mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
517 lines
18 KiB
C++
517 lines
18 KiB
C++
//===-------------- ARCAnalysis.cpp - SIL ARC Analysis --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-arc-analysis"
|
|
#include "swift/SILAnalysis/ARCAnalysis.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILAnalysis/AliasAnalysis.h"
|
|
#include "swift/SILAnalysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILAnalysis/ValueTracking.h"
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decrement Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isKnownToNotDecrementRefCount(FunctionRefInst *FRI) {
|
|
return llvm::StringSwitch<bool>(FRI->getReferencedFunction()->getName())
|
|
.Case("swift_keepAlive", true)
|
|
.StartsWith("_swift_isUniquelyReferenced", true)
|
|
.Default(false);
|
|
}
|
|
|
|
static bool canApplyDecrementRefCount(OperandValueArrayRef Ops, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Ok, this apply *MAY* decrement ref counts. Now our strategy is to attempt
|
|
// to use properties of the pointer, the function's arguments, and the
|
|
// function itself to prove that the pointer can not have its ref count be
|
|
// effected by function.
|
|
|
|
// TODO: Put in function property check section here when we get access to
|
|
// such information.
|
|
|
|
// First make sure that the underlying object of ptr is a local object which
|
|
// does not escape. This prevents the apply from indirectly via the global
|
|
// affecting the reference count of the pointer.
|
|
if (!isNonEscapingLocalObject(getUnderlyingObject(Ptr)))
|
|
return true;
|
|
|
|
// Now that we know that the function can not affect the pointer indirectly,
|
|
// make sure that the apply can not affect the pointer directly via the
|
|
// applies arguments by proving that the pointer can not alias any of the
|
|
// functions arguments.
|
|
for (auto Op : Ops) {
|
|
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
|
|
if (!AA->isNoAlias(Op, SILValue(Ptr.getDef(), i)))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Success! The apply inst can not affect the reference count of ptr!
|
|
return false;
|
|
}
|
|
|
|
static bool canApplyDecrementRefCount(ApplyInst *AI, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Ignore any thick functions for now due to us not handling the ref-counted
|
|
// nature of its context.
|
|
if (auto FTy = AI->getCallee().getType().getAs<SILFunctionType>())
|
|
if (FTy->getExtInfo().hasContext())
|
|
return true;
|
|
|
|
// swift_keepAlive can not retain values. Remove this when we get rid of that.
|
|
if (auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
|
|
if (isKnownToNotDecrementRefCount(FRI))
|
|
return false;
|
|
|
|
return canApplyDecrementRefCount(AI->getArgumentsWithoutIndirectResult(),
|
|
Ptr, AA);
|
|
}
|
|
|
|
static bool canApplyDecrementRefCount(BuiltinInst *BI, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// If we have a builtin that is side effect free, we can commute the
|
|
// builtin and the retain.
|
|
if (isSideEffectFree(BI))
|
|
return false;
|
|
|
|
return canApplyDecrementRefCount(BI->getArguments(), Ptr, AA);
|
|
}
|
|
|
|
/// Is the may have side effects user by the definition of its value kind unable
|
|
/// to decrement ref counts.
|
|
static bool canDecrementRefCountsByValueKind(SILInstruction *User) {
|
|
assert(User->getMemoryBehavior()
|
|
== SILInstruction::MemoryBehavior::MayHaveSideEffects &&
|
|
"Invalid argument. Function is only applicable to isntructions with "
|
|
"side effects.");
|
|
switch (User->getKind()) {
|
|
case ValueKind::DeallocStackInst:
|
|
case ValueKind::StrongRetainInst:
|
|
case ValueKind::StrongRetainAutoreleasedInst:
|
|
case ValueKind::StrongRetainUnownedInst:
|
|
case ValueKind::UnownedRetainInst:
|
|
case ValueKind::PartialApplyInst:
|
|
case ValueKind::FixLifetimeInst:
|
|
case ValueKind::CopyBlockInst:
|
|
case ValueKind::RetainValueInst:
|
|
case ValueKind::CondFailInst:
|
|
return false;
|
|
|
|
case ValueKind::CopyAddrInst: {
|
|
auto *CA = cast<CopyAddrInst>(User);
|
|
if (CA->isInitializationOfDest() == IsInitialization_t::IsInitialization)
|
|
return false;
|
|
}
|
|
SWIFT_FALLTHROUGH;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool swift::mayDecrementRefCount(SILInstruction *User,
|
|
SILValue Ptr, AliasAnalysis *AA) {
|
|
// If we have an instruction that does not have *pure* side effects, it can
|
|
// not affect ref counts.
|
|
//
|
|
// This distinguishes in between a "write" side effect and ref count side
|
|
// effects.
|
|
if (User->getMemoryBehavior() !=
|
|
SILInstruction::MemoryBehavior::MayHaveSideEffects)
|
|
return false;
|
|
|
|
// Ok, we know that this instruction's generic behavior is
|
|
// "MayHaveSideEffects". That is a criterion (it has effects not represented
|
|
// by use-def chains) that is broader than ours (does it effect a particular
|
|
// pointers ref counts). Thus begin by attempting to prove that the type of
|
|
// instruction that the user is by definition can not decrement ref counts.
|
|
if (!canDecrementRefCountsByValueKind(User))
|
|
return false;
|
|
|
|
// Ok, this instruction may have ref counts. If it is an apply, attempt to
|
|
// prove that the callee is unable to affect Ptr.
|
|
if (auto *AI = dyn_cast<ApplyInst>(User))
|
|
return canApplyDecrementRefCount(AI, Ptr, AA);
|
|
if (auto *BI = dyn_cast<BuiltinInst>(User))
|
|
return canApplyDecrementRefCount(BI, Ptr, AA);
|
|
|
|
// We can not conservatively prove that this instruction can not decrement the
|
|
// ref count of Ptr. So assume that it does.
|
|
return true;
|
|
}
|
|
|
|
bool swift::mayCheckRefCount(SILInstruction *User) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(User))
|
|
if (auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
|
|
return FRI->getReferencedFunction()->getName().startswith(
|
|
"_swift_isUniquelyReferenced");
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if a builtin apply can not use reference counted values.
|
|
///
|
|
/// The main case that this handles here are builtins that via read none imply
|
|
/// that they can not read globals and at the same time do not take any
|
|
/// non-trivial types via the arguments. The reason why we care about taking
|
|
/// non-trivial types as arguments is that we want to be careful in the face of
|
|
/// intrinsics that may be equivalent to bitcast and inttoptr operations.
|
|
static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) {
|
|
SILModule &Mod = BInst->getModule();
|
|
|
|
auto &II = BInst->getIntrinsicInfo();
|
|
if (II.ID != llvm::Intrinsic::not_intrinsic) {
|
|
if (II.hasAttribute(llvm::Attribute::ReadNone)) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get().getType().isTrivial(Mod)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
auto &BI = BInst->getBuiltinInfo();
|
|
if (BI.isReadNone()) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get().getType().isTrivial(Mod)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if Inst is a function that we know never uses ref count values.
|
|
bool swift::canNeverUseValues(SILInstruction *Inst) {
|
|
switch (Inst->getKind()) {
|
|
// These instructions do not use other values.
|
|
case ValueKind::FunctionRefInst:
|
|
case ValueKind::IntegerLiteralInst:
|
|
case ValueKind::FloatLiteralInst:
|
|
case ValueKind::StringLiteralInst:
|
|
case ValueKind::AllocStackInst:
|
|
case ValueKind::AllocRefInst:
|
|
case ValueKind::AllocRefDynamicInst:
|
|
case ValueKind::AllocBoxInst:
|
|
case ValueKind::MetatypeInst:
|
|
case ValueKind::WitnessMethodInst:
|
|
return true;
|
|
|
|
// DeallocStackInst do not use reference counted values, only local storage
|
|
// handles.
|
|
case ValueKind::DeallocStackInst:
|
|
return true;
|
|
|
|
// Debug values do not use referenced counted values in a manner we care
|
|
// about.
|
|
case ValueKind::DebugValueInst:
|
|
case ValueKind::DebugValueAddrInst:
|
|
return true;
|
|
|
|
// Casts do not use pointers in a manner that we care about since we strip
|
|
// them during our analysis. The reason for this is if the cast is not dead
|
|
// then there must be some other use after the cast that we will protect if a
|
|
// release is not in between the cast and the use.
|
|
case ValueKind::UpcastInst:
|
|
case ValueKind::AddressToPointerInst:
|
|
case ValueKind::PointerToAddressInst:
|
|
case ValueKind::UncheckedRefCastInst:
|
|
case ValueKind::UncheckedAddrCastInst:
|
|
case ValueKind::RefToRawPointerInst:
|
|
case ValueKind::RawPointerToRefInst:
|
|
case ValueKind::UnconditionalCheckedCastInst:
|
|
case ValueKind::UncheckedRefBitCastInst:
|
|
return true;
|
|
|
|
// If we have a trivial bit cast between trivial types, it is not something
|
|
// that can use ref count ops in a way we care about. We do need to be careful
|
|
// with uses with ref count inputs. In such a case, we assume conservatively
|
|
// that the bit cast could use it.
|
|
//
|
|
// The reason why this is different from the ref bitcast is b/c the use of a
|
|
// ref bit cast is still a ref typed value implying that our ARC dataflow will
|
|
// properly handle its users. A conversion of a reference count value to a
|
|
// trivial value though could be used as a trivial value in ways that ARC
|
|
// dataflow will not understand implying we need to treat it as a use to be
|
|
// safe.
|
|
case ValueKind::UncheckedTrivialBitCastInst: {
|
|
SILValue Op = cast<UncheckedTrivialBitCastInst>(Inst)->getOperand();
|
|
return Op.getType().isTrivial(Inst->getModule());
|
|
}
|
|
|
|
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
|
|
// catch that via the dataflow.
|
|
case ValueKind::StructExtractInst:
|
|
case ValueKind::TupleExtractInst:
|
|
case ValueKind::StructElementAddrInst:
|
|
case ValueKind::TupleElementAddrInst:
|
|
case ValueKind::UncheckedTakeEnumDataAddrInst:
|
|
case ValueKind::RefElementAddrInst:
|
|
case ValueKind::UncheckedEnumDataInst:
|
|
case ValueKind::IndexAddrInst:
|
|
case ValueKind::IndexRawPointerInst:
|
|
return true;
|
|
|
|
// Aggregate formation by themselves do not create new uses since it is their
|
|
// users that would create the appropriate uses.
|
|
case ValueKind::EnumInst:
|
|
case ValueKind::StructInst:
|
|
case ValueKind::TupleInst:
|
|
return true;
|
|
|
|
// Only uses non reference counted values.
|
|
case ValueKind::CondFailInst:
|
|
return true;
|
|
|
|
case ValueKind::BuiltinInst: {
|
|
auto *BI = cast<BuiltinInst>(Inst);
|
|
|
|
// Certain builtin function refs we know can never use non-trivial values.
|
|
return canApplyOfBuiltinUseNonTrivialValues(BI);
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool swift::mayUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// If Inst is an instruction that we know can never use values with reference
|
|
// semantics, return true.
|
|
if (canNeverUseValues(User))
|
|
return false;
|
|
|
|
// If the user is a load or a store and we can prove that it does not access
|
|
// the object then return true.
|
|
// Notice that we need to check all of the values of the object.
|
|
if (isa<StoreInst>(User)) {
|
|
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
|
|
if (AA->mayWriteToMemory(User, SILValue(Ptr.getDef(), i)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (isa<LoadInst>(User) ) {
|
|
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
|
|
if (AA->mayReadFromMemory(User, SILValue(Ptr.getDef(), i)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO: If we add in alias analysis support here for apply inst, we will need
|
|
// to check that the pointer does not escape.
|
|
|
|
// Otherwise, assume that Inst can use Target.
|
|
return true;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Methods for determining use, decrement of values in a contiguous
|
|
// instruction range in one BB.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If \p Op has arc uses in the instruction range [Start, End), return the
|
|
/// first such instruction. Otherwise return None. We assume that
|
|
/// Start and End are both in the same basic block.
|
|
Optional<SILBasicBlock::iterator>
|
|
swift::
|
|
valueHasARCUsesInInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return None;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayUseValue(&*Start, Op, AA))
|
|
return Start;
|
|
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions can not use Op, return false.
|
|
return None;
|
|
}
|
|
|
|
/// If \p Op has instructions in the instruction range (Start, End] which may
|
|
/// decrement it, return the first such instruction. Returns None
|
|
/// if no such instruction exists. We assume that Start and End are both in the
|
|
/// same basic block.
|
|
Optional<SILBasicBlock::iterator>
|
|
swift::
|
|
valueHasARCDecrementOrCheckInInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return nothing.
|
|
if (Start == End)
|
|
return None;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can decrement or check Op's ref count. If so, return
|
|
// Start. Ref count checks do not have side effects, but are barriers for
|
|
// retains.
|
|
if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start))
|
|
return Start;
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions can not decrement Op, return nothing.
|
|
return None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities for recognizing trap BBs that are ARC inert
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool ignoreableApplyInstInUnreachableBlock(ApplyInst *AI) {
|
|
const char *fatalName =
|
|
"_TFSs18_fatalErrorMessageFTVSs12StaticStringS_S_Su_T_";
|
|
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
|
|
if (!FRI || !FRI->getReferencedFunction()->getName().equals(fatalName))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ignoreableBuiltinInstInUnreachableBlock(BuiltinInst *BI) {
|
|
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
|
|
if (BInfo.ID == BuiltinValueKind::CondUnreachable)
|
|
return true;
|
|
|
|
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
|
|
if (IInfo.ID == llvm::Intrinsic::trap)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Match a call to a trap BB with no ARC relevant side effects.
|
|
bool swift::isARCInertTrapBB(SILBasicBlock *BB) {
|
|
auto II = BB->begin(), IE = BB->end();
|
|
while (II != IE) {
|
|
if (isa<UnreachableInst>(&*II))
|
|
return true;
|
|
|
|
// Ignore any instructions without side effects.
|
|
if (!II->mayHaveSideEffects()) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Ignore cond fail.
|
|
if (isa<CondFailInst>(II)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Check for apply insts that we can ignore.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II)) {
|
|
if (ignoreableApplyInstInUnreachableBlock(AI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (auto *BI = dyn_cast<BuiltinInst>(&*II)) {
|
|
if (ignoreableBuiltinInstInUnreachableBlock(BI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Argument Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
ConsumedArgToEpilogueReleaseMatcher(RCIdentityAnalysis *RCIA,
|
|
SILFunction *F) {
|
|
// Find the return BB of F. If we fail, then bail.
|
|
auto ReturnBB = F->findReturnBB();
|
|
if (ReturnBB == F->end())
|
|
return;
|
|
|
|
for (auto II = std::next(ReturnBB->rbegin()), IE = ReturnBB->rend();
|
|
II != IE; ++II) {
|
|
// If we do not have a release_value or strong_release...
|
|
if (!isa<ReleaseValueInst>(*II) && !isa<StrongReleaseInst>(*II)) {
|
|
// And the object can not use values in a manner that will keep the object
|
|
// alive, continue. We may be able to find additional releases.
|
|
if (canNeverUseValues(&*II))
|
|
continue;
|
|
|
|
// Otherwise, we need to stop computing since we do not want to reduce the
|
|
// lifetime of objects.
|
|
return;
|
|
}
|
|
|
|
// Ok, we have a release_value or strong_release. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILInstruction *Target = &*II;
|
|
SILValue Op = RCIA->getRCIdentityRoot(Target->getOperand(0));
|
|
|
|
// If Op is not a consumed argument, we must break since this is not an Op
|
|
// that is a part of a return sequence. We are being conservative here since
|
|
// we could make this more general by allowing for intervening non-arg
|
|
// releases in the sense that we do not allow for race conditions in between
|
|
// destructors.
|
|
auto *Arg = dyn_cast<SILArgument>(Op);
|
|
if (!Arg || !Arg->isFunctionArg() ||
|
|
!Arg->hasConvention(ParameterConvention::Direct_Owned))
|
|
return;
|
|
|
|
// Ok, we have a release on a SILArgument that is direct owned. Attempt to
|
|
// put it into our arc opts map. If we already have it, we have exited the
|
|
// return value sequence so break. Otherwise, continue looking for more arc
|
|
// operations.
|
|
if (!ArgInstMap.insert({Arg, Target}).second)
|
|
return;
|
|
}
|
|
}
|