Files
swift-mirror/lib/SILOptimizer/Analysis/SimplifyInstruction.cpp
Michael Gottesman 38e2a3bfcf [inst-simplify] Eliminate address_to_pointer/pointer_to_address identity transforms using new interior pointer handling utility.
Btw for those curious, the reason why this optimization is important is that the
stdlib often times performs reinterpret casts using address to pointer, pointer
to address to perform the case. So we need to be able to reliably eliminate
these. Since the underlying base object's liveness is already what provides the
liveness to the underlying address, our approach of treating this as a lifetime
extension requiring pattern makes sense since we are adding information into the
IR by canonicalizing these escapes to be normal address operations.

NOTE: In this commit, we only handle the identity transform. In a subsequent
commit, I am going to hit the non-identity transform that is handled by
SILCombine.

Also, I added some specific more general OSSA RAUW tests for this case to
ossa_rauw_tests using this functionality in a more exhaustive way that would be
in appropriate in sil_combine_ossa.sil (since I am stress testing this specific
piece of code).
2021-01-17 20:08:24 -08:00

806 lines
27 KiB
C++

//===--- SimplifyInstruction.cpp - Fold instructions ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// An SSA-peephole analysis. Given a single-value instruction, find an existing
/// equivalent but less costly or more canonical SIL value.
///
/// This analysis must handle 'raw' SIL form. It should be possible to perform
/// the substitution discovered by the analysis without interfering with
/// subsequent diagnostic passes.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
using namespace swift;
using namespace swift::PatternMatch;
namespace swift {
class ASTContext;
} // end namespace swift
namespace {
class InstSimplifier : public SILInstructionVisitor<InstSimplifier, SILValue>{
public:
SILValue visitSILInstruction(SILInstruction *I) { return SILValue(); }
SILValue visitTupleExtractInst(TupleExtractInst *TEI);
SILValue visitStructExtractInst(StructExtractInst *SEI);
SILValue visitEnumInst(EnumInst *EI);
SILValue visitSelectEnumInst(SelectEnumInst *SEI);
SILValue visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI);
SILValue visitAddressToPointerInst(AddressToPointerInst *ATPI);
SILValue visitPointerToAddressInst(PointerToAddressInst *PTAI);
SILValue visitRefToRawPointerInst(RefToRawPointerInst *RRPI);
SILValue
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI);
SILValue visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI);
SILValue visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI);
SILValue visitStructInst(StructInst *SI);
SILValue visitTupleInst(TupleInst *SI);
SILValue visitBuiltinInst(BuiltinInst *AI);
SILValue visitUpcastInst(UpcastInst *UI);
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue visitRefTo##Name##Inst(RefTo##Name##Inst *I); \
SILValue visit##Name##ToRefInst(Name##ToRefInst *I);
#include "swift/AST/ReferenceStorage.def"
SILValue visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI);
SILValue
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI);
SILValue visitEndCOWMutationInst(EndCOWMutationInst *ECM);
SILValue visitThinFunctionToPointerInst(ThinFunctionToPointerInst *TFTPI);
SILValue visitPointerToThinFunctionInst(PointerToThinFunctionInst *PTTFI);
SILValue visitBeginAccessInst(BeginAccessInst *BAI);
SILValue visitMetatypeInst(MetatypeInst *MTI);
SILValue simplifyOverflowBuiltin(BuiltinInst *BI);
};
} // end anonymous namespace
SILValue InstSimplifier::visitStructInst(StructInst *SI) {
// Ignore empty structs.
if (SI->getNumOperands() < 1)
return SILValue();
// Optimize structs that are generated from struct_extract instructions
// from the same struct.
if (auto *Ex0 = dyn_cast<StructExtractInst>(SI->getOperand(0))) {
// Check that the constructed struct and the extracted struct are of the
// same type.
if (SI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = SI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<StructExtractInst>(SI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleInst(TupleInst *TI) {
// Ignore empty tuples.
if (TI->getNumOperands() < 1)
return SILValue();
// Optimize tuples that are generated from tuple_extract instructions
// from the same tuple.
if (auto *Ex0 = dyn_cast<TupleExtractInst>(TI->getOperand(0))) {
// Check that the constructed tuple and the extracted tuple are of the
// same type.
if (TI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = TI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<TupleExtractInst>(TI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleExtractInst(TupleExtractInst *TEI) {
// tuple_extract(tuple(x, y), 0) -> x
if (auto *TheTuple = dyn_cast<TupleInst>(TEI->getOperand()))
return TheTuple->getElement(TEI->getFieldIndex());
// tuple_extract(apply([add|sub|...]overflow(x,y)), 0) -> x
// tuple_extract(apply(checked_trunc(ext(x))), 0) -> x
if (TEI->getFieldIndex() == 0)
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand()))
return simplifyOverflowBuiltin(BI);
return SILValue();
}
SILValue InstSimplifier::visitStructExtractInst(StructExtractInst *SEI) {
// struct_extract(struct(x, y), x) -> x
if (auto *Struct = dyn_cast<StructInst>(SEI->getOperand()))
return Struct->getFieldValue(SEI->getField());
return SILValue();
}
SILValue
InstSimplifier::
visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI) {
// (unchecked_enum_data (enum payload)) -> payload
if (auto *EI = dyn_cast<EnumInst>(UEDI->getOperand())) {
if (EI->getElement() != UEDI->getElement())
return SILValue();
assert(EI->hasOperand() &&
"Should only get data from an enum with payload.");
return EI->getOperand();
}
return SILValue();
}
// Simplify:
// %1 = unchecked_enum_data %0 : $Optional<C>, #Optional.Some!enumelt
// %2 = enum $Optional<C>, #Optional.Some!enumelt, %1 : $C
// to %0 since we are building the same enum.
static SILValue simplifyEnumFromUncheckedEnumData(EnumInst *EI) {
assert(EI->hasOperand() && "Expected an enum with an operand!");
auto *UEDI = dyn_cast<UncheckedEnumDataInst>(EI->getOperand());
if (!UEDI || UEDI->getElement() != EI->getElement())
return SILValue();
SILValue EnumOp = UEDI->getOperand();
// Same enum elements don't necessarily imply same enum types.
// Enum types may be different if the enum is generic, e.g.
// E<Int>.Case and E<Double>.Case.
SILType OriginalEnum = EnumOp->getType();
SILType NewEnum = EI->getType();
if (OriginalEnum != NewEnum)
return SILValue();
return EnumOp;
}
SILValue InstSimplifier::visitSelectEnumInst(SelectEnumInst *SEI) {
auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
if (EI && EI->getType() == SEI->getEnumOperand()->getType()) {
// Simplify a select_enum on an enum instruction.
// %27 = enum $Optional<Int>, #Optional.Some!enumelt, %20 : $Int
// %28 = integer_literal $Builtin.Int1, -1
// %29 = integer_literal $Builtin.Int1, 0
// %30 = select_enum %27 : $Optional<Int>, case #Optional.None!enumelt: %28,
// case #Optional.Some!enumelt: %29
// We will return %29.
return SEI->getCaseResult(EI->getElement());
}
return SILValue();
}
SILValue InstSimplifier::visitEnumInst(EnumInst *EI) {
if (EI->hasOperand()) {
auto Result = simplifyEnumFromUncheckedEnumData(EI);
if (Result)
return Result;
// switch_enum %e : $EnumTy, case %casex: bbX,...
// bbX(%arg):
// enum $EnumTy, EnumTy::casex, %arg
// ->
// replace enum $EnumTy, EnumTy::casex, %arg by %e
auto Op = EI->getOperand();
auto *EnumArg = dyn_cast<SILArgument>(Op);
if (!EnumArg)
return SILValue();
SILBasicBlock *EnumBlock = EI->getParent();
if (EnumArg->getParent() != EnumBlock)
return SILValue();
auto *Pred = EnumBlock->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator());
if (!SEI)
return SILValue();
auto Case = SEI->getUniqueCaseForDestination(EI->getParent());
if (Case && Case.getPtrOrNull() == EI->getElement() &&
SEI->getOperand()->getType() == EI->getType()) {
return SEI->getOperand();
}
return SILValue();
}
// Simplify enum insts to the value from a switch_enum when possible, e.g.
// for
// switch_enum %0 : $Bool, case #Bool.true!enumelt: bb1
// bb1:
// %1 = enum $Bool, #Bool.true!enumelt
//
// we'll return %0
auto *BB = EI->getParent();
auto *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
if (auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
if (EI->getType() != SEI->getOperand()->getType())
return SILValue();
if (EI->getElement() == SEI->getUniqueCaseForDestination(BB).getPtrOrNull())
return SEI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitAddressToPointerInst(AddressToPointerInst *ATPI) {
// (address_to_pointer (pointer_to_address x [strict])) -> x
// The 'strict' flag is only relevant for instructions that access memory;
// the moment the address is cast back to a pointer, it no longer matters.
if (auto *PTAI = dyn_cast<PointerToAddressInst>(ATPI->getOperand()))
if (PTAI->getType() == ATPI->getOperand()->getType())
return PTAI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitPointerToAddressInst(PointerToAddressInst *PTAI) {
// If this address is not strict, then it cannot be replaced by an address
// that may be strict.
if (auto *ATPI = dyn_cast<AddressToPointerInst>(PTAI->getOperand()))
if (ATPI->getOperand()->getType() == PTAI->getType() && PTAI->isStrict())
return ATPI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitRefToRawPointerInst(RefToRawPointerInst *RefToRaw) {
// Perform the following simplification:
//
// (ref_to_raw_pointer (raw_pointer_to_ref x)) -> x
//
// *NOTE* We don't need to check types here.
if (auto *RawToRef = dyn_cast<RawPointerToRefInst>(&*RefToRaw->getOperand()))
return RawToRef->getOperand();
return SILValue();
}
SILValue
InstSimplifier::
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI) {
// (UCCI downcast (upcast x #type1 to #type2) #type2 to #type1) -> x
if (auto *upcast = dyn_cast<UpcastInst>(UCCI->getOperand()))
if (UCCI->getType() == upcast->getOperand()->getType())
return upcast->getOperand();
return SILValue();
}
/// If the only use of a cast is a destroy, just destroy the cast operand.
static SILValue simplifyDeadCast(SingleValueInstruction *Cast) {
if (!Cast->hasUsesOfAnyResult())
return SILValue();
for (Operand *op : Cast->getUses()) {
switch (op->getUser()->getKind()) {
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
break;
default:
return SILValue();
}
}
return Cast->getOperand(0);
}
SILValue
InstSimplifier::
visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI) {
// (unchecked-ref-cast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *ROPI = dyn_cast<UncheckedRefCastInst>(&*OPRI->getOperand()))
if (ROPI->getOperand()->getType() == OPRI->getType())
return ROPI->getOperand();
// (unchecked-ref-cast Y->X (upcast x X->Y)) -> x
if (auto *UI = dyn_cast<UpcastInst>(OPRI->getOperand()))
if (UI->getOperand()->getType() == OPRI->getType())
return UI->getOperand();
// (unchecked-ref-cast Y->X (open_existential_ref x X->Y)) -> x
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OPRI->getOperand()))
if (OER->getOperand()->getType() == OPRI->getType())
return OER->getOperand();
// (unchecked-ref-cast X->X x) -> x
if (OPRI->getOperand()->getType() == OPRI->getType())
return OPRI->getOperand();
// (destroy_value (unchecked_ref_cast x)) -> destroy_value x
return simplifyDeadCast(OPRI);
}
SILValue
InstSimplifier::
visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI) {
// (unchecked-addr-cast Y->X (unchecked-addr-cast x X->Y)) -> x
if (auto *OtherUACI = dyn_cast<UncheckedAddrCastInst>(&*UACI->getOperand()))
if (OtherUACI->getOperand()->getType() == UACI->getType())
return OtherUACI->getOperand();
// (unchecked-addr-cast X->X x) -> x
if (UACI->getOperand()->getType() == UACI->getType())
return UACI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitUpcastInst(UpcastInst *UI) {
// (upcast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *URCI = dyn_cast<UncheckedRefCastInst>(UI->getOperand()))
if (URCI->getOperand()->getType() == UI->getType())
return URCI->getOperand();
// (destroy_value (upcast x)) -> destroy_value x
return simplifyDeadCast(UI);
}
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue \
InstSimplifier::visitRefTo##Name##Inst(RefTo##Name##Inst *RUI) { \
if (auto *URI = dyn_cast<Name##ToRefInst>(RUI->getOperand())) \
if (URI->getOperand()->getType() == RUI->getType()) \
return URI->getOperand(); \
return SILValue(); \
} \
SILValue \
InstSimplifier::visit##Name##ToRefInst(Name##ToRefInst *URI) { \
if (auto *RUI = dyn_cast<RefTo##Name##Inst>(URI->getOperand())) \
if (RUI->getOperand()->getType() == URI->getType()) \
return RUI->getOperand(); \
return SILValue(); \
}
#include "swift/AST/ReferenceStorage.def"
SILValue
InstSimplifier::
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI) {
// (unchecked_trivial_bit_cast X->X x) -> x
if (UTBCI->getOperand()->getType() == UTBCI->getType())
return UTBCI->getOperand();
// (unchecked_trivial_bit_cast Y->X (unchecked_trivial_bit_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedTrivialBitCastInst>(UTBCI->getOperand()))
if (Op->getOperand()->getType() == UTBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitEndCOWMutationInst(EndCOWMutationInst *ECM) {
// (destroy_value (end_cow_mutation x)) -> destroy_value x
return simplifyDeadCast(ECM);
}
SILValue
InstSimplifier::
visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI) {
// (unchecked_bitwise_cast X->X x) -> x
if (UBCI->getOperand()->getType() == UBCI->getType())
return UBCI->getOperand();
// A round-trip cast implies X and Y have the same size:
// (unchecked_bitwise_cast Y->X (unchecked_bitwise_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedBitwiseCastInst>(UBCI->getOperand()))
if (Op->getOperand()->getType() == UBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitThinFunctionToPointerInst(ThinFunctionToPointerInst *TFTPI) {
// (thin_function_to_pointer (pointer_to_thin_function x)) -> x
if (auto *PTTFI = dyn_cast<PointerToThinFunctionInst>(TFTPI->getOperand()))
if (PTTFI->getOperand()->getType() == TFTPI->getType())
return PTTFI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitPointerToThinFunctionInst(PointerToThinFunctionInst *PTTFI) {
// (pointer_to_thin_function (thin_function_to_pointer x)) -> x
if (auto *TFTPI = dyn_cast<ThinFunctionToPointerInst>(PTTFI->getOperand()))
if (TFTPI->getOperand()->getType() == PTTFI->getType())
return TFTPI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitBeginAccessInst(BeginAccessInst *BAI) {
// Remove "dead" begin_access.
if (llvm::all_of(BAI->getUses(), [](Operand *operand) -> bool {
return isIncidentalUse(operand->getUser());
})) {
return BAI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitMetatypeInst(MetatypeInst *MI) {
auto metaType = MI->getType().castTo<MetatypeType>();
auto instanceType = metaType.getInstanceType();
// Tuple, Struct, and Enum MetatypeTypes have a single value.
// If this metatype is already passed as an argument reuse it to enable
// downstream CSE/SILCombine optimizations.
// Note: redundant metatype instructions are already handled by CSE.
if (isa<TupleType>(instanceType)
|| instanceType.getStructOrBoundGenericStruct()
|| instanceType.getEnumOrBoundGenericEnum()) {
for (SILArgument *argument : MI->getFunction()->getArguments()) {
if (argument->getType().getASTType() == metaType &&
argument->getType().isObject())
return argument;
}
}
return SILValue();
}
static SILValue simplifyBuiltin(BuiltinInst *BI) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
if (auto *OpBI = dyn_cast<BuiltinInst>(BI->getOperand(0))) {
if (OpBI->getBuiltinInfo().ID == BuiltinValueKind::PtrToInt) {
return OpBI->getOperand(0);
}
}
return SILValue();
default:
break;
}
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
switch (Intrinsic.ID) {
default:
// TODO: Handle some of the llvm intrinsics here.
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::expect:
// If we have an expect optimizer hint with a constant value input,
// there is nothing left to expect so propagate the input, i.e.,
//
// apply(expect, constant, _) -> constant.
if (auto *Literal = dyn_cast<IntegerLiteralInst>(BI->getArguments()[0]))
return Literal;
return SILValue();
}
// Otherwise, it should be one of the builtin functions.
OperandValueArrayRef Args = BI->getArguments();
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
const SILValue &Op = Args[0];
// [s|z]extOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
}
break;
case BuiltinValueKind::TruncOrBitCast: {
const SILValue &Op = Args[0];
SILValue Result;
// truncOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
// trunc(extOrBitCast(x)) -> x
if (match(Op, m_ExtOrBitCast(m_SILValue(Result)))) {
// Truncated back to the same bits we started with.
if (Result->getType() == BI->getType())
return Result;
}
return SILValue();
}
case BuiltinValueKind::Xor: {
SILValue val1, val2, val3;
// xor (xor (val1, val2), val3) == val1
if (BI->getNumOperands() == 2 &&
(match(BI,
m_BuiltinInst(BuiltinValueKind::Xor,
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1), m_SILValue(val2)),
m_SILValue(val3))) ||
match(BI, m_BuiltinInst(BuiltinValueKind::Xor, m_SILValue(val3),
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1),
m_SILValue(val2)))))) {
if (val2 == val3)
return val1;
if (val1 == val3)
return val2;
if (val1 == val2)
return val3;
}
}
break;
case BuiltinValueKind::Shl:
case BuiltinValueKind::AShr:
case BuiltinValueKind::LShr:
auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
if (RHS && !RHS->getValue()) {
// Shifting a value by 0 bits is equivalent to the value itself.
auto LHS = Args[0];
return LHS;
}
break;
}
return SILValue();
}
/// Simplify an apply of the builtin canBeClass to either 0 or 1
/// when we can statically determine the result.
SILValue InstSimplifier::visitBuiltinInst(BuiltinInst *BI) {
return simplifyBuiltin(BI);
}
/// Simplify arithmetic intrinsics with overflow and known identity
/// constants such as 0 and 1.
/// If this returns a value other than SILValue() then the instruction was
/// simplified to a value which doesn't overflow. The overflow case is handled
/// in SILCombine.
static SILValue simplifyBinaryWithOverflow(BuiltinInst *BI,
llvm::Intrinsic::ID ID) {
OperandValueArrayRef Args = BI->getArguments();
assert(Args.size() >= 2);
const SILValue &Op1 = Args[0];
const SILValue &Op2 = Args[1];
auto *IntOp1 = dyn_cast<IntegerLiteralInst>(Op1);
auto *IntOp2 = dyn_cast<IntegerLiteralInst>(Op2);
// If both ops are not constants, we cannot do anything.
// FIXME: Add cases where we can do something, eg, (x - x) -> 0
if (!IntOp1 && !IntOp2)
return SILValue();
// Calculate the result.
switch (ID) {
default: llvm_unreachable("Invalid case");
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
// 0 + X -> X
if (match(Op1, m_Zero()))
return Op2;
// X + 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
// X - 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
// 0 * X -> 0
if (match(Op1, m_Zero()))
return Op1;
// X * 0 -> 0
if (match(Op2, m_Zero()))
return Op2;
// 1 * X -> X
if (match(Op1, m_One()))
return Op2;
// X * 1 -> X
if (match(Op2, m_One()))
return Op1;
return SILValue();
}
return SILValue();
}
/// Simplify operations that may overflow. All such operations return a tuple.
/// This function simplifies such operations, but returns only the first
/// element of a tuple. It looks strange at the first glance, but this
/// is OK, because this function is invoked only internally when processing
/// tuple_extract instructions. Therefore the result of this function
/// is used for simplifications like tuple_extract(x, 0) -> simplified(x)
SILValue InstSimplifier::simplifyOverflowBuiltin(BuiltinInst *BI) {
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
// If it's an llvm intrinsic, fold the intrinsic.
switch (Intrinsic.ID) {
default:
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
return simplifyBinaryWithOverflow(BI, Intrinsic.ID);
}
// Otherwise, it should be one of the builtin functions.
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::UToSCheckedTrunc:
case BuiltinValueKind::UToUCheckedTrunc:
case BuiltinValueKind::SToUCheckedTrunc:
case BuiltinValueKind::SToSCheckedTrunc: {
SILValue Result;
// CheckedTrunc(Ext(x)) -> x
if (match(BI, m_CheckedTrunc(m_Ext(m_SILValue(Result)))))
if (Result->getType() == BI->getType().getTupleElementType(0))
if (auto signBit = computeSignBit(Result))
if (!signBit.getValue())
return Result;
}
break;
// Check and simplify binary arithmetic with overflow.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return simplifyBinaryWithOverflow(BI,
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID));
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
/// Replace an instruction with a simplified result, including any debug uses,
/// and erase the instruction. If the instruction initiates a scope, do not
/// replace the end of its scope; it will be deleted along with its parent.
///
/// This is a simple transform based on the above analysis.
///
/// We assume that when ownership is enabled that the IR is in valid OSSA form
/// before this is called. It will perform fixups as necessary to preserve OSSA.
///
/// Return an iterator to the next (nondeleted) instruction.
SILBasicBlock::iterator
swift::replaceAllSimplifiedUsesAndErase(SILInstruction *i, SILValue result,
InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto *svi = cast<SingleValueInstruction>(i);
assert(svi != result && "Cannot RAUW a value with itself");
if (svi->getFunction()->hasOwnership()) {
JointPostDominanceSetComputer computer(*deadEndBlocks);
OwnershipFixupContext ctx{callbacks, *deadEndBlocks, computer};
OwnershipRAUWHelper helper(ctx, svi, result);
return helper.perform();
}
return replaceAllUsesAndErase(svi, result, callbacks);
}
/// Simplify invocations of builtin operations that may overflow.
/// All such operations return a tuple (result, overflow_flag).
/// This function try to simplify such operations, but returns only a
/// simplified first element of a tuple. The overflow flag is not returned
/// explicitly, because this simplification is only possible if there is
/// no overflow. Therefore the overflow flag is known to have a value of 0 if
/// simplification was successful.
/// In case when a simplification is not possible, a null SILValue is returned.
SILValue swift::simplifyOverflowBuiltinInstruction(BuiltinInst *BI) {
return InstSimplifier().simplifyOverflowBuiltin(BI);
}
/// Try to simplify the specified instruction, performing local
/// analysis of the operands of the instruction, without looking at its uses
/// (e.g. constant folding). If a simpler result can be found, it is
/// returned, otherwise a null SILValue is returned.
///
/// NOTE: We assume that the insertion point associated with the SILValue must
/// dominate \p i.
static SILValue simplifyInstruction(SILInstruction *i) {
return InstSimplifier().visit(i);
}
SILBasicBlock::iterator swift::simplifyAndReplaceAllSimplifiedUsesAndErase(
SILInstruction *i, InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto next = std::next(i->getIterator());
auto *svi = dyn_cast<SingleValueInstruction>(i);
if (!svi)
return next;
SILValue result = simplifyInstruction(i);
// If we fail to simplify or the simplified value returned is our passed in
// value, just return std::next since we can't simplify.
if (!result || svi == result)
return next;
if (!svi->getFunction()->hasOwnership())
return replaceAllUsesAndErase(svi, result, callbacks);
JointPostDominanceSetComputer computer(*deadEndBlocks);
OwnershipFixupContext ctx{callbacks, *deadEndBlocks, computer};
OwnershipRAUWHelper helper(ctx, svi, result);
// If our RAUW helper is invalid, we do not support RAUWing this case, so
// just return next.
if (!helper.isValid())
return next;
return helper.perform();
}