotRecommendedReason::CrossActorReference;
} else {
for (auto &param : AFT->getParams()) {
Type paramType = param.getPlainType();
if (!isSendableType(M, paramType)) {
NotRecommended =
ContextualNotRecommendedReason::CrossActorReference;
break;
}
}
}
}
}
}
void addVarDeclRef(const VarDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (!VD->hasName())
return;
const Identifier Name = VD->getName();
assert(!Name.empty() && "name should not be empty");
Type VarType;
if (VD->hasInterfaceType())
VarType = getTypeOfMember(VD, dynamicLookupInfo);
Optional<ContextualNotRecommendedReason> NotRecommended;
// "not recommended" in its own getter.
if (Kind == LookupKind::ValueInDeclContext) {
if (auto accessor = dyn_cast<AccessorDecl>(CurrDeclContext)) {
if (accessor->getStorage() == VD && accessor->isGetter())
NotRecommended =
ContextualNotRecommendedReason::VariableUsedInOwnDefinition;
}
}
bool implicitlyAsync = false;
analyzeActorIsolation(VD, VarType, implicitlyAsync, NotRecommended);
if (!isForCaching() && !NotRecommended && implicitlyAsync &&
!CanCurrDeclContextHandleAsync) {
NotRecommended = ContextualNotRecommendedReason::InvalidAsyncContext;
}
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(VD, Reason, dynamicLookupInfo), expectedTypeContext);
Builder.setAssociatedDecl(VD);
addLeadingDot(Builder);
addValueBaseName(Builder, Name);
if (NotRecommended)
Builder.setContextualNotRecommended(*NotRecommended);
if (!VarType)
return;
if (auto *PD = dyn_cast<ParamDecl>(VD)) {
if (Name != Ctx.Id_self && PD->isInOut()) {
// It is useful to show inout for function parameters.
// But for 'self' it is just noise.
VarType = InOutType::get(VarType);
}
}
auto DynamicOrOptional =
IsDynamicLookup || VD->getAttrs().hasAttribute<OptionalAttr>();
if (DynamicOrOptional) {
// Values of properties that were found on a AnyObject have
// Optional<T> type. Same applies to optional members.
VarType = OptionalType::get(VarType);
}
auto genericSig =
VD->getInnermostDeclContext()->getGenericSignatureOfContext();
if (VD->isImplicitlyUnwrappedOptional())
addTypeAnnotationForImplicitlyUnwrappedOptional(
Builder, VarType, genericSig, DynamicOrOptional);
else
addTypeAnnotation(Builder, VarType, genericSig);
if (implicitlyAsync)
Builder.addAnnotatedAsync();
if (isUnresolvedMemberIdealType(VarType))
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
}
static bool hasInterestingDefaultValue(const ParamDecl *param) {
if (!param)
return false;
switch (param->getDefaultArgumentKind()) {
case DefaultArgumentKind::Normal:
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
case DefaultArgumentKind::StoredProperty:
case DefaultArgumentKind::Inherited:
return true;
case DefaultArgumentKind::None:
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME:
#include "swift/AST/MagicIdentifierKinds.def"
return false;
}
}
bool addItemWithoutDefaultArgs(const AbstractFunctionDecl *func) {
if (!func || !Sink.addCallWithNoDefaultArgs)
return false;
for (auto param : *func->getParameters()) {
if (hasInterestingDefaultValue(param))
return true;
}
return false;
}
/// Build argument patterns for calling. Returns \c true if any content was
/// added to \p Builder. If \p declParams is non-empty, the size must match
/// with \p typeParams.
bool addCallArgumentPatterns(CodeCompletionResultBuilder &Builder,
ArrayRef<AnyFunctionType::Param> typeParams,
ArrayRef<const ParamDecl *> declParams,
GenericSignature genericSig,
bool includeDefaultArgs = true) {
assert(declParams.empty() || typeParams.size() == declParams.size());
bool modifiedBuilder = false;
bool needComma = false;
// Iterate over each parameter.
for (unsigned i = 0; i != typeParams.size(); ++i) {
auto &typeParam = typeParams[i];
Identifier argName = typeParam.getLabel();
Identifier bodyName;
bool isIUO = false;
bool hasDefault = false;
if (!declParams.empty()) {
const ParamDecl *PD = declParams[i];
hasDefault = PD->isDefaultArgument();
// Skip default arguments if we're either not including them or they
// aren't interesting
if (hasDefault &&
(!includeDefaultArgs || !hasInterestingDefaultValue(PD)))
continue;
argName = PD->getArgumentName();
bodyName = PD->getParameterName();
isIUO = PD->isImplicitlyUnwrappedOptional();
}
bool isVariadic = typeParam.isVariadic();
bool isInOut = typeParam.isInOut();
bool isAutoclosure = typeParam.isAutoClosure();
Type paramTy = typeParam.getPlainType();
if (isVariadic)
paramTy = ParamDecl::getVarargBaseTy(paramTy);
Type contextTy;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
contextTy = typeContext->getDeclaredTypeInContext();
if (needComma)
Builder.addComma();
Builder.addCallArgument(argName, bodyName,
eraseArchetypes(paramTy, genericSig), contextTy,
isVariadic, isInOut, isIUO, isAutoclosure,
/*UseUnderscoreLabel=*/false,
/*IsLabeledTrailingClosure=*/false, hasDefault);
modifiedBuilder = true;
needComma = true;
}
return modifiedBuilder;
}
/// Build argument patterns for calling. Returns \c true if any content was
/// added to \p Builder. If \p Params is non-nullptr, \F
bool addCallArgumentPatterns(CodeCompletionResultBuilder &Builder,
const AnyFunctionType *AFT,
const ParameterList *Params,
GenericSignature genericSig,
bool includeDefaultArgs = true) {
ArrayRef<const ParamDecl *> declParams;
if (Params)
declParams = Params->getArray();
return addCallArgumentPatterns(Builder, AFT->getParams(), declParams,
genericSig, includeDefaultArgs);
}
static void addEffectsSpecifiers(CodeCompletionResultBuilder &Builder,
const AnyFunctionType *AFT,
const AbstractFunctionDecl *AFD,
bool forceAsync = false) {
assert(AFT != nullptr);
// 'async'.
if (forceAsync || (AFD && AFD->hasAsync()) || AFT->isAsync())
Builder.addAnnotatedAsync();
// 'throws' or 'rethrows'.
if (AFD && AFD->getAttrs().hasAttribute<RethrowsAttr>())
Builder.addAnnotatedRethrows();
else if (AFT->isThrowing())
Builder.addAnnotatedThrows();
}
void addPoundAvailable(Optional<StmtKind> ParentKind) {
if (ParentKind != StmtKind::If && ParentKind != StmtKind::Guard)
return;
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Keyword,
// FIXME: SemanticContextKind::Local is not correct.
// Use 'None' (and fix prioritization) or introduce a new context.
SemanticContextKind::Local, expectedTypeContext);
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
Builder.addBaseName("available");
Builder.addLeftParen();
Builder.addSimpleTypedParameter("Platform", /*IsVarArg=*/true);
Builder.addComma();
Builder.addTextChunk("*");
Builder.addRightParen();
}
void addPoundSelector(bool needPound) {
// #selector is only available when the Objective-C runtime is.
if (!Ctx.LangOpts.EnableObjCInterop) return;
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
if (needPound)
Builder.addTextChunk("#selector");
else
Builder.addTextChunk("selector");
Builder.addLeftParen();
Builder.addSimpleTypedParameter("@objc method", /*IsVarArg=*/false);
Builder.addRightParen();
Builder.addTypeAnnotation("Selector");
// This function is called only if the context type is 'Selector'.
Builder.setResultType(Ctx.getSelectorType());
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
void addPoundKeyPath(bool needPound) {
// #keyPath is only available when the Objective-C runtime is.
if (!Ctx.LangOpts.EnableObjCInterop) return;
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
if (needPound)
Builder.addTextChunk("#keyPath");
else
Builder.addTextChunk("keyPath");
Builder.addLeftParen();
Builder.addSimpleTypedParameter("@objc property sequence",
/*IsVarArg=*/false);
Builder.addRightParen();
Builder.addTypeAnnotation("String");
Builder.setResultType(Ctx.getStringType());
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
SemanticContextKind getSemanticContextKind(const ValueDecl *VD) {
// FIXME: to get the corect semantic context we need to know how lookup
// would have found the VD. For now, just infer a reasonable semantics.
if (!VD)
return SemanticContextKind::CurrentModule;
DeclContext *calleeDC = VD->getDeclContext();
if (calleeDC->isTypeContext())
// FIXME: We should distinguish CurrentNominal and Super. We need to
// propagate the base type to do that.
return SemanticContextKind::CurrentNominal;
if (calleeDC->isLocalContext())
return SemanticContextKind::Local;
if (calleeDC->getParentModule() == CurrModule)
return SemanticContextKind::CurrentModule;
return SemanticContextKind::OtherModule;
}
void addSubscriptCallPattern(
const AnyFunctionType *AFT, const SubscriptDecl *SD,
const Optional<SemanticContextKind> SemanticContext = None) {
foundFunction(AFT);
GenericSignature genericSig;
if (SD)
genericSig = SD->getGenericSignatureOfContext();
CodeCompletionResultBuilder Builder(
Sink,
SD ? CodeCompletionResultKind::Declaration
: CodeCompletionResultKind::Pattern,
SemanticContext ? *SemanticContext : getSemanticContextKind(SD),
expectedTypeContext);
if (SD)
Builder.setAssociatedDecl(SD);
if (!HaveLParen) {
Builder.addLeftBracket();
} else {
// Add 'ArgumentLabels' only if it has '['. Without existing '[',
// consider it suggesting 'subscript' itself, not call arguments for it.
Builder.addFlair(CodeCompletionFlairBit::ArgumentLabels);
Builder.addAnnotatedLeftBracket();
}
ArrayRef<const ParamDecl *> declParams;
if (SD)
declParams = SD->getIndices()->getArray();
addCallArgumentPatterns(Builder, AFT->getParams(), declParams, genericSig);
if (!HaveLParen)
Builder.addRightBracket();
else
Builder.addAnnotatedRightBracket();
if (SD && SD->isImplicitlyUnwrappedOptional())
addTypeAnnotationForImplicitlyUnwrappedOptional(Builder,
AFT->getResult(),
genericSig);
else
addTypeAnnotation(Builder, AFT->getResult(), genericSig);
}
void addFunctionCallPattern(
const AnyFunctionType *AFT, const AbstractFunctionDecl *AFD = nullptr,
const Optional<SemanticContextKind> SemanticContext = None) {
GenericSignature genericSig;
if (AFD)
genericSig = AFD->getGenericSignatureOfContext();
// Add the pattern, possibly including any default arguments.
auto addPattern = [&](ArrayRef<const ParamDecl *> declParams = {},
bool includeDefaultArgs = true) {
CodeCompletionResultBuilder Builder(
Sink,
AFD ? CodeCompletionResultKind::Declaration
: CodeCompletionResultKind::Pattern,
SemanticContext ? *SemanticContext : getSemanticContextKind(AFD),
expectedTypeContext);
Builder.addFlair(CodeCompletionFlairBit::ArgumentLabels);
if (AFD)
Builder.setAssociatedDecl(AFD);
if (!HaveLParen)
Builder.addLeftParen();
else
Builder.addAnnotatedLeftParen();
addCallArgumentPatterns(Builder, AFT->getParams(), declParams,
genericSig, includeDefaultArgs);
// The rparen matches the lparen here so that we insert both or neither.
if (!HaveLParen)
Builder.addRightParen();
else
Builder.addAnnotatedRightParen();
addEffectsSpecifiers(Builder, AFT, AFD);
if (AFD &&
AFD->isImplicitlyUnwrappedOptional())
addTypeAnnotationForImplicitlyUnwrappedOptional(Builder,
AFT->getResult(),
genericSig);
else
addTypeAnnotation(Builder, AFT->getResult(), genericSig);
if (!isForCaching() && AFT->isAsync() && !CanCurrDeclContextHandleAsync) {
Builder.setContextualNotRecommended(
ContextualNotRecommendedReason::InvalidAsyncContext);
}
};
if (!AFD || !AFD->getInterfaceType()->is<AnyFunctionType>()) {
// Probably, calling closure type expression.
foundFunction(AFT);
addPattern();
return;
} else {
// Calling function or method.
foundFunction(AFD);
// FIXME: Hack because we don't know we are calling instance
// method or not. There's invariant that funcTy is derived from AFD.
// Only if we are calling instance method on meta type, AFT is still
// curried. So we should be able to detect that by comparing curried level
// of AFT and the interface type of AFD.
auto getCurriedLevel = [](const AnyFunctionType *funcTy) -> unsigned {
unsigned level = 0;
while ((funcTy = funcTy->getResult()->getAs<AnyFunctionType>()))
++level;
return level;
};
bool isImplicitlyCurriedInstanceMethod =
(AFD->hasImplicitSelfDecl() &&
getCurriedLevel(AFT) ==
getCurriedLevel(
AFD->getInterfaceType()->castTo<AnyFunctionType>()) &&
// NOTE: shouldn't be necessary, but just in case curried level check
// is insufficient.
AFT->getParams().size() == 1 &&
AFT->getParams()[0].getLabel().empty());
if (isImplicitlyCurriedInstanceMethod) {
addPattern({AFD->getImplicitSelfDecl()}, /*includeDefaultArgs=*/true);
} else {
if (addItemWithoutDefaultArgs(AFD))
addPattern(AFD->getParameters()->getArray(),
/*includeDefaultArgs=*/false);
addPattern(AFD->getParameters()->getArray(),
/*includeDefaultArgs=*/true);
}
}
}
bool isImplicitlyCurriedInstanceMethod(const AbstractFunctionDecl *FD) {
if (FD->isStatic())
return false;
switch (Kind) {
case LookupKind::ValueExpr:
return ExprType->is<AnyMetatypeType>();
case LookupKind::ValueInDeclContext:
if (InsideStaticMethod)
return FD->getDeclContext() == CurrentMethod->getDeclContext();
if (auto Init = dyn_cast<Initializer>(CurrDeclContext)) {
if (auto PatInit = dyn_cast<PatternBindingInitializer>(Init)) {
if (PatInit->getInitializedLazyVar())
return false;
}
return FD->getDeclContext() == Init->getInnermostTypeContext();
}
return false;
case LookupKind::EnumElement:
case LookupKind::Type:
case LookupKind::TypeInDeclContext:
case LookupKind::GenericRequirement:
llvm_unreachable("cannot have a method call while doing a "
"type completion");
case LookupKind::ImportFromModule:
return false;
}
llvm_unreachable("Unhandled LookupKind in switch.");
}
void addMethodCall(const FuncDecl *FD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (FD->getBaseIdentifier().empty())
return;
foundFunction(FD);
const Identifier Name = FD->getBaseIdentifier();
assert(!Name.empty() && "name should not be empty");
Type FunctionType = getTypeOfMember(FD, dynamicLookupInfo);
assert(FunctionType);
auto AFT = FunctionType->getAs<AnyFunctionType>();
bool IsImplicitlyCurriedInstanceMethod = false;
if (FD->hasImplicitSelfDecl()) {
IsImplicitlyCurriedInstanceMethod = isImplicitlyCurriedInstanceMethod(FD);
// Strip off '(_ self: Self)' if needed.
if (AFT && !IsImplicitlyCurriedInstanceMethod) {
AFT = AFT->getResult()->getAs<AnyFunctionType>();
// Check for duplicates with the adjusted type too.
if (isDuplicate(FD, AFT))
return;
}
}
bool trivialTrailingClosure = false;
if (AFT && !IsImplicitlyCurriedInstanceMethod)
trivialTrailingClosure = hasTrivialTrailingClosure(FD, AFT);
Optional<ContextualNotRecommendedReason> NotRecommended;
bool implictlyAsync = false;
analyzeActorIsolation(FD, AFT, implictlyAsync, NotRecommended);
if (!isForCaching() && !NotRecommended &&
!IsImplicitlyCurriedInstanceMethod &&
((AFT && AFT->isAsync()) || implictlyAsync) &&
!CanCurrDeclContextHandleAsync) {
NotRecommended = ContextualNotRecommendedReason::InvalidAsyncContext;
}
// Add the method, possibly including any default arguments.
auto addMethodImpl = [&](bool includeDefaultArgs = true,
bool trivialTrailingClosure = false) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(FD, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(FD);
if (IsSuperRefExpr && CurrentMethod &&
CurrentMethod->getOverriddenDecl() == FD)
Builder.addFlair(CodeCompletionFlairBit::SuperChain);
if (NotRecommended)
Builder.setContextualNotRecommended(*NotRecommended);
addLeadingDot(Builder);
addValueBaseName(Builder, Name);
if (IsDynamicLookup)
Builder.addDynamicLookupMethodCallTail();
else if (FD->getAttrs().hasAttribute<OptionalAttr>())
Builder.addOptionalMethodCallTail();
if (!AFT) {
addTypeAnnotation(Builder, FunctionType,
FD->getGenericSignatureOfContext());
return;
}
if (IsImplicitlyCurriedInstanceMethod) {
Builder.addLeftParen();
addCallArgumentPatterns(Builder, AFT->getParams(),
{FD->getImplicitSelfDecl()},
FD->getGenericSignatureOfContext(),
includeDefaultArgs);
Builder.addRightParen();
} else if (trivialTrailingClosure) {
Builder.addBraceStmtWithCursor(" { code }");
addEffectsSpecifiers(Builder, AFT, FD, implictlyAsync);
} else {
Builder.addLeftParen();
addCallArgumentPatterns(Builder, AFT, FD->getParameters(),
FD->getGenericSignatureOfContext(),
includeDefaultArgs);
Builder.addRightParen();
addEffectsSpecifiers(Builder, AFT, FD, implictlyAsync);
}
// Build type annotation.
Type ResultType = AFT->getResult();
// As we did with parameters in addParamPatternFromFunction,
// for regular methods we'll print '!' after implicitly
// unwrapped optional results.
bool IsIUO =
!IsImplicitlyCurriedInstanceMethod &&
FD->isImplicitlyUnwrappedOptional();
PrintOptions PO;
PO.OpaqueReturnTypePrinting =
PrintOptions::OpaqueReturnTypePrintingMode::WithoutOpaqueKeyword;
PO.PrintOptionalAsImplicitlyUnwrapped = IsIUO;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
PO.setBaseType(typeContext->getDeclaredTypeInContext());
Type AnnotationTy =
eraseArchetypes(ResultType, FD->getGenericSignatureOfContext());
if (Builder.shouldAnnotateResults()) {
Builder.withNestedGroup(
CodeCompletionString::Chunk::ChunkKind::TypeAnnotationBegin, [&] {
CodeCompletionStringPrinter printer(Builder);
auto TL = TypeLoc::withoutLoc(AnnotationTy);
printer.printTypePre(TL);
if (IsImplicitlyCurriedInstanceMethod) {
auto *FnType = AnnotationTy->castTo<AnyFunctionType>();
AnyFunctionType::printParams(FnType->getParams(), printer,
PrintOptions());
AnnotationTy = FnType->getResult();
printer.printText(" -> ");
}
// What's left is the result type.
if (AnnotationTy->isVoid())
AnnotationTy = Ctx.getVoidDecl()->getDeclaredInterfaceType();
AnnotationTy.print(printer, PO);
printer.printTypePost(TL);
});
} else {
llvm::SmallString<32> TypeStr;
llvm::raw_svector_ostream OS(TypeStr);
if (IsImplicitlyCurriedInstanceMethod) {
auto *FnType = AnnotationTy->castTo<AnyFunctionType>();
AnyFunctionType::printParams(FnType->getParams(), OS);
AnnotationTy = FnType->getResult();
OS << " -> ";
}
// What's left is the result type.
if (AnnotationTy->isVoid())
AnnotationTy = Ctx.getVoidDecl()->getDeclaredInterfaceType();
AnnotationTy.print(OS, PO);
Builder.addTypeAnnotation(TypeStr);
}
Builder.setResultType(ResultType);
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
if (isUnresolvedMemberIdealType(ResultType))
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
};
if (!AFT || IsImplicitlyCurriedInstanceMethod) {
addMethodImpl();
} else {
if (trivialTrailingClosure)
addMethodImpl(/*includeDefaultArgs=*/false,
/*trivialTrailingClosure=*/true);
if (addItemWithoutDefaultArgs(FD))
addMethodImpl(/*includeDefaultArgs=*/false);
addMethodImpl(/*includeDefaultArgs=*/true);
}
}
void addConstructorCall(const ConstructorDecl *CD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo,
Optional<Type> BaseType, Optional<Type> Result,
bool IsOnType = true,
Identifier addName = Identifier()) {
foundFunction(CD);
Type MemberType = getTypeOfMember(CD, BaseType.getValueOr(ExprType));
AnyFunctionType *ConstructorType = nullptr;
if (auto MemberFuncType = MemberType->getAs<AnyFunctionType>())
ConstructorType = MemberFuncType->getResult()
->castTo<AnyFunctionType>();
bool needInit = false;
if (!IsOnType) {
assert(addName.empty());
needInit = true;
} else if (addName.empty() && HaveDot) {
needInit = true;
}
// If we won't be able to provide a result, bail out.
if (!ConstructorType && addName.empty() && !needInit)
return;
// Add the constructor, possibly including any default arguments.
auto addConstructorImpl = [&](bool includeDefaultArgs = true) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(CD, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(CD);
if (IsSuperRefExpr && CurrentMethod &&
CurrentMethod->getOverriddenDecl() == CD)
Builder.addFlair(CodeCompletionFlairBit::SuperChain);
if (needInit) {
assert(addName.empty());
addLeadingDot(Builder);
Builder.addBaseName("init");
} else if (!addName.empty()) {
Builder.addBaseName(addName.str());
} else {
Builder.addFlair(CodeCompletionFlairBit::ArgumentLabels);
}
if (!ConstructorType) {
addTypeAnnotation(Builder, MemberType,
CD->getGenericSignatureOfContext());
return;
}
if (!HaveLParen)
Builder.addLeftParen();
else
Builder.addAnnotatedLeftParen();
addCallArgumentPatterns(Builder, ConstructorType, CD->getParameters(),
CD->getGenericSignatureOfContext(),
includeDefaultArgs);
// The rparen matches the lparen here so that we insert both or neither.
if (!HaveLParen)
Builder.addRightParen();
else
Builder.addAnnotatedRightParen();
addEffectsSpecifiers(Builder, ConstructorType, CD);
if (!Result.hasValue())
Result = ConstructorType->getResult();
if (CD->isImplicitlyUnwrappedOptional()) {
addTypeAnnotationForImplicitlyUnwrappedOptional(
Builder, *Result, CD->getGenericSignatureOfContext());
} else {
addTypeAnnotation(Builder, *Result, CD->getGenericSignatureOfContext());
}
if (!isForCaching() && ConstructorType->isAsync() &&
!CanCurrDeclContextHandleAsync) {
Builder.setContextualNotRecommended(
ContextualNotRecommendedReason::InvalidAsyncContext);
}
};
if (ConstructorType && addItemWithoutDefaultArgs(CD))
addConstructorImpl(/*includeDefaultArgs=*/false);
addConstructorImpl();
}
void addConstructorCallsForType(Type type, Identifier name,
DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (!Sink.addInitsToTopLevel)
return;
assert(CurrDeclContext);
auto results =
swift::lookupSemanticMember(const_cast<DeclContext *>(CurrDeclContext),
type, DeclBaseName::createConstructor());
for (const auto &entry : results.allResults()) {
auto *init = cast<ConstructorDecl>(entry.getValueDecl());
if (init->shouldHideFromEditor())
continue;
addConstructorCall(cast<ConstructorDecl>(init), Reason,
dynamicLookupInfo, type, None,
/*IsOnType=*/true, name);
}
}
void addSubscriptCall(const SubscriptDecl *SD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
// Don't add subscript call to unqualified completion.
if (!ExprType)
return;
// Subscript after '.' is valid only after type part of Swift keypath
// expression. (e.g. '\TyName.SubTy.[0])
if (HaveDot && !IsAfterSwiftKeyPathRoot)
return;
auto subscriptType =
getTypeOfMember(SD, dynamicLookupInfo)->getAs<AnyFunctionType>();
if (!subscriptType)
return;
Optional<ContextualNotRecommendedReason> NotRecommended;
bool implictlyAsync = false;
analyzeActorIsolation(SD, subscriptType, implictlyAsync, NotRecommended);
if (!isForCaching() && !NotRecommended && implictlyAsync &&
!CanCurrDeclContextHandleAsync) {
NotRecommended = ContextualNotRecommendedReason::InvalidAsyncContext;
}
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(SD, Reason, dynamicLookupInfo), expectedTypeContext);
Builder.setAssociatedDecl(SD);
if (NotRecommended)
Builder.setContextualNotRecommended(*NotRecommended);
// '\TyName#^TOKEN^#' requires leading dot.
if (!HaveDot && IsAfterSwiftKeyPathRoot)
Builder.addLeadingDot();
if (NeedOptionalUnwrap) {
Builder.setNumBytesToErase(NumBytesToEraseForOptionalUnwrap);
Builder.addQuestionMark();
}
Builder.addLeftBracket();
addCallArgumentPatterns(Builder, subscriptType, SD->getIndices(),
SD->getGenericSignatureOfContext(), true);
Builder.addRightBracket();
// Add a type annotation.
Type resultTy = subscriptType->getResult();
if (IsDynamicLookup) {
// Values of properties that were found on a AnyObject have
// Optional<T> type.
resultTy = OptionalType::get(resultTy);
}
if (implictlyAsync)
Builder.addAnnotatedAsync();
addTypeAnnotation(Builder, resultTy, SD->getGenericSignatureOfContext());
}
void addNominalTypeRef(const NominalTypeDecl *NTD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(NTD, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(NTD);
addLeadingDot(Builder);
Builder.addBaseName(NTD->getName().str());
addTypeAnnotation(Builder, NTD->getDeclaredType());
// Override the type relation for NominalTypes. Use the better relation
// for the metatypes and the instance type. For example,
//
// func receiveInstance(_: Int) {}
// func receiveMetatype(_: Int.Type) {}
//
// We want to suggest 'Int' as 'Identical' for both arguments.
Builder.setResultType(NTD->getDeclaredInterfaceType(),
/*AlsoConsiderMetatype=*/true);
Builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
void addTypeAliasRef(const TypeAliasDecl *TAD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(TAD, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(TAD);
addLeadingDot(Builder);
Builder.addBaseName(TAD->getName().str());
if (auto underlyingType = TAD->getUnderlyingType()) {
if (underlyingType->hasError()) {
Type parentType;
if (auto nominal = TAD->getDeclContext()->getSelfNominalTypeDecl()) {
parentType = nominal->getDeclaredInterfaceType();
}
addTypeAnnotation(
Builder,
TypeAliasType::get(const_cast<TypeAliasDecl *>(TAD),
parentType, SubstitutionMap(),
underlyingType));
} else {
addTypeAnnotation(Builder, underlyingType);
}
}
}
void addGenericTypeParamRef(const GenericTypeParamDecl *GP,
DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(GP, Reason, dynamicLookupInfo), expectedTypeContext);
Builder.setAssociatedDecl(GP);
addLeadingDot(Builder);
Builder.addBaseName(GP->getName().str());
addTypeAnnotation(Builder, GP->getDeclaredInterfaceType());
}
void addAssociatedTypeRef(const AssociatedTypeDecl *AT,
DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(AT, Reason, dynamicLookupInfo), expectedTypeContext);
Builder.setAssociatedDecl(AT);
addLeadingDot(Builder);
Builder.addBaseName(AT->getName().str());
if (Type T = getAssociatedTypeType(AT))
addTypeAnnotation(Builder, T);
}
void addPrecedenceGroupRef(PrecedenceGroupDecl *PGD) {
auto semanticContext =
getSemanticContext(PGD, DeclVisibilityKind::VisibleAtTopLevel, {});
CodeCompletionResultBuilder builder(
Sink, CodeCompletionResultKind::Declaration, semanticContext, {});
builder.addBaseName(PGD->getName().str());
builder.setAssociatedDecl(PGD);
};
void addEnumElementRef(const EnumElementDecl *EED, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo,
bool HasTypeContext) {
if (!EED->hasName() ||
!EED->isAccessibleFrom(CurrDeclContext) ||
EED->shouldHideFromEditor())
return;
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(EED, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(EED);
addLeadingDot(Builder);
addValueBaseName(Builder, EED->getBaseIdentifier());
// Enum element is of function type; (Self.type) -> Self or
// (Self.Type) -> (Args...) -> Self.
Type EnumType = getTypeOfMember(EED, dynamicLookupInfo);
if (EnumType->is<AnyFunctionType>())
EnumType = EnumType->castTo<AnyFunctionType>()->getResult();
if (EnumType->is<FunctionType>()) {
Builder.addLeftParen();
addCallArgumentPatterns(Builder, EnumType->castTo<FunctionType>(),
EED->getParameterList(),
EED->getGenericSignatureOfContext());
Builder.addRightParen();
// Extract result as the enum type.
EnumType = EnumType->castTo<FunctionType>()->getResult();
}
addTypeAnnotation(Builder, EnumType, EED->getGenericSignatureOfContext());
if (isUnresolvedMemberIdealType(EnumType))
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
}
void addKeyword(StringRef Name, Type TypeAnnotation = Type(),
SemanticContextKind SK = SemanticContextKind::None,
CodeCompletionKeywordKind KeyKind
= CodeCompletionKeywordKind::None,
unsigned NumBytesToErase = 0) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SK, expectedTypeContext);
addLeadingDot(Builder);
Builder.addKeyword(Name);
Builder.setKeywordKind(KeyKind);
if (TypeAnnotation)
addTypeAnnotation(Builder, TypeAnnotation);
if (NumBytesToErase > 0)
Builder.setNumBytesToErase(NumBytesToErase);
}
void addKeyword(StringRef Name, StringRef TypeAnnotation,
CodeCompletionKeywordKind KeyKind
= CodeCompletionKeywordKind::None,
CodeCompletionFlair flair = {}) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None,
expectedTypeContext);
Builder.addFlair(flair);
addLeadingDot(Builder);
Builder.addKeyword(Name);
Builder.setKeywordKind(KeyKind);
if (!TypeAnnotation.empty())
Builder.addTypeAnnotation(TypeAnnotation);
}
void addDeclAttrParamKeyword(StringRef Name, StringRef Annotation,
bool NeedSpecify) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None,
expectedTypeContext);
Builder.addDeclAttrParamKeyword(Name, Annotation, NeedSpecify);
}
void addDeclAttrKeyword(StringRef Name, StringRef Annotation) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None,
expectedTypeContext);
Builder.addDeclAttrKeyword(Name, Annotation);
}
/// Add the compound function name for the given function.
/// Returns \c true if the compound function name is actually used.
bool addCompoundFunctionNameIfDesiable(AbstractFunctionDecl *AFD,
DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
auto funcTy =
getTypeOfMember(AFD, dynamicLookupInfo)->getAs<AnyFunctionType>();
bool dropCurryLevel = funcTy && AFD->getDeclContext()->isTypeContext() &&
!isImplicitlyCurriedInstanceMethod(AFD);
if (dropCurryLevel)
funcTy = funcTy->getResult()->getAs<AnyFunctionType>();
bool useFunctionReference = PreferFunctionReferencesToCalls;
if (!useFunctionReference && funcTy) {
auto maxRel = CodeCompletionResultType(funcTy).calculateTypeRelation(
&expectedTypeContext, CurrDeclContext);
useFunctionReference =
maxRel >= CodeCompletionResultTypeRelation::Convertible;
}
if (!useFunctionReference)
return false;
// Check for duplicates with the adjusted type too.
if (dropCurryLevel && isDuplicate(AFD, funcTy))
return true;
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Declaration,
getSemanticContext(AFD, Reason, dynamicLookupInfo),
expectedTypeContext);
Builder.setAssociatedDecl(AFD);
// Base name
addLeadingDot(Builder);
addValueBaseName(Builder, AFD->getBaseName());
// Add the argument labels.
const auto ArgLabels = AFD->getName().getArgumentNames();
if (!ArgLabels.empty()) {
if (!HaveLParen)
Builder.addLeftParen();
else
Builder.addAnnotatedLeftParen();
for (auto ArgLabel : ArgLabels) {
if (ArgLabel.empty())
Builder.addTextChunk("_");
else
Builder.addTextChunk(ArgLabel.str());
Builder.addTextChunk(":");
}
Builder.addRightParen();
}
if (funcTy)
addTypeAnnotation(Builder, funcTy, AFD->getGenericSignatureOfContext());
return true;
}
private:
/// Returns true if duplicate checking is enabled (via
/// \c shouldCheckForDuplicates) and this decl + type combination has been
/// checked previously. Returns false otherwise.
bool isDuplicate(const ValueDecl *D, Type Ty) {
if (!CheckForDuplicates)
return false;
return !PreviouslySeen.insert({D, Ty}).second;
}
/// Returns true if duplicate checking is enabled (via
/// \c shouldCheckForDuplicates) and this decl has been checked previously
/// with the type according to \c getTypeOfMember. Returns false otherwise.
bool isDuplicate(const ValueDecl *D, DynamicLookupInfo dynamicLookupInfo) {
if (!CheckForDuplicates)
return false;
Type Ty = getTypeOfMember(D, dynamicLookupInfo);
return !PreviouslySeen.insert({D, Ty}).second;
}
public:
// Implement swift::VisibleDeclConsumer.
void foundDecl(ValueDecl *D, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
assert(Reason !=
DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal &&
"Including derived requirement in non-override lookup");
if (D->shouldHideFromEditor())
return;
if (IsKeyPathExpr && !KeyPathFilter(D, Reason))
return;
if (IsSwiftKeyPathExpr && !SwiftKeyPathFilter(D, Reason))
return;
// If we've seen this decl+type before (possible when multiple lookups are
// performed e.g. because of ambiguous base types), bail.
if (isDuplicate(D, dynamicLookupInfo))
return;
// FIXME(InterfaceTypeRequest): Remove this.
(void)D->getInterfaceType();
switch (Kind) {
case LookupKind::ValueExpr:
if (auto *CD = dyn_cast<ConstructorDecl>(D)) {
// Do we want compound function names here?
if (addCompoundFunctionNameIfDesiable(CD, Reason, dynamicLookupInfo))
return;
if (auto MT = ExprType->getAs<AnyMetatypeType>()) {
Type Ty = MT->getInstanceType();
assert(Ty && "Cannot find instance type.");
// If instance type is type alias, show users that the constructed
// type is the typealias instead of the underlying type of the alias.
Optional<Type> Result = None;
if (!CD->getInterfaceType()->is<ErrorType>() &&
isa<TypeAliasType>(Ty.getPointer()) &&
Ty->getDesugaredType() ==
CD->getResultInterfaceType().getPointer()) {
Result = Ty;
}
// If the expression type is not a static metatype or an archetype, the base
// is not a type. Direct call syntax is illegal on values, so we only add
// initializer completions if we do not have a left parenthesis and either
// the initializer is required, the base type's instance type is not a class,
// or this is a 'self' or 'super' reference.
if (IsStaticMetatype || IsUnresolvedMember || Ty->is<ArchetypeType>())
addConstructorCall(CD, Reason, dynamicLookupInfo, None, Result,
/*isOnType*/ true);
else if ((IsSelfRefExpr || IsSuperRefExpr || !Ty->is<ClassType>() ||
CD->isRequired()) && !HaveLParen)
addConstructorCall(CD, Reason, dynamicLookupInfo, None, Result,
/*isOnType*/ false);
return;
}
if (!HaveLParen) {
auto CDC = dyn_cast<ConstructorDecl>(CurrDeclContext);
if (!CDC)
return;
// For classes, we do not want 'init' completions for 'self' in
// non-convenience initializers and for 'super' in convenience initializers.
if (ExprType->is<ClassType>()) {
if ((IsSelfRefExpr && !CDC->isConvenienceInit()) ||
(IsSuperRefExpr && CDC->isConvenienceInit()))
return;
}
if (IsSelfRefExpr || IsSuperRefExpr)
addConstructorCall(CD, Reason, dynamicLookupInfo, None, None,
/*IsOnType=*/false);
}
return;
}
if (HaveLParen)
return;
LLVM_FALLTHROUGH;
case LookupKind::ValueInDeclContext:
case LookupKind::ImportFromModule:
if (auto *VD = dyn_cast<VarDecl>(D)) {
addVarDeclRef(VD, Reason, dynamicLookupInfo);
return;
}
if (auto *FD = dyn_cast<FuncDecl>(D)) {
// We cannot call operators with a postfix parenthesis syntax.
if (FD->isBinaryOperator() || FD->isUnaryOperator())
return;
// We cannot call accessors. We use VarDecls and SubscriptDecls to
// produce completions that refer to getters and setters.
if (isa<AccessorDecl>(FD))
return;
// Do we want compound function names here?
if (addCompoundFunctionNameIfDesiable(FD, Reason, dynamicLookupInfo))
return;
addMethodCall(FD, Reason, dynamicLookupInfo);
// SE-0253: Callable values of user-defined nominal types.
if (FD->isCallAsFunctionMethod() && !HaveDot &&
(!ExprType || !ExprType->is<AnyMetatypeType>())) {
Type funcType = getTypeOfMember(FD, dynamicLookupInfo)
->castTo<AnyFunctionType>()
->getResult();
// Check for duplicates with the adjusted type too.
if (isDuplicate(FD, funcType))
return;
addFunctionCallPattern(
funcType->castTo<AnyFunctionType>(), FD,
getSemanticContext(FD, Reason, dynamicLookupInfo));
}
return;
}
if (auto *NTD = dyn_cast<NominalTypeDecl>(D)) {
addNominalTypeRef(NTD, Reason, dynamicLookupInfo);
addConstructorCallsForType(NTD->getDeclaredInterfaceType(),
NTD->getName(), Reason, dynamicLookupInfo);
return;
}
if (auto *TAD = dyn_cast<TypeAliasDecl>(D)) {
addTypeAliasRef(TAD, Reason, dynamicLookupInfo);
auto type = TAD->mapTypeIntoContext(TAD->getDeclaredInterfaceType());
if (type->mayHaveMembers())
addConstructorCallsForType(type, TAD->getName(), Reason,
dynamicLookupInfo);
return;
}
if (auto *GP = dyn_cast<GenericTypeParamDecl>(D)) {
addGenericTypeParamRef(GP, Reason, dynamicLookupInfo);
for (auto *protocol : GP->getConformingProtocols())
addConstructorCallsForType(protocol->getDeclaredInterfaceType(),
GP->getName(), Reason, dynamicLookupInfo);
return;
}
if (auto *AT = dyn_cast<AssociatedTypeDecl>(D)) {
addAssociatedTypeRef(AT, Reason, dynamicLookupInfo);
return;
}
if (auto *EED = dyn_cast<EnumElementDecl>(D)) {
addEnumElementRef(EED, Reason, dynamicLookupInfo,
/*HasTypeContext=*/false);
return;
}
// Swift key path allows .[0]
if (auto *SD = dyn_cast<SubscriptDecl>(D)) {
addSubscriptCall(SD, Reason, dynamicLookupInfo);
return;
}
return;
case LookupKind::EnumElement:
handleEnumElement(D, Reason, dynamicLookupInfo);
return;
case LookupKind::Type:
case LookupKind::TypeInDeclContext:
if (auto *NTD = dyn_cast<NominalTypeDecl>(D)) {
addNominalTypeRef(NTD, Reason, dynamicLookupInfo);
return;
}
if (auto *GP = dyn_cast<GenericTypeParamDecl>(D)) {
addGenericTypeParamRef(GP, Reason, dynamicLookupInfo);
return;
}
LLVM_FALLTHROUGH;
case LookupKind::GenericRequirement:
if (TypeAliasDecl *TAD = dyn_cast<TypeAliasDecl>(D)) {
if (Kind == LookupKind::GenericRequirement &&
!canBeUsedAsRequirementFirstType(BaseType, TAD))
return;
addTypeAliasRef(TAD, Reason, dynamicLookupInfo);
return;
}
if (auto *AT = dyn_cast<AssociatedTypeDecl>(D)) {
addAssociatedTypeRef(AT, Reason, dynamicLookupInfo);
return;
}
return;
}
}
bool handleEnumElement(ValueDecl *D, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (auto *EED = dyn_cast<EnumElementDecl>(D)) {
addEnumElementRef(EED, Reason, dynamicLookupInfo,
/*HasTypeContext=*/true);
return true;
} else if (auto *ED = dyn_cast<EnumDecl>(D)) {
llvm::DenseSet<EnumElementDecl *> Elements;
ED->getAllElements(Elements);
for (auto *Ele : Elements) {
addEnumElementRef(Ele, Reason, dynamicLookupInfo,
/*HasTypeContext=*/true);
}
return true;
}
return false;
}
bool tryTupleExprCompletions(Type ExprType) {
auto *TT = ExprType->getAs<TupleType>();
if (!TT)
return false;
unsigned Index = 0;
for (auto TupleElt : TT->getElements()) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Pattern,
SemanticContextKind::CurrentNominal, expectedTypeContext);
addLeadingDot(Builder);
if (TupleElt.hasName()) {
Builder.addBaseName(TupleElt.getName().str());
} else {
llvm::SmallString<4> IndexStr;
{
llvm::raw_svector_ostream OS(IndexStr);
OS << Index;
}
Builder.addBaseName(IndexStr.str());
}
addTypeAnnotation(Builder, TupleElt.getType());
++Index;
}
return true;
}
bool tryFunctionCallCompletions(Type ExprType, const ValueDecl *VD, Optional<SemanticContextKind> SemanticContext = None) {
ExprType = ExprType->getRValueType();
if (auto AFT = ExprType->getAs<AnyFunctionType>()) {
if (auto *AFD = dyn_cast_or_null<AbstractFunctionDecl>(VD)) {
addFunctionCallPattern(AFT, AFD, SemanticContext);
} else {
addFunctionCallPattern(AFT);
}
return true;
}
return false;
}
bool tryModuleCompletions(Type ExprType, bool TypesOnly = false) {
if (auto MT = ExprType->getAs<ModuleType>()) {
ModuleDecl *M = MT->getModule();
// Only lookup this module's symbols from the cache if it is not the
// current module.
if (M == CurrModule)
return false;
// If the module is shadowed by a separately imported overlay(s), look up
// the symbols from the overlay(s) instead.
SmallVector<ModuleDecl *, 1> ShadowingOrOriginal;
if (auto *SF = CurrDeclContext->getParentSourceFile()) {
SF->getSeparatelyImportedOverlays(M, ShadowingOrOriginal);
if (ShadowingOrOriginal.empty())
ShadowingOrOriginal.push_back(M);
}
for (ModuleDecl *M: ShadowingOrOriginal) {
RequestedResultsTy Request = RequestedResultsTy::fromModule(M)
.needLeadingDot(needDot())
.withModuleQualifier(false);
if (TypesOnly)
Request = Request.onlyTypes();
RequestedCachedResults.push_back(Request);
}
return true;
}
return false;
}
/// If the given ExprType is optional, this adds completions for the unwrapped
/// type.
///
/// \return true if the given type was Optional .
bool tryUnwrappedCompletions(Type ExprType, bool isIUO) {
// FIXME: consider types convertible to T?.
ExprType = ExprType->getRValueType();
// FIXME: We don't always pass down whether a type is from an
// unforced IUO.
if (isIUO) {
if (Type Unwrapped = ExprType->getOptionalObjectType()) {
lookupVisibleMemberDecls(*this, Unwrapped, CurrDeclContext,
IncludeInstanceMembers,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true);
return true;
}
assert(IsUnwrappedOptional && "IUOs should be optional if not bound/forced");
return false;
}
if (Type Unwrapped = ExprType->getOptionalObjectType()) {
llvm::SaveAndRestore<bool> ChangeNeedOptionalUnwrap(NeedOptionalUnwrap,
true);
if (DotLoc.isValid()) {
// Let's not erase the dot if the completion is after a swift key path
// root because \A?.?.member is the correct way to access wrapped type
// member from an optional key path root.
auto loc = IsAfterSwiftKeyPathRoot ? DotLoc.getAdvancedLoc(1) : DotLoc;
NumBytesToEraseForOptionalUnwrap = Ctx.SourceMgr.getByteDistance(
loc, Ctx.SourceMgr.getCodeCompletionLoc());
} else {
NumBytesToEraseForOptionalUnwrap = 0;
}
if (NumBytesToEraseForOptionalUnwrap <=
CodeCompletionResult::MaxNumBytesToErase) {
if (!tryTupleExprCompletions(Unwrapped)) {
lookupVisibleMemberDecls(*this, Unwrapped, CurrDeclContext,
IncludeInstanceMembers,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true);
}
}
return true;
}
return false;
}
void getPostfixKeywordCompletions(Type ExprType, Expr *ParsedExpr) {
if (IsSuperRefExpr)
return;
if (!ExprType->getAs<ModuleType>()) {
addKeyword(getTokenText(tok::kw_self), ExprType->getRValueType(),
SemanticContextKind::CurrentNominal,
CodeCompletionKeywordKind::kw_self);
}
if (isa<TypeExpr>(ParsedExpr)) {
if (auto *T = ExprType->getAs<AnyMetatypeType>()) {
auto instanceTy = T->getInstanceType();
if (instanceTy->isAnyExistentialType()) {
addKeyword("Protocol", MetatypeType::get(instanceTy),
SemanticContextKind::CurrentNominal);
addKeyword("Type", ExistentialMetatypeType::get(instanceTy),
SemanticContextKind::CurrentNominal);
} else {
addKeyword("Type", MetatypeType::get(instanceTy),
SemanticContextKind::CurrentNominal);
}
}
}
}
void getValueExprCompletions(Type ExprType, ValueDecl *VD = nullptr) {
Kind = LookupKind::ValueExpr;
NeedLeadingDot = !HaveDot;
ExprType = ExprType->getRValueType();
assert(!ExprType->hasTypeParameter());
this->ExprType = ExprType;
// Open existential types, so that lookupVisibleMemberDecls() can properly
// substitute them.
bool WasOptional = false;
if (auto OptionalType = ExprType->getOptionalObjectType()) {
ExprType = OptionalType;
WasOptional = true;
}
if (!ExprType->getMetatypeInstanceType()->isAnyObject())
if (ExprType->isAnyExistentialType())
ExprType = OpenedArchetypeType::getAny(ExprType->getCanonicalType());
if (!IsSelfRefExpr && !IsSuperRefExpr && ExprType->getAnyNominal() &&
ExprType->getAnyNominal()->isActor()) {
IsCrossActorReference = true;
}
if (WasOptional)
ExprType = OptionalType::get(ExprType);
// Handle special cases
bool isIUO = VD && VD->isImplicitlyUnwrappedOptional();
if (tryFunctionCallCompletions(ExprType, VD))
return;
if (tryModuleCompletions(ExprType))
return;
if (tryTupleExprCompletions(ExprType))
return;
// Don't check/return so we still add the members of Optional itself below
tryUnwrappedCompletions(ExprType, isIUO);
lookupVisibleMemberDecls(*this, ExprType, CurrDeclContext,
IncludeInstanceMembers,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true);
}
void collectOperators(SmallVectorImpl<OperatorDecl *> &results) {
assert(CurrDeclContext);
for (auto import : namelookup::getAllImports(CurrDeclContext))
import.importedModule->getOperatorDecls(results);
}
void addPostfixBang(Type resultType) {
CodeCompletionResultBuilder builder(
Sink, CodeCompletionResultKind::BuiltinOperator,
SemanticContextKind::None, {});
// FIXME: we can't use the exclamation mark chunk kind, or it isn't
// included in the completion name.
builder.addTextChunk("!");
assert(resultType);
addTypeAnnotation(builder, resultType);
}
void addPostfixOperatorCompletion(OperatorDecl *op, Type resultType) {
// FIXME: we should get the semantic context of the function, not the
// operator decl.
auto semanticContext =
getSemanticContext(op, DeclVisibilityKind::VisibleAtTopLevel, {});
CodeCompletionResultBuilder builder(
Sink, CodeCompletionResultKind::Declaration, semanticContext, {});
// FIXME: handle variable amounts of space.
if (HaveLeadingSpace)
builder.setNumBytesToErase(1);
builder.setAssociatedDecl(op);
builder.addBaseName(op->getName().str());
assert(resultType);
addTypeAnnotation(builder, resultType);
}
void tryPostfixOperator(Expr *expr, PostfixOperatorDecl *op) {
ConcreteDeclRef referencedDecl;
FunctionType *funcTy = getTypeOfCompletionOperator(
const_cast<DeclContext *>(CurrDeclContext), expr, op->getName(),
DeclRefKind::PostfixOperator, referencedDecl);
if (!funcTy)
return;
// TODO: Use referencedDecl (FuncDecl) instead of 'op' (OperatorDecl).
addPostfixOperatorCompletion(op, funcTy->getResult());
}
void addAssignmentOperator(Type RHSType, Type resultType) {
CodeCompletionResultBuilder builder(
Sink, CodeCompletionResultKind::BuiltinOperator,
SemanticContextKind::None, {});
if (HaveLeadingSpace)
builder.addAnnotatedWhitespace(" ");
else
builder.addWhitespace(" ");
builder.addEqual();
builder.addWhitespace(" ");
assert(RHSType && resultType);
Type contextTy;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
contextTy = typeContext->getDeclaredTypeInContext();
builder.addCallArgument(Identifier(), RHSType, contextTy);
addTypeAnnotation(builder, resultType);
}
void addInfixOperatorCompletion(OperatorDecl *op, Type resultType,
Type RHSType) {
// FIXME: we should get the semantic context of the function, not the
// operator decl.
auto semanticContext =
getSemanticContext(op, DeclVisibilityKind::VisibleAtTopLevel, {});
CodeCompletionResultBuilder builder(
Sink, CodeCompletionResultKind::Declaration, semanticContext, {});
builder.setAssociatedDecl(op);
if (HaveLeadingSpace)
builder.addAnnotatedWhitespace(" ");
else
builder.addWhitespace(" ");
builder.addBaseName(op->getName().str());
builder.addWhitespace(" ");
if (RHSType) {
Type contextTy;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
contextTy = typeContext->getDeclaredTypeInContext();
builder.addCallArgument(Identifier(), RHSType, contextTy);
}
if (resultType)
addTypeAnnotation(builder, resultType);
}
void tryInfixOperatorCompletion(Expr *foldedExpr, InfixOperatorDecl *op) {
ConcreteDeclRef referencedDecl;
FunctionType *funcTy = getTypeOfCompletionOperator(
const_cast<DeclContext *>(CurrDeclContext), foldedExpr, op->getName(),
DeclRefKind::BinaryOperator, referencedDecl);
if (!funcTy)
return;
Type lhsTy = funcTy->getParams()[0].getPlainType();
Type rhsTy = funcTy->getParams()[1].getPlainType();
Type resultTy = funcTy->getResult();
// Don't complete optional operators on non-optional types.
if (!lhsTy->getRValueType()->getOptionalObjectType()) {
// 'T ?? T'
if (op->getName().str() == "??")
return;
// 'T == nil'
if (auto NT = rhsTy->getNominalOrBoundGenericNominal())
if (NT->getName() ==
CurrDeclContext->getASTContext().Id_OptionalNilComparisonType)
return;
}
// If the right-hand side and result type are both type parameters, we're
// not providing a useful completion.
if (resultTy->isTypeParameter() && rhsTy->isTypeParameter())
return;
// TODO: Use referencedDecl (FuncDecl) instead of 'op' (OperatorDecl).
addInfixOperatorCompletion(op, funcTy->getResult(),
funcTy->getParams()[1].getPlainType());
}
Expr *typeCheckLeadingSequence(Expr *LHS, ArrayRef<Expr *> leadingSequence) {
if (leadingSequence.empty())
return LHS;
SourceRange sequenceRange(leadingSequence.front()->getStartLoc(),
LHS->getEndLoc());
auto *expr = findParsedExpr(CurrDeclContext, sequenceRange);
if (!expr)
return LHS;
if (expr->getType() && !expr->getType()->hasError())
return expr;
if (!typeCheckExpression(const_cast<DeclContext *>(CurrDeclContext), expr))
return expr;
return LHS;
}
void getOperatorCompletions(Expr *LHS, ArrayRef<Expr *> leadingSequence) {
if (IsSuperRefExpr)
return;
Expr *foldedExpr = typeCheckLeadingSequence(LHS, leadingSequence);
SmallVector<OperatorDecl *, 16> operators;
collectOperators(operators);
// FIXME: this always chooses the first operator with the given name.
llvm::DenseSet<Identifier> seenPostfixOperators;
llvm::DenseSet<Identifier> seenInfixOperators;
for (auto op : operators) {
switch (op->getKind()) {
case DeclKind::PrefixOperator:
// Don't insert prefix operators in postfix position.
// FIXME: where should these get completed?
break;
case DeclKind::PostfixOperator:
if (seenPostfixOperators.insert(op->getName()).second)
tryPostfixOperator(LHS, cast<PostfixOperatorDecl>(op));
break;
case DeclKind::InfixOperator:
if (seenInfixOperators.insert(op->getName()).second)
tryInfixOperatorCompletion(foldedExpr, cast<InfixOperatorDecl>(op));
break;
default:
llvm_unreachable("unexpected operator kind");
}
}
if (leadingSequence.empty() && LHS->getType() &&
LHS->getType()->hasLValueType()) {
addAssignmentOperator(LHS->getType()->getRValueType(),
CurrDeclContext->getASTContext().TheEmptyTupleType);
}
// FIXME: unify this with the ?.member completions.
if (auto T = LHS->getType())
if (auto ValueT = T->getRValueType()->getOptionalObjectType())
addPostfixBang(ValueT);
}
void addTypeRelationFromProtocol(CodeCompletionResultBuilder &builder,
CodeCompletionLiteralKind kind) {
Type literalType;
// The literal can produce any type that conforms to its ExpressibleBy
// protocol. Figure out as which type we want to show it in code completion.
auto *P = Ctx.getProtocol(protocolForLiteralKind(kind));
for (auto T : expectedTypeContext.getPossibleTypes()) {
if (!T)
continue;
// Convert through optional types unless we're looking for a protocol
// that Optional itself conforms to.
if (kind != CodeCompletionLiteralKind::NilLiteral) {
if (auto optionalObjT = T->getOptionalObjectType()) {
T = optionalObjT;
}
}
// Check for conformance to the literal protocol.
if (auto *NTD = T->getAnyNominal()) {
SmallVector<ProtocolConformance *, 2> conformances;
if (NTD->lookupConformance(P, conformances)) {
literalType = T;
break;
}
}
}
// Fallback to showing the default type.
if (!literalType) {
literalType = defaultTypeLiteralKind(kind, Ctx);
}
if (literalType) {
addTypeAnnotation(builder, literalType);
builder.setResultType(literalType);
builder.setTypeContext(expectedTypeContext, CurrDeclContext);
}
}
/// Add '#file', '#line', et at.
void addPoundLiteralCompletions(bool needPound) {
CodeCompletionFlair flair;
if (isCodeCompletionAtTopLevelOfLibraryFile(CurrDeclContext))
flair |= CodeCompletionFlairBit::ExpressionAtNonScriptOrMainFileScope;
auto addFromProto = [&](MagicIdentifierLiteralExpr::Kind magicKind,
Optional<CodeCompletionLiteralKind> literalKind) {
CodeCompletionKeywordKind kwKind;
switch (magicKind) {
case MagicIdentifierLiteralExpr::FileIDSpelledAsFile:
kwKind = CodeCompletionKeywordKind::pound_file;
break;
case MagicIdentifierLiteralExpr::FilePathSpelledAsFile:
// Already handled by above case.
return;
#define MAGIC_IDENTIFIER_TOKEN(NAME, TOKEN) \
case MagicIdentifierLiteralExpr::NAME: \
kwKind = CodeCompletionKeywordKind::TOKEN; \
break;
#define MAGIC_IDENTIFIER_DEPRECATED_TOKEN(NAME, TOKEN)
#include "swift/AST/MagicIdentifierKinds.def"
}
StringRef name = MagicIdentifierLiteralExpr::getKindString(magicKind);
if (!needPound)
name = name.substr(1);
if (!literalKind) {
// Pointer type
addKeyword(name, "UnsafeRawPointer", kwKind, flair);
return;
}
CodeCompletionResultBuilder builder(Sink,
CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
builder.addFlair(flair);
builder.setLiteralKind(literalKind.getValue());
builder.setKeywordKind(kwKind);
builder.addBaseName(name);
addTypeRelationFromProtocol(builder, literalKind.getValue());
};
#define MAGIC_STRING_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
addFromProto(MagicIdentifierLiteralExpr::NAME, \
CodeCompletionLiteralKind::StringLiteral);
#define MAGIC_INT_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
addFromProto(MagicIdentifierLiteralExpr::NAME, \
CodeCompletionLiteralKind::IntegerLiteral);
#define MAGIC_POINTER_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
addFromProto(MagicIdentifierLiteralExpr::NAME, \
None);
#include "swift/AST/MagicIdentifierKinds.def"
}
void addValueLiteralCompletions() {
auto &context = CurrDeclContext->getASTContext();
CodeCompletionFlair flair;
if (isCodeCompletionAtTopLevelOfLibraryFile(CurrDeclContext))
flair |= CodeCompletionFlairBit::ExpressionAtNonScriptOrMainFileScope;
auto addFromProto =
[&](CodeCompletionLiteralKind kind,
llvm::function_ref<void(CodeCompletionResultBuilder &)> consumer,
bool isKeyword = false) {
CodeCompletionResultBuilder builder(Sink,
CodeCompletionResultKind::Literal,
SemanticContextKind::None, {});
builder.setLiteralKind(kind);
builder.addFlair(flair);
consumer(builder);
addTypeRelationFromProtocol(builder, kind);
};
// FIXME: the pedantically correct way is to resolve Swift.*LiteralType.
using LK = CodeCompletionLiteralKind;
using Builder = CodeCompletionResultBuilder;
// Add literal completions that conform to specific protocols.
addFromProto(LK::IntegerLiteral, [](Builder &builder) {
builder.addTextChunk("0");
});
addFromProto(LK::BooleanLiteral, [](Builder &builder) {
builder.addBaseName("true");
}, /*isKeyword=*/true);
addFromProto(LK::BooleanLiteral, [](Builder &builder) {
builder.addBaseName("false");
}, /*isKeyword=*/true);
addFromProto(LK::NilLiteral, [](Builder &builder) {
builder.addBaseName("nil");
}, /*isKeyword=*/true);
addFromProto(LK::StringLiteral, [&](Builder &builder) {
builder.addTextChunk("\"");
builder.addSimpleNamedParameter("abc");
builder.addTextChunk("\"");
});
addFromProto(LK::ArrayLiteral, [&](Builder &builder) {
builder.addLeftBracket();
builder.addSimpleNamedParameter("values");
builder.addRightBracket();
});
addFromProto(LK::DictionaryLiteral, [&](Builder &builder) {
builder.addLeftBracket();
builder.addSimpleNamedParameter("key");
builder.addTextChunk(": ");
builder.addSimpleNamedParameter("value");
builder.addRightBracket();
});
// Optionally add object literals.
if (Sink.includeObjectLiterals) {
auto floatType = context.getFloatType();
addFromProto(LK::ColorLiteral, [&](Builder &builder) {
builder.addBaseName("#colorLiteral");
builder.addLeftParen();
builder.addCallArgument(context.getIdentifier("red"), floatType);
builder.addComma();
builder.addCallArgument(context.getIdentifier("green"), floatType);
builder.addComma();
builder.addCallArgument(context.getIdentifier("blue"), floatType);
builder.addComma();
builder.addCallArgument(context.getIdentifier("alpha"), floatType);
builder.addRightParen();
});
auto stringType = context.getStringType();
addFromProto(LK::ImageLiteral, [&](Builder &builder) {
builder.addBaseName("#imageLiteral");
builder.addLeftParen();
builder.addCallArgument(context.getIdentifier("resourceName"),
stringType);
builder.addRightParen();
});
}
// Add tuple completion (item, item).
{
CodeCompletionResultBuilder builder(Sink,
CodeCompletionResultKind::Literal,
SemanticContextKind::None, {});
builder.setLiteralKind(LK::Tuple);
builder.addFlair(flair);
builder.addLeftParen();
builder.addSimpleNamedParameter("values");
builder.addRightParen();
for (auto T : expectedTypeContext.getPossibleTypes()) {
if (T && T->is<TupleType>() && !T->isVoid()) {
addTypeAnnotation(builder, T);
builder.setResultType(T);
builder.setTypeContext(expectedTypeContext, CurrDeclContext);
break;
}
}
}
}
void addObjCPoundKeywordCompletions(bool needPound) {
if (!Ctx.LangOpts.EnableObjCInterop)
return;
// If the expected type is ObjectiveC.Selector, add #selector. If
// it's String, add #keyPath.
bool addedSelector = false;
bool addedKeyPath = false;
for (auto T : expectedTypeContext.getPossibleTypes()) {
T = T->lookThroughAllOptionalTypes();
if (auto structDecl = T->getStructOrBoundGenericStruct()) {
if (!addedSelector && structDecl->getName() == Ctx.Id_Selector &&
structDecl->getParentModule()->getName() == Ctx.Id_ObjectiveC) {
addPoundSelector(needPound);
if (addedKeyPath)
break;
addedSelector = true;
continue;
}
}
if (!addedKeyPath && T->isString()) {
addPoundKeyPath(needPound);
if (addedSelector)
break;
addedKeyPath = true;
continue;
}
}
}
struct FilteredDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &Consumer;
DeclFilter Filter;
FilteredDeclConsumer(swift::VisibleDeclConsumer &Consumer,
DeclFilter Filter) : Consumer(Consumer), Filter(Filter) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Kind,
DynamicLookupInfo dynamicLookupInfo) override {
if (Filter(VD, Kind))
Consumer.foundDecl(VD, Kind, dynamicLookupInfo);
}
};
void getValueCompletionsInDeclContext(SourceLoc Loc,
DeclFilter Filter = DefaultFilter,
bool LiteralCompletions = true,
bool ModuleQualifier = true) {
ExprType = Type();
Kind = LookupKind::ValueInDeclContext;
NeedLeadingDot = false;
AccessFilteringDeclConsumer AccessFilteringConsumer(
CurrDeclContext, *this);
FilteredDeclConsumer FilteringConsumer(AccessFilteringConsumer, Filter);
lookupVisibleDecls(FilteringConsumer, CurrDeclContext,
/*IncludeTopLevel=*/false, Loc);
RequestedCachedResults.push_back(RequestedResultsTy::toplevelResults()
.withModuleQualifier(ModuleQualifier));
// Manually add any expected nominal types from imported modules so that
// they get their expected type relation. Don't include protocols, since
// they can't be initialized from the type name.
// FIXME: this does not include types that conform to an expected protocol.
// FIXME: this creates duplicate results.
for (auto T : expectedTypeContext.getPossibleTypes()) {
if (auto NT = T->getAs<NominalType>()) {
if (auto NTD = NT->getDecl()) {
if (!isa<ProtocolDecl>(NTD) &&
NTD->getModuleContext() != CurrModule) {
addNominalTypeRef(NT->getDecl(),
DeclVisibilityKind::VisibleAtTopLevel, {});
}
}
}
}
if (CompletionContext) {
// FIXME: this is an awful simplification that says all and only enums can
// use implicit member syntax (leading dot). Computing the accurate answer
// using lookup (e.g. getUnresolvedMemberCompletions) is too expensive,
// and for some clients this approximation is good enough.
CompletionContext->MayUseImplicitMemberExpr =
llvm::any_of(expectedTypeContext.getPossibleTypes(), [](Type T) {
if (auto *NTD = T->getAnyNominal())
return isa<EnumDecl>(NTD);
return false;
});
}
if (LiteralCompletions) {
addValueLiteralCompletions();
addPoundLiteralCompletions(/*needPound=*/true);
}
addObjCPoundKeywordCompletions(/*needPound=*/true);
}
/// Returns \c true if \p VD is an initializer on the \c Optional or \c
/// Id_OptionalNilComparisonType type from the Swift stdlib.
static bool isInitializerOnOptional(Type T, ValueDecl *VD) {
bool IsOptionalType = false;
IsOptionalType |= static_cast<bool>(T->getOptionalObjectType());
if (auto *NTD = T->getAnyNominal()) {
IsOptionalType |= NTD->getBaseIdentifier() ==
VD->getASTContext().Id_OptionalNilComparisonType;
}
if (IsOptionalType && VD->getModuleContext()->isStdlibModule() &&
isa<ConstructorDecl>(VD)) {
return true;
} else {
return false;
}
}
void getUnresolvedMemberCompletions(Type T) {
if (!T->mayHaveMembers())
return;
if (auto objT = T->getOptionalObjectType()) {
// Add 'nil' keyword with erasing '.' instruction.
unsigned bytesToErase = 0;
auto &SM = CurrDeclContext->getASTContext().SourceMgr;
if (DotLoc.isValid())
bytesToErase = SM.getByteDistance(DotLoc, SM.getCodeCompletionLoc());
addKeyword("nil", T, SemanticContextKind::None,
CodeCompletionKeywordKind::kw_nil, bytesToErase);
}
// We can only say .foo where foo is a static member of the contextual
// type and has the same type (or if the member is a function, then the
// same result type) as the contextual type.
FilteredDeclConsumer consumer(
*this, [=](ValueDecl *VD, DeclVisibilityKind Reason) {
// In optional context, ignore '.init(<some>)', 'init(nilLiteral:)',
return !isInitializerOnOptional(T, VD);
});
auto baseType = MetatypeType::get(T);
llvm::SaveAndRestore<LookupKind> SaveLook(Kind, LookupKind::ValueExpr);
llvm::SaveAndRestore<Type> SaveType(ExprType, baseType);
llvm::SaveAndRestore<bool> SaveUnresolved(IsUnresolvedMember, true);
lookupVisibleMemberDecls(consumer, baseType, CurrDeclContext,
/*includeInstanceMembers=*/false,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true);
}
/// Complete all enum members declared on \p T.
void getEnumElementPatternCompletions(Type T) {
if (!isa_and_nonnull<EnumDecl>(T->getAnyNominal()))
return;
auto baseType = MetatypeType::get(T);
llvm::SaveAndRestore<LookupKind> SaveLook(Kind, LookupKind::EnumElement);
llvm::SaveAndRestore<Type> SaveType(ExprType, baseType);
llvm::SaveAndRestore<bool> SaveUnresolved(IsUnresolvedMember, true);
lookupVisibleMemberDecls(*this, baseType, CurrDeclContext,
/*includeInstanceMembers=*/false,
/*includeDerivedRequirements=*/false,
/*includeProtocolExtensionMembers=*/true);
}
void getUnresolvedMemberCompletions(ArrayRef<Type> Types) {
NeedLeadingDot = !HaveDot;
SmallPtrSet<CanType, 4> seenTypes;
for (auto T : Types) {
if (!T || !seenTypes.insert(T->getCanonicalType()).second)
continue;
if (auto objT = T->getOptionalObjectType()) {
// If this is optional type, perform completion for the object type.
// i.e. 'let _: Enum??? = .enumMember' is legal.
objT = objT->lookThroughAllOptionalTypes();
if (seenTypes.insert(objT->getCanonicalType()).second)
getUnresolvedMemberCompletions(objT);
}
getUnresolvedMemberCompletions(T);
}
}
void addCallArgumentCompletionResults(
ArrayRef<PossibleParamInfo> ParamInfos,
bool isLabeledTrailingClosure = false) {
Type ContextType;
if (auto typeContext = CurrDeclContext->getInnermostTypeContext())
ContextType = typeContext->getDeclaredTypeInContext();
for (auto Info : ParamInfos) {
const auto *Arg = Info.Param;
if (!Arg)
continue;
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Pattern,
// FIXME: SemanticContextKind::Local is not correct.
// Use 'None' (and fix prioritization) or introduce a new context.
SemanticContextKind::Local, {});
Builder.addCallArgument(Arg->getLabel(), Identifier(),
Arg->getPlainType(), ContextType,
Arg->isVariadic(), Arg->isInOut(),
/*IsIUO=*/false, Arg->isAutoClosure(),
/*UseUnderscoreLabel=*/true,
isLabeledTrailingClosure, /*HasDefault=*/false);
Builder.addFlair(CodeCompletionFlairBit::ArgumentLabels);
auto Ty = Arg->getPlainType();
if (Arg->isInOut()) {
Ty = InOutType::get(Ty);
} else if (Arg->isAutoClosure()) {
// 'Ty' may be ErrorType.
if (auto funcTy = Ty->getAs<FunctionType>())
Ty = funcTy->getResult();
}
// The type annotation is the argument type. But the argument label itself
// does not produce an expression with a result type so we set the result
// type as being not applicable.
addTypeAnnotation(Builder, Ty);
Builder.setResultTypeNotApplicable();
}
}
void getTypeCompletions(Type BaseType) {
if (tryModuleCompletions(BaseType, /*OnlyTypes=*/true))
return;
Kind = LookupKind::Type;
this->BaseType = BaseType;
NeedLeadingDot = !HaveDot;
lookupVisibleMemberDecls(*this, MetatypeType::get(BaseType),
CurrDeclContext,
IncludeInstanceMembers,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/false);
if (BaseType->isAnyExistentialType()) {
addKeyword("Protocol", MetatypeType::get(BaseType));
addKeyword("Type", ExistentialMetatypeType::get(BaseType));
} else if (!BaseType->is<ModuleType>()) {
addKeyword("Type", MetatypeType::get(BaseType));
}
}
void getGenericRequirementCompletions(DeclContext *DC,
SourceLoc CodeCompletionLoc) {
auto genericSig = DC->getGenericSignatureOfContext();
if (!genericSig)
return;
for (auto GPT : genericSig.getGenericParams()) {
addGenericTypeParamRef(GPT->getDecl(),
DeclVisibilityKind::GenericParameter, {});
}
// For non-protocol nominal type decls, only suggest generic parameters.
if (auto D = DC->getAsDecl())
if (isa<NominalTypeDecl>(D) && !isa<ProtocolDecl>(D))
return;
auto typeContext = DC->getInnermostTypeContext();
if (!typeContext)
return;
auto selfTy = typeContext->getSelfTypeInContext();
Kind = LookupKind::GenericRequirement;
this->BaseType = selfTy;
NeedLeadingDot = false;
lookupVisibleMemberDecls(*this, MetatypeType::get(selfTy),
CurrDeclContext, IncludeInstanceMembers,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true);
// We not only allow referencing nested types/typealiases directly, but also
// qualified by the current type. Thus also suggest current self type so the
// user can do a memberwise lookup on it.
if (auto SelfType = typeContext->getSelfNominalTypeDecl()) {
addNominalTypeRef(SelfType, DeclVisibilityKind::LocalVariable,
DynamicLookupInfo());
}
// Self is also valid in all cases in which it can be used in function
// bodies. Suggest it if applicable.
getSelfTypeCompletionInDeclContext(CodeCompletionLoc,
/*isForResultType=*/false);
}
static bool canUseAttributeOnDecl(DeclAttrKind DAK, bool IsInSil,
bool IsConcurrencyEnabled,
bool IsDistributedEnabled,
Optional<DeclKind> DK) {
if (DeclAttribute::isUserInaccessible(DAK))
return false;
if (DeclAttribute::isDeclModifier(DAK))
return false;
if (DeclAttribute::shouldBeRejectedByParser(DAK))
return false;
if (!IsInSil && DeclAttribute::isSilOnly(DAK))
return false;
if (!IsConcurrencyEnabled && DeclAttribute::isConcurrencyOnly(DAK))
return false;
if (!IsDistributedEnabled && DeclAttribute::isDistributedOnly(DAK))
return false;
if (!DK.hasValue())
return true;
return DeclAttribute::canAttributeAppearOnDeclKind(DAK, DK.getValue());
}
void getAttributeDeclCompletions(bool IsInSil, Optional<DeclKind> DK) {
// FIXME: also include user-defined attribute keywords
StringRef TargetName = "Declaration";
if (DK.hasValue()) {
switch (DK.getValue()) {
#define DECL(Id, ...) \
case DeclKind::Id: \
TargetName = #Id; \
break;
#include "swift/AST/DeclNodes.def"
}
}
bool IsConcurrencyEnabled = Ctx.LangOpts.EnableExperimentalConcurrency;
bool IsDistributedEnabled = Ctx.LangOpts.EnableExperimentalDistributed;
std::string Description = TargetName.str() + " Attribute";
#define DECL_ATTR(KEYWORD, NAME, ...) \
if (canUseAttributeOnDecl(DAK_##NAME, IsInSil, \
IsConcurrencyEnabled, \
IsDistributedEnabled, \
DK)) \
addDeclAttrKeyword(#KEYWORD, Description);
#include "swift/AST/Attr.def"
}
void getAttributeDeclParamCompletions(DeclAttrKind AttrKind, int ParamIndex) {
if (AttrKind == DAK_Available) {
if (ParamIndex == 0) {
addDeclAttrParamKeyword("*", "Platform", false);
#define AVAILABILITY_PLATFORM(X, PrettyName) \
addDeclAttrParamKeyword(swift::platformString(PlatformKind::X), \
"Platform", false);
#include "swift/AST/PlatformKinds.def"
} else {
addDeclAttrParamKeyword("unavailable", "", false);
addDeclAttrParamKeyword("message", "Specify message", true);
addDeclAttrParamKeyword("renamed", "Specify replacing name", true);
addDeclAttrParamKeyword("introduced", "Specify version number", true);
addDeclAttrParamKeyword("deprecated", "Specify version number", true);
}
}
}
void getTypeAttributeKeywordCompletions() {
auto addTypeAttr = [&](StringRef Name) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Keyword, SemanticContextKind::None,
expectedTypeContext);
Builder.addAttributeKeyword(Name, "Type Attribute");
};
addTypeAttr("autoclosure");
addTypeAttr("convention(swift)");
addTypeAttr("convention(block)");
addTypeAttr("convention(c)");
addTypeAttr("convention(thin)");
addTypeAttr("escaping");
}
void collectPrecedenceGroups() {
assert(CurrDeclContext);
if (CurrModule) {
for (auto FU: CurrModule->getFiles()) {
// We are looking through the current module,
// inspect only source files.
if (FU->getKind() != FileUnitKind::Source)
continue;
llvm::SmallVector<PrecedenceGroupDecl*, 4> results;
cast<SourceFile>(FU)->getPrecedenceGroups(results);
for (auto PG: results)
addPrecedenceGroupRef(PG);
}
}
for (auto Import : namelookup::getAllImports(CurrDeclContext)) {
auto Module = Import.importedModule;
if (Module == CurrModule)
continue;
RequestedCachedResults.push_back(RequestedResultsTy::fromModule(Module)
.onlyPrecedenceGroups()
.withModuleQualifier(false));
}
}
void getPrecedenceGroupCompletions(SyntaxKind SK) {
switch (SK) {
case SyntaxKind::PrecedenceGroupAssociativity:
addKeyword(getAssociativitySpelling(Associativity::None));
addKeyword(getAssociativitySpelling(Associativity::Left));
addKeyword(getAssociativitySpelling(Associativity::Right));
break;
case SyntaxKind::PrecedenceGroupAssignment:
addKeyword(getTokenText(tok::kw_false), Type(), SemanticContextKind::None,
CodeCompletionKeywordKind::kw_false);
addKeyword(getTokenText(tok::kw_true), Type(), SemanticContextKind::None,
CodeCompletionKeywordKind::kw_true);
break;
case SyntaxKind::PrecedenceGroupAttributeList:
addKeyword("associativity");
addKeyword("higherThan");
addKeyword("lowerThan");
addKeyword("assignment");
break;
case SyntaxKind::PrecedenceGroupRelation:
collectPrecedenceGroups();
break;
default:
llvm_unreachable("not a precedencegroup SyntaxKind");
}
}
void getPoundAvailablePlatformCompletions() {
// The platform names should be identical to those in @available.
getAttributeDeclParamCompletions(DAK_Available, 0);
}
/// \p Loc is the location of the code completin token.
/// \p isForDeclResult determines if were are spelling out the result type
/// of a declaration.
void getSelfTypeCompletionInDeclContext(SourceLoc Loc, bool isForDeclResult) {
const DeclContext *typeDC = CurrDeclContext->getInnermostTypeContext();
if (!typeDC)
return;
// For protocols, there's a 'Self' generic parameter.
if (typeDC->getSelfProtocolDecl())
return;
Type selfType =
CurrDeclContext->mapTypeIntoContext(typeDC->getSelfInterfaceType());
if (typeDC->getSelfClassDecl()) {
// In classes, 'Self' can be used in result type of func, subscript and
// computed property, or inside function bodies.
bool canUseDynamicSelf = false;
if (isForDeclResult) {
canUseDynamicSelf = true;
} else {
const auto *checkDC = CurrDeclContext;
if (isa<TypeAliasDecl>(checkDC))
checkDC = checkDC->getParent();
if (const auto *AFD = checkDC->getInnermostMethodContext()) {
canUseDynamicSelf = Ctx.SourceMgr.rangeContainsTokenLoc(
AFD->getBodySourceRange(), Loc);
}
}
if (!canUseDynamicSelf)
return;
// 'Self' in class is a dynamic type.
selfType = DynamicSelfType::get(selfType, Ctx);
} else {
// In enums and structs, 'Self' is just an alias for the nominal type,
// and can be used anywhere.
}
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::CurrentNominal,
expectedTypeContext);
Builder.addKeyword("Self");
Builder.setKeywordKind(CodeCompletionKeywordKind::kw_Self);
addTypeAnnotation(Builder, selfType);
}
void getTypeCompletionsInDeclContext(SourceLoc Loc,
bool ModuleQualifier = true) {
Kind = LookupKind::TypeInDeclContext;
AccessFilteringDeclConsumer AccessFilteringConsumer(
CurrDeclContext, *this);
lookupVisibleDecls(AccessFilteringConsumer, CurrDeclContext,
/*IncludeTopLevel=*/false, Loc);
RequestedCachedResults.push_back(
RequestedResultsTy::toplevelResults()
.onlyTypes()
.withModuleQualifier(ModuleQualifier));
}
void getToplevelCompletions(bool OnlyTypes) {
Kind = OnlyTypes ? LookupKind::TypeInDeclContext
: LookupKind::ValueInDeclContext;
NeedLeadingDot = false;
UsableFilteringDeclConsumer UsableFilteringConsumer(
Ctx.SourceMgr, CurrDeclContext, Ctx.SourceMgr.getCodeCompletionLoc(),
*this);
AccessFilteringDeclConsumer AccessFilteringConsumer(
CurrDeclContext, UsableFilteringConsumer);
CurrModule->lookupVisibleDecls({}, AccessFilteringConsumer,
NLKind::UnqualifiedLookup);
}
void lookupExternalModuleDecls(const ModuleDecl *TheModule,
ArrayRef<std::string> AccessPath,
bool ResultsHaveLeadingDot) {
assert(CurrModule != TheModule &&
"requested module should be external");
Kind = LookupKind::ImportFromModule;
NeedLeadingDot = ResultsHaveLeadingDot;
ImportPath::Access::Builder builder;
for (auto Piece : AccessPath) {
builder.push_back(Ctx.getIdentifier(Piece));
}
AccessFilteringDeclConsumer FilteringConsumer(CurrDeclContext, *this);
TheModule->lookupVisibleDecls(builder.get(), FilteringConsumer,
NLKind::UnqualifiedLookup);
llvm::SmallVector<PrecedenceGroupDecl*, 16> precedenceGroups;
TheModule->getPrecedenceGroups(precedenceGroups);
for (auto PGD: precedenceGroups)
addPrecedenceGroupRef(PGD);
}
void getStmtLabelCompletions(SourceLoc Loc, bool isContinue) {
class LabelFinder : public ASTWalker {
SourceManager &SM;
SourceLoc TargetLoc;
bool IsContinue;
public:
SmallVector<Identifier, 2> Result;
LabelFinder(SourceManager &SM, SourceLoc TargetLoc, bool IsContinue)
: SM(SM), TargetLoc(TargetLoc), IsContinue(IsContinue) {}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (SM.isBeforeInBuffer(S->getEndLoc(), TargetLoc))
return {false, S};
if (LabeledStmt *LS = dyn_cast<LabeledStmt>(S)) {
if (LS->getLabelInfo()) {
if (!IsContinue || LS->isPossibleContinueTarget()) {
auto label = LS->getLabelInfo().Name;
if (!llvm::is_contained(Result, label))
Result.push_back(label);
}
}
}
return {true, S};
}
Stmt *walkToStmtPost(Stmt *S) override { return nullptr; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (SM.isBeforeInBuffer(E->getEndLoc(), TargetLoc))
return {false, E};
return {true, E};
}
} Finder(CurrDeclContext->getASTContext().SourceMgr, Loc, isContinue);
const_cast<DeclContext *>(CurrDeclContext)->walkContext(Finder);
for (auto name : Finder.Result) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Pattern,
SemanticContextKind::Local, {});
Builder.addTextChunk(name.str());
}
}
};
class CompletionOverrideLookup : public swift::VisibleDeclConsumer {
CodeCompletionResultSink &Sink;
ASTContext &Ctx;
const DeclContext *CurrDeclContext;
SmallVectorImpl<StringRef> &ParsedKeywords;
SourceLoc introducerLoc;
bool hasFuncIntroducer = false;
bool hasVarIntroducer = false;
bool hasTypealiasIntroducer = false;
bool hasInitializerModifier = false;
bool hasAccessModifier = false;
bool hasOverride = false;
bool hasOverridabilityModifier = false;
bool hasStaticOrClass = false;
public:
CompletionOverrideLookup(CodeCompletionResultSink &Sink, ASTContext &Ctx,
const DeclContext *CurrDeclContext,
SmallVectorImpl<StringRef> &ParsedKeywords,
SourceLoc introducerLoc)
: Sink(Sink), Ctx(Ctx), CurrDeclContext(CurrDeclContext),
ParsedKeywords(ParsedKeywords), introducerLoc(introducerLoc) {
hasFuncIntroducer = isKeywordSpecified("func");
hasVarIntroducer = isKeywordSpecified("var") ||
isKeywordSpecified("let");
hasTypealiasIntroducer = isKeywordSpecified("typealias");
hasInitializerModifier = isKeywordSpecified("required") ||
isKeywordSpecified("convenience");
hasAccessModifier = isKeywordSpecified("private") ||
isKeywordSpecified("fileprivate") ||
isKeywordSpecified("internal") ||
isKeywordSpecified("public") ||
isKeywordSpecified("open");
hasOverride = isKeywordSpecified("override");
hasOverridabilityModifier = isKeywordSpecified("final") ||
isKeywordSpecified("open");
hasStaticOrClass = isKeywordSpecified(getTokenText(tok::kw_class)) ||
isKeywordSpecified(getTokenText(tok::kw_static));
}
bool isKeywordSpecified(StringRef Word) {
return std::find(ParsedKeywords.begin(), ParsedKeywords.end(), Word)
!= ParsedKeywords.end();
}
bool missingOverride(DeclVisibilityKind Reason) {
return !hasOverride && Reason == DeclVisibilityKind::MemberOfSuper &&
!CurrDeclContext->getSelfProtocolDecl();
}
/// Add an access modifier (i.e. `public`) to \p Builder is necessary.
/// Returns \c true if the modifier is actually added, \c false otherwise.
bool addAccessControl(const ValueDecl *VD,
CodeCompletionResultBuilder &Builder) {
auto CurrentNominal = CurrDeclContext->getSelfNominalTypeDecl();
assert(CurrentNominal);
auto AccessOfContext = CurrentNominal->getFormalAccess();
if (AccessOfContext < AccessLevel::Public)
return false;
auto Access = VD->getFormalAccess();
// Use the greater access between the protocol requirement and the witness.
// In case of:
//
// public protocol P { func foo() }
// public class B { func foo() {} }
// public class C: B, P {
// <complete>
// }
//
// 'VD' is 'B.foo()' which is implicitly 'internal'. But as the overriding
// declaration, the user needs to write both 'public' and 'override':
//
// public class C: B {
// public override func foo() {}
// }
if (Access < AccessLevel::Public &&
!isa<ProtocolDecl>(VD->getDeclContext())) {
for (auto Conformance : CurrentNominal->getAllConformances()) {
Conformance->getRootConformance()->forEachValueWitness(
[&](ValueDecl *req, Witness witness) {
if (witness.getDecl() == VD)
Access = std::max(
Access, Conformance->getProtocol()->getFormalAccess());
});
}
}
Access = std::min(Access, AccessOfContext);
// Only emit 'public', not needed otherwise.
if (Access < AccessLevel::Public)
return false;
Builder.addAccessControlKeyword(Access);
return true;
}
/// Return type if the result type if \p VD should be represented as opaque
/// result type.
Type getOpaqueResultType(const ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
if (Reason !=
DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal)
return nullptr;
auto currTy = CurrDeclContext->getDeclaredTypeInContext();
if (!currTy)
return nullptr;
Type ResultT;
if (auto *FD = dyn_cast<FuncDecl>(VD)) {
if (FD->getGenericParams()) {
// Generic function cannot have opaque result type.
return nullptr;
}
ResultT = FD->getResultInterfaceType();
} else if (auto *SD = dyn_cast<SubscriptDecl>(VD)) {
if (SD->getGenericParams()) {
// Generic subscript cannot have opaque result type.
return nullptr;
}
ResultT = SD->getElementInterfaceType();
} else if (auto *VarD = dyn_cast<VarDecl>(VD)) {
ResultT = VarD->getInterfaceType();
} else {
return nullptr;
}
if (!ResultT->is<DependentMemberType>() ||
!ResultT->castTo<DependentMemberType>()->getAssocType())
// The result is not a valid associatedtype.
return nullptr;
// Try substitution to see if the associated type is resolved to concrete
// type.
auto substMap = currTy->getMemberSubstitutionMap(
CurrDeclContext->getParentModule(), VD);
if (!ResultT.subst(substMap)->is<DependentMemberType>())
// If resolved print it.
return nullptr;
auto genericSig = VD->getDeclContext()->getGenericSignatureOfContext();
if (genericSig->isConcreteType(ResultT))
// If it has same type requrement, we will emit the concrete type.
return nullptr;
// Collect requirements on the associatedtype.
SmallVector<Type, 2> opaqueTypes;
bool hasExplicitAnyObject = false;
if (auto superTy = genericSig->getSuperclassBound(ResultT))
opaqueTypes.push_back(superTy);
for (const auto proto : genericSig->getRequiredProtocols(ResultT))
opaqueTypes.push_back(proto->getDeclaredInterfaceType());
if (auto layout = genericSig->getLayoutConstraint(ResultT))
hasExplicitAnyObject = layout->isClass();
if (!hasExplicitAnyObject) {
if (opaqueTypes.empty())
return nullptr;
if (opaqueTypes.size() == 1)
return opaqueTypes.front();
}
return ProtocolCompositionType::get(
VD->getASTContext(), opaqueTypes, hasExplicitAnyObject);
}
void addValueOverride(const ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo,
CodeCompletionResultBuilder &Builder,
bool hasDeclIntroducer) {
Type opaqueResultType = getOpaqueResultType(VD, Reason, dynamicLookupInfo);
class DeclPrinter : public CodeCompletionStringPrinter {
Type OpaqueBaseTy;
public:
DeclPrinter(CodeCompletionResultBuilder &Builder, Type OpaqueBaseTy)
: CodeCompletionStringPrinter(Builder), OpaqueBaseTy(OpaqueBaseTy) { }
// As for FuncDecl, SubscriptDecl, and VarDecl, substitute the result type
// with 'OpaqueBaseTy' if specified.
void printDeclResultTypePre(ValueDecl *VD, TypeLoc &TL) override {
if (!OpaqueBaseTy.isNull()) {
setNextChunkKind(ChunkKind::Keyword);
printText("some ");
setNextChunkKind(ChunkKind::Text);
TL = TypeLoc::withoutLoc(OpaqueBaseTy);
}
CodeCompletionStringPrinter::printDeclResultTypePre(VD, TL);
}
};
DeclPrinter Printer(Builder, opaqueResultType);
Printer.startPreamble();
bool modifierAdded = false;
// 'public' if needed.
modifierAdded |= !hasAccessModifier && addAccessControl(VD, Builder);
// 'override' if needed
if (missingOverride(Reason)) {
Builder.addOverrideKeyword();
modifierAdded |= true;
}
// Erase existing introducer (e.g. 'func') if any modifiers are added.
if (hasDeclIntroducer && modifierAdded) {
auto dist = Ctx.SourceMgr.getByteDistance(
introducerLoc, Ctx.SourceMgr.getCodeCompletionLoc());
if (dist <= CodeCompletionResult::MaxNumBytesToErase) {
Builder.setNumBytesToErase(dist);
hasDeclIntroducer = false;
}
}
PrintOptions PO;
if (auto transformType = CurrDeclContext->getDeclaredTypeInContext())
PO.setBaseType(transformType);
PO.PrintPropertyAccessors = false;
PO.PrintSubscriptAccessors = false;
PO.SkipUnderscoredKeywords = true;
PO.PrintImplicitAttrs = false;
PO.ExclusiveAttrList.push_back(TAK_escaping);
PO.ExclusiveAttrList.push_back(TAK_autoclosure);
// Print certain modifiers only when the introducer is not written.
// Otherwise, the user can add it after the completion.
if (!hasDeclIntroducer) {
PO.ExclusiveAttrList.push_back(DAK_Nonisolated);
}
PO.PrintAccess = false;
PO.PrintOverrideKeyword = false;
PO.PrintSelfAccessKindKeyword = false;
PO.PrintStaticKeyword = !hasStaticOrClass && !hasDeclIntroducer;
PO.SkipIntroducerKeywords = hasDeclIntroducer;
VD->print(Printer, PO);
}
void addMethodOverride(const FuncDecl *FD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Declaration,
SemanticContextKind::Super, {});
Builder.setResultTypeNotApplicable();
Builder.setAssociatedDecl(FD);
addValueOverride(FD, Reason, dynamicLookupInfo, Builder, hasFuncIntroducer);
Builder.addBraceStmtWithCursor();
}
void addVarOverride(const VarDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
// Overrides cannot use 'let', but if the 'override' keyword is specified
// then the intention is clear, so provide the results anyway. The compiler
// can then provide an error telling you to use 'var' instead.
// If we don't need override then it's a protocol requirement, so show it.
if (missingOverride(Reason) && hasVarIntroducer &&
isKeywordSpecified("let"))
return;
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Declaration,
SemanticContextKind::Super, {});
Builder.setAssociatedDecl(VD);
addValueOverride(VD, Reason, dynamicLookupInfo, Builder, hasVarIntroducer);
}
void addSubscriptOverride(const SubscriptDecl *SD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Declaration,
SemanticContextKind::Super, {});
Builder.setResultTypeNotApplicable();
Builder.setAssociatedDecl(SD);
addValueOverride(SD, Reason, dynamicLookupInfo, Builder, false);
Builder.addBraceStmtWithCursor();
}
void addTypeAlias(const AssociatedTypeDecl *ATD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Declaration,
SemanticContextKind::Super, {});
Builder.setResultTypeNotApplicable();
Builder.setAssociatedDecl(ATD);
if (!hasTypealiasIntroducer && !hasAccessModifier)
(void)addAccessControl(ATD, Builder);
if (!hasTypealiasIntroducer)
Builder.addDeclIntroducer("typealias ");
Builder.addBaseName(ATD->getName().str());
Builder.addTextChunk(" = ");
Builder.addSimpleNamedParameter("Type");
}
void addConstructor(const ConstructorDecl *CD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Declaration,
SemanticContextKind::Super, {});
Builder.setResultTypeNotApplicable();
Builder.setAssociatedDecl(CD);
CodeCompletionStringPrinter printer(Builder);
printer.startPreamble();
if (!hasAccessModifier)
(void)addAccessControl(CD, Builder);
if (missingOverride(Reason) && CD->isDesignatedInit() && !CD->isRequired())
Builder.addOverrideKeyword();
// Emit 'required' if we're in class context, 'required' is not specified,
// and 1) this is a protocol conformance and the class is not final, or 2)
// this is subclass and the initializer is marked as required.
bool needRequired = false;
auto C = CurrDeclContext->getSelfClassDecl();
if (C && !isKeywordSpecified("required")) {
switch (Reason) {
case DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolDerivedByCurrentNominal:
if (!C->isSemanticallyFinal())
needRequired = true;
break;
case DeclVisibilityKind::MemberOfSuper:
if (CD->isRequired())
needRequired = true;
break;
default: break;
}
}
if (needRequired)
Builder.addRequiredKeyword();
{
PrintOptions Options;
if (auto transformType = CurrDeclContext->getDeclaredTypeInContext())
Options.setBaseType(transformType);
Options.PrintImplicitAttrs = false;
Options.SkipAttributes = true;
CD->print(printer, Options);
}
printer.flush();
Builder.addBraceStmtWithCursor();
}
// Implement swift::VisibleDeclConsumer.
void foundDecl(ValueDecl *D, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (Reason == DeclVisibilityKind::MemberOfCurrentNominal)
return;
if (D->shouldHideFromEditor())
return;
if (D->isSemanticallyFinal())
return;
bool hasIntroducer = hasFuncIntroducer ||
hasVarIntroducer ||
hasTypealiasIntroducer;
if (hasStaticOrClass && !D->isStatic())
return;
// As per the current convention, only instance members are
// suggested if an introducer is not accompanied by a 'static' or
// 'class' modifier.
if (hasIntroducer && !hasStaticOrClass && D->isStatic())
return;
if (auto *FD = dyn_cast<FuncDecl>(D)) {
// We cannot override operators as members.
if (FD->isBinaryOperator() || FD->isUnaryOperator())
return;
// We cannot override individual accessors.
if (isa<AccessorDecl>(FD))
return;
if (hasFuncIntroducer || (!hasIntroducer && !hasInitializerModifier))
addMethodOverride(FD, Reason, dynamicLookupInfo);
return;
}
if (auto *VD = dyn_cast<VarDecl>(D)) {
if (hasVarIntroducer || (!hasIntroducer && !hasInitializerModifier))
addVarOverride(VD, Reason, dynamicLookupInfo);
return;
}
if (auto *SD = dyn_cast<SubscriptDecl>(D)) {
if (!hasIntroducer && !hasInitializerModifier)
addSubscriptOverride(SD, Reason, dynamicLookupInfo);
}
if (auto *CD = dyn_cast<ConstructorDecl>(D)) {
if (!isa<ProtocolDecl>(CD->getDeclContext()))
return;
if (hasIntroducer || hasOverride || hasOverridabilityModifier ||
hasStaticOrClass)
return;
if (CD->isRequired() || CD->isDesignatedInit())
addConstructor(CD, Reason, dynamicLookupInfo);
return;
}
}
void addDesignatedInitializers(NominalTypeDecl *NTD) {
if (hasFuncIntroducer || hasVarIntroducer || hasTypealiasIntroducer ||
hasOverridabilityModifier || hasStaticOrClass)
return;
const auto *CD = dyn_cast<ClassDecl>(NTD);
if (!CD)
return;
if (!CD->hasSuperclass())
return;
CD = CD->getSuperclassDecl();
for (const auto *Member : CD->getMembers()) {
const auto *Constructor = dyn_cast<ConstructorDecl>(Member);
if (!Constructor)
continue;
if (Constructor->hasStubImplementation())
continue;
if (Constructor->isDesignatedInit())
addConstructor(Constructor, DeclVisibilityKind::MemberOfSuper, {});
}
}
void addAssociatedTypes(NominalTypeDecl *NTD) {
if (!hasTypealiasIntroducer &&
(hasFuncIntroducer || hasVarIntroducer || hasInitializerModifier ||
hasOverride || hasOverridabilityModifier || hasStaticOrClass))
return;
for (auto Conformance : NTD->getAllConformances()) {
auto Proto = Conformance->getProtocol();
if (!Proto->isAccessibleFrom(CurrDeclContext))
continue;
for (auto *ATD : Proto->getAssociatedTypeMembers()) {
// FIXME: Also exclude the type alias that has already been specified.
if (!Conformance->hasTypeWitness(ATD) ||
ATD->hasDefaultDefinitionType())
continue;
addTypeAlias(
ATD,
DeclVisibilityKind::MemberOfProtocolConformedToByCurrentNominal,
{});
}
}
}
static StringRef getResultBuilderDocComment(
ResultBuilderBuildFunction function) {
switch (function) {
case ResultBuilderBuildFunction::BuildArray:
return "Enables support for..in loops in a result builder by "
"combining the results of all iterations into a single result";
case ResultBuilderBuildFunction::BuildBlock:
return "Required by every result builder to build combined results "
"from statement blocks";
case ResultBuilderBuildFunction::BuildEitherFirst:
return "With buildEither(second:), enables support for 'if-else' and "
"'switch' statements by folding conditional results into a single "
"result";
case ResultBuilderBuildFunction::BuildEitherSecond:
return "With buildEither(first:), enables support for 'if-else' and "
"'switch' statements by folding conditional results into a single "
"result";
case ResultBuilderBuildFunction::BuildExpression:
return "If declared, provides contextual type information for statement "
"expressions to translate them into partial results";
case ResultBuilderBuildFunction::BuildFinalResult:
return "If declared, this will be called on the partial result from the "
"outermost block statement to produce the final returned result";
case ResultBuilderBuildFunction::BuildLimitedAvailability:
return "If declared, this will be called on the partial result of "
"an 'if #available' block to allow the result builder to erase "
"type information";
case ResultBuilderBuildFunction::BuildOptional:
return "Enables support for `if` statements that do not have an `else`";
}
}
void addResultBuilderBuildCompletion(
NominalTypeDecl *builder, Type componentType,
ResultBuilderBuildFunction function) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Pattern,
SemanticContextKind::CurrentNominal,
{});
Builder.setResultTypeNotApplicable();
if (!hasFuncIntroducer) {
if (!hasAccessModifier &&
builder->getFormalAccess() >= AccessLevel::Public)
Builder.addAccessControlKeyword(AccessLevel::Public);
if (!hasStaticOrClass)
Builder.addTextChunk("static ");
Builder.addTextChunk("func ");
}
std::string declStringWithoutFunc;
{
llvm::raw_string_ostream out(declStringWithoutFunc);
printResultBuilderBuildFunction(
builder, componentType, function, None, out);
}
Builder.addTextChunk(declStringWithoutFunc);
Builder.addBraceStmtWithCursor();
Builder.setBriefDocComment(getResultBuilderDocComment(function));
}
/// Add completions for the various "build" functions in a result builder.
void addResultBuilderBuildCompletions(NominalTypeDecl *builder) {
Type componentType = inferResultBuilderComponentType(builder);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildBlock);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildExpression);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildOptional);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildEitherFirst);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildEitherSecond);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildArray);
addResultBuilderBuildCompletion(
builder, componentType,
ResultBuilderBuildFunction::BuildLimitedAvailability);
addResultBuilderBuildCompletion(
builder, componentType, ResultBuilderBuildFunction::BuildFinalResult);
}
void getOverrideCompletions(SourceLoc Loc) {
if (!CurrDeclContext->isTypeContext())
return;
if (isa<ProtocolDecl>(CurrDeclContext))
return;
Type CurrTy = CurrDeclContext->getSelfTypeInContext();
auto *NTD = CurrDeclContext->getSelfNominalTypeDecl();
if (CurrTy && !CurrTy->is<ErrorType>()) {
// Look for overridable static members too.
Type Meta = MetatypeType::get(CurrTy);
lookupVisibleMemberDecls(*this, Meta, CurrDeclContext,
/*includeInstanceMembers=*/true,
/*includeDerivedRequirements*/true,
/*includeProtocolExtensionMembers*/false);
addDesignatedInitializers(NTD);
addAssociatedTypes(NTD);
}
if (NTD && NTD->getAttrs().hasAttribute<ResultBuilderAttr>()) {
addResultBuilderBuildCompletions(NTD);
}
}
};
} // end anonymous namespace
static void addSelectorModifierKeywords(CodeCompletionResultSink &sink) {
auto addKeyword = [&](StringRef Name, CodeCompletionKeywordKind Kind) {
CodeCompletionResultBuilder Builder(sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
Builder.setKeywordKind(Kind);
Builder.addTextChunk(Name);
Builder.addCallParameterColon();
Builder.addSimpleTypedParameter("@objc property", /*IsVarArg=*/false);
};
addKeyword("getter", CodeCompletionKeywordKind::None);
addKeyword("setter", CodeCompletionKeywordKind::None);
}
void CodeCompletionCallbacksImpl::completeDotExpr(CodeCompletionExpr *E,
SourceLoc DotLoc) {
assert(P.Tok.is(tok::code_complete));
// Don't produce any results in an enum element.
if (InEnumElementRawValue)
return;
Kind = CompletionKind::DotExpr;
if (ParseExprSelectorContext != ObjCSelectorContext::None) {
PreferFunctionReferencesToCalls = true;
CompleteExprSelectorContext = ParseExprSelectorContext;
}
ParsedExpr = E->getBase();
this->DotLoc = DotLoc;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completeStmtOrExpr(CodeCompletionExpr *E) {
assert(P.Tok.is(tok::code_complete));
Kind = CompletionKind::StmtOrExpr;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completePostfixExprBeginning(CodeCompletionExpr *E) {
assert(P.Tok.is(tok::code_complete));
// Don't produce any results in an enum element.
if (InEnumElementRawValue)
return;
Kind = CompletionKind::PostfixExprBeginning;
if (ParseExprSelectorContext != ObjCSelectorContext::None) {
PreferFunctionReferencesToCalls = true;
CompleteExprSelectorContext = ParseExprSelectorContext;
if (CompleteExprSelectorContext == ObjCSelectorContext::MethodSelector) {
addSelectorModifierKeywords(CompletionContext.getResultSink());
}
}
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completeForEachSequenceBeginning(
CodeCompletionExpr *E) {
assert(P.Tok.is(tok::code_complete));
Kind = CompletionKind::ForEachSequence;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completePostfixExpr(Expr *E, bool hasSpace) {
assert(P.Tok.is(tok::code_complete));
// Don't produce any results in an enum element.
if (InEnumElementRawValue)
return;
HasSpace = hasSpace;
Kind = CompletionKind::PostfixExpr;
if (ParseExprSelectorContext != ObjCSelectorContext::None) {
PreferFunctionReferencesToCalls = true;
CompleteExprSelectorContext = ParseExprSelectorContext;
}
ParsedExpr = E;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completePostfixExprParen(Expr *E,
Expr *CodeCompletionE) {
assert(P.Tok.is(tok::code_complete));
// Don't produce any results in an enum element.
if (InEnumElementRawValue)
return;
Kind = CompletionKind::PostfixExprParen;
ParsedExpr = E;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = static_cast<CodeCompletionExpr*>(CodeCompletionE);
ShouldCompleteCallPatternAfterParen = true;
if (CompletionContext.getCallPatternHeuristics()) {
// Lookahead one token to decide what kind of call completions to provide.
// When it appears that there is already code for the call present, just
// complete values and/or argument labels. Otherwise give the entire call
// pattern.
Token next = P.peekToken();
if (!next.isAtStartOfLine() && !next.is(tok::eof) && !next.is(tok::r_paren)) {
ShouldCompleteCallPatternAfterParen = false;
}
}
}
void CodeCompletionCallbacksImpl::completeExprKeyPath(KeyPathExpr *KPE,
SourceLoc DotLoc) {
Kind = (!KPE || KPE->isObjC()) ? CompletionKind::KeyPathExprObjC
: CompletionKind::KeyPathExprSwift;
ParsedExpr = KPE;
this->DotLoc = DotLoc;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completePoundAvailablePlatform() {
Kind = CompletionKind::PoundAvailablePlatform;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeTypeDeclResultBeginning() {
Kind = CompletionKind::TypeDeclResultBeginning;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeTypeSimpleBeginning() {
Kind = CompletionKind::TypeSimpleBeginning;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeDeclAttrParam(DeclAttrKind DK,
int Index) {
Kind = CompletionKind::AttributeDeclParen;
AttrKind = DK;
AttrParamIndex = Index;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeEffectsSpecifier(bool hasAsync,
bool hasThrows) {
Kind = CompletionKind::EffectsSpecifier;
CurDeclContext = P.CurDeclContext;
ParsedKeywords.clear();
if (hasAsync)
ParsedKeywords.emplace_back("async");
if (hasThrows)
ParsedKeywords.emplace_back("throws");
}
void CodeCompletionCallbacksImpl::completeDeclAttrBeginning(
bool Sil, bool isIndependent) {
Kind = CompletionKind::AttributeBegin;
IsInSil = Sil;
CurDeclContext = P.CurDeclContext;
AttTargetIsIndependent = isIndependent;
}
void CodeCompletionCallbacksImpl::completeInPrecedenceGroup(SyntaxKind SK) {
assert(P.Tok.is(tok::code_complete));
SyntxKind = SK;
Kind = CompletionKind::PrecedenceGroup;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeTypeIdentifierWithDot(
IdentTypeRepr *ITR) {
if (!ITR) {
completeTypeSimpleBeginning();
return;
}
Kind = CompletionKind::TypeIdentifierWithDot;
ParsedTypeLoc = TypeLoc(ITR);
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeTypeIdentifierWithoutDot(
IdentTypeRepr *ITR) {
assert(ITR);
Kind = CompletionKind::TypeIdentifierWithoutDot;
ParsedTypeLoc = TypeLoc(ITR);
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeCaseStmtKeyword() {
Kind = CompletionKind::CaseStmtKeyword;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeCaseStmtBeginning(CodeCompletionExpr *E) {
assert(!InEnumElementRawValue);
Kind = CompletionKind::CaseStmtBeginning;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completeImportDecl(
ImportPath::Builder &Path) {
Kind = CompletionKind::Import;
CurDeclContext = P.CurDeclContext;
DotLoc = Path.empty() ? SourceLoc() : Path.back().Loc;
if (DotLoc.isInvalid())
return;
auto Importer = static_cast<ClangImporter *>(CurDeclContext->getASTContext().
getClangModuleLoader());
std::vector<std::string> SubNames;
Importer->collectSubModuleNames(Path.get().getModulePath(false), SubNames);
ASTContext &Ctx = CurDeclContext->getASTContext();
Path.push_back(Identifier());
for (StringRef Sub : SubNames) {
Path.back().Item = Ctx.getIdentifier(Sub);
SubModuleNameVisibilityPairs.push_back(
std::make_pair(Sub.str(),
Ctx.getLoadedModule(Path.get().getModulePath(false))));
}
Path.pop_back();
}
void CodeCompletionCallbacksImpl::completeUnresolvedMember(CodeCompletionExpr *E,
SourceLoc DotLoc) {
Kind = CompletionKind::UnresolvedMember;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
this->DotLoc = DotLoc;
}
void CodeCompletionCallbacksImpl::completeCallArg(CodeCompletionExpr *E,
bool isFirst) {
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
Kind = CompletionKind::CallArg;
ShouldCompleteCallPatternAfterParen = false;
if (isFirst) {
ShouldCompleteCallPatternAfterParen = true;
if (CompletionContext.getCallPatternHeuristics()) {
// Lookahead one token to decide what kind of call completions to provide.
// When it appears that there is already code for the call present, just
// complete values and/or argument labels. Otherwise give the entire call
// pattern.
Token next = P.peekToken();
if (!next.isAtStartOfLine() && !next.is(tok::eof) && !next.is(tok::r_paren)) {
ShouldCompleteCallPatternAfterParen = false;
}
}
}
}
void CodeCompletionCallbacksImpl::completeLabeledTrailingClosure(
CodeCompletionExpr *E, bool isAtStartOfLine) {
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
Kind = CompletionKind::LabeledTrailingClosure;
IsAtStartOfLine = isAtStartOfLine;
}
void CodeCompletionCallbacksImpl::completeReturnStmt(CodeCompletionExpr *E) {
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
Kind = CompletionKind::ReturnStmtExpr;
}
void CodeCompletionCallbacksImpl::completeYieldStmt(CodeCompletionExpr *E,
Optional<unsigned> index) {
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
// TODO: use a different completion kind when completing without an index
// in a multiple-value context.
Kind = CompletionKind::YieldStmtExpr;
}
void CodeCompletionCallbacksImpl::completeAfterPoundExpr(
CodeCompletionExpr *E, Optional<StmtKind> ParentKind) {
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
Kind = CompletionKind::AfterPoundExpr;
ParentStmtKind = ParentKind;
}
void CodeCompletionCallbacksImpl::completeAfterPoundDirective() {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::AfterPoundDirective;
}
void CodeCompletionCallbacksImpl::completePlatformCondition() {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::PlatformConditon;
}
void CodeCompletionCallbacksImpl::completeAfterIfStmt(bool hasElse) {
CurDeclContext = P.CurDeclContext;
if (hasElse) {
Kind = CompletionKind::AfterIfStmtElse;
} else {
Kind = CompletionKind::StmtOrExpr;
}
}
void CodeCompletionCallbacksImpl::completeGenericRequirement() {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::GenericRequirement;
}
void CodeCompletionCallbacksImpl::completeNominalMemberBeginning(
SmallVectorImpl<StringRef> &Keywords, SourceLoc introducerLoc) {
assert(!InEnumElementRawValue);
this->introducerLoc = introducerLoc;
ParsedKeywords.clear();
ParsedKeywords.append(Keywords.begin(), Keywords.end());
Kind = CompletionKind::NominalMemberBeginning;
CurDeclContext = P.CurDeclContext;
}
void CodeCompletionCallbacksImpl::completeAccessorBeginning(
CodeCompletionExpr *E) {
Kind = CompletionKind::AccessorBeginning;
CurDeclContext = P.CurDeclContext;
CodeCompleteTokenExpr = E;
}
void CodeCompletionCallbacksImpl::completeStmtLabel(StmtKind ParentKind) {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::StmtLabel;
ParentStmtKind = ParentKind;
}
void CodeCompletionCallbacksImpl::completeForEachPatternBeginning(
bool hasTry, bool hasAwait) {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::ForEachPatternBeginning;
ParsedKeywords.clear();
if (hasTry)
ParsedKeywords.emplace_back("try");
if (hasAwait)
ParsedKeywords.emplace_back("await");
}
void CodeCompletionCallbacksImpl::completeTypeAttrBeginning() {
CurDeclContext = P.CurDeclContext;
Kind = CompletionKind::TypeAttrBeginning;
}
static bool isDynamicLookup(Type T) {
return T->getRValueType()->isAnyObject();
}
static bool isClangSubModule(ModuleDecl *TheModule) {
if (auto ClangMod = TheModule->findUnderlyingClangModule())
return ClangMod->isSubModule();
return false;
}
static void addKeyword(CodeCompletionResultSink &Sink, StringRef Name,
CodeCompletionKeywordKind Kind,
StringRef TypeAnnotation = "",
CodeCompletionFlair Flair = {}) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
Builder.setKeywordKind(Kind);
Builder.addKeyword(Name);
Builder.addFlair(Flair);
if (!TypeAnnotation.empty())
Builder.addTypeAnnotation(TypeAnnotation);
Builder.setResultTypeNotApplicable();
}
static void addDeclKeywords(CodeCompletionResultSink &Sink, DeclContext *DC,
bool IsConcurrencyEnabled,
bool IsDistributedEnabled) {
auto isTypeDeclIntroducer = [](CodeCompletionKeywordKind Kind,
Optional<DeclAttrKind> DAK) -> bool {
switch (Kind) {
case CodeCompletionKeywordKind::kw_protocol:
case CodeCompletionKeywordKind::kw_class:
case CodeCompletionKeywordKind::kw_struct:
case CodeCompletionKeywordKind::kw_enum:
case CodeCompletionKeywordKind::kw_extension:
return true;
case CodeCompletionKeywordKind::None:
if (DAK && *DAK == DeclAttrKind::DAK_Actor) {
return true;
}
break;
default:
break;
}
return false;
};
auto isTopLevelOnlyDeclIntroducer = [](CodeCompletionKeywordKind Kind,
Optional<DeclAttrKind> DAK) -> bool {
switch (Kind) {
case CodeCompletionKeywordKind::kw_operator:
case CodeCompletionKeywordKind::kw_precedencegroup:
case CodeCompletionKeywordKind::kw_import:
case CodeCompletionKeywordKind::kw_protocol:
case CodeCompletionKeywordKind::kw_extension:
return true;
default:
return false;
}
};
auto getFlair = [&](CodeCompletionKeywordKind Kind,
Optional<DeclAttrKind> DAK) -> CodeCompletionFlair {
if (isCodeCompletionAtTopLevelOfLibraryFile(DC)) {
// Type decls are common in library file top-level.
if (isTypeDeclIntroducer(Kind, DAK))
return CodeCompletionFlairBit::CommonKeywordAtCurrentPosition;
}
if (isa<ProtocolDecl>(DC)) {
// Protocols cannot have nested type decls (other than 'typealias').
if (isTypeDeclIntroducer(Kind, DAK))
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
}
if (DC->isTypeContext()) {
// Top-level only decls are invalid in type context.
if (isTopLevelOnlyDeclIntroducer(Kind, DAK))
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
}
if (isCompletionDeclContextLocalContext(DC)) {
// Local type decl are valid, but not common.
if (isTypeDeclIntroducer(Kind, DAK))
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
// Top-level only decls are invalid in function body.
if (isTopLevelOnlyDeclIntroducer(Kind, DAK))
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
// 'init', 'deinit' and 'subscript' are invalid in function body.
// Access control modifiers are invalid in function body.
switch (Kind) {
case CodeCompletionKeywordKind::kw_init:
case CodeCompletionKeywordKind::kw_deinit:
case CodeCompletionKeywordKind::kw_subscript:
case CodeCompletionKeywordKind::kw_private:
case CodeCompletionKeywordKind::kw_fileprivate:
case CodeCompletionKeywordKind::kw_internal:
case CodeCompletionKeywordKind::kw_public:
case CodeCompletionKeywordKind::kw_static:
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
default:
break;
}
// These modifiers are invalid for decls in function body.
if (DAK) {
switch (*DAK) {
case DeclAttrKind::DAK_Lazy:
case DeclAttrKind::DAK_Final:
case DeclAttrKind::DAK_Infix:
case DeclAttrKind::DAK_Frozen:
case DeclAttrKind::DAK_Prefix:
case DeclAttrKind::DAK_Postfix:
case DeclAttrKind::DAK_Dynamic:
case DeclAttrKind::DAK_Override:
case DeclAttrKind::DAK_Optional:
case DeclAttrKind::DAK_Required:
case DeclAttrKind::DAK_Convenience:
case DeclAttrKind::DAK_AccessControl:
case DeclAttrKind::DAK_Nonisolated:
return CodeCompletionFlairBit::RareKeywordAtCurrentPosition;
default:
break;
}
}
}
return None;
};
auto AddDeclKeyword = [&](StringRef Name, CodeCompletionKeywordKind Kind,
Optional<DeclAttrKind> DAK) {
if (Name == "let" || Name == "var") {
// Treat keywords that could be the start of a pattern specially.
return;
}
// FIXME: This should use canUseAttributeOnDecl.
// Remove user inaccessible keywords.
if (DAK.hasValue() && DeclAttribute::isUserInaccessible(*DAK))
return;
// Remove keywords only available when concurrency is enabled.
if (DAK.hasValue() && !IsConcurrencyEnabled &&
DeclAttribute::isConcurrencyOnly(*DAK))
return;
// Remove keywords only available when distributed is enabled.
if (DAK.hasValue() && !IsDistributedEnabled &&
DeclAttribute::isDistributedOnly(*DAK))
return;
addKeyword(Sink, Name, Kind, /*TypeAnnotation=*/"", getFlair(Kind, DAK));
};
#define DECL_KEYWORD(kw) \
AddDeclKeyword(#kw, CodeCompletionKeywordKind::kw_##kw, None);
#include "swift/Syntax/TokenKinds.def"
// Context-sensitive keywords.
auto AddCSKeyword = [&](StringRef Name, DeclAttrKind Kind) {
AddDeclKeyword(Name, CodeCompletionKeywordKind::None, Kind);
};
#define CONTEXTUAL_CASE(KW, CLASS) AddCSKeyword(#KW, DAK_##CLASS);
#define CONTEXTUAL_DECL_ATTR(KW, CLASS, ...) CONTEXTUAL_CASE(KW, CLASS)
#define CONTEXTUAL_DECL_ATTR_ALIAS(KW, CLASS) CONTEXTUAL_CASE(KW, CLASS)
#define CONTEXTUAL_SIMPLE_DECL_ATTR(KW, CLASS, ...) CONTEXTUAL_CASE(KW, CLASS)
#include <swift/AST/Attr.def>
#undef CONTEXTUAL_CASE
}
static void addStmtKeywords(CodeCompletionResultSink &Sink, DeclContext *DC,
bool MaybeFuncBody) {
CodeCompletionFlair flair;
// Starting a statement at top-level in non-script files is invalid.
if (isCodeCompletionAtTopLevelOfLibraryFile(DC)) {
flair |= CodeCompletionFlairBit::ExpressionAtNonScriptOrMainFileScope;
}
auto AddStmtKeyword = [&](StringRef Name, CodeCompletionKeywordKind Kind) {
if (!MaybeFuncBody && Kind == CodeCompletionKeywordKind::kw_return)
return;
addKeyword(Sink, Name, Kind, "", flair);
};
#define STMT_KEYWORD(kw) AddStmtKeyword(#kw, CodeCompletionKeywordKind::kw_##kw);
#include "swift/Syntax/TokenKinds.def"
}
static void addCaseStmtKeywords(CodeCompletionResultSink &Sink) {
addKeyword(Sink, "case", CodeCompletionKeywordKind::kw_case);
addKeyword(Sink, "default", CodeCompletionKeywordKind::kw_default);
}
static void addLetVarKeywords(CodeCompletionResultSink &Sink) {
addKeyword(Sink, "let", CodeCompletionKeywordKind::kw_let);
addKeyword(Sink, "var", CodeCompletionKeywordKind::kw_var);
}
static void addAccessorKeywords(CodeCompletionResultSink &Sink) {
addKeyword(Sink, "get", CodeCompletionKeywordKind::None);
addKeyword(Sink, "set", CodeCompletionKeywordKind::None);
}
static void addObserverKeywords(CodeCompletionResultSink &Sink) {
addKeyword(Sink, "willSet", CodeCompletionKeywordKind::None);
addKeyword(Sink, "didSet", CodeCompletionKeywordKind::None);
}
static void addExprKeywords(CodeCompletionResultSink &Sink, DeclContext *DC) {
// Expression is invalid at top-level of non-script files.
CodeCompletionFlair flair;
if (isCodeCompletionAtTopLevelOfLibraryFile(DC)) {
flair |= CodeCompletionFlairBit::ExpressionAtNonScriptOrMainFileScope;
}
// Expr keywords.
addKeyword(Sink, "try", CodeCompletionKeywordKind::kw_try, "", flair);
addKeyword(Sink, "try!", CodeCompletionKeywordKind::kw_try, "", flair);
addKeyword(Sink, "try?", CodeCompletionKeywordKind::kw_try, "", flair);
addKeyword(Sink, "await", CodeCompletionKeywordKind::None, "", flair);
}
static void addOpaqueTypeKeyword(CodeCompletionResultSink &Sink) {
addKeyword(Sink, "some", CodeCompletionKeywordKind::None, "some");
}
static void addAnyTypeKeyword(CodeCompletionResultSink &Sink, Type T) {
CodeCompletionResultBuilder Builder(Sink, CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
Builder.setKeywordKind(CodeCompletionKeywordKind::None);
Builder.addKeyword("Any");
Builder.addTypeAnnotation(T, PrintOptions());
}
void CodeCompletionCallbacksImpl::addKeywords(CodeCompletionResultSink &Sink,
bool MaybeFuncBody) {
switch (Kind) {
case CompletionKind::None:
case CompletionKind::DotExpr:
case CompletionKind::AttributeDeclParen:
case CompletionKind::AttributeBegin:
case CompletionKind::PoundAvailablePlatform:
case CompletionKind::Import:
case CompletionKind::UnresolvedMember:
case CompletionKind::LabeledTrailingClosure:
case CompletionKind::AfterPoundExpr:
case CompletionKind::AfterPoundDirective:
case CompletionKind::PlatformConditon:
case CompletionKind::GenericRequirement:
case CompletionKind::KeyPathExprObjC:
case CompletionKind::KeyPathExprSwift:
case CompletionKind::PrecedenceGroup:
case CompletionKind::StmtLabel:
case CompletionKind::TypeAttrBeginning:
break;
case CompletionKind::EffectsSpecifier: {
if (!llvm::is_contained(ParsedKeywords, "async"))
addKeyword(Sink, "async", CodeCompletionKeywordKind::None);
if (!llvm::is_contained(ParsedKeywords, "throws"))
addKeyword(Sink, "throws", CodeCompletionKeywordKind::kw_throws);
break;
}
case CompletionKind::AccessorBeginning: {
// TODO: Omit already declared or mutally exclusive accessors.
// E.g. If 'get' is already declared, emit 'set' only.
addAccessorKeywords(Sink);
// Only 'var' for non-protocol context can have 'willSet' and 'didSet'.
assert(ParsedDecl);
VarDecl *var = dyn_cast<VarDecl>(ParsedDecl);
if (auto accessor = dyn_cast<AccessorDecl>(ParsedDecl))
var = dyn_cast<VarDecl>(accessor->getStorage());
if (var && !var->getDeclContext()->getSelfProtocolDecl())
addObserverKeywords(Sink);
if (!isa<AccessorDecl>(ParsedDecl))
break;
MaybeFuncBody = true;
LLVM_FALLTHROUGH;
}
case CompletionKind::StmtOrExpr:
addDeclKeywords(Sink, CurDeclContext,
Context.LangOpts.EnableExperimentalConcurrency,
Context.LangOpts.EnableExperimentalDistributed);
addStmtKeywords(Sink, CurDeclContext, MaybeFuncBody);
LLVM_FALLTHROUGH;
case CompletionKind::ReturnStmtExpr:
case CompletionKind::YieldStmtExpr:
case CompletionKind::PostfixExprBeginning:
case CompletionKind::ForEachSequence:
addSuperKeyword(Sink);
addLetVarKeywords(Sink);
addExprKeywords(Sink, CurDeclContext);
addAnyTypeKeyword(Sink, CurDeclContext->getASTContext().TheAnyType);
break;
case CompletionKind::CallArg:
case CompletionKind::PostfixExprParen:
// Note that we don't add keywords here as the completion might be for
// an argument list pattern. We instead add keywords later in
// CodeCompletionCallbacksImpl::doneParsing when we know we're not
// completing for a argument list pattern.
break;
case CompletionKind::CaseStmtKeyword:
addCaseStmtKeywords(Sink);
break;
case CompletionKind::PostfixExpr:
case CompletionKind::CaseStmtBeginning:
case CompletionKind::TypeIdentifierWithDot:
case CompletionKind::TypeIdentifierWithoutDot:
break;
case CompletionKind::TypeDeclResultBeginning: {
auto DC = CurDeclContext;
if (ParsedDecl && ParsedDecl == CurDeclContext->getAsDecl())
DC = ParsedDecl->getDeclContext();
if (!isa<ProtocolDecl>(DC))
if (DC->isTypeContext() || isa_and_nonnull<FuncDecl>(ParsedDecl))
addOpaqueTypeKeyword(Sink);
LLVM_FALLTHROUGH;
}
case CompletionKind::TypeSimpleBeginning:
addAnyTypeKeyword(Sink, CurDeclContext->getASTContext().TheAnyType);
break;
case CompletionKind::NominalMemberBeginning: {
bool HasDeclIntroducer = llvm::find_if(ParsedKeywords,
[this](const StringRef kw) {
return llvm::StringSwitch<bool>(kw)
.Case("associatedtype", true)
.Case("class", !CurDeclContext || !isa<ClassDecl>(CurDeclContext))
.Case("deinit", true)
.Case("enum", true)
.Case("extension", true)
.Case("func", true)
.Case("import", true)
.Case("init", true)
.Case("let", true)
.Case("operator", true)
.Case("precedencegroup", true)
.Case("protocol", true)
.Case("struct", true)
.Case("subscript", true)
.Case("typealias", true)
.Case("var", true)
.Default(false);
}) != ParsedKeywords.end();
if (!HasDeclIntroducer) {
addDeclKeywords(Sink, CurDeclContext,
Context.LangOpts.EnableExperimentalConcurrency,
Context.LangOpts.EnableExperimentalDistributed);
addLetVarKeywords(Sink);
}
break;
}
case CompletionKind::AfterIfStmtElse:
addKeyword(Sink, "if", CodeCompletionKeywordKind::kw_if);
break;
case CompletionKind::ForEachPatternBeginning:
if (!llvm::is_contained(ParsedKeywords, "try"))
addKeyword(Sink, "try", CodeCompletionKeywordKind::kw_try);
if (!llvm::is_contained(ParsedKeywords, "await"))
addKeyword(Sink, "await", CodeCompletionKeywordKind::None);
addKeyword(Sink, "var", CodeCompletionKeywordKind::kw_var);
addKeyword(Sink, "case", CodeCompletionKeywordKind::kw_case);
}
}
static void addPoundDirectives(CodeCompletionResultSink &Sink) {
auto addWithName =
[&](StringRef name, CodeCompletionKeywordKind K,
llvm::function_ref<void(CodeCompletionResultBuilder &)> consumer =
nullptr) {
CodeCompletionResultBuilder Builder(Sink,
CodeCompletionResultKind::Keyword,
SemanticContextKind::None, {});
Builder.addBaseName(name);
Builder.setKeywordKind(K);
if (consumer)
consumer(Builder);
};
addWithName("sourceLocation", CodeCompletionKeywordKind::pound_sourceLocation,
[&] (CodeCompletionResultBuilder &Builder) {
Builder.addLeftParen();
Builder.addTextChunk("file");
Builder.addCallParameterColon();
Builder.addSimpleTypedParameter("String");
Builder.addComma();
Builder.addTextChunk("line");
Builder.addCallParameterColon();
Builder.addSimpleTypedParameter("Int");
Builder.addRightParen();
});
addWithName("warning", CodeCompletionKeywordKind::pound_warning,
[&] (CodeCompletionResultBuilder &Builder) {
Builder.addLeftParen();
Builder.addTextChunk("\"");
Builder.addSimpleNamedParameter("message");
Builder.addTextChunk("\"");
Builder.addRightParen();
});
addWithName("error", CodeCompletionKeywordKind::pound_error,
[&] (CodeCompletionResultBuilder &Builder) {
Builder.addLeftParen();
Builder.addTextChunk("\"");
Builder.addSimpleNamedParameter("message");
Builder.addTextChunk("\"");
Builder.addRightParen();
});
addWithName("if ", CodeCompletionKeywordKind::pound_if,
[&] (CodeCompletionResultBuilder &Builder) {
Builder.addSimpleNamedParameter("condition");
});
// FIXME: These directives are only valid in conditional completion block.
addWithName("elseif ", CodeCompletionKeywordKind::pound_elseif,
[&] (CodeCompletionResultBuilder &Builder) {
Builder.addSimpleNamedParameter("condition");
});
addWithName("else", CodeCompletionKeywordKind::pound_else);
addWithName("endif", CodeCompletionKeywordKind::pound_endif);
}
/// Add platform conditions used in '#if' and '#elseif' directives.
static void addPlatformConditions(CodeCompletionResultSink &Sink) {
auto addWithName =
[&](StringRef Name,
llvm::function_ref<void(CodeCompletionResultBuilder & Builder)>
consumer) {
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Pattern,
// FIXME: SemanticContextKind::CurrentModule is not correct.
// Use 'None' (and fix prioritization) or introduce a new context.
SemanticContextKind::CurrentModule, {});
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
Builder.addBaseName(Name);
Builder.addLeftParen();
consumer(Builder);
Builder.addRightParen();
};
addWithName("os", [](CodeCompletionResultBuilder &Builder) {
Builder.addSimpleNamedParameter("name");
});
addWithName("arch", [](CodeCompletionResultBuilder &Builder) {
Builder.addSimpleNamedParameter("name");
});
addWithName("canImport", [](CodeCompletionResultBuilder &Builder) {
Builder.addSimpleNamedParameter("module");
});
addWithName("targetEnvironment", [](CodeCompletionResultBuilder &Builder) {
Builder.addTextChunk("simulator");
});
addWithName("swift", [](CodeCompletionResultBuilder &Builder) {
Builder.addTextChunk(">=");
Builder.addSimpleNamedParameter("version");
});
addWithName("swift", [](CodeCompletionResultBuilder &Builder) {
Builder.addTextChunk("<");
Builder.addSimpleNamedParameter("version");
});
addWithName("compiler", [](CodeCompletionResultBuilder &Builder) {
Builder.addTextChunk(">=");
Builder.addSimpleNamedParameter("version");
});
addWithName("compiler", [](CodeCompletionResultBuilder &Builder) {
Builder.addTextChunk("<");
Builder.addSimpleNamedParameter("version");
});
addKeyword(Sink, "true", CodeCompletionKeywordKind::kw_true, "Bool");
addKeyword(Sink, "false", CodeCompletionKeywordKind::kw_false, "Bool");
}
/// Add flags specified by '-D' to completion results.
static void addConditionalCompilationFlags(ASTContext &Ctx,
CodeCompletionResultSink &Sink) {
for (auto Flag : Ctx.LangOpts.getCustomConditionalCompilationFlags()) {
// TODO: Should we filter out some flags?
CodeCompletionResultBuilder Builder(
Sink, CodeCompletionResultKind::Keyword,
// FIXME: SemanticContextKind::CurrentModule is not correct.
// Use 'None' (and fix prioritization) or introduce a new context.
SemanticContextKind::CurrentModule, {});
Builder.addFlair(CodeCompletionFlairBit::ExpressionSpecific);
Builder.addTextChunk(Flag);
}
}
/// Add flairs to the each item in \p results .
///
/// If \p Sink is passed, the pointer of the each result may be replaced with a
/// pointer to the new item allocated in \p Sink.
/// If \p Sink is nullptr, the pointee of each result may be modified in place.
static void postProcessResults(MutableArrayRef<CodeCompletionResult *> results,
CompletionKind Kind, DeclContext *DC,
CodeCompletionResultSink *Sink) {
for (CodeCompletionResult *&result : results) {
bool modified = false;
auto flair = result->getFlair();
// Starting a statement with a protocol name is not common. So protocol
// names at non-type name position are "rare".
if (result->getKind() == CodeCompletionResultKind::Declaration &&
result->getAssociatedDeclKind() == CodeCompletionDeclKind::Protocol &&
Kind != CompletionKind::TypeSimpleBeginning &&
Kind != CompletionKind::TypeIdentifierWithoutDot &&
Kind != CompletionKind::TypeIdentifierWithDot &&
Kind != CompletionKind::TypeDeclResultBeginning &&
Kind != CompletionKind::GenericRequirement) {
flair |= CodeCompletionFlairBit::RareTypeAtCurrentPosition;
modified = true;
}
// Starting a statement at top-level in non-script files is invalid.
if (Kind == CompletionKind::StmtOrExpr &&
result->getKind() == CodeCompletionResultKind::Declaration &&
isCodeCompletionAtTopLevelOfLibraryFile(DC)) {
flair |= CodeCompletionFlairBit::ExpressionAtNonScriptOrMainFileScope;
modified = true;
}
if (!modified)
continue;
if (Sink) {
// Replace the result with a new result with the flair.
result = result->withFlair(flair, *Sink);
} else {
// 'Sink' == nullptr means the result is modifiable in place.
result->setFlair(flair);
}
}
}
static void deliverCompletionResults(CodeCompletionContext &CompletionContext,
CompletionLookup &Lookup,
DeclContext *DC,
CodeCompletionConsumer &Consumer) {
auto &SF = *DC->getParentSourceFile();
llvm::SmallPtrSet<Identifier, 8> seenModuleNames;
std::vector<RequestedCachedModule> RequestedModules;
SmallPtrSet<ModuleDecl *, 4> explictlyImportedModules;
{
// Collect modules directly imported in this SourceFile.
SmallVector<ImportedModule, 4> directImport;
SF.getImportedModules(directImport,
{ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::ImplementationOnly});
for (auto import : directImport)
explictlyImportedModules.insert(import.importedModule);
// Exclude modules implicitly imported in the current module.
auto implicitImports = SF.getParentModule()->getImplicitImports();
for (auto import : implicitImports.imports)
explictlyImportedModules.erase(import.module.importedModule);
// Consider the current module "explicit".
explictlyImportedModules.insert(SF.getParentModule());
}
for (auto &Request: Lookup.RequestedCachedResults) {
llvm::DenseSet<CodeCompletionCache::Key> ImportsSeen;
auto handleImport = [&](ImportedModule Import) {
ModuleDecl *TheModule = Import.importedModule;
ImportPath::Access Path = Import.accessPath;
if (TheModule->getFiles().empty())
return;
// Clang submodules are ignored and there's no lookup cost involved,
// so just ignore them and don't put the empty results in the cache
// because putting a lot of objects in the cache will push out
// other lookups.
if (isClangSubModule(TheModule))
return;
std::vector<std::string> AccessPath;
for (auto Piece : Path) {
AccessPath.push_back(std::string(Piece.Item));
}
StringRef ModuleFilename = TheModule->getModuleFilename();
// ModuleFilename can be empty if something strange happened during
// module loading, for example, the module file is corrupted.
if (!ModuleFilename.empty()) {
CodeCompletionCache::Key K{
ModuleFilename.str(),
std::string(TheModule->getName()),
AccessPath,
Request.NeedLeadingDot,
SF.hasTestableOrPrivateImport(
AccessLevel::Internal, TheModule,
SourceFile::ImportQueryKind::TestableOnly),
SF.hasTestableOrPrivateImport(
AccessLevel::Internal, TheModule,
SourceFile::ImportQueryKind::PrivateOnly),
CompletionContext.getAddInitsToTopLevel(),
CompletionContext.addCallWithNoDefaultArgs(),
CompletionContext.getAnnotateResult()};
using PairType = llvm::DenseSet<swift::ide::CodeCompletionCache::Key,
llvm::DenseMapInfo<CodeCompletionCache::Key>>::iterator;
std::pair<PairType, bool> Result = ImportsSeen.insert(K);
if (!Result.second)
return; // already handled.
RequestedModules.push_back({std::move(K), TheModule,
Request.OnlyTypes, Request.OnlyPrecedenceGroups});
auto TheModuleName = TheModule->getName();
if (Request.IncludeModuleQualifier &&
(!Lookup.isHiddenModuleName(TheModuleName) ||
explictlyImportedModules.contains(TheModule)) &&
seenModuleNames.insert(TheModuleName).second)
Lookup.addModuleName(TheModule);
}
};
if (Request.TheModule) {
// FIXME: actually check imports.
for (auto Import : namelookup::getAllImports(Request.TheModule)) {
handleImport(Import);
}
} else {
// Add results from current module.
Lookup.getToplevelCompletions(Request.OnlyTypes);
// Add the qualifying module name
auto curModule = SF.getParentModule();
if (Request.IncludeModuleQualifier &&
seenModuleNames.insert(curModule->getName()).second)
Lookup.addModuleName(curModule);
// Add results for all imported modules.
SmallVector<ImportedModule, 4> Imports;
SF.getImportedModules(
Imports, {ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::ImplementationOnly});
for (auto Imported : Imports) {
for (auto Import : namelookup::getAllImports(Imported.importedModule))
handleImport(Import);
}
}
}
Lookup.RequestedCachedResults.clear();
CompletionContext.typeContextKind = Lookup.typeContextKind();
postProcessResults(CompletionContext.getResultSink().Results,
CompletionContext.CodeCompletionKind, DC,
/*Sink=*/nullptr);
Consumer.handleResultsAndModules(CompletionContext, RequestedModules, DC);
}
void deliverUnresolvedMemberResults(
ArrayRef<UnresolvedMemberTypeCheckCompletionCallback::ExprResult> Results,
ArrayRef<Type> EnumPatternTypes, DeclContext *DC, SourceLoc DotLoc,
ide::CodeCompletionContext &CompletionCtx,
CodeCompletionConsumer &Consumer) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
assert(DotLoc.isValid());
Lookup.setHaveDot(DotLoc);
Lookup.shouldCheckForDuplicates(Results.size() + EnumPatternTypes.size() > 1);
// Get the canonical versions of the top-level types
SmallPtrSet<CanType, 4> originalTypes;
for (auto &Result: Results)
originalTypes.insert(Result.ExpectedTy->getCanonicalType());
for (auto &Result: Results) {
Lookup.setExpectedTypes({Result.ExpectedTy},
Result.IsImplicitSingleExpressionReturn,
/*expectsNonVoid*/true);
Lookup.setIdealExpectedType(Result.ExpectedTy);
// For optional types, also get members of the unwrapped type if it's not
// already equivalent to one of the top-level types. Handling it via the top
// level type and not here ensures we give the correct type relation
// (identical, rather than convertible).
if (Result.ExpectedTy->getOptionalObjectType()) {
Type Unwrapped = Result.ExpectedTy->lookThroughAllOptionalTypes();
if (originalTypes.insert(Unwrapped->getCanonicalType()).second)
Lookup.getUnresolvedMemberCompletions(Unwrapped);
}
Lookup.getUnresolvedMemberCompletions(Result.ExpectedTy);
}
// Offer completions when interpreting the pattern match as an
// EnumElementPattern.
for (auto &Ty : EnumPatternTypes) {
Lookup.setExpectedTypes({Ty}, /*IsImplicitSingleExpressionReturn=*/false,
/*expectsNonVoid=*/true);
Lookup.setIdealExpectedType(Ty);
// We can pattern match MyEnum against Optional<MyEnum>
if (Ty->getOptionalObjectType()) {
Type Unwrapped = Ty->lookThroughAllOptionalTypes();
Lookup.getEnumElementPatternCompletions(Unwrapped);
}
Lookup.getEnumElementPatternCompletions(Ty);
}
deliverCompletionResults(CompletionCtx, Lookup, DC, Consumer);
}
void deliverKeyPathResults(
ArrayRef<KeyPathTypeCheckCompletionCallback::Result> Results,
DeclContext *DC, SourceLoc DotLoc,
ide::CodeCompletionContext &CompletionCtx,
CodeCompletionConsumer &Consumer) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
if (DotLoc.isValid()) {
Lookup.setHaveDot(DotLoc);
}
Lookup.shouldCheckForDuplicates(Results.size() > 1);
for (auto &Result : Results) {
Lookup.setIsSwiftKeyPathExpr(Result.OnRoot);
Lookup.getValueExprCompletions(Result.BaseType);
}
deliverCompletionResults(CompletionCtx, Lookup, DC, Consumer);
}
void deliverDotExprResults(
ArrayRef<DotExprTypeCheckCompletionCallback::Result> Results,
Expr *BaseExpr, DeclContext *DC, SourceLoc DotLoc, bool IsInSelector,
ide::CodeCompletionContext &CompletionCtx,
CodeCompletionConsumer &Consumer) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
if (DotLoc.isValid())
Lookup.setHaveDot(DotLoc);
Lookup.setIsSuperRefExpr(isa<SuperRefExpr>(BaseExpr));
if (auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
Lookup.setIsSelfRefExpr(DRE->getDecl()->getName() == Ctx.Id_self);
if (isa<BindOptionalExpr>(BaseExpr) || isa<ForceValueExpr>(BaseExpr))
Lookup.setIsUnwrappedOptional(true);
if (IsInSelector) {
Lookup.includeInstanceMembers();
Lookup.setPreferFunctionReferencesToCalls();
}
Lookup.shouldCheckForDuplicates(Results.size() > 1);
for (auto &Result: Results) {
Lookup.setIsStaticMetatype(Result.BaseIsStaticMetaType);
Lookup.getPostfixKeywordCompletions(Result.BaseTy, BaseExpr);
Lookup.setExpectedTypes(Result.ExpectedTypes,
Result.IsImplicitSingleExpressionReturn,
Result.ExpectsNonVoid);
if (isDynamicLookup(Result.BaseTy))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(Result.BaseTy, Result.BaseDecl);
}
deliverCompletionResults(CompletionCtx, Lookup, DC, Consumer);
}
bool CodeCompletionCallbacksImpl::trySolverCompletion(bool MaybeFuncBody) {
assert(ParsedExpr || CurDeclContext);
SourceLoc CompletionLoc = ParsedExpr
? ParsedExpr->getLoc()
: CurDeclContext->getASTContext().SourceMgr.getCodeCompletionLoc();
switch (Kind) {
case CompletionKind::DotExpr: {
assert(CodeCompleteTokenExpr);
assert(CurDeclContext);
DotExprTypeCheckCompletionCallback Lookup(CurDeclContext,
CodeCompleteTokenExpr);
llvm::SaveAndRestore<TypeCheckCompletionCallback*>
CompletionCollector(Context.CompletionCallback, &Lookup);
typeCheckContextAt(CurDeclContext, CompletionLoc);
// This (hopefully) only happens in cases where the expression isn't
// typechecked during normal compilation either (e.g. member completion in a
// switch case where there control expression is invalid). Having normal
// typechecking still resolve even these cases would be beneficial for
// tooling in general though.
if (!Lookup.gotCallback())
Lookup.fallbackTypeCheck();
addKeywords(CompletionContext.getResultSink(), MaybeFuncBody);
Expr *CheckedBase = CodeCompleteTokenExpr->getBase();
deliverDotExprResults(Lookup.getResults(), CheckedBase, CurDeclContext,
DotLoc, isInsideObjCSelector(), CompletionContext,
Consumer);
return true;
}
case CompletionKind::UnresolvedMember: {
assert(CodeCompleteTokenExpr);
assert(CurDeclContext);
UnresolvedMemberTypeCheckCompletionCallback Lookup(CodeCompleteTokenExpr);
llvm::SaveAndRestore<TypeCheckCompletionCallback*>
CompletionCollector(Context.CompletionCallback, &Lookup);
typeCheckContextAt(CurDeclContext, CompletionLoc);
if (!Lookup.gotCallback())
Lookup.fallbackTypeCheck(CurDeclContext);
addKeywords(CompletionContext.getResultSink(), MaybeFuncBody);
deliverUnresolvedMemberResults(Lookup.getExprResults(),
Lookup.getEnumPatternTypes(), CurDeclContext,
DotLoc, CompletionContext, Consumer);
return true;
}
case CompletionKind::KeyPathExprSwift: {
assert(CurDeclContext);
// CodeCompletionCallbacks::completeExprKeyPath takes a \c KeyPathExpr,
// so we can safely cast the \c ParsedExpr back to a \c KeyPathExpr.
auto KeyPath = cast<KeyPathExpr>(ParsedExpr);
KeyPathTypeCheckCompletionCallback Lookup(KeyPath);
llvm::SaveAndRestore<TypeCheckCompletionCallback *> CompletionCollector(
Context.CompletionCallback, &Lookup);
typeCheckContextAt(CurDeclContext, CompletionLoc);
deliverKeyPathResults(Lookup.getResults(), CurDeclContext, DotLoc,
CompletionContext, Consumer);
return true;
}
default:
return false;
}
}
// Undoes the single-expression closure/function body transformation on the
// given DeclContext and its parent contexts if they have a single expression
// body that contains the code completion location.
//
// FIXME: Remove this once all expression position completions are migrated
// to work via TypeCheckCompletionCallback.
static void undoSingleExpressionReturn(DeclContext *DC) {
auto updateBody = [](BraceStmt *BS, ASTContext &Ctx) -> bool {
ASTNode LastElem = BS->getLastElement();
auto *RS = dyn_cast_or_null<ReturnStmt>(LastElem.dyn_cast<Stmt*>());
if (!RS || !RS->isImplicit())
return false;
BS->setLastElement(RS->getResult());
return true;
};
while (ClosureExpr *CE = dyn_cast_or_null<ClosureExpr>(DC)) {
if (CE->hasSingleExpressionBody()) {
if (updateBody(CE->getBody(), CE->getASTContext()))
CE->setBody(CE->getBody(), false);
}
DC = DC->getParent();
}
if (FuncDecl *FD = dyn_cast_or_null<FuncDecl>(DC)) {
if (FD->hasSingleExpressionBody()) {
if (updateBody(FD->getBody(), FD->getASTContext()))
FD->setHasSingleExpressionBody(false);
}
}
}
void CodeCompletionCallbacksImpl::doneParsing() {
CompletionContext.CodeCompletionKind = Kind;
if (Kind == CompletionKind::None) {
return;
}
bool MaybeFuncBody = true;
if (CurDeclContext) {
auto *CD = CurDeclContext->getLocalContext();
if (!CD || CD->getContextKind() == DeclContextKind::Initializer ||
CD->getContextKind() == DeclContextKind::TopLevelCodeDecl)
MaybeFuncBody = false;
}
if (auto *DC = dyn_cast_or_null<DeclContext>(ParsedDecl)) {
if (DC->isChildContextOf(CurDeclContext))
CurDeclContext = DC;
}
if (trySolverCompletion(MaybeFuncBody))
return;
undoSingleExpressionReturn(CurDeclContext);
typeCheckContextAt(
CurDeclContext,
ParsedExpr
? ParsedExpr->getLoc()
: CurDeclContext->getASTContext().SourceMgr.getCodeCompletionLoc());
// Add keywords even if type checking fails completely.
addKeywords(CompletionContext.getResultSink(), MaybeFuncBody);
Optional<Type> ExprType;
ConcreteDeclRef ReferencedDecl = nullptr;
if (ParsedExpr) {
if (auto *checkedExpr = findParsedExpr(CurDeclContext,
ParsedExpr->getSourceRange())) {
ParsedExpr = checkedExpr;
}
if (auto typechecked = typeCheckParsedExpr()) {
ExprType = typechecked->first;
ReferencedDecl = typechecked->second;
ParsedExpr->setType(*ExprType);
}
if (!ExprType && Kind != CompletionKind::PostfixExprParen &&
Kind != CompletionKind::CallArg &&
Kind != CompletionKind::KeyPathExprObjC)
return;
}
if (!ParsedTypeLoc.isNull() && !typecheckParsedType())
return;
CompletionLookup Lookup(CompletionContext.getResultSink(), P.Context,
CurDeclContext, &CompletionContext);
if (ExprType) {
Lookup.setIsStaticMetatype(ParsedExpr->isStaticallyDerivedMetatype());
}
if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(ParsedExpr)) {
Lookup.setIsSelfRefExpr(DRE->getDecl()->getName() == Context.Id_self);
} else if (isa_and_nonnull<SuperRefExpr>(ParsedExpr)) {
Lookup.setIsSuperRefExpr();
}
if (isInsideObjCSelector())
Lookup.includeInstanceMembers();
if (PreferFunctionReferencesToCalls)
Lookup.setPreferFunctionReferencesToCalls();
auto DoPostfixExprBeginning = [&] (){
SourceLoc Loc = P.Context.SourceMgr.getCodeCompletionLoc();
Lookup.getValueCompletionsInDeclContext(Loc);
Lookup.getSelfTypeCompletionInDeclContext(Loc, /*isForDeclResult=*/false);
};
switch (Kind) {
case CompletionKind::None:
case CompletionKind::DotExpr:
case CompletionKind::UnresolvedMember:
case CompletionKind::KeyPathExprSwift:
llvm_unreachable("should be already handled");
return;
case CompletionKind::StmtOrExpr:
case CompletionKind::ForEachSequence:
case CompletionKind::PostfixExprBeginning: {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
DoPostfixExprBeginning();
break;
}
case CompletionKind::PostfixExpr: {
Lookup.setHaveLeadingSpace(HasSpace);
if (isDynamicLookup(*ExprType))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(*ExprType, ReferencedDecl.getDecl());
/// We set the type of ParsedExpr explicitly above. But we don't want an
/// unresolved type in our AST when we type check again for operator
/// completions. Remove the type of the ParsedExpr and see if we can come up
/// with something more useful based on the the full sequence expression.
if (ParsedExpr->getType()->is<UnresolvedType>()) {
ParsedExpr->setType(nullptr);
}
Lookup.getOperatorCompletions(ParsedExpr, leadingSequenceExprs);
Lookup.getPostfixKeywordCompletions(*ExprType, ParsedExpr);
break;
}
case CompletionKind::PostfixExprParen: {
Lookup.setHaveLParen(true);
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
if (ShouldCompleteCallPatternAfterParen) {
ExprContextInfo ParentContextInfo(CurDeclContext, ParsedExpr);
Lookup.setExpectedTypes(
ParentContextInfo.getPossibleTypes(),
ParentContextInfo.isImplicitSingleExpressionReturn());
if (!ContextInfo.getPossibleCallees().empty()) {
for (auto &typeAndDecl : ContextInfo.getPossibleCallees())
Lookup.tryFunctionCallCompletions(typeAndDecl.Type, typeAndDecl.Decl,
typeAndDecl.SemanticContext);
} else if (ExprType && ((*ExprType)->is<AnyFunctionType>() ||
(*ExprType)->is<AnyMetatypeType>())) {
Lookup.getValueExprCompletions(*ExprType, ReferencedDecl.getDecl());
}
} else {
// Add argument labels, then fallthrough to get values.
Lookup.addCallArgumentCompletionResults(ContextInfo.getPossibleParams());
}
if (!Lookup.FoundFunctionCalls ||
(Lookup.FoundFunctionCalls &&
Lookup.FoundFunctionsWithoutFirstKeyword)) {
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
Lookup.setHaveLParen(false);
// Add any keywords that can be used in an argument expr position.
addSuperKeyword(CompletionContext.getResultSink());
addExprKeywords(CompletionContext.getResultSink(), CurDeclContext);
DoPostfixExprBeginning();
}
break;
}
case CompletionKind::KeyPathExprObjC: {
if (DotLoc.isValid())
Lookup.setHaveDot(DotLoc);
Lookup.setIsKeyPathExpr();
Lookup.includeInstanceMembers();
if (ExprType) {
if (isDynamicLookup(*ExprType))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(*ExprType, ReferencedDecl.getDecl());
} else {
SourceLoc Loc = P.Context.SourceMgr.getCodeCompletionLoc();
Lookup.getValueCompletionsInDeclContext(Loc, KeyPathFilter,
/*LiteralCompletions=*/false);
}
break;
}
case CompletionKind::TypeDeclResultBeginning:
case CompletionKind::TypeSimpleBeginning: {
auto Loc = Context.SourceMgr.getCodeCompletionLoc();
Lookup.getTypeCompletionsInDeclContext(Loc);
Lookup.getSelfTypeCompletionInDeclContext(
Loc, Kind == CompletionKind::TypeDeclResultBeginning);
break;
}
case CompletionKind::TypeIdentifierWithDot: {
Lookup.setHaveDot(SourceLoc());
Lookup.getTypeCompletions(ParsedTypeLoc.getType());
break;
}
case CompletionKind::TypeIdentifierWithoutDot: {
Lookup.getTypeCompletions(ParsedTypeLoc.getType());
break;
}
case CompletionKind::CaseStmtBeginning: {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
Lookup.setIdealExpectedType(CodeCompleteTokenExpr->getType());
Lookup.getUnresolvedMemberCompletions(ContextInfo.getPossibleTypes());
DoPostfixExprBeginning();
break;
}
case CompletionKind::NominalMemberBeginning: {
CompletionOverrideLookup OverrideLookup(CompletionContext.getResultSink(),
P.Context, CurDeclContext,
ParsedKeywords, introducerLoc);
OverrideLookup.getOverrideCompletions(SourceLoc());
break;
}
case CompletionKind::AccessorBeginning: {
if (isa<AccessorDecl>(ParsedDecl)) {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
DoPostfixExprBeginning();
}
break;
}
case CompletionKind::AttributeBegin: {
Lookup.getAttributeDeclCompletions(IsInSil, AttTargetDK);
// TypeName at attribute position after '@'.
// - VarDecl: Property Wrappers.
// - ParamDecl/VarDecl/FuncDecl: Function Builders.
if (!AttTargetDK || *AttTargetDK == DeclKind::Var ||
*AttTargetDK == DeclKind::Param || *AttTargetDK == DeclKind::Func)
Lookup.getTypeCompletionsInDeclContext(
P.Context.SourceMgr.getCodeCompletionLoc());
break;
}
case CompletionKind::AttributeDeclParen: {
Lookup.getAttributeDeclParamCompletions(AttrKind, AttrParamIndex);
break;
}
case CompletionKind::PoundAvailablePlatform: {
Lookup.getPoundAvailablePlatformCompletions();
break;
}
case CompletionKind::Import: {
if (DotLoc.isValid())
Lookup.addSubModuleNames(SubModuleNameVisibilityPairs);
else
Lookup.addImportModuleNames();
break;
}
case CompletionKind::CallArg: {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
bool shouldPerformGlobalCompletion = true;
if (ShouldCompleteCallPatternAfterParen &&
!ContextInfo.getPossibleCallees().empty()) {
Lookup.setHaveLParen(true);
for (auto &typeAndDecl : ContextInfo.getPossibleCallees()) {
auto apply = ContextInfo.getAnalyzedExpr();
if (isa_and_nonnull<SubscriptExpr>(apply)) {
Lookup.addSubscriptCallPattern(
typeAndDecl.Type,
dyn_cast_or_null<SubscriptDecl>(typeAndDecl.Decl),
typeAndDecl.SemanticContext);
} else {
Lookup.addFunctionCallPattern(
typeAndDecl.Type,
dyn_cast_or_null<AbstractFunctionDecl>(typeAndDecl.Decl),
typeAndDecl.SemanticContext);
}
}
Lookup.setHaveLParen(false);
shouldPerformGlobalCompletion =
!Lookup.FoundFunctionCalls ||
(Lookup.FoundFunctionCalls &&
Lookup.FoundFunctionsWithoutFirstKeyword);
} else if (!ContextInfo.getPossibleParams().empty()) {
auto params = ContextInfo.getPossibleParams();
Lookup.addCallArgumentCompletionResults(params);
shouldPerformGlobalCompletion = !ContextInfo.getPossibleTypes().empty();
// Fallback to global completion if the position is out of number. It's
// better than suggest nothing.
shouldPerformGlobalCompletion |= llvm::all_of(
params, [](const PossibleParamInfo &P) { return !P.Param; });
}
if (shouldPerformGlobalCompletion) {
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
// Add any keywords that can be used in an argument expr position.
addSuperKeyword(CompletionContext.getResultSink());
addExprKeywords(CompletionContext.getResultSink(), CurDeclContext);
DoPostfixExprBeginning();
}
break;
}
case CompletionKind::LabeledTrailingClosure: {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
SmallVector<PossibleParamInfo, 2> params;
// Only complete function type parameters
llvm::copy_if(ContextInfo.getPossibleParams(), std::back_inserter(params),
[](const PossibleParamInfo &P) {
// nullptr indicates out of bounds.
if (!P.Param)
return true;
return P.Param->getPlainType()
->lookThroughAllOptionalTypes()
->is<AnyFunctionType>();
});
bool allRequired = false;
if (!params.empty()) {
Lookup.addCallArgumentCompletionResults(
params, /*isLabeledTrailingClosure=*/true);
allRequired = llvm::all_of(
params, [](const PossibleParamInfo &P) { return P.IsRequired; });
}
// If there're optional parameters, do global completion or member
// completion depending on the completion is happening at the start of line.
if (!allRequired) {
if (IsAtStartOfLine) {
// foo() {}
// <HERE>
auto &Sink = CompletionContext.getResultSink();
if (isa<Initializer>(CurDeclContext))
CurDeclContext = CurDeclContext->getParent();
if (CurDeclContext->isTypeContext()) {
// Override completion (CompletionKind::NominalMemberBeginning).
addDeclKeywords(Sink, CurDeclContext,
Context.LangOpts.EnableExperimentalConcurrency,
Context.LangOpts.EnableExperimentalDistributed);
addLetVarKeywords(Sink);
SmallVector<StringRef, 0> ParsedKeywords;
CompletionOverrideLookup OverrideLookup(Sink, Context, CurDeclContext,
ParsedKeywords, SourceLoc());
OverrideLookup.getOverrideCompletions(SourceLoc());
} else {
// Global completion (CompletionKind::PostfixExprBeginning).
addDeclKeywords(Sink, CurDeclContext,
Context.LangOpts.EnableExperimentalConcurrency,
Context.LangOpts.EnableExperimentalDistributed);
addStmtKeywords(Sink, CurDeclContext, MaybeFuncBody);
addSuperKeyword(Sink);
addLetVarKeywords(Sink);
addExprKeywords(Sink, CurDeclContext);
addAnyTypeKeyword(Sink, Context.TheAnyType);
DoPostfixExprBeginning();
}
} else {
// foo() {} <HERE>
// Member completion.
Expr *analyzedExpr = ContextInfo.getAnalyzedExpr();
if (!analyzedExpr)
break;
// Only if the completion token is the last token in the call.
if (analyzedExpr->getEndLoc() != CodeCompleteTokenExpr->getLoc())
break;
Type resultTy = analyzedExpr->getType();
// If the call expression doesn't have a type, fallback to:
if (!resultTy || resultTy->is<ErrorType>()) {
// 1) Try to type check removing CodeCompletionExpr from the call.
Expr *removedExpr = analyzedExpr;
removeCodeCompletionExpr(CurDeclContext->getASTContext(),
removedExpr);
ConcreteDeclRef referencedDecl;
auto optT = getTypeOfCompletionContextExpr(
CurDeclContext->getASTContext(), CurDeclContext,
CompletionTypeCheckKind::Normal, removedExpr, referencedDecl);
if (optT) {
resultTy = *optT;
analyzedExpr->setType(resultTy);
}
}
if (!resultTy || resultTy->is<ErrorType>()) {
// 2) Infer it from the possible callee info.
if (!ContextInfo.getPossibleCallees().empty()) {
auto calleeInfo = ContextInfo.getPossibleCallees()[0];
resultTy = calleeInfo.Type->getResult();
analyzedExpr->setType(resultTy);
}
}
if (!resultTy || resultTy->is<ErrorType>()) {
// 3) Give up providing postfix completions.
break;
}
auto &SM = CurDeclContext->getASTContext().SourceMgr;
auto leadingChar =
SM.extractText({SM.getCodeCompletionLoc().getAdvancedLoc(-1), 1});
Lookup.setHaveLeadingSpace(leadingChar.find_first_of(" \t\f\v") !=
StringRef::npos);
if (isDynamicLookup(resultTy))
Lookup.setIsDynamicLookup();
Lookup.getValueExprCompletions(resultTy, /*VD=*/nullptr);
Lookup.getOperatorCompletions(analyzedExpr, leadingSequenceExprs);
Lookup.getPostfixKeywordCompletions(resultTy, analyzedExpr);
}
}
break;
}
case CompletionKind::ReturnStmtExpr : {
SourceLoc Loc = P.Context.SourceMgr.getCodeCompletionLoc();
SmallVector<Type, 2> possibleReturnTypes;
collectPossibleReturnTypesFromContext(CurDeclContext, possibleReturnTypes);
Lookup.setExpectedTypes(possibleReturnTypes,
/*isImplicitSingleExpressionReturn*/ false);
Lookup.getValueCompletionsInDeclContext(Loc);
break;
}
case CompletionKind::YieldStmtExpr: {
SourceLoc Loc = P.Context.SourceMgr.getCodeCompletionLoc();
if (auto FD = dyn_cast<AccessorDecl>(CurDeclContext)) {
if (FD->isCoroutine()) {
// TODO: handle multi-value yields.
Lookup.setExpectedTypes(FD->getStorage()->getValueInterfaceType(),
/*isImplicitSingleExpressionReturn*/ false);
}
}
Lookup.getValueCompletionsInDeclContext(Loc);
break;
}
case CompletionKind::AfterPoundExpr: {
ExprContextInfo ContextInfo(CurDeclContext, CodeCompleteTokenExpr);
Lookup.setExpectedTypes(ContextInfo.getPossibleTypes(),
ContextInfo.isImplicitSingleExpressionReturn());
Lookup.addPoundAvailable(ParentStmtKind);
Lookup.addPoundLiteralCompletions(/*needPound=*/false);
Lookup.addObjCPoundKeywordCompletions(/*needPound=*/false);
break;
}
case CompletionKind::AfterPoundDirective: {
addPoundDirectives(CompletionContext.getResultSink());
// FIXME: Add pound expressions (e.g. '#selector()') if it's at statements
// position.
break;
}
case CompletionKind::PlatformConditon: {
addPlatformConditions(CompletionContext.getResultSink());
addConditionalCompilationFlags(CurDeclContext->getASTContext(),
CompletionContext.getResultSink());
break;
}
case CompletionKind::GenericRequirement: {
auto Loc = Context.SourceMgr.getCodeCompletionLoc();
Lookup.getGenericRequirementCompletions(CurDeclContext, Loc);
break;
}
case CompletionKind::PrecedenceGroup:
Lookup.getPrecedenceGroupCompletions(SyntxKind);
break;
case CompletionKind::StmtLabel: {
SourceLoc Loc = P.Context.SourceMgr.getCodeCompletionLoc();
Lookup.getStmtLabelCompletions(Loc, ParentStmtKind == StmtKind::Continue);
break;
}
case CompletionKind::TypeAttrBeginning: {
Lookup.getTypeAttributeKeywordCompletions();
// Type names at attribute position after '@'.
Lookup.getTypeCompletionsInDeclContext(
P.Context.SourceMgr.getCodeCompletionLoc());
break;
}
case CompletionKind::AfterIfStmtElse:
case CompletionKind::CaseStmtKeyword:
case CompletionKind::EffectsSpecifier:
case CompletionKind::ForEachPatternBeginning:
// Handled earlier by keyword completions.
break;
}
deliverCompletionResults(CompletionContext, Lookup, CurDeclContext, Consumer);
}
namespace {
class CodeCompletionCallbacksFactoryImpl
: public CodeCompletionCallbacksFactory {
CodeCompletionContext &CompletionContext;
CodeCompletionConsumer &Consumer;
public:
CodeCompletionCallbacksFactoryImpl(CodeCompletionContext &CompletionContext,
CodeCompletionConsumer &Consumer)
: CompletionContext(CompletionContext), Consumer(Consumer) {}
CodeCompletionCallbacks *createCodeCompletionCallbacks(Parser &P) override {
return new CodeCompletionCallbacksImpl(P, CompletionContext, Consumer);
}
};
} // end anonymous namespace
CodeCompletionCallbacksFactory *
swift::ide::makeCodeCompletionCallbacksFactory(
CodeCompletionContext &CompletionContext,
CodeCompletionConsumer &Consumer) {
return new CodeCompletionCallbacksFactoryImpl(CompletionContext, Consumer);
}
void swift::ide::lookupCodeCompletionResultsFromModule(
CodeCompletionResultSink &targetSink, const ModuleDecl *module,
ArrayRef<std::string> accessPath, bool needLeadingDot,
const SourceFile *SF) {
// Use the SourceFile as the decl context, to avoid decl context specific
// behaviors.
CompletionLookup Lookup(targetSink, module->getASTContext(), SF);
Lookup.lookupExternalModuleDecls(module, accessPath, needLeadingDot);
}
static MutableArrayRef<CodeCompletionResult *>
copyCodeCompletionResults(CodeCompletionResultSink &targetSink,
CodeCompletionCache::Value &source, bool onlyTypes,
bool onlyPrecedenceGroups) {
// We will be adding foreign results (from another sink) into TargetSink.
// TargetSink should have an owning pointer to the allocator that keeps the
// results alive.
targetSink.ForeignAllocators.push_back(source.Allocator);
auto startSize = targetSink.Results.size();
std::function<bool(const ContextFreeCodeCompletionResult *)>
shouldIncludeResult;
if (onlyTypes) {
shouldIncludeResult = [](const ContextFreeCodeCompletionResult *R) -> bool {
if (R->getKind() != CodeCompletionResultKind::Declaration)
return false;
switch (R->getAssociatedDeclKind()) {
case CodeCompletionDeclKind::Module:
case CodeCompletionDeclKind::Class:
case CodeCompletionDeclKind::Actor:
case CodeCompletionDeclKind::Struct:
case CodeCompletionDeclKind::Enum:
case CodeCompletionDeclKind::Protocol:
case CodeCompletionDeclKind::TypeAlias:
case CodeCompletionDeclKind::AssociatedType:
case CodeCompletionDeclKind::GenericTypeParam:
return true;
case CodeCompletionDeclKind::PrecedenceGroup:
case CodeCompletionDeclKind::EnumElement:
case CodeCompletionDeclKind::Constructor:
case CodeCompletionDeclKind::Destructor:
case CodeCompletionDeclKind::Subscript:
case CodeCompletionDeclKind::StaticMethod:
case CodeCompletionDeclKind::InstanceMethod:
case CodeCompletionDeclKind::PrefixOperatorFunction:
case CodeCompletionDeclKind::PostfixOperatorFunction:
case CodeCompletionDeclKind::InfixOperatorFunction:
case CodeCompletionDeclKind::FreeFunction:
case CodeCompletionDeclKind::StaticVar:
case CodeCompletionDeclKind::InstanceVar:
case CodeCompletionDeclKind::LocalVar:
case CodeCompletionDeclKind::GlobalVar:
return false;
}
llvm_unreachable("Unhandled CodeCompletionDeclKind in switch.");
};
} else if (onlyPrecedenceGroups) {
shouldIncludeResult = [](const ContextFreeCodeCompletionResult *R) -> bool {
return R->getAssociatedDeclKind() ==
CodeCompletionDeclKind::PrecedenceGroup;
};
} else {
shouldIncludeResult = [](const ContextFreeCodeCompletionResult *R) -> bool {
return true;
};
}
for (auto contextFreeResult : source.Results) {
if (!shouldIncludeResult(contextFreeResult)) {
continue;
}
auto contextualResult = new (*targetSink.Allocator) CodeCompletionResult(
*contextFreeResult, SemanticContextKind::OtherModule,
CodeCompletionFlair(),
/*numBytesToErase=*/0, /*TypeContext=*/nullptr, /*DC=*/nullptr,
ContextualNotRecommendedReason::None,
CodeCompletionDiagnosticSeverity::None, /*DiagnosticMessage=*/"");
targetSink.Results.push_back(contextualResult);
}
return llvm::makeMutableArrayRef(targetSink.Results.data() + startSize,
targetSink.Results.size() - startSize);
}
void SimpleCachingCodeCompletionConsumer::handleResultsAndModules(
CodeCompletionContext &context,
ArrayRef<RequestedCachedModule> requestedModules,
DeclContext *DC) {
// Use the current SourceFile as the DeclContext so that we can use it to
// perform qualified lookup, and to get the correct visibility for
// @testable imports. Also it cannot use 'DC' since it would apply decl
// context changes to cached results.
const SourceFile *SF = DC->getParentSourceFile();
for (auto &R : requestedModules) {
// FIXME(thread-safety): lock the whole AST context. We might load a
// module.
llvm::Optional<CodeCompletionCache::ValueRefCntPtr> V =
context.Cache.get(R.Key);
if (!V.hasValue()) {
// No cached results found. Fill the cache.
V = context.Cache.createValue();
// Temporary sink in which we gather the result. The cache value retains
// the sink's allocator.
CodeCompletionResultSink Sink;
Sink.annotateResult = context.getAnnotateResult();
Sink.addInitsToTopLevel = context.getAddInitsToTopLevel();
Sink.enableCallPatternHeuristics = context.getCallPatternHeuristics();
Sink.includeObjectLiterals = context.includeObjectLiterals();
Sink.addCallWithNoDefaultArgs = context.addCallWithNoDefaultArgs();
lookupCodeCompletionResultsFromModule(Sink, R.TheModule, R.Key.AccessPath,
R.Key.ResultsHaveLeadingDot, SF);
(*V)->Allocator = Sink.Allocator;
auto &CachedResults = (*V)->Results;
CachedResults.reserve(Sink.Results.size());
// Instead of copying the context free results out of the sink's allocator
// retain the sink's entire allocator (which also includes the contextual
// properities) and simply store pointers to the context free results that
// back the contextual results.
for (auto Result : Sink.Results) {
CachedResults.push_back(Result->getContextFreeResultPtr());
}
context.Cache.set(R.Key, *V);
}
assert(V.hasValue());
auto newItems = copyCodeCompletionResults(
context.getResultSink(), **V, R.OnlyTypes, R.OnlyPrecedenceGroups);
postProcessResults(newItems, context.CodeCompletionKind, DC,
&context.getResultSink());
}
handleResults(context);
}
//===----------------------------------------------------------------------===//
// ImportDepth
//===----------------------------------------------------------------------===//
ImportDepth::ImportDepth(ASTContext &context,
const FrontendOptions &frontendOptions) {
llvm::DenseSet<ModuleDecl *> seen;
std::deque<std::pair<ModuleDecl *, uint8_t>> worklist;
StringRef mainModule = frontendOptions.ModuleName;
auto *main = context.getLoadedModule(context.getIdentifier(mainModule));
assert(main && "missing main module");
worklist.emplace_back(main, uint8_t(0));
// Imports from -import-name such as Playground auxiliary sources are treated
// specially by applying import depth 0.
llvm::StringSet<> auxImports;
for (const auto &pair : frontendOptions.getImplicitImportModuleNames())
auxImports.insert(pair.first);
// Private imports from this module.
// FIXME: only the private imports from the current source file.
// FIXME: ImportFilterKind::ShadowedByCrossImportOverlay?
SmallVector<ImportedModule, 16> mainImports;
main->getImportedModules(mainImports,
{ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::ImplementationOnly});
for (auto &import : mainImports) {
uint8_t depth = 1;
if (auxImports.count(import.importedModule->getName().str()))
depth = 0;
worklist.emplace_back(import.importedModule, depth);
}
// Fill depths with BFS over module imports.
while (!worklist.empty()) {
ModuleDecl *module;
uint8_t depth;
std::tie(module, depth) = worklist.front();
worklist.pop_front();
if (!seen.insert(module).second)
continue;
// Insert new module:depth mapping.
const clang::Module *CM = module->findUnderlyingClangModule();
if (CM) {
depths[CM->getFullModuleName()] = depth;
} else {
depths[module->getName().str()] = depth;
}
// Add imports to the worklist.
SmallVector<ImportedModule, 16> imports;
module->getImportedModules(imports);
for (auto &import : imports) {
uint8_t next = std::max(depth, uint8_t(depth + 1)); // unsigned wrap
// Implicitly imported sub-modules get the same depth as their parent.
if (const clang::Module *CMI =
import.importedModule->findUnderlyingClangModule())
if (CM && CMI->isSubModuleOf(CM))
next = depth;
worklist.emplace_back(import.importedModule, next);
}
}
}