mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
These methods can be simplified a bunch since the returned decl is always the input decl and we can refactor the lambdas to just return the auxiliary variable and have the type computation in the caller.
17050 lines
647 KiB
C++
17050 lines
647 KiB
C++
//===--- CSSimplify.cpp - Constraint Simplification -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simplifications of constraints within the constraint
|
|
// system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CSDiagnostics.h"
|
|
#include "OpenedExistentials.h"
|
|
#include "TypeCheckConcurrency.h"
|
|
#include "TypeCheckEffects.h"
|
|
#include "swift/AST/ASTPrinter.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/NameLookupRequests.h"
|
|
#include "swift/AST/PackExpansionMatcher.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/PropertyWrappers.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/AST/SourceFile.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/StringExtras.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/Sema/CSFix.h"
|
|
#include "swift/Sema/ConstraintSystem.h"
|
|
#include "swift/Sema/IDETypeChecking.h"
|
|
#include "swift/Sema/PreparedOverload.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
MatchCallArgumentListener::~MatchCallArgumentListener() { }
|
|
|
|
bool MatchCallArgumentListener::extraArgument(unsigned argIdx) { return true; }
|
|
|
|
std::optional<unsigned>
|
|
MatchCallArgumentListener::missingArgument(unsigned paramIdx,
|
|
unsigned argInsertIdx) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool MatchCallArgumentListener::missingLabel(unsigned paramIdx) { return true; }
|
|
bool MatchCallArgumentListener::extraneousLabel(unsigned paramIdx) {
|
|
return true;
|
|
}
|
|
bool MatchCallArgumentListener::incorrectLabel(unsigned paramIdx) {
|
|
return true;
|
|
}
|
|
|
|
bool MatchCallArgumentListener::outOfOrderArgument(
|
|
unsigned argIdx, unsigned prevArgIdx, ArrayRef<ParamBinding> bindings) {
|
|
return true;
|
|
}
|
|
|
|
bool MatchCallArgumentListener::relabelArguments(ArrayRef<Identifier> newNames){
|
|
return true;
|
|
}
|
|
|
|
bool MatchCallArgumentListener::shouldClaimArgDuringRecovery(unsigned argIdx) {
|
|
return true;
|
|
}
|
|
|
|
bool MatchCallArgumentListener::canClaimArgIgnoringNameMismatch(
|
|
const AnyFunctionType::Param &arg) {
|
|
return false;
|
|
}
|
|
|
|
/// Produce a score (smaller is better) comparing a parameter name and
|
|
/// potentially-typo'd argument name.
|
|
///
|
|
/// \param paramName The name of the parameter.
|
|
/// \param argName The name of the argument.
|
|
/// \param maxScore The maximum score permitted by this comparison, or
|
|
/// 0 if there is no limit.
|
|
///
|
|
/// \returns the score, if it is good enough to even consider this a match.
|
|
/// Otherwise, an empty optional.
|
|
///
|
|
static std::optional<unsigned> scoreParamAndArgNameTypo(StringRef paramName,
|
|
StringRef argName,
|
|
unsigned maxScore) {
|
|
using namespace camel_case;
|
|
|
|
// Compute the edit distance.
|
|
unsigned dist = argName.edit_distance(paramName, /*AllowReplacements=*/true,
|
|
/*MaxEditDistance=*/maxScore);
|
|
|
|
// If the edit distance would be too long, we're done.
|
|
if (maxScore != 0 && dist > maxScore)
|
|
return std::nullopt;
|
|
|
|
// The distance can be zero due to the "with" transformation above.
|
|
if (dist == 0)
|
|
return 1;
|
|
|
|
// If this is just a single character label on both sides,
|
|
// simply return distance.
|
|
if (paramName.size() == 1 && argName.size() == 1)
|
|
return dist;
|
|
|
|
// Only allow about one typo for every two properly-typed characters, which
|
|
// prevents completely-wacky suggestions in many cases.
|
|
if (dist > (argName.size() + 1) / 3)
|
|
return std::nullopt;
|
|
|
|
return dist;
|
|
}
|
|
|
|
bool constraints::isPackExpansionType(Type type) {
|
|
if (type->is<PackExpansionType>())
|
|
return true;
|
|
|
|
if (auto *typeVar = type->getAs<TypeVariableType>())
|
|
return typeVar->getImpl().isPackExpansion();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool constraints::isSingleUnlabeledPackExpansionTuple(Type type) {
|
|
auto *tuple = type->getRValueType()->getAs<TupleType>();
|
|
return tuple && (tuple->getNumElements() == 1) &&
|
|
isPackExpansionType(tuple->getElementType(0)) &&
|
|
!tuple->getElement(0).hasName();
|
|
}
|
|
|
|
Type constraints::getPatternTypeOfSingleUnlabeledPackExpansionTuple(Type type) {
|
|
if (isSingleUnlabeledPackExpansionTuple(type)) {
|
|
auto tuple = type->getRValueType()->castTo<TupleType>();
|
|
const auto &tupleElement = tuple->getElementType(0);
|
|
if (auto *expansion = tupleElement->getAs<PackExpansionType>()) {
|
|
return expansion->getPatternType();
|
|
}
|
|
if (auto *typeVar = tupleElement->getAs<TypeVariableType>()) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
if (auto expansionElement =
|
|
locator->getLastElementAs<LocatorPathElt::PackExpansionType>()) {
|
|
return expansionElement->getOpenedType()->getPatternType();
|
|
}
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
bool constraints::containsPackExpansionType(ArrayRef<AnyFunctionType::Param> params) {
|
|
return llvm::any_of(params, [&](const auto ¶m) {
|
|
return isPackExpansionType(param.getPlainType());
|
|
});
|
|
}
|
|
|
|
bool constraints::containsPackExpansionType(TupleType *tuple) {
|
|
return llvm::any_of(tuple->getElements(), [&](const auto &elt) {
|
|
return isPackExpansionType(elt.getType());
|
|
});
|
|
}
|
|
|
|
bool constraints::doesMemberRefApplyCurriedSelf(Type baseTy,
|
|
const ValueDecl *decl) {
|
|
assert(decl->getDeclContext()->isTypeContext() &&
|
|
"Expected a member reference");
|
|
|
|
// For a reference to an instance method on a metatype, we want to keep the
|
|
// curried self.
|
|
if (decl->isInstanceMember()) {
|
|
assert(baseTy);
|
|
if (isa<AbstractFunctionDecl>(decl) &&
|
|
baseTy->getRValueType()->is<AnyMetatypeType>())
|
|
return false;
|
|
}
|
|
|
|
// Otherwise the reference applies self.
|
|
return true;
|
|
}
|
|
|
|
static bool areConservativelyCompatibleArgumentLabels(
|
|
ConstraintSystem &cs, OverloadChoice choice,
|
|
SmallVectorImpl<FunctionType::Param> &args,
|
|
MatchCallArgumentListener &listener,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex) {
|
|
ValueDecl *decl = nullptr;
|
|
switch (choice.getKind()) {
|
|
case OverloadChoiceKind::Decl:
|
|
case OverloadChoiceKind::DeclViaBridge:
|
|
case OverloadChoiceKind::DeclViaDynamic:
|
|
case OverloadChoiceKind::DeclViaUnwrappedOptional:
|
|
decl = choice.getDecl();
|
|
break;
|
|
|
|
// KeyPath application is not filtered in `performMemberLookup`.
|
|
case OverloadChoiceKind::KeyPathApplication:
|
|
case OverloadChoiceKind::DynamicMemberLookup:
|
|
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
|
|
case OverloadChoiceKind::TupleIndex:
|
|
case OverloadChoiceKind::MaterializePack:
|
|
case OverloadChoiceKind::ExtractFunctionIsolation:
|
|
return true;
|
|
}
|
|
|
|
// If this is a member lookup, the call arguments (if we have any) will
|
|
// generally be applied to the second level of parameters, with the member
|
|
// lookup applying the curried self at the first level. But there are cases
|
|
// where we can get an unapplied declaration reference back.
|
|
auto hasAppliedSelf =
|
|
decl->hasCurriedSelf() &&
|
|
doesMemberRefApplyCurriedSelf(choice.getBaseType(), decl);
|
|
|
|
AnyFunctionType *fnType = nullptr;
|
|
if (decl->hasParameterList()) {
|
|
fnType = decl->getInterfaceType()->castTo<AnyFunctionType>();
|
|
if (hasAppliedSelf) {
|
|
fnType = fnType->getResult()->getAs<AnyFunctionType>();
|
|
assert(fnType && "Parameter list curry level does not match type");
|
|
}
|
|
} else if (auto *VD = dyn_cast<VarDecl>(decl)) {
|
|
// For variables, we can reject any type that we know cannot be callable.
|
|
auto varTy = VD->getValueInterfaceType()->lookThroughAllOptionalTypes();
|
|
if (!varTy->mayBeCallable(cs.DC))
|
|
return false;
|
|
fnType = varTy->getAs<AnyFunctionType>();
|
|
} else if (auto *MD = dyn_cast<MacroDecl>(decl)) {
|
|
fnType = MD->getInterfaceType()->getAs<AnyFunctionType>();
|
|
}
|
|
|
|
// Given we want to be conservative with this checking, if there's any case
|
|
// we can't match arguments for (e.g callable nominals, type parameters),
|
|
// default to returning true.
|
|
if (!fnType)
|
|
return true;
|
|
|
|
auto params = fnType->getParams();
|
|
ParameterListInfo paramInfo(params, decl, hasAppliedSelf);
|
|
|
|
return matchCallArguments(args, params, paramInfo,
|
|
unlabeledTrailingClosureArgIndex,
|
|
/*allow fixes*/ false, listener, std::nullopt)
|
|
.has_value();
|
|
}
|
|
|
|
Expr *constraints::getArgumentLabelTargetExpr(Expr *fn) {
|
|
// Dig out the function, looking through, parentheses, ?, and !.
|
|
do {
|
|
fn = fn->getSemanticsProvidingExpr();
|
|
|
|
if (auto force = dyn_cast<ForceValueExpr>(fn)) {
|
|
fn = force->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
if (auto bind = dyn_cast<BindOptionalExpr>(fn)) {
|
|
fn = bind->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
return fn;
|
|
} while (true);
|
|
}
|
|
|
|
/// Determine the default type-matching options to use when decomposing a
|
|
/// constraint into smaller constraints.
|
|
static ConstraintSystem::TypeMatchOptions getDefaultDecompositionOptions(
|
|
ConstraintSystem::TypeMatchOptions flags) {
|
|
return flags | ConstraintSystem::TMF_GenerateConstraints;
|
|
}
|
|
|
|
/// Whether the given parameter requires an argument.
|
|
static bool parameterRequiresArgument(ArrayRef<AnyFunctionType::Param> params,
|
|
const ParameterListInfo ¶mInfo,
|
|
unsigned paramIdx) {
|
|
return !paramInfo.hasDefaultArgument(paramIdx)
|
|
&& !params[paramIdx].isVariadic();
|
|
}
|
|
|
|
/// Determine whether the given parameter can accept a trailing closure for the
|
|
/// "backward" logic.
|
|
static bool backwardScanAcceptsTrailingClosure(
|
|
const AnyFunctionType::Param ¶m) {
|
|
Type paramTy = param.getPlainType();
|
|
if (!paramTy)
|
|
return true;
|
|
|
|
paramTy = paramTy->lookThroughAllOptionalTypes();
|
|
return paramTy->isTypeParameter() ||
|
|
paramTy->is<ArchetypeType>() ||
|
|
paramTy->is<AnyFunctionType>() ||
|
|
paramTy->isTypeVariableOrMember() ||
|
|
paramTy->isAny();
|
|
}
|
|
|
|
/// Determine whether any parameter from the given index up until the end
|
|
/// requires an argument to be provided.
|
|
///
|
|
/// \param params The parameters themselves.
|
|
/// \param paramInfo Declaration-provided information about the parameters.
|
|
/// \param firstParamIdx The first parameter to examine to determine whether any
|
|
/// parameter in the range \c [paramIdx, params.size()) requires an argument.
|
|
/// \param beforeLabel If non-empty, stop examining parameters when we reach
|
|
/// a parameter with this label.
|
|
static bool anyParameterRequiresArgument(
|
|
ArrayRef<AnyFunctionType::Param> params, const ParameterListInfo ¶mInfo,
|
|
unsigned firstParamIdx, std::optional<Identifier> beforeLabel) {
|
|
for (unsigned paramIdx : range(firstParamIdx, params.size())) {
|
|
// If have been asked to stop when we reach a parameter with a particular
|
|
// label, and we see a parameter with that label, we're done: no parameter
|
|
// requires an argument.
|
|
if (beforeLabel && *beforeLabel == params[paramIdx].getLabel())
|
|
break;
|
|
|
|
// If this parameter requires an argument, tell the caller.
|
|
if (parameterRequiresArgument(params, paramInfo, paramIdx))
|
|
return true;
|
|
}
|
|
|
|
// No parameters required arguments.
|
|
return false;
|
|
}
|
|
|
|
static bool isCodeCompletionTypeVar(Type type) {
|
|
if (auto *TVT = type->getAs<TypeVariableType>()) {
|
|
if (TVT->getImpl().isCodeCompletionToken()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool matchCallArgumentsImpl(
|
|
SmallVectorImpl<AnyFunctionType::Param> &args,
|
|
ArrayRef<AnyFunctionType::Param> params, const ParameterListInfo ¶mInfo,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex, bool allowFixes,
|
|
TrailingClosureMatching trailingClosureMatching,
|
|
MatchCallArgumentListener &listener,
|
|
SmallVectorImpl<ParamBinding> ¶meterBindings) {
|
|
assert(params.size() == paramInfo.size() && "Default map does not match");
|
|
assert(!unlabeledTrailingClosureArgIndex ||
|
|
*unlabeledTrailingClosureArgIndex < args.size());
|
|
|
|
// Keep track of the parameter we're matching and what argument indices
|
|
// got bound to each parameter.
|
|
unsigned numParams = params.size();
|
|
parameterBindings.clear();
|
|
parameterBindings.resize(numParams);
|
|
|
|
// Keep track of which arguments we have claimed from the argument tuple.
|
|
unsigned numArgs = args.size();
|
|
SmallVector<bool, 4> claimedArgs(numArgs, false);
|
|
SmallVector<Identifier, 4> actualArgNames;
|
|
unsigned numClaimedArgs = 0;
|
|
|
|
// Indicates whether any of the arguments are potentially out-of-order,
|
|
// requiring further checking at the end.
|
|
bool potentiallyOutOfOrder = false;
|
|
|
|
// Local function that claims the argument at \c argIdx, returning the
|
|
// index of the claimed argument. This is primarily a helper for
|
|
// \c claimNextNamed.
|
|
auto claim = [&](Identifier expectedName, unsigned argIdx,
|
|
bool ignoreNameClash = false) -> unsigned {
|
|
// Make sure we can claim this argument.
|
|
ASSERT(argIdx != numArgs && "Must have a valid index to claim");
|
|
ASSERT(!claimedArgs[argIdx] && "Argument already claimed");
|
|
|
|
// Prevent recording of an argument label mismatche for an unlabeled
|
|
// trailing closure. An unlabeled trailing closure is necessarily the first
|
|
// one and vice versa, per language syntax.
|
|
if (unlabeledTrailingClosureArgIndex == argIdx) {
|
|
expectedName = Identifier();
|
|
}
|
|
|
|
if (!actualArgNames.empty()) {
|
|
// We're recording argument names; record this one.
|
|
actualArgNames[argIdx] = expectedName;
|
|
} else if (!ignoreNameClash && !args[argIdx].matchParameterLabel(expectedName)) {
|
|
// We have an argument name mismatch. Start recording argument names.
|
|
actualArgNames.resize(numArgs);
|
|
|
|
// Figure out previous argument names from the parameter bindings.
|
|
for (auto i : indices(params)) {
|
|
const auto ¶m = params[i];
|
|
bool firstArg = true;
|
|
|
|
for (auto argIdx : parameterBindings[i]) {
|
|
actualArgNames[argIdx] = firstArg ? param.getLabel() : Identifier();
|
|
firstArg = false;
|
|
}
|
|
}
|
|
|
|
// Record this argument name.
|
|
actualArgNames[argIdx] = expectedName;
|
|
}
|
|
|
|
claimedArgs[argIdx] = true;
|
|
++numClaimedArgs;
|
|
return argIdx;
|
|
};
|
|
|
|
// Local function that skips over any claimed arguments.
|
|
auto skipClaimedArgs = [&](unsigned &nextArgIdx) {
|
|
while (nextArgIdx != numArgs && claimedArgs[nextArgIdx])
|
|
++nextArgIdx;
|
|
return nextArgIdx;
|
|
};
|
|
|
|
// Local function that retrieves the next unclaimed argument with the given
|
|
// name (which may be empty). This routine claims the argument.
|
|
auto claimNextNamed =
|
|
[&](unsigned &nextArgIdx, Identifier paramLabel, bool ignoreNameMismatch,
|
|
bool forVariadic = false) -> std::optional<unsigned> {
|
|
// Skip over any claimed arguments.
|
|
skipClaimedArgs(nextArgIdx);
|
|
|
|
// If we've claimed all of the arguments, there's nothing more to do.
|
|
if (numClaimedArgs == numArgs)
|
|
return std::nullopt;
|
|
|
|
// Go hunting for an unclaimed argument whose name does match.
|
|
std::optional<unsigned> claimedWithSameName;
|
|
unsigned firstArgIdx = nextArgIdx;
|
|
for (unsigned i = nextArgIdx; i != numArgs; ++i) {
|
|
auto argLabel = args[i].getLabel();
|
|
bool claimIgnoringNameMismatch = false;
|
|
|
|
if (!args[i].matchParameterLabel(paramLabel)) {
|
|
// If this is an attempt to claim additional unlabeled arguments
|
|
// for variadic parameter, we have to stop at first labeled argument.
|
|
if (forVariadic)
|
|
return std::nullopt;
|
|
|
|
if ((i == firstArgIdx || ignoreNameMismatch) &&
|
|
listener.canClaimArgIgnoringNameMismatch(args[i])) {
|
|
// Avoid triggering relabelling fixes about the completion arg.
|
|
claimIgnoringNameMismatch = true;
|
|
} else {
|
|
// Otherwise we can continue trying to find argument which
|
|
// matches parameter with or without label.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Skip claimed arguments.
|
|
if (claimedArgs[i]) {
|
|
assert(!forVariadic && "Cannot be for a variadic claim");
|
|
// Note that we have already claimed an argument with the same name.
|
|
if (!claimedWithSameName)
|
|
claimedWithSameName = i;
|
|
continue;
|
|
}
|
|
|
|
// We found a match. If the match wasn't the next one, we have
|
|
// potentially out of order arguments.
|
|
if (i != nextArgIdx) {
|
|
assert(!forVariadic && "Cannot be for a variadic claim");
|
|
// Avoid claiming un-labeled defaulted parameters
|
|
// by out-of-order un-labeled arguments or parts
|
|
// of variadic argument sequence, because that might
|
|
// be incorrect:
|
|
// ```swift
|
|
// func foo(_ a: Int, _ b: Int = 0, c: Int = 0, _ d: Int) {}
|
|
// foo(1, c: 2, 3) // -> `3` will be claimed as '_ b:'.
|
|
// ```
|
|
if (argLabel.empty() && !claimIgnoringNameMismatch)
|
|
continue;
|
|
|
|
potentiallyOutOfOrder = true;
|
|
}
|
|
|
|
// Claim it.
|
|
return claim(paramLabel, i, claimIgnoringNameMismatch);
|
|
}
|
|
|
|
// If we're not supposed to attempt any fixes, we're done.
|
|
if (!allowFixes)
|
|
return std::nullopt;
|
|
|
|
// Several things could have gone wrong here, and we'll check for each
|
|
// of them at some point:
|
|
// - The keyword argument might be redundant, in which case we can point
|
|
// out the issue.
|
|
// - The argument might be unnamed, in which case we try to fix the
|
|
// problem by adding the name.
|
|
// - The argument might have extraneous label, in which case we try to
|
|
// fix the problem by removing such label.
|
|
// - The keyword argument might be a typo for an actual argument name, in
|
|
// which case we should find the closest match to correct to.
|
|
|
|
// Missing or extraneous label.
|
|
if (nextArgIdx != numArgs && ignoreNameMismatch) {
|
|
auto argLabel = args[nextArgIdx].getLabel();
|
|
// Claim this argument if we are asked to ignore labeling failure,
|
|
// only if argument doesn't have a label when parameter expected
|
|
// it to, or vice versa.
|
|
if (paramLabel.empty() || argLabel.empty())
|
|
return claim(paramLabel, nextArgIdx);
|
|
}
|
|
|
|
// Redundant keyword arguments.
|
|
if (claimedWithSameName) {
|
|
// FIXME: We can provide better diagnostics here.
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Typo correction is handled in a later pass.
|
|
return std::nullopt;
|
|
};
|
|
|
|
// Local function that attempts to bind the given parameter to arguments in
|
|
// the list.
|
|
bool haveUnfulfilledParams = false;
|
|
auto bindNextParameter = [&](unsigned paramIdx, unsigned &nextArgIdx,
|
|
bool ignoreNameMismatch) {
|
|
const auto ¶m = params[paramIdx];
|
|
Identifier paramLabel = param.getLabel();
|
|
|
|
// If we have the trailing closure argument and are performing a forward
|
|
// match, look for the matching parameter.
|
|
if (trailingClosureMatching == TrailingClosureMatching::Forward &&
|
|
unlabeledTrailingClosureArgIndex &&
|
|
skipClaimedArgs(nextArgIdx) == *unlabeledTrailingClosureArgIndex) {
|
|
// If the parameter we are looking at does not support the (unlabeled)
|
|
// trailing closure argument, this parameter is unfulfilled.
|
|
if (!paramInfo.acceptsUnlabeledTrailingClosureArgument(paramIdx) &&
|
|
!ignoreNameMismatch) {
|
|
haveUnfulfilledParams = true;
|
|
return;
|
|
}
|
|
|
|
// Let's consider current closure to be extraneous if:
|
|
//
|
|
// - current parameter has a default value and doesn't accept a trailing
|
|
// closure; and
|
|
// - no other free parameter after this one accepts a trailing closure via
|
|
// forward or backward scan. This check makes sure that it's safe to
|
|
// reject and push it to the next parameter without affecting backward
|
|
// scan logic.
|
|
//
|
|
// In other words - let's push the closure argument through defaulted
|
|
// parameters until it can be considered extraneous if no parameters
|
|
// could possibly match it.
|
|
if (!paramInfo.acceptsUnlabeledTrailingClosureArgument(paramIdx) &&
|
|
!parameterRequiresArgument(params, paramInfo, paramIdx)) {
|
|
if (llvm::none_of(
|
|
range(paramIdx + 1, params.size()), [&](unsigned idx) {
|
|
return parameterBindings[idx].empty() &&
|
|
(paramInfo.acceptsUnlabeledTrailingClosureArgument(
|
|
idx) ||
|
|
backwardScanAcceptsTrailingClosure(params[idx]));
|
|
})) {
|
|
haveUnfulfilledParams = true;
|
|
return;
|
|
}
|
|
|
|
// If one or more parameters can match the closure, let's check
|
|
// whether backward scan is applicable here.
|
|
}
|
|
|
|
// If this parameter does not require an argument, consider applying a
|
|
// backward-match rule that skips this parameter if doing so is the only
|
|
// way to successfully match arguments to parameters.
|
|
if (!parameterRequiresArgument(params, paramInfo, paramIdx) &&
|
|
anyParameterRequiresArgument(
|
|
params, paramInfo, paramIdx + 1,
|
|
nextArgIdx + 1 < numArgs
|
|
? std::optional<Identifier>(args[nextArgIdx + 1].getLabel())
|
|
: std::optional<Identifier>(std::nullopt))) {
|
|
haveUnfulfilledParams = true;
|
|
return;
|
|
}
|
|
|
|
// The argument is unlabeled, so mark the parameter as unlabeled as
|
|
// well.
|
|
paramLabel = Identifier();
|
|
}
|
|
|
|
// Handle variadic parameters.
|
|
if (param.isVariadic() || isPackExpansionType(param.getPlainType())) {
|
|
// Claim the next argument with the name of this parameter.
|
|
auto claimed =
|
|
claimNextNamed(nextArgIdx, paramLabel, ignoreNameMismatch);
|
|
|
|
// If there was no such argument, leave the parameter unfulfilled.
|
|
if (!claimed) {
|
|
haveUnfulfilledParams = true;
|
|
return;
|
|
}
|
|
|
|
// Record the first argument for the variadic.
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
|
|
auto currentNextArgIdx = nextArgIdx;
|
|
{
|
|
nextArgIdx = *claimed;
|
|
|
|
// Claim any additional unnamed arguments.
|
|
while (true) {
|
|
// If the next argument is the unlabeled trailing closure and the
|
|
// variadic parameter does not accept the unlabeled trailing closure
|
|
// argument, we're done.
|
|
if (trailingClosureMatching == TrailingClosureMatching::Forward &&
|
|
unlabeledTrailingClosureArgIndex &&
|
|
skipClaimedArgs(nextArgIdx)
|
|
== *unlabeledTrailingClosureArgIndex &&
|
|
!paramInfo.acceptsUnlabeledTrailingClosureArgument(paramIdx))
|
|
break;
|
|
|
|
if ((claimed = claimNextNamed(nextArgIdx, Identifier(), false, true)))
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
nextArgIdx = currentNextArgIdx;
|
|
return;
|
|
}
|
|
|
|
// Try to claim an argument for this parameter.
|
|
if (auto claimed =
|
|
claimNextNamed(nextArgIdx, paramLabel, ignoreNameMismatch)) {
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
return;
|
|
}
|
|
|
|
// There was no argument to claim. Leave the argument unfulfilled.
|
|
haveUnfulfilledParams = true;
|
|
};
|
|
|
|
// If we have an unlabeled trailing closure and are matching backward, match
|
|
// the trailing closure argument near the end.
|
|
if (unlabeledTrailingClosureArgIndex &&
|
|
trailingClosureMatching == TrailingClosureMatching::Backward) {
|
|
assert(!claimedArgs[*unlabeledTrailingClosureArgIndex]);
|
|
|
|
// One past the next parameter index to look at.
|
|
unsigned prevParamIdx = numParams;
|
|
|
|
// Scan backwards from the end to match the unlabeled trailing closure.
|
|
std::optional<unsigned> unlabeledParamIdx;
|
|
if (prevParamIdx > 0) {
|
|
unsigned paramIdx = prevParamIdx - 1;
|
|
|
|
bool lastAcceptsTrailingClosure =
|
|
backwardScanAcceptsTrailingClosure(params[paramIdx]);
|
|
|
|
// If the last parameter is defaulted, this might be
|
|
// an attempt to use a trailing closure with previous
|
|
// parameter that accepts a function type e.g.
|
|
//
|
|
// func foo(_: () -> Int, _ x: Int = 0) {}
|
|
// foo { 42 }
|
|
if (!lastAcceptsTrailingClosure && paramIdx > 0 &&
|
|
paramInfo.hasDefaultArgument(paramIdx)) {
|
|
auto paramType = params[paramIdx - 1].getPlainType();
|
|
// If the parameter before defaulted last accepts.
|
|
if (paramType->is<AnyFunctionType>()) {
|
|
lastAcceptsTrailingClosure = true;
|
|
paramIdx -= 1;
|
|
}
|
|
}
|
|
|
|
if (lastAcceptsTrailingClosure)
|
|
unlabeledParamIdx = paramIdx;
|
|
}
|
|
|
|
// Trailing closure argument couldn't be matched to anything. Fail fast.
|
|
if (!unlabeledParamIdx) {
|
|
return true;
|
|
}
|
|
|
|
// Claim the parameter/argument pair.
|
|
claim(
|
|
params[*unlabeledParamIdx].getLabel(),
|
|
*unlabeledTrailingClosureArgIndex,
|
|
/*ignoreNameClash=*/true);
|
|
parameterBindings[*unlabeledParamIdx].push_back(
|
|
*unlabeledTrailingClosureArgIndex);
|
|
}
|
|
|
|
{
|
|
unsigned nextArgIdx = 0;
|
|
// Mark through the parameters, binding them to their arguments.
|
|
for (auto paramIdx : indices(params)) {
|
|
if (parameterBindings[paramIdx].empty())
|
|
bindNextParameter(paramIdx, nextArgIdx, false);
|
|
}
|
|
}
|
|
|
|
// If we have any unclaimed arguments, complain about those.
|
|
if (numClaimedArgs != numArgs) {
|
|
// Find all of the named, unclaimed arguments.
|
|
llvm::SmallVector<unsigned, 4> unclaimedNamedArgs;
|
|
for (auto argIdx : indices(args)) {
|
|
if (claimedArgs[argIdx]) continue;
|
|
|
|
if (!listener.shouldClaimArgDuringRecovery(argIdx))
|
|
continue;
|
|
|
|
if (!args[argIdx].getLabel().empty())
|
|
unclaimedNamedArgs.push_back(argIdx);
|
|
}
|
|
|
|
if (!unclaimedNamedArgs.empty()) {
|
|
// Find all of the named, unfulfilled parameters.
|
|
llvm::SmallVector<unsigned, 4> unfulfilledNamedParams;
|
|
bool hasUnfulfilledUnnamedParams = false;
|
|
for (auto paramIdx : indices(params)) {
|
|
if (parameterBindings[paramIdx].empty()) {
|
|
if (params[paramIdx].getLabel().empty())
|
|
hasUnfulfilledUnnamedParams = true;
|
|
else
|
|
unfulfilledNamedParams.push_back(paramIdx);
|
|
}
|
|
}
|
|
|
|
if (!unfulfilledNamedParams.empty()) {
|
|
// Use typo correction to find the best matches.
|
|
// FIXME: There is undoubtedly a good dynamic-programming algorithm
|
|
// to find the best assignment here.
|
|
for (auto argIdx : unclaimedNamedArgs) {
|
|
auto argName = args[argIdx].getLabel();
|
|
|
|
// Find the closest matching unfulfilled named parameter.
|
|
unsigned bestScore = 0;
|
|
unsigned best = 0;
|
|
for (auto i : indices(unfulfilledNamedParams)) {
|
|
unsigned param = unfulfilledNamedParams[i];
|
|
auto paramName = params[param].getLabel();
|
|
|
|
if (auto score = scoreParamAndArgNameTypo(paramName.str(),
|
|
argName.str(),
|
|
bestScore)) {
|
|
if (*score < bestScore || bestScore == 0) {
|
|
bestScore = *score;
|
|
best = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found a parameter to fulfill, do it.
|
|
if (bestScore > 0) {
|
|
// Bind this parameter to the argument.
|
|
auto paramIdx = unfulfilledNamedParams[best];
|
|
auto paramLabel = params[paramIdx].getLabel();
|
|
|
|
parameterBindings[paramIdx].push_back(claim(paramLabel, argIdx));
|
|
|
|
// Erase this parameter from the list of unfulfilled named
|
|
// parameters, so we don't try to fulfill it again.
|
|
unfulfilledNamedParams.erase(unfulfilledNamedParams.begin() + best);
|
|
if (unfulfilledNamedParams.empty())
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update haveUnfulfilledParams, because we may have fulfilled some
|
|
// parameters above.
|
|
haveUnfulfilledParams = hasUnfulfilledUnnamedParams ||
|
|
!unfulfilledNamedParams.empty();
|
|
}
|
|
}
|
|
|
|
// Find all of the unfulfilled parameters, and match them up
|
|
// semi-positionally.
|
|
if (numClaimedArgs != numArgs) {
|
|
// Restart at the first argument/parameter.
|
|
unsigned nextArgIdx = 0;
|
|
haveUnfulfilledParams = false;
|
|
for (auto paramIdx : indices(params)) {
|
|
// Skip fulfilled parameters.
|
|
if (!parameterBindings[paramIdx].empty())
|
|
continue;
|
|
|
|
bindNextParameter(paramIdx, nextArgIdx, true);
|
|
|
|
if (!listener.shouldClaimArgDuringRecovery(nextArgIdx))
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If there are as many arguments as parameters but we still
|
|
// haven't claimed all of the arguments, it could mean that
|
|
// labels don't line up, if so let's try to claim arguments
|
|
// with incorrect labels, and let OoO/re-labeling logic diagnose that.
|
|
if (numArgs == numParams && numClaimedArgs != numArgs) {
|
|
for (auto i : indices(args)) {
|
|
if (claimedArgs[i] || !parameterBindings[i].empty())
|
|
continue;
|
|
|
|
// If parameter has a default value, we don't really
|
|
// know if label doesn't match because it's incorrect
|
|
// or argument belongs to some other parameter, so
|
|
// we just leave this parameter unfulfilled.
|
|
if (paramInfo.hasDefaultArgument(i))
|
|
continue;
|
|
|
|
if (!listener.shouldClaimArgDuringRecovery(i))
|
|
continue;
|
|
|
|
// Looks like there was no parameter claimed at the same
|
|
// position, it could only mean that label is completely
|
|
// different, because typo correction has been attempted already.
|
|
parameterBindings[i].push_back(claim(params[i].getLabel(), i));
|
|
}
|
|
}
|
|
|
|
// If we still haven't claimed all of the arguments,
|
|
// fail if there is no recovery.
|
|
if (numClaimedArgs != numArgs) {
|
|
for (auto index : indices(claimedArgs)) {
|
|
if (claimedArgs[index])
|
|
continue;
|
|
|
|
if (listener.extraArgument(index))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// FIXME: If we had the actual parameters and knew the body names, those
|
|
// matches would be best.
|
|
potentiallyOutOfOrder = true;
|
|
}
|
|
|
|
// If we have any unfulfilled parameters, check them now.
|
|
std::optional<unsigned> prevArgIdx;
|
|
if (haveUnfulfilledParams) {
|
|
for (auto paramIdx : indices(params)) {
|
|
// If we have a binding for this parameter, we're done.
|
|
if (!parameterBindings[paramIdx].empty()) {
|
|
prevArgIdx = parameterBindings[paramIdx].back();
|
|
continue;
|
|
}
|
|
|
|
const auto ¶m = params[paramIdx];
|
|
|
|
// Variadic parameters can be unfulfilled.
|
|
if (param.isVariadic() || isPackExpansionType(param.getPlainType()))
|
|
continue;
|
|
|
|
// Parameters with defaults can be unfulfilled.
|
|
if (paramInfo.hasDefaultArgument(paramIdx))
|
|
continue;
|
|
|
|
unsigned argInsertIdx = prevArgIdx ? *prevArgIdx + 1 : 0;
|
|
if (auto newArgIdx = listener.missingArgument(paramIdx, argInsertIdx)) {
|
|
parameterBindings[paramIdx].push_back(*newArgIdx);
|
|
continue;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If any arguments were provided out-of-order, check whether we have
|
|
// violated any of the reordering rules.
|
|
if (potentiallyOutOfOrder) {
|
|
// If we've seen label failures and now there is an out-of-order
|
|
// parameter (or even worse - OoO parameter with label re-naming),
|
|
// we most likely have no idea what would be the best
|
|
// diagnostic for this situation, so let's just try to re-label.
|
|
auto isOutOfOrderArgument = [&](unsigned toParamIdx, unsigned fromArgIdx,
|
|
unsigned toArgIdx) {
|
|
if (fromArgIdx <= toArgIdx) {
|
|
return false;
|
|
}
|
|
|
|
auto newLabel = args[fromArgIdx].getLabel();
|
|
auto oldLabel = args[toArgIdx].getLabel();
|
|
|
|
if (newLabel != params[toParamIdx].getLabel()) {
|
|
return false;
|
|
}
|
|
|
|
auto paramIdx = toParamIdx + 1;
|
|
for (; paramIdx < params.size(); ++paramIdx) {
|
|
// Looks like new position (excluding defaulted parameters),
|
|
// has a valid label.
|
|
if (oldLabel == params[paramIdx].getLabel())
|
|
break;
|
|
|
|
// If we are moving the position with a different label
|
|
// and there is no default value for it, can't diagnose the
|
|
// problem as a simple re-ordering.
|
|
if (!paramInfo.hasDefaultArgument(paramIdx))
|
|
return false;
|
|
}
|
|
|
|
// label was not found
|
|
if (paramIdx == params.size()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
SmallVector<unsigned, 4> paramToArgMap;
|
|
paramToArgMap.reserve(params.size());
|
|
{
|
|
unsigned argIdx = 0;
|
|
for (const auto &binding : parameterBindings) {
|
|
paramToArgMap.push_back(argIdx);
|
|
// Ignore argument bindings that were synthesized due to missing args.
|
|
argIdx += llvm::count_if(
|
|
binding, [numArgs](unsigned argIdx) { return argIdx < numArgs; });
|
|
}
|
|
}
|
|
|
|
// Enumerate the parameters and their bindings to see if any arguments are
|
|
// our of order
|
|
bool hadLabelMismatch = false;
|
|
for (const auto paramIdx : indices(params)) {
|
|
const auto toArgIdx = paramToArgMap[paramIdx];
|
|
const auto &binding = parameterBindings[paramIdx];
|
|
for (const auto paramBindIdx : indices(binding)) {
|
|
// We've found the parameter that has an out of order
|
|
// argument, and know the indices of the argument that
|
|
// needs to move (fromArgIdx) and the argument location
|
|
// it should move to (toArgIdx).
|
|
const auto fromArgIdx = binding[paramBindIdx];
|
|
|
|
// Ignore argument bindings that were synthesized due to missing args.
|
|
if (fromArgIdx >= numArgs)
|
|
continue;
|
|
|
|
// Does nothing for variadic tail.
|
|
if ((params[paramIdx].isVariadic() ||
|
|
isPackExpansionType(params[paramIdx].getPlainType())) &&
|
|
paramBindIdx > 0) {
|
|
assert(args[fromArgIdx].getLabel().empty());
|
|
continue;
|
|
}
|
|
|
|
// First let's double check if out-of-order argument is nothing
|
|
// more than a simple label mismatch, because in situation where
|
|
// one argument requires label and another one doesn't, but caller
|
|
// doesn't provide either, problem is going to be identified as
|
|
// out-of-order argument instead of label mismatch.
|
|
const auto expectedLabel =
|
|
fromArgIdx == unlabeledTrailingClosureArgIndex
|
|
? Identifier()
|
|
: params[paramIdx].getLabel();
|
|
const auto argumentLabel = args[fromArgIdx].getLabel();
|
|
|
|
if (argumentLabel != expectedLabel) {
|
|
// - The parameter is unnamed, in which case we try to fix the
|
|
// problem by removing the name.
|
|
if (expectedLabel.empty()) {
|
|
hadLabelMismatch = true;
|
|
if (listener.extraneousLabel(paramIdx))
|
|
return true;
|
|
// - The argument is unnamed, in which case we try to fix the
|
|
// problem by adding the name.
|
|
} else if (argumentLabel.empty()) {
|
|
hadLabelMismatch = true;
|
|
if (listener.missingLabel(paramIdx))
|
|
return true;
|
|
// - The argument label has a typo at the same position.
|
|
} else if (fromArgIdx == toArgIdx) {
|
|
hadLabelMismatch = true;
|
|
if (listener.incorrectLabel(paramIdx))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (fromArgIdx == toArgIdx) {
|
|
// If the argument is in the right location, just continue
|
|
continue;
|
|
}
|
|
|
|
// This situation looks like out-of-order argument but it's hard
|
|
// to say exactly without considering other factors, because it
|
|
// could be invalid labeling too.
|
|
if (!hadLabelMismatch &&
|
|
isOutOfOrderArgument(paramIdx, fromArgIdx, toArgIdx)) {
|
|
return listener.outOfOrderArgument(
|
|
fromArgIdx, toArgIdx, parameterBindings);
|
|
}
|
|
|
|
SmallVector<Identifier, 8> expectedLabels;
|
|
llvm::transform(params, std::back_inserter(expectedLabels),
|
|
[](const AnyFunctionType::Param ¶m) {
|
|
return param.getLabel();
|
|
});
|
|
return listener.relabelArguments(expectedLabels);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no arguments were renamed, the call arguments match up with the
|
|
// parameters.
|
|
if (actualArgNames.empty())
|
|
return false;
|
|
|
|
// The arguments were relabeled; notify the listener.
|
|
return listener.relabelArguments(actualArgNames);
|
|
}
|
|
|
|
/// Determine whether call-argument matching requires us to try both the
|
|
/// forward and backward scanning directions to succeed.
|
|
static bool requiresBothTrailingClosureDirections(
|
|
ArrayRef<AnyFunctionType::Param> args,
|
|
ArrayRef<AnyFunctionType::Param> params, const ParameterListInfo ¶mInfo,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex) {
|
|
// If there's no unlabeled trailing closure, direction doesn't matter.
|
|
if (!unlabeledTrailingClosureArgIndex)
|
|
return false;
|
|
|
|
// If there are labeled trailing closure arguments, only scan forward.
|
|
if (*unlabeledTrailingClosureArgIndex < args.size() - 1)
|
|
return false;
|
|
|
|
// If there are no parameters, it doesn't matter; only scan forward.
|
|
if (params.empty())
|
|
return false;
|
|
|
|
// If backward matching is disabled, only scan forward.
|
|
ASTContext &ctx = params.front().getPlainType()->getASTContext();
|
|
if (ctx.LangOpts.hasFeature(Feature::ForwardTrailingClosures))
|
|
return false;
|
|
|
|
// If there are at least two parameters that meet the backward scan's
|
|
// definition of "accepts trailing closure", or there is one such parameter
|
|
// with a defaulted parameter after it, we'll need to do the scan
|
|
// in both directions.
|
|
bool sawAnyTrailingClosureParam = false;
|
|
for (unsigned paramIdx : indices(params)) {
|
|
const auto ¶m = params[paramIdx];
|
|
if (backwardScanAcceptsTrailingClosure(param)) {
|
|
if (sawAnyTrailingClosureParam)
|
|
return true;
|
|
|
|
sawAnyTrailingClosureParam = true;
|
|
continue;
|
|
}
|
|
|
|
if (sawAnyTrailingClosureParam && paramInfo.hasDefaultArgument(paramIdx))
|
|
return true;
|
|
}
|
|
|
|
// Only one parameter can match the trailing closure anyway, so don't bother
|
|
// scanning twice.
|
|
return false;
|
|
}
|
|
|
|
std::optional<MatchCallArgumentResult> constraints::matchCallArguments(
|
|
SmallVectorImpl<AnyFunctionType::Param> &args,
|
|
ArrayRef<AnyFunctionType::Param> params, const ParameterListInfo ¶mInfo,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex, bool allowFixes,
|
|
MatchCallArgumentListener &listener,
|
|
std::optional<TrailingClosureMatching> trailingClosureMatching) {
|
|
|
|
/// Perform a single call to the implementation of matchCallArguments,
|
|
/// invoking the listener and using the results from that match.
|
|
auto singleMatchCall = [&](TrailingClosureMatching scanDirection)
|
|
-> std::optional<MatchCallArgumentResult> {
|
|
SmallVector<ParamBinding, 4> paramBindings;
|
|
if (matchCallArgumentsImpl(
|
|
args, params, paramInfo, unlabeledTrailingClosureArgIndex,
|
|
allowFixes, scanDirection, listener, paramBindings))
|
|
return std::nullopt;
|
|
|
|
return MatchCallArgumentResult{scanDirection, std::move(paramBindings),
|
|
std::nullopt};
|
|
};
|
|
|
|
// If we know that we won't have to perform both forward and backward
|
|
// scanning for trailing closures, fast-path by performing just the
|
|
// appropriate scan.
|
|
if (trailingClosureMatching ||
|
|
!requiresBothTrailingClosureDirections(
|
|
args, params, paramInfo, unlabeledTrailingClosureArgIndex)) {
|
|
return singleMatchCall(
|
|
trailingClosureMatching.value_or(TrailingClosureMatching::Forward));
|
|
}
|
|
|
|
MatchCallArgumentListener noOpListener;
|
|
|
|
// Try the forward direction first.
|
|
SmallVector<ParamBinding, 4> forwardParamBindings;
|
|
bool forwardFailed = matchCallArgumentsImpl(
|
|
args, params, paramInfo, unlabeledTrailingClosureArgIndex, allowFixes,
|
|
TrailingClosureMatching::Forward, noOpListener, forwardParamBindings);
|
|
|
|
// Try the backward direction.
|
|
SmallVector<ParamBinding, 4> backwardParamBindings;
|
|
bool backwardFailed = matchCallArgumentsImpl(
|
|
args, params, paramInfo, unlabeledTrailingClosureArgIndex, allowFixes,
|
|
TrailingClosureMatching::Backward, noOpListener, backwardParamBindings);
|
|
|
|
// If at least one of them failed, or they produced the same results, run
|
|
// call argument matching again with the real visitor.
|
|
if (forwardFailed || backwardFailed ||
|
|
forwardParamBindings == backwardParamBindings) {
|
|
// Run the forward scan unless the backward scan is the only one that
|
|
// succeeded.
|
|
auto scanDirection = backwardFailed || !forwardFailed
|
|
? TrailingClosureMatching::Forward
|
|
: TrailingClosureMatching::Backward;
|
|
return singleMatchCall(scanDirection);
|
|
}
|
|
|
|
// Both forward and backward succeeded, and produced different results.
|
|
// Bundle them up and return both---without invoking the listener---so the
|
|
// solver can choose.
|
|
return MatchCallArgumentResult{
|
|
TrailingClosureMatching::Forward,
|
|
std::move(forwardParamBindings),
|
|
std::move(backwardParamBindings)
|
|
};
|
|
}
|
|
|
|
bool CompletionArgInfo::allowsMissingArgAt(unsigned argInsertIdx,
|
|
AnyFunctionType::Param param) {
|
|
// If the argument is before or at the index of the argument containing the
|
|
// completion, the user would likely have already written it if they
|
|
// intended this overload.
|
|
if (completionIdx >= argInsertIdx) {
|
|
return false;
|
|
}
|
|
|
|
// If the argument is after the first trailing closure, the user can only
|
|
// continue on to write more trailing arguments, so only allow this overload
|
|
// if the missing argument is of function type.
|
|
if (firstTrailingIdx && argInsertIdx > *firstTrailingIdx) {
|
|
if (param.isInOut()) {
|
|
return false;
|
|
}
|
|
|
|
Type expectedTy = param.getPlainType()->lookThroughAllOptionalTypes();
|
|
return expectedTy->is<FunctionType>() || expectedTy->isAny() ||
|
|
expectedTy->isTypeVariableOrMember();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::optional<CompletionArgInfo>
|
|
constraints::getCompletionArgInfo(ASTNode anchor, ConstraintSystem &CS) {
|
|
auto *exprAnchor = getAsExpr(anchor);
|
|
if (!exprAnchor)
|
|
return std::nullopt;
|
|
|
|
auto *args = exprAnchor->getArgs();
|
|
if (!args)
|
|
return std::nullopt;
|
|
|
|
for (unsigned i : indices(*args)) {
|
|
if (CS.containsIDEInspectionTarget(args->getExpr(i)))
|
|
return CompletionArgInfo{i, args->getFirstTrailingClosureIndex(),
|
|
args->size()};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
class ArgumentFailureTracker : public MatchCallArgumentListener {
|
|
protected:
|
|
ConstraintSystem &CS;
|
|
NullablePtr<ValueDecl> Callee;
|
|
SmallVectorImpl<AnyFunctionType::Param> &Arguments;
|
|
ArrayRef<AnyFunctionType::Param> Parameters;
|
|
std::optional<unsigned> UnlabeledTrailingClosureArgIndex;
|
|
ConstraintLocatorBuilder Locator;
|
|
|
|
private:
|
|
SmallVector<SynthesizedArg, 4> MissingArguments;
|
|
SmallVector<std::pair<unsigned, AnyFunctionType::Param>, 4> ExtraArguments;
|
|
|
|
protected:
|
|
/// Synthesizes an argument that is intended to match against a missing
|
|
/// argument for the parameter at \p paramIdx.
|
|
/// \returns The index of the new argument in \c Arguments.
|
|
unsigned synthesizeArgument(unsigned paramIdx,
|
|
bool isAfterCodeCompletionLoc) {
|
|
const auto ¶m = Parameters[paramIdx];
|
|
|
|
unsigned newArgIdx = Arguments.size();
|
|
auto *argLoc = CS.getConstraintLocator(
|
|
Locator, {LocatorPathElt::ApplyArgToParam(newArgIdx, paramIdx,
|
|
param.getParameterFlags()),
|
|
LocatorPathElt::SynthesizedArgument(
|
|
newArgIdx, isAfterCodeCompletionLoc)});
|
|
|
|
auto *argType = CS.createTypeVariable(
|
|
argLoc, TVO_CanBindToInOut | TVO_CanBindToLValue |
|
|
TVO_CanBindToNoEscape | TVO_CanBindToHole);
|
|
|
|
auto synthesizedArg = param.withType(argType);
|
|
Arguments.push_back(synthesizedArg);
|
|
return newArgIdx;
|
|
}
|
|
|
|
public:
|
|
ArgumentFailureTracker(
|
|
ConstraintSystem &cs, ValueDecl *callee,
|
|
SmallVectorImpl<AnyFunctionType::Param> &args,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex,
|
|
ConstraintLocatorBuilder locator)
|
|
: CS(cs), Callee(callee), Arguments(args), Parameters(params),
|
|
UnlabeledTrailingClosureArgIndex(unlabeledTrailingClosureArgIndex),
|
|
Locator(locator) {}
|
|
|
|
~ArgumentFailureTracker() override {
|
|
if (!MissingArguments.empty()) {
|
|
auto *fix = AddMissingArguments::create(CS, MissingArguments,
|
|
CS.getConstraintLocator(Locator));
|
|
|
|
// Not having an argument is the same impact as having a type mismatch.
|
|
(void)CS.recordFix(fix, /*impact=*/MissingArguments.size() * 2);
|
|
}
|
|
}
|
|
|
|
std::optional<unsigned> missingArgument(unsigned paramIdx,
|
|
unsigned argInsertIdx) override {
|
|
if (!CS.shouldAttemptFixes())
|
|
return std::nullopt;
|
|
|
|
unsigned newArgIdx =
|
|
synthesizeArgument(paramIdx, /*isAfterCodeCompletionLoc=*/false);
|
|
auto synthesizedArg = Arguments[newArgIdx];
|
|
|
|
MissingArguments.push_back(SynthesizedArg{paramIdx, synthesizedArg});
|
|
|
|
return newArgIdx;
|
|
}
|
|
|
|
bool extraArgument(unsigned argIdx) override {
|
|
if (!CS.shouldAttemptFixes())
|
|
return true;
|
|
|
|
// If this is a trailing closure, let's check if the call is
|
|
// to an init of a callable type. If so, let's not record it
|
|
// as extraneous since it would be matched against implicitly
|
|
// injected `.callAsFunction` call.
|
|
if (UnlabeledTrailingClosureArgIndex &&
|
|
argIdx == *UnlabeledTrailingClosureArgIndex && Callee) {
|
|
if (auto *ctor = dyn_cast<ConstructorDecl>(Callee.get())) {
|
|
auto resultTy = ctor->getResultInterfaceType();
|
|
if (resultTy->isCallAsFunctionType(CS.DC))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
ExtraArguments.push_back(std::make_pair(argIdx, Arguments[argIdx]));
|
|
return false;
|
|
}
|
|
|
|
bool missingLabel(unsigned paramIndex) override {
|
|
return !CS.shouldAttemptFixes();
|
|
}
|
|
|
|
bool extraneousLabel(unsigned paramIndex) override {
|
|
return !CS.shouldAttemptFixes();
|
|
}
|
|
|
|
bool incorrectLabel(unsigned paramIndex) override {
|
|
return !CS.shouldAttemptFixes();
|
|
}
|
|
|
|
bool outOfOrderArgument(
|
|
unsigned argIdx, unsigned prevArgIdx,
|
|
ArrayRef<ParamBinding> bindings) override {
|
|
if (CS.shouldAttemptFixes()) {
|
|
// If some of the arguments are missing/extraneous, no reason to
|
|
// record a fix for this, increase the score so there is a way
|
|
// to identify that there is something going on besides just missing
|
|
// arguments.
|
|
if (!MissingArguments.empty() || !ExtraArguments.empty()) {
|
|
CS.increaseScore(SK_Fix, Locator);
|
|
return false;
|
|
}
|
|
|
|
auto *fix = MoveOutOfOrderArgument::create(
|
|
CS, argIdx, prevArgIdx, bindings, CS.getConstraintLocator(Locator));
|
|
return CS.recordFix(fix);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool relabelArguments(ArrayRef<Identifier> newLabels) override {
|
|
if (!CS.shouldAttemptFixes())
|
|
return true;
|
|
|
|
// TODO(diagnostics): If re-labeling is mixed with extra arguments,
|
|
// let's produce a fix only for extraneous arguments for now,
|
|
// because they'd share a locator path which (currently) means
|
|
// one fix would overwrite another.
|
|
if (!ExtraArguments.empty()) {
|
|
CS.increaseScore(SK_Fix, Locator);
|
|
return false;
|
|
}
|
|
|
|
auto anchor = Locator.getBaseLocator()->getAnchor();
|
|
if (!anchor)
|
|
return true;
|
|
|
|
unsigned numExtraneous = 0;
|
|
unsigned numRenames = 0;
|
|
unsigned numOutOfOrder = 0;
|
|
|
|
for (unsigned i : indices(newLabels)) {
|
|
// It's already known how many arguments are missing,
|
|
// it would be accounted for in the impact.
|
|
if (i >= Arguments.size())
|
|
continue;
|
|
|
|
auto argLabel = Arguments[i].getLabel();
|
|
auto paramLabel = newLabels[i];
|
|
|
|
if (argLabel == paramLabel)
|
|
continue;
|
|
|
|
if (!argLabel.empty()) {
|
|
// Instead of this being a label mismatch which requires
|
|
// re-labeling, this could be an out-of-order argument
|
|
// instead which has a completely different impact.
|
|
if (llvm::count(newLabels, argLabel) == 1) {
|
|
++numOutOfOrder;
|
|
} else if (paramLabel.empty()) {
|
|
++numExtraneous;
|
|
} else {
|
|
++numRenames;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *locator = CS.getConstraintLocator(Locator);
|
|
auto *fix = RelabelArguments::create(CS, newLabels, locator);
|
|
// Re-labeling fixes with extraneous/incorrect labels should be
|
|
// lower priority vs. other fixes on same/different overload(s)
|
|
// where labels did line up correctly.
|
|
//
|
|
// If there are not only labeling problems but also some of the
|
|
// arguments are missing, let's account of that in the impact.
|
|
auto impact = 1 + numOutOfOrder + numExtraneous * 2 + numRenames * 3 +
|
|
MissingArguments.size() * 2;
|
|
return CS.recordFix(fix, impact);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, AnyFunctionType::Param>>
|
|
getExtraneousArguments() const {
|
|
return ExtraArguments;
|
|
}
|
|
};
|
|
|
|
/// Ignores any failures after the code completion token.
|
|
class CompletionArgumentTracker : public ArgumentFailureTracker {
|
|
struct CompletionArgInfo ArgInfo;
|
|
|
|
public:
|
|
CompletionArgumentTracker(
|
|
ConstraintSystem &cs, ValueDecl *callee,
|
|
SmallVectorImpl<AnyFunctionType::Param> &args,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
std::optional<unsigned> unlabeledTrailingClosureArgIndex,
|
|
ConstraintLocatorBuilder locator, struct CompletionArgInfo ArgInfo)
|
|
: ArgumentFailureTracker(cs, callee, args, params,
|
|
unlabeledTrailingClosureArgIndex, locator),
|
|
ArgInfo(ArgInfo) {}
|
|
|
|
std::optional<unsigned> missingArgument(unsigned paramIdx,
|
|
unsigned argInsertIdx) override {
|
|
// When solving for code completion, if any argument contains the
|
|
// completion location, later arguments shouldn't be considered missing
|
|
// (causing the solution to have a worse score) as the user just hasn't
|
|
// written them yet. Early exit to avoid recording them in this case.
|
|
if (ArgInfo.allowsMissingArgAt(argInsertIdx, Parameters[paramIdx])) {
|
|
return synthesizeArgument(paramIdx, /*isAfterCodeCompletionLoc=*/true);
|
|
}
|
|
|
|
return ArgumentFailureTracker::missingArgument(paramIdx, argInsertIdx);
|
|
}
|
|
|
|
bool extraArgument(unsigned argIdx) override {
|
|
if (ArgInfo.isBefore(argIdx)) {
|
|
return false;
|
|
}
|
|
if (argIdx == 0 && ArgInfo.completionIdx == 0) {
|
|
return false;
|
|
}
|
|
return ArgumentFailureTracker::extraArgument(argIdx);
|
|
}
|
|
|
|
bool outOfOrderArgument(unsigned argIdx, unsigned prevArgIdx,
|
|
ArrayRef<ParamBinding> bindings) override {
|
|
if (ArgInfo.isBefore(argIdx)) {
|
|
return false;
|
|
}
|
|
|
|
return ArgumentFailureTracker::outOfOrderArgument(argIdx, prevArgIdx,
|
|
bindings);
|
|
}
|
|
|
|
bool shouldClaimArgDuringRecovery(unsigned argIdx) override {
|
|
return !ArgInfo.isBefore(argIdx);
|
|
}
|
|
|
|
bool
|
|
canClaimArgIgnoringNameMismatch(const AnyFunctionType::Param &arg) override {
|
|
if (!isCodeCompletionTypeVar(arg.getPlainType())) {
|
|
return false;
|
|
}
|
|
if (!arg.getLabel().empty()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class AllowLabelMismatches : public MatchCallArgumentListener {
|
|
SmallVector<Identifier, 4> NewLabels;
|
|
bool HadLabelingIssues = false;
|
|
|
|
public:
|
|
bool missingLabel(unsigned paramIndex) override {
|
|
HadLabelingIssues = true;
|
|
return false;
|
|
}
|
|
|
|
bool relabelArguments(ArrayRef<Identifier> newLabels) override {
|
|
NewLabels.append(newLabels.begin(), newLabels.end());
|
|
HadLabelingIssues = true;
|
|
return false;
|
|
}
|
|
|
|
bool hadLabelingIssues() const { return HadLabelingIssues; }
|
|
|
|
std::optional<ArrayRef<Identifier>> getLabelReplacements() const {
|
|
if (!hadLabelingIssues() || NewLabels.empty())
|
|
return std::nullopt;
|
|
|
|
return {NewLabels};
|
|
}
|
|
};
|
|
|
|
static std::optional<std::pair<TypeVariableType *, Type>>
|
|
shouldOpenExistentialCallArgument(ValueDecl *callee, unsigned paramIdx,
|
|
Type paramTy, Type argTy, Expr *argExpr,
|
|
ConstraintSystem &cs) {
|
|
auto result = canOpenExistentialCallArgument(callee, paramIdx, paramTy, argTy);
|
|
if (!result)
|
|
return std::nullopt;
|
|
|
|
// An argument expression that explicitly coerces to an existential
|
|
// disables the implicit opening of the existential unless it's
|
|
// wrapped in parens.
|
|
if (argExpr) {
|
|
if (auto argCast = dyn_cast<ExplicitCastExpr>(
|
|
argExpr->getSemanticsProvidingExpr())) {
|
|
if (auto typeRepr = argCast->getCastTypeRepr()) {
|
|
if (auto toType = cs.getType(typeRepr)) {
|
|
if (!isa<ParenExpr>(argExpr) && toType->isAnyExistentialType())
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Match the argument of a call to the parameter.
|
|
static ConstraintSystem::TypeMatchResult matchCallArguments(
|
|
ConstraintSystem &cs, FunctionType *contextualType, ArgumentList *argList,
|
|
ArrayRef<AnyFunctionType::Param> args,
|
|
ArrayRef<AnyFunctionType::Param> params, ConstraintKind subKind,
|
|
ConstraintLocatorBuilder locator,
|
|
std::optional<TrailingClosureMatching> trailingClosureMatching,
|
|
SmallVectorImpl<std::pair<TypeVariableType *, ExistentialArchetypeType *>>
|
|
&openedExistentials) {
|
|
assert(subKind == ConstraintKind::OperatorArgumentConversion ||
|
|
subKind == ConstraintKind::ArgumentConversion);
|
|
auto *loc = cs.getConstraintLocator(locator);
|
|
assert(loc->isLastElement<LocatorPathElt::ApplyArgument>());
|
|
|
|
ValueDecl *callee = nullptr;
|
|
bool appliedSelf = false;
|
|
|
|
// Resolve the callee for the application.
|
|
auto *calleeLocator = cs.getCalleeLocator(loc);
|
|
if (auto overload = cs.findSelectedOverloadFor(calleeLocator)) {
|
|
callee = overload->choice.getDeclOrNull();
|
|
appliedSelf = hasAppliedSelf(cs, overload->choice);
|
|
}
|
|
|
|
ParameterListInfo paramInfo(params, callee, appliedSelf);
|
|
|
|
// Make sure that argument list is available.
|
|
assert(argList);
|
|
|
|
// Apply labels to arguments.
|
|
SmallVector<AnyFunctionType::Param, 8> argsWithLabels;
|
|
argsWithLabels.append(args.begin(), args.end());
|
|
AnyFunctionType::relabelParams(argsWithLabels, argList);
|
|
|
|
// Special case when a single tuple argument if used
|
|
// instead of N distinct arguments e.g.:
|
|
//
|
|
// func foo(_ x: Int, _ y: Int) {}
|
|
// foo((1, 2)) // expected 2 arguments, got a single tuple with 2 elements.
|
|
if (cs.shouldAttemptFixes() && argsWithLabels.size() == 1 &&
|
|
llvm::count_if(indices(params), [&](unsigned paramIdx) {
|
|
return !paramInfo.hasDefaultArgument(paramIdx);
|
|
}) > 1) {
|
|
const auto &arg = argsWithLabels.front();
|
|
auto argTuple = arg.getPlainType()->getRValueType()->getAs<TupleType>();
|
|
// Don't explode a tuple in cases where first parameter is a tuple as
|
|
// well. That is a regular "missing argument case" even if their arity
|
|
// is different e.g.
|
|
//
|
|
// func foo(_: (Int, Int), _: Int) {}
|
|
// foo((1, 2)) // call is missing an argument for parameter #1
|
|
if (argTuple && argTuple->getNumElements() == params.size() &&
|
|
!params.front().getPlainType()->is<TupleType>()) {
|
|
argsWithLabels.pop_back();
|
|
// Let's make sure that labels associated with tuple elements
|
|
// line up with what is expected by argument list.
|
|
SmallVector<SynthesizedArg, 4> synthesizedArgs;
|
|
for (unsigned i = 0, n = argTuple->getNumElements(); i != n; ++i) {
|
|
const auto &elt = argTuple->getElement(i);
|
|
|
|
// If tuple doesn't have a label for its first element
|
|
// and parameter does, let's assume parameter's label
|
|
// to aid argument matching. For example:
|
|
//
|
|
// \code
|
|
// func test(val: Int, _: String) {}
|
|
//
|
|
// test(val: (42, "")) // expands into `(val: 42, "")`
|
|
// \endcode
|
|
Identifier label = elt.getName();
|
|
if (i == 0 && !elt.hasName() && params[0].hasLabel()) {
|
|
label = params[0].getLabel();
|
|
}
|
|
|
|
AnyFunctionType::Param argument(elt.getType(), label);
|
|
synthesizedArgs.push_back(SynthesizedArg{i, argument});
|
|
argsWithLabels.push_back(argument);
|
|
}
|
|
|
|
(void)cs.recordFix(
|
|
AddMissingArguments::create(cs, synthesizedArgs,
|
|
cs.getConstraintLocator(locator)),
|
|
/*impact=*/synthesizedArgs.size() * 2);
|
|
}
|
|
}
|
|
|
|
// Match up the call arguments to the parameters.
|
|
SmallVector<ParamBinding, 4> parameterBindings;
|
|
TrailingClosureMatching selectedTrailingMatching =
|
|
TrailingClosureMatching::Forward;
|
|
|
|
{
|
|
std::unique_ptr<ArgumentFailureTracker> listener;
|
|
if (cs.isForCodeCompletion()) {
|
|
if (auto completionInfo = getCompletionArgInfo(locator.getAnchor(), cs)) {
|
|
listener = std::make_unique<CompletionArgumentTracker>(
|
|
cs, callee, argsWithLabels, params,
|
|
argList->getFirstTrailingClosureIndex(), locator, *completionInfo);
|
|
}
|
|
}
|
|
if (!listener) {
|
|
// We didn't create an argument tracker for code completion. Create a
|
|
// normal one.
|
|
listener = std::make_unique<ArgumentFailureTracker>(
|
|
cs, callee, argsWithLabels, params,
|
|
argList->getFirstTrailingClosureIndex(), locator);
|
|
}
|
|
auto callArgumentMatch = constraints::matchCallArguments(
|
|
argsWithLabels, params, paramInfo,
|
|
argList->getFirstTrailingClosureIndex(), cs.shouldAttemptFixes(),
|
|
*listener, trailingClosureMatching);
|
|
if (!callArgumentMatch)
|
|
return cs.getTypeMatchFailure(locator);
|
|
|
|
// If there are different results for both the forward and backward
|
|
// scans, return an ambiguity: the caller will need to build a
|
|
// disjunction.
|
|
if (callArgumentMatch->backwardParameterBindings) {
|
|
return cs.getTypeMatchAmbiguous();
|
|
}
|
|
|
|
selectedTrailingMatching = callArgumentMatch->trailingClosureMatching;
|
|
// Record the matching direction and parameter bindings used for this call.
|
|
cs.recordMatchCallArgumentResult(cs.getConstraintLocator(locator),
|
|
*callArgumentMatch);
|
|
|
|
// If there was a disjunction because both forward and backward were
|
|
// possible, increase the score for forward matches to bias toward the
|
|
// (source-compatible) backward matches. The compiler will produce a
|
|
// warning for such code.
|
|
if (trailingClosureMatching &&
|
|
*trailingClosureMatching == TrailingClosureMatching::Forward)
|
|
cs.increaseScore(SK_ForwardTrailingClosure, locator);
|
|
|
|
// Take the parameter bindings we selected.
|
|
parameterBindings = std::move(callArgumentMatch->parameterBindings);
|
|
|
|
auto extraArguments = listener->getExtraneousArguments();
|
|
if (!extraArguments.empty()) {
|
|
if (RemoveExtraneousArguments::isMinMaxNameShadowing(cs, locator))
|
|
return cs.getTypeMatchFailure(locator);
|
|
|
|
// First let's see whether this is a situation where a single
|
|
// parameter is a tuple, but N distinct arguments were passed in.
|
|
if (AllowTupleSplatForSingleParameter::attempt(
|
|
cs, argsWithLabels, params, parameterBindings, locator)) {
|
|
// Let's produce a generic "extraneous arguments"
|
|
// diagnostic otherwise.
|
|
auto *fix = RemoveExtraneousArguments::create(
|
|
cs, contextualType, extraArguments,
|
|
cs.getConstraintLocator(locator));
|
|
|
|
for (const auto &extraArg : extraArguments) {
|
|
auto argument = argList->get(extraArg.first);
|
|
auto argType = extraArg.second.getPlainType();
|
|
|
|
// Prevent closure resolution by binding it to a placeholder
|
|
// because the main issue here is invalid overload and
|
|
// errors produced from the closure body are going to be
|
|
// superfluous.
|
|
if (isExpr<ClosureExpr>(argument.getExpr())) {
|
|
cs.recordTypeVariablesAsHoles(argType);
|
|
} else {
|
|
cs.recordAnyTypeVarAsPotentialHole(argType);
|
|
}
|
|
}
|
|
|
|
if (cs.recordFix(fix, /*impact=*/extraArguments.size() * 5))
|
|
return cs.getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto isSynthesizedArgument = [](const AnyFunctionType::Param &arg) -> bool {
|
|
if (auto *typeVar = arg.getPlainType()->getAs<TypeVariableType>()) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
return locator->isLastElement<LocatorPathElt::SynthesizedArgument>();
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
for (unsigned paramIdx = 0, numParams = parameterBindings.size();
|
|
paramIdx != numParams; ++paramIdx){
|
|
// Determine the parameter type.
|
|
const auto ¶m = params[paramIdx];
|
|
auto paramTy = param.getOldType();
|
|
|
|
// Type parameter packs ingest the entire set of argument bindings
|
|
// as a pack type.
|
|
//
|
|
// We pull these out special because variadic parameters ban lots of
|
|
// the more interesting typing constructs called out below like
|
|
// inout and @autoclosure.
|
|
if (paramInfo.isVariadicGenericParameter(paramIdx)) {
|
|
// If generic parameter comes from a variadic type declaration it's
|
|
// possible that it got specialized early and is no longer represented
|
|
// by a pack expansion type. For example, consider expression -
|
|
// `Test<Int>(42)` where `Test<each T>` and the initializer
|
|
// is declared as `init(_: repeat each T)`. Although declaration
|
|
// based information reports parameter at index 0 as variadic generic
|
|
// the call site specializes it to `Int`.
|
|
if (isPackExpansionType(paramTy)) {
|
|
SmallVector<Type, 2> argTypes;
|
|
for (auto argIdx : parameterBindings[paramIdx]) {
|
|
auto argType = argsWithLabels[argIdx].getPlainType();
|
|
argTypes.push_back(argType);
|
|
}
|
|
|
|
auto *argPack = PackType::get(cs.getASTContext(), argTypes);
|
|
auto argPackExpansion = [&]() {
|
|
if (argPack->getNumElements() == 1 &&
|
|
argPack->getElementType(0)->is<PackExpansionType>()) {
|
|
return argPack->getElementType(0)->castTo<PackExpansionType>();
|
|
}
|
|
|
|
return PackExpansionType::get(argPack, argPack);
|
|
}();
|
|
|
|
auto firstArgIdx =
|
|
argTypes.empty() ? paramIdx : parameterBindings[paramIdx].front();
|
|
|
|
cs.addConstraint(
|
|
subKind, argPackExpansion, paramTy,
|
|
locator.withPathElement(LocatorPathElt::ApplyArgToParam(
|
|
firstArgIdx, paramIdx, param.getParameterFlags())));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If type inference from default arguments is enabled, let's
|
|
// add a constraint from the parameter if necessary, otherwise
|
|
// there is nothing to do but move to the next parameter.
|
|
if (parameterBindings[paramIdx].empty() && callee) {
|
|
// Type inference from default value expressions.
|
|
{
|
|
auto *paramList = callee->getParameterList();
|
|
if (!paramList)
|
|
continue;
|
|
|
|
// There is nothing to infer if parameter doesn't have any
|
|
// generic parameters in its type.
|
|
auto *PD = paramList->get(paramIdx);
|
|
if (!PD->getInterfaceType()->hasTypeParameter())
|
|
continue;
|
|
|
|
// The type of the default value is going to be determined
|
|
// based on a type deduced for the parameter at this call site.
|
|
if (PD->hasCallerSideDefaultExpr())
|
|
continue;
|
|
|
|
auto defaultExprType = PD->getTypeOfDefaultExpr();
|
|
|
|
// A caller side default.
|
|
if (!defaultExprType || defaultExprType->hasError())
|
|
continue;
|
|
|
|
// If this is just a regular default type that should
|
|
// work for all substitutions of generic parameter,
|
|
// let's continue.
|
|
if (defaultExprType->hasArchetype())
|
|
continue;
|
|
|
|
cs.addConstraint(
|
|
ConstraintKind::ArgumentConversion, paramTy, defaultExprType,
|
|
locator.withPathElement(LocatorPathElt::ApplyArgToParam(
|
|
paramIdx, paramIdx, param.getParameterFlags())));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// See if we have a parameter label specified in the function's DeclNameLoc.
|
|
Identifier compoundParamLabel;
|
|
if (auto *E = getAsExpr(calleeLocator->getAnchor())) {
|
|
auto nameLoc = E->getNameLoc();
|
|
if (auto labelLoc = nameLoc.getArgumentLabelLoc(paramIdx)) {
|
|
auto &ctx = cs.getASTContext();
|
|
auto labelTok = Lexer::getTokenAtLocation(ctx.SourceMgr, labelLoc);
|
|
compoundParamLabel = ctx.getIdentifier(labelTok.getText());
|
|
}
|
|
}
|
|
|
|
// Compare each of the bound arguments for this parameter.
|
|
for (auto argIdx : parameterBindings[paramIdx]) {
|
|
auto loc = locator.withPathElement(LocatorPathElt::ApplyArgToParam(
|
|
argIdx, paramIdx, param.getParameterFlags()));
|
|
const auto &argument = argsWithLabels[argIdx];
|
|
auto argTy = argument.getOldType();
|
|
|
|
bool matchingAutoClosureResult = param.isAutoClosure();
|
|
auto *argExpr = getArgumentExpr(locator.getAnchor(), argIdx);
|
|
if (param.isAutoClosure() && !isSynthesizedArgument(argument)) {
|
|
auto &ctx = cs.getASTContext();
|
|
|
|
// If this is a call to a function with a closure argument and the
|
|
// parameter is an autoclosure, let's just increment the score here
|
|
// so situations like below are not ambiguous.
|
|
// func f<T>(_: () -> T) {}
|
|
// func f<T>(_: @autoclosure () -> T) {}
|
|
//
|
|
// f { } // OK
|
|
if (isExpr<ClosureExpr>(argExpr)) {
|
|
cs.increaseScore(SK_FunctionToAutoClosureConversion, loc);
|
|
}
|
|
|
|
// If the argument is not marked as @autoclosure or
|
|
// this is Swift version >= 5 where forwarding is not allowed,
|
|
// argument would always be wrapped into an implicit closure
|
|
// at the end, so we can safely match against result type.
|
|
if (ctx.isSwiftVersionAtLeast(5) || !isAutoClosureArgument(argExpr)) {
|
|
// In Swift >= 5 mode there is no @autoclosure forwarding,
|
|
// so let's match result types.
|
|
if (auto *fnType = paramTy->getAs<FunctionType>()) {
|
|
paramTy = fnType->getResult();
|
|
}
|
|
} else {
|
|
// Matching @autoclosure argument to @autoclosure parameter
|
|
// directly would mean introducing a function conversion
|
|
// in Swift <= 4 mode.
|
|
cs.increaseScore(SK_FunctionConversion, loc);
|
|
matchingAutoClosureResult = false;
|
|
}
|
|
}
|
|
|
|
// In case solver matched trailing based on the backward scan,
|
|
// let's produce a warning which would suggest to add a label
|
|
// to disambiguate in the future.
|
|
if (selectedTrailingMatching == TrailingClosureMatching::Backward &&
|
|
argIdx == *argList->getFirstTrailingClosureIndex()) {
|
|
cs.recordFix(SpecifyLabelToAssociateTrailingClosure::create(
|
|
cs, cs.getConstraintLocator(loc)));
|
|
}
|
|
|
|
// Type-erase any opened existentials from subsequent parameter types
|
|
// unless the argument itself is a generic function, which could handle
|
|
// the opened existentials.
|
|
if (!openedExistentials.empty() && paramTy->hasTypeVariable() &&
|
|
!cs.isArgumentGenericFunction(argTy, argExpr)) {
|
|
for (const auto &opened : openedExistentials) {
|
|
paramTy = typeEraseOpenedExistentialReference(
|
|
paramTy, opened.second->getExistentialType(), opened.first,
|
|
TypePosition::Contravariant);
|
|
}
|
|
}
|
|
|
|
// If the argument is an existential type and the parameter is generic,
|
|
// consider opening the existential type.
|
|
if (auto typeVarAndBindingTy = shouldOpenExistentialCallArgument(
|
|
callee, paramIdx, paramTy, argTy, argExpr, cs)) {
|
|
// My kingdom for a decent "if let" in C++.
|
|
TypeVariableType *typeVar;
|
|
Type bindingTy;
|
|
std::tie(typeVar, bindingTy) = *typeVarAndBindingTy;
|
|
|
|
ExistentialArchetypeType *openedArchetype;
|
|
|
|
// Open the argument type.
|
|
argTy = argTy.transformRec([&](TypeBase *t) -> std::optional<Type> {
|
|
if (t->isAnyExistentialType()) {
|
|
Type openedTy;
|
|
std::tie(openedTy, openedArchetype) =
|
|
cs.openAnyExistentialType(t, cs.getConstraintLocator(loc));
|
|
|
|
return openedTy;
|
|
}
|
|
|
|
return std::nullopt;
|
|
});
|
|
|
|
openedExistentials.push_back({typeVar, openedArchetype});
|
|
}
|
|
|
|
// If we have a compound function reference (e.g `fn($x:)`), respect
|
|
// the parameter label given. Otherwise look at the argument label.
|
|
auto wrapperArgLabel = compoundParamLabel.empty() ? argument.getLabel()
|
|
: compoundParamLabel;
|
|
if (paramInfo.hasExternalPropertyWrapper(paramIdx) ||
|
|
wrapperArgLabel.hasDollarPrefix()) {
|
|
auto *param = getParameterAt(callee, paramIdx);
|
|
assert(param);
|
|
if (cs.applyPropertyWrapperToParameter(paramTy, argTy,
|
|
const_cast<ParamDecl *>(param),
|
|
wrapperArgLabel, subKind,
|
|
cs.getConstraintLocator(loc),
|
|
calleeLocator)
|
|
.isFailure()) {
|
|
return cs.getTypeMatchFailure(loc);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If argument comes for declaration it should loose
|
|
// `@autoclosure` flag, because in context it's used
|
|
// as a function type represented by autoclosure.
|
|
//
|
|
// Special case here are synthesized arguments because
|
|
// they mirror parameter flags to ease diagnosis.
|
|
assert(!argsWithLabels[argIdx].isAutoClosure() ||
|
|
isSynthesizedArgument(argument));
|
|
|
|
// If parameter is a generic parameter, let's copy its
|
|
// conformance requirements (if any), to the argument
|
|
// be able to filter mismatching choices earlier.
|
|
if (auto *typeVar = paramTy->getAs<TypeVariableType>()) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
if (locator->isForGenericParameter()) {
|
|
auto &CG = cs.getConstraintGraph();
|
|
|
|
auto isTransferableConformance = [&typeVar](Constraint *constraint) {
|
|
if (constraint->getKind() != ConstraintKind::ConformsTo &&
|
|
constraint->getKind() != ConstraintKind::NonisolatedConformsTo)
|
|
return false;
|
|
|
|
auto requirementTy = constraint->getFirstType();
|
|
if (!requirementTy->isEqual(typeVar))
|
|
return false;
|
|
|
|
return constraint->getSecondType()->is<ProtocolType>();
|
|
};
|
|
|
|
for (auto *constraint : CG[typeVar].getConstraints()) {
|
|
if (isTransferableConformance(constraint))
|
|
cs.addConstraint(ConstraintKind::TransitivelyConformsTo, argTy,
|
|
constraint->getSecondType(),
|
|
constraint->getLocator());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Detect that there is sync -> async mismatch early on for
|
|
// closure argument to avoid re-checking calls if there was
|
|
// an overload choice with synchronous parameter of the same
|
|
// shape e.g.
|
|
//
|
|
// func test(_: () -> Void) -> MyStruct {}
|
|
// func test(_: () async -> Void) -> MyStruct {}
|
|
//
|
|
// test({ ... }).<member>...
|
|
//
|
|
// Synchronous overload is always better in this case so there
|
|
// is no need to re-check follow-up `<member>`s and better
|
|
// to short-circuit this path early.
|
|
if (auto *fnType = paramTy->getAs<FunctionType>()) {
|
|
if (fnType->isAsync()) {
|
|
auto *typeVar = argTy->getAs<TypeVariableType>();
|
|
if (typeVar && typeVar->getImpl().isClosureType()) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
auto *closure = castToExpr<ClosureExpr>(locator->getAnchor());
|
|
if (!cs.getClosureType(closure)->isAsync())
|
|
cs.increaseScore(SK_SyncInAsync, locator);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!argument.isCompileTimeLiteral() && param.isCompileTimeLiteral()) {
|
|
auto *locator = cs.getConstraintLocator(loc);
|
|
SourceRange range;
|
|
// simplify locator so the anchor is the exact argument.
|
|
cs.recordFix(NotCompileTimeLiteral::create(cs, paramTy,
|
|
simplifyLocator(cs, locator, range)));
|
|
}
|
|
|
|
cs.addConstraint(
|
|
subKind, argTy, paramTy,
|
|
matchingAutoClosureResult
|
|
? loc.withPathElement(ConstraintLocator::AutoclosureResult)
|
|
: loc,
|
|
/*isFavored=*/false);
|
|
}
|
|
}
|
|
|
|
return cs.getTypeMatchSuccess();
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchFunctionResultTypes(Type expectedResult, Type fnResult,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// If we have a callee with an IUO return, add a disjunction that can either
|
|
// bind to the result or an unwrapped result.
|
|
auto *calleeLoc = getCalleeLocator(getConstraintLocator(locator));
|
|
auto *calleeResultLoc = getConstraintLocator(
|
|
calleeLoc, ConstraintLocator::FunctionResult);
|
|
auto selected = findSelectedOverloadFor(calleeLoc);
|
|
|
|
// If we don't have a direct callee, this might be the second application
|
|
// of a curried function reference, in which case we need to dig into the
|
|
// inner call to find the callee.
|
|
// FIXME: This is a bit of a hack. We should consider rewriting curried
|
|
// applies as regular applies in PreCheckExpr to eliminate the need to special
|
|
// case double applies in the solver.
|
|
bool isSecondApply = false;
|
|
if (!selected) {
|
|
auto anchor = locator.getAnchor();
|
|
if (auto *callExpr = getAsExpr<CallExpr>(anchor)) {
|
|
if (auto *innerCall = getAsExpr<CallExpr>(callExpr->getSemanticFn())) {
|
|
auto *innerCalleeLoc =
|
|
getCalleeLocator(getConstraintLocator(innerCall));
|
|
if (auto innerOverload = findSelectedOverloadFor(innerCalleeLoc)) {
|
|
auto choice = innerOverload->choice;
|
|
if (choice.getFunctionRefInfo().isDoubleApply()) {
|
|
isSecondApply = true;
|
|
selected.emplace(*innerOverload);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (selected) {
|
|
auto choice = selected->choice;
|
|
|
|
// Subscripts found through dynamic lookup need special treatment. Unlike
|
|
// other decls found through dynamic lookup, they cannot have an optional
|
|
// applied to their reference, instead it's applied to their result. As
|
|
// such, we may need to unwrap another level of optionality.
|
|
if (choice.getKind() == OverloadChoiceKind::DeclViaDynamic &&
|
|
isa<SubscriptDecl>(choice.getDecl())) {
|
|
// Introduce a type variable to record whether we needed to unwrap the
|
|
// outer optional.
|
|
auto outerTy = createTypeVariable(calleeResultLoc, TVO_CanBindToLValue);
|
|
buildDisjunctionForDynamicLookupResult(outerTy, fnResult,
|
|
calleeResultLoc);
|
|
fnResult = outerTy;
|
|
}
|
|
|
|
auto iuoKind = choice.getIUOReferenceKind(*this, isSecondApply);
|
|
if (iuoKind == IUOReferenceKind::ReturnValue) {
|
|
buildDisjunctionForImplicitlyUnwrappedOptional(expectedResult, fnResult,
|
|
calleeResultLoc);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
return matchTypes(expectedResult, fnResult, ConstraintKind::Bind, flags,
|
|
locator);
|
|
}
|
|
|
|
static bool isInPatternMatchingContext(ConstraintLocatorBuilder locator) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
(void)locator.getLocatorParts(path);
|
|
|
|
auto pathElement = llvm::find_if(path, [](LocatorPathElt &elt) {
|
|
return elt.is<LocatorPathElt::PatternMatch>();
|
|
});
|
|
return pathElement != path.end();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TupleMatcher {
|
|
TupleType *tuple1;
|
|
TupleType *tuple2;
|
|
|
|
public:
|
|
enum class MatchKind : uint8_t {
|
|
Equality,
|
|
Subtype,
|
|
Conversion,
|
|
};
|
|
|
|
SmallVector<MatchedPair, 4> pairs;
|
|
bool hasLabelMismatch = false;
|
|
|
|
TupleMatcher(TupleType *tuple1, TupleType *tuple2)
|
|
: tuple1(tuple1), tuple2(tuple2) {}
|
|
|
|
bool match(MatchKind kind, ConstraintLocatorBuilder locator) {
|
|
// FIXME: TuplePackMatcher should completely replace the non-variadic
|
|
// case too eventually.
|
|
if (containsPackExpansionType(tuple1) ||
|
|
containsPackExpansionType(tuple2)) {
|
|
TuplePackMatcher matcher(tuple1, tuple2, isPackExpansionType);
|
|
if (matcher.match())
|
|
return true;
|
|
|
|
pairs = matcher.pairs;
|
|
return false;
|
|
}
|
|
|
|
if (tuple1->getNumElements() != tuple2->getNumElements())
|
|
return true;
|
|
|
|
switch (kind) {
|
|
case MatchKind::Equality:
|
|
return matchEquality(isInPatternMatchingContext(locator));
|
|
|
|
case MatchKind::Subtype:
|
|
return matchSubtype();
|
|
|
|
case MatchKind::Conversion:
|
|
return matchConversion();
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool matchEquality(bool inPatternMatchingContext) {
|
|
for (unsigned i = 0, n = tuple1->getNumElements(); i != n; ++i) {
|
|
const auto &elt1 = tuple1->getElement(i);
|
|
const auto &elt2 = tuple2->getElement(i);
|
|
|
|
if (inPatternMatchingContext) {
|
|
// FIXME: The fact that this isn't symmetric is wrong since this logic
|
|
// is called for bind and equal constraints...
|
|
if (elt2.hasName() && elt1.getName() != elt2.getName())
|
|
return true;
|
|
} else {
|
|
// If the names don't match, we have a conflict.
|
|
if (elt1.getName() != elt2.getName())
|
|
return true;
|
|
}
|
|
|
|
pairs.emplace_back(elt1.getType(), elt2.getType(), i, i);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool matchSubtype() {
|
|
for (unsigned i = 0, n = tuple1->getNumElements(); i != n; ++i) {
|
|
const auto &elt1 = tuple1->getElement(i);
|
|
const auto &elt2 = tuple2->getElement(i);
|
|
|
|
// If the names don't match, we may have a conflict.
|
|
if (elt1.getName() != elt2.getName()) {
|
|
// Make sure that this name isn't used at some other position.
|
|
if (elt2.hasName() && tuple1->getNamedElementId(elt2.getName()) != -1)
|
|
return true;
|
|
|
|
// If both elements have names and they mismatch, make a note of it
|
|
// so we can emit a warning.
|
|
if (elt1.hasName() && elt2.hasName())
|
|
hasLabelMismatch = true;
|
|
}
|
|
|
|
pairs.emplace_back(elt1.getType(), elt2.getType(), i, i);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool matchConversion() {
|
|
SmallVector<unsigned, 4> sources;
|
|
if (computeTupleShuffle(tuple1, tuple2, sources))
|
|
return true;
|
|
|
|
for (unsigned idx2 = 0, n = sources.size(); idx2 != n; ++idx2) {
|
|
unsigned idx1 = sources[idx2];
|
|
|
|
auto lhs = tuple1->getElementType(idx1);
|
|
auto rhs = tuple2->getElementType(idx2);
|
|
|
|
pairs.emplace_back(lhs, rhs, idx1, idx2);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchTupleTypes(TupleType *tuple1, TupleType *tuple2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
using TupleMatchKind = TupleMatcher::MatchKind;
|
|
|
|
ConstraintKind subkind;
|
|
TupleMatchKind matchKind;
|
|
|
|
switch (kind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal: {
|
|
subkind = kind;
|
|
matchKind = TupleMatchKind::Equality;
|
|
break;
|
|
}
|
|
|
|
// NOTE: It was probably a mistake that BindToPointerType is handled like
|
|
// Subtype; this was implicit in the old structure of the code due to bogus
|
|
// use of operator<= on enum cases.
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::BindToPointerType: {
|
|
subkind = kind;
|
|
matchKind = TupleMatchKind::Subtype;
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion: {
|
|
subkind = ConstraintKind::Conversion;
|
|
matchKind = TupleMatchKind::Conversion;
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::SubclassOf:
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
case ConstraintKind::OptionalObject:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::FallbackType:
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
case ConstraintKind::PropertyWrapper:
|
|
case ConstraintKind::SyntacticElement:
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
case ConstraintKind::PackElementOf:
|
|
case ConstraintKind::ShapeOf:
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
case ConstraintKind::SameShape:
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
case ConstraintKind::LValueObject:
|
|
llvm_unreachable("Bad constraint kind in matchTupleTypes()");
|
|
}
|
|
|
|
TupleMatcher matcher(tuple1, tuple2);
|
|
|
|
if (matcher.match(matchKind, locator))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
if (matcher.hasLabelMismatch) {
|
|
// If we had a label mismatch, emit a warning. This is something we
|
|
// shouldn't permit, as it's more permissive than what a conversion would
|
|
// allow. Ideally we'd turn this into an error in Swift 6 mode.
|
|
recordFix(AllowTupleLabelMismatch::create(*this, tuple1, tuple2,
|
|
getConstraintLocator(locator)));
|
|
}
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
for (auto pair : matcher.pairs) {
|
|
auto result = matchTypes(pair.lhs, pair.rhs, subkind, subflags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::TupleElement(pair.lhsIdx)));
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchPackTypes(PackType *pack1, PackType *pack2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
PackMatcher matcher(pack1->getElementTypes(), pack2->getElementTypes(),
|
|
getASTContext(), isPackExpansionType);
|
|
|
|
if (matcher.match())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
for (auto pair : matcher.pairs) {
|
|
auto result = matchTypes(pair.lhs, pair.rhs, kind, subflags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::PackElement(pair.lhsIdx)));
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
/// Utility function used when matching a pack expansion type against a
|
|
/// pack type.
|
|
///
|
|
/// Takes a pattern type and an original pack type, and returns an instantiated
|
|
/// pack type. The original pack type is then matched against the instantiated
|
|
/// pack type.
|
|
///
|
|
/// As a side effect, it binds each pack type variable occurring in the pattern
|
|
/// type to a new pack with the same shape as the original pack, but where the
|
|
/// elements are fresh type variables.
|
|
///
|
|
/// The instantiated pack has the same shape as the original pack, where the
|
|
/// ith element is the pattern type with each pack type variable replaced by the
|
|
/// ith element of its binding.
|
|
///
|
|
/// For example, given the pattern Foo<$T0> and the original pack
|
|
/// {Foo<Int>, Foo<String>...}, we're going to bind
|
|
///
|
|
/// $T0 := {$T1, $T2}
|
|
///
|
|
/// And return the new pack {Foo<$T1>, Foo<$T2>...}.
|
|
///
|
|
/// The caller will then match the original pack type against the instantiated
|
|
/// pack type, which will recover the bindings:
|
|
///
|
|
/// $T1 := Int
|
|
/// $T2 := String
|
|
///
|
|
static PackType *replaceTypeVariablesWithFreshPacks(ConstraintSystem &cs,
|
|
Type pattern,
|
|
PackType *pack,
|
|
ConstraintLocatorBuilder locator) {
|
|
llvm::SmallSetVector<TypeVariableType *, 2> typeVarSet;
|
|
llvm::MapVector<TypeVariableType *, SmallVector<Type, 2>> typeVars;
|
|
|
|
pattern->walkPackReferences([&](Type t) {
|
|
if (auto *typeVar = t->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().canBindToPack())
|
|
typeVarSet.insert(typeVar);
|
|
}
|
|
|
|
return false;
|
|
});
|
|
|
|
if (typeVarSet.empty())
|
|
return nullptr;
|
|
|
|
auto *loc = cs.getConstraintLocator(locator);
|
|
|
|
// For each pack type variable occurring in the pattern type, compute a
|
|
// binding pack type comprised of fresh type variables.
|
|
for (auto *typeVar : typeVarSet) {
|
|
auto &freshTypeVars = typeVars[typeVar];
|
|
for (unsigned i = 0, e = pack->getNumElements(); i < e; ++i) {
|
|
auto *packExpansionElt = pack->getElementType(i)->getAs<PackExpansionType>();
|
|
|
|
// Preserve the pack expansion structure of the original pack. If the ith
|
|
// element was a pack expansion type, create a new pack expansion type
|
|
// wrapping a pack type variable. Otherwise, create a new scalar
|
|
// type variable.
|
|
//
|
|
// FIXME: Other TVO_* flags for type variables?
|
|
auto elementLoc = cs.getConstraintLocator(loc,
|
|
LocatorPathElt::PackElement(freshTypeVars.size()));
|
|
if (packExpansionElt != nullptr) {
|
|
auto *freshTypeVar = cs.createTypeVariable(
|
|
elementLoc,
|
|
TVO_CanBindToPack |
|
|
(typeVar->getImpl().canBindToHole() ? TVO_CanBindToHole : 0));
|
|
freshTypeVars.push_back(PackExpansionType::get(
|
|
freshTypeVar, packExpansionElt->getCountType()));
|
|
} else {
|
|
freshTypeVars.push_back(cs.createTypeVariable(
|
|
elementLoc,
|
|
typeVar->getImpl().canBindToHole() ? TVO_CanBindToHole : 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<Type, 2> elts;
|
|
|
|
// For each element of the original pack type, instantiate the pattern type by
|
|
// replacing each pack type variable with the corresponding element of the
|
|
// pack type variable's binding pack.
|
|
for (unsigned i = 0, e = pack->getNumElements(); i < e; ++i) {
|
|
auto *packExpansionElt = pack->getElementType(i)->getAs<PackExpansionType>();
|
|
|
|
auto instantiatedPattern = pattern.transformRec([&](Type t)
|
|
-> std::optional<Type> {
|
|
if (isPackExpansionType(t))
|
|
return t;
|
|
|
|
if (auto *typeVar = t->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().canBindToPack()) {
|
|
auto found = typeVars.find(typeVar);
|
|
assert(found != typeVars.end());
|
|
|
|
// The ith element of the binding pack is either a scalar type variable
|
|
// or a pack expansion type wrapping a pack type variable.
|
|
auto projectedType = (found->second)[i];
|
|
if (packExpansionElt != nullptr) {
|
|
projectedType = projectedType->castTo<PackExpansionType>()
|
|
->getPatternType();
|
|
assert(projectedType->castTo<TypeVariableType>()
|
|
->getImpl().canBindToPack());
|
|
} else {
|
|
assert(!projectedType->castTo<TypeVariableType>()
|
|
->getImpl().canBindToPack());
|
|
}
|
|
|
|
return projectedType;
|
|
}
|
|
}
|
|
|
|
return std::nullopt;
|
|
});
|
|
|
|
if (packExpansionElt != nullptr) {
|
|
elts.push_back(PackExpansionType::get(instantiatedPattern,
|
|
packExpansionElt->getCountType()));
|
|
} else {
|
|
elts.push_back(instantiatedPattern);
|
|
}
|
|
}
|
|
|
|
auto &ctx = cs.getASTContext();
|
|
|
|
// Bind each pack type variable occurring in the pattern type to its
|
|
// binding pack that was constructed above.
|
|
for (const auto &pair : typeVars) {
|
|
cs.addConstraint(ConstraintKind::Bind,
|
|
pair.first, PackType::get(ctx, pair.second), locator);
|
|
}
|
|
|
|
// Construct the instantiated pack type.
|
|
return PackType::get(cs.getASTContext(), elts);
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchPackExpansionTypes(PackExpansionType *expansion1,
|
|
PackExpansionType *expansion2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto shapeLocator = locator.withPathElement(ConstraintLocator::PackShape);
|
|
// The count types of two pack expansion types must have the same shape.
|
|
addConstraint(ConstraintKind::SameShape, expansion1->getCountType(),
|
|
expansion2->getCountType(),
|
|
shapeLocator);
|
|
|
|
auto pattern1 = expansion1->getPatternType();
|
|
auto pattern2 = expansion2->getPatternType();
|
|
|
|
if (shouldAttemptFixes()) {
|
|
// If pack expansion types have different shapes, let's not attempt
|
|
// to match their pattern types to avoid producing any extra errors
|
|
// caused by shape differences.
|
|
if (hasFixFor(getConstraintLocator(shapeLocator))) {
|
|
recordAnyTypeVarAsPotentialHole(pattern1);
|
|
recordAnyTypeVarAsPotentialHole(pattern2);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
auto *const pack1 = pattern1->getAs<PackType>();
|
|
auto *const pack2 = pattern2->getAs<PackType>();
|
|
|
|
// If both sides are expanded or neither side is, proceed to matching them
|
|
// directly.
|
|
// Otherwise, we have something like `Foo<$T0>` vs.
|
|
// `Pack{Foo<Int>, Foo<String>}` or vice versa.
|
|
// We're going to bind `$T0` to `Pack{Int, String}` and unfold `Foo<$T0>` into
|
|
// `Pack{Foo<$T3>, Foo<$T4>} first.
|
|
if ((bool)pack1 != (bool)pack2) {
|
|
if (pack1) {
|
|
pattern2 =
|
|
replaceTypeVariablesWithFreshPacks(*this, pattern2, pack1, locator);
|
|
} else {
|
|
pattern1 =
|
|
replaceTypeVariablesWithFreshPacks(*this, pattern1, pack2, locator);
|
|
}
|
|
|
|
if (!(pattern1 && pattern2)) {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
// Continue matching.
|
|
return matchTypes(pattern1, pattern2, kind, flags, locator);
|
|
}
|
|
|
|
/// Check where a representation is a subtype of another.
|
|
///
|
|
/// The subtype relationship is defined as:
|
|
/// 1. any representation R is a sub-type of itself.
|
|
/// 2. a thin representation is a subtype of any other representation.
|
|
/// 3. a thick representation is a subtype of any other thick representation.
|
|
///
|
|
/// For example, since `@convention(c)` is a thin representation, and
|
|
/// `@convention(swift)` is a thick representation,
|
|
/// `@convention(c) (A) -> B` is a sub-type of `(A) -> B`.
|
|
///
|
|
/// NOTE: Unlike typical subtyping relationships, this is not anti-symmetric.
|
|
/// For example, @convention(c) and @convention(thin) are subtypes of each other
|
|
/// but not equal.
|
|
static bool
|
|
isSubtypeOf(FunctionTypeRepresentation potentialSubRepr,
|
|
FunctionTypeRepresentation potentialSuperRepr) {
|
|
return (potentialSubRepr == potentialSuperRepr)
|
|
|| isThinRepresentation(potentialSubRepr)
|
|
|| isThickRepresentation(potentialSuperRepr);
|
|
}
|
|
|
|
/// Returns true if `constraint extInfo1 extInfo2` is satisfied.
|
|
static bool matchFunctionRepresentations(FunctionType::ExtInfo einfo1,
|
|
FunctionType::ExtInfo einfo2,
|
|
ConstraintKind kind,
|
|
ConstraintSystemOptions options) {
|
|
auto rep1 = einfo1.getRepresentation();
|
|
auto rep2 = einfo2.getRepresentation();
|
|
bool clangTypeMismatch =
|
|
(options.contains(ConstraintSystemFlags::UseClangFunctionTypes) &&
|
|
(einfo1.getClangTypeInfo() != einfo2.getClangTypeInfo()));
|
|
switch (kind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Equal:
|
|
return (rep1 == rep2) && !clangTypeMismatch;
|
|
|
|
case ConstraintKind::Subtype: {
|
|
// Breakdown of cases:
|
|
// 1. isSubtypeOf(rep1, rep2) == false (hence rep1 != rep2):
|
|
// In this case, this function will return false, indicating that we
|
|
// can't convert. E.g. you can't convert from @convention(swift) to
|
|
// @convention(c).
|
|
// 2. isSubtypeOf(rep1, rep2) == true and rep1 != rep2:
|
|
// In this case, this function will return true, indicating that we
|
|
// can convert, because the Clang type doesn't matter when converting
|
|
// between different representations. E.g. it is okay to convert from
|
|
// @convention(c) (regardless of cType) to @convention(swift).
|
|
// 3. isSubtypeOf(rep1, rep2) == true and rep1 == rep2:
|
|
// In this case, the function returns !clangTypeMismatch, as we forbid
|
|
// conversions between @convention(c) functions with different cTypes.
|
|
return isSubtypeOf(rep1, rep2) && ((rep1 != rep2) || !clangTypeMismatch);
|
|
}
|
|
|
|
// [NOTE: diagnose-swift-to-c-convention-change]: @convention(swift) ->
|
|
// @convention(c) conversions are permitted only in certain cases.
|
|
//
|
|
// var w = 3; func f() { print(w) }; func g(_ : @convention(c) () -> ()) {}
|
|
// g(f); // OK
|
|
// let h = f as @convention(c) () -> (); g(h) // OK
|
|
// let k = f; g(k) // error
|
|
// func m() { let x = 0; g({ print(x) }) } // error
|
|
// func n() { let y = 0; func p() { }; g(p); } // OK
|
|
// func q() { let z = 0; func r() { print(z) }; g(r); } // error
|
|
//
|
|
// Since checking for disallowed cases requires access to captures,
|
|
// it is simpler to defer diagnosing (to CSApply/SILGen) and return true here.
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
// For now, forbid conversion if representations match but cTypes differ.
|
|
//
|
|
// let f : @convention(c, cType: "id (*)(void) __attribute__((ns_returns_retained))")
|
|
// () -> AnyObject = ...
|
|
// let _ : @convention(c, cType: "id (*)(void)")
|
|
// () -> AnyObject = f // error
|
|
// let g : @convention(c, cType: "void (*)(void *)")
|
|
// (OpaquePointer?) -> () = ...
|
|
// let _ : @convention(c, cType: "void (*)(MyCtx *)")
|
|
// (OpaquePointer?) -> () = g // error
|
|
if ((rep1 == rep2) && clangTypeMismatch) {
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::SubclassOf:
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
case ConstraintKind::OptionalObject:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::FallbackType:
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
case ConstraintKind::PropertyWrapper:
|
|
case ConstraintKind::SyntacticElement:
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
case ConstraintKind::PackElementOf:
|
|
case ConstraintKind::ShapeOf:
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
case ConstraintKind::SameShape:
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
case ConstraintKind::LValueObject:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ConstraintKind in switch.");
|
|
}
|
|
|
|
/// Check whether given parameter list represents a single tuple
|
|
/// or type variable which could be later resolved to tuple.
|
|
/// This is useful for SE-0110 related fixes in `matchFunctionTypes`.
|
|
static bool isSingleTupleParam(ASTContext &ctx,
|
|
ArrayRef<AnyFunctionType::Param> params) {
|
|
if (params.size() != 1)
|
|
return false;
|
|
|
|
const auto ¶m = params.front();
|
|
if ((param.isVariadic() || isPackExpansionType(param.getPlainType())) ||
|
|
param.isInOut() || param.hasLabel() || param.isIsolated())
|
|
return false;
|
|
|
|
auto paramType = param.getPlainType();
|
|
|
|
// Support following case which was allowed until 5:
|
|
//
|
|
// func bar(_: (Int, Int) -> Void) {}
|
|
// let foo: ((Int, Int)?) -> Void = { _ in }
|
|
//
|
|
// bar(foo) // Ok
|
|
if (!ctx.isSwiftVersionAtLeast(5))
|
|
paramType = paramType->lookThroughAllOptionalTypes();
|
|
|
|
// Parameter type should either a tuple or something that can become a
|
|
// tuple later on.
|
|
return (paramType->is<TupleType>() || paramType->isTypeVariableOrMember());
|
|
}
|
|
|
|
static ConstraintFix *fixRequirementFailure(ConstraintSystem &cs, Type type1,
|
|
Type type2, ASTNode anchor,
|
|
ArrayRef<LocatorPathElt> path);
|
|
|
|
static ConstraintFix *fixRequirementFailure(ConstraintSystem &cs, Type type1,
|
|
Type type2,
|
|
ConstraintLocatorBuilder locator) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
|
|
auto anchor = locator.getLocatorParts(path);
|
|
return fixRequirementFailure(cs, type1, type2, anchor, path);
|
|
}
|
|
|
|
static unsigned
|
|
assessRequirementFailureImpact(ConstraintSystem &cs, Type requirementType,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(requirementType);
|
|
|
|
unsigned impact = 1;
|
|
auto anchor = locator.getAnchor();
|
|
if (!anchor)
|
|
return impact;
|
|
|
|
// If this requirement is associated with a member reference and it
|
|
// was possible to check it before overload choice is bound, that means
|
|
// types came from the context (most likely Self, or associated type(s))
|
|
// and failing this constraint makes member unrelated/inaccessible, so
|
|
// the impact has to be adjusted accordingly in order for this fix not to
|
|
// interfere with other overload choices.
|
|
//
|
|
// struct S<T> {}
|
|
// extension S where T == AnyObject { func foo() {} }
|
|
//
|
|
// func bar(_ s: S<Int>) { s.foo() }
|
|
//
|
|
// In this case `foo` is only accessible if T == `AnyObject`, which makes
|
|
// fix for same-type requirement higher impact vs. requirement associated
|
|
// with method itself e.g. `func foo<U>() -> U where U : P {}` because
|
|
// `foo` is accessible from any `S` regardless of what `T` is.
|
|
//
|
|
// Don't add this impact with the others, as we want to keep it consistent
|
|
// across requirement failures to present the user with a choice.
|
|
if (isExpr<UnresolvedDotExpr>(anchor) ||
|
|
isExpr<UnresolvedMemberExpr>(anchor)) {
|
|
auto *calleeLoc = cs.getCalleeLocator(cs.getConstraintLocator(locator));
|
|
if (!cs.findSelectedOverloadFor(calleeLoc))
|
|
return 10;
|
|
}
|
|
|
|
if (auto *UDE = getAsExpr<UnresolvedDotExpr>(anchor)) {
|
|
if (isResultBuilderMethodReference(cs.getASTContext(), UDE))
|
|
return 12;
|
|
}
|
|
|
|
auto resolvedTy = cs.simplifyType(requirementType);
|
|
|
|
// Increase the impact of a conformance fix for generic parameters on
|
|
// operators where such conformance failures are not as important as argument
|
|
// mismatches or contextual failures.
|
|
if (auto *ODRE = getAsExpr<OverloadedDeclRefExpr>(anchor)) {
|
|
if (locator.isForRequirement(RequirementKind::Conformance) &&
|
|
resolvedTy->is<ArchetypeType>() && ODRE->isForOperator()) {
|
|
++impact;
|
|
}
|
|
}
|
|
|
|
if (locator.isForRequirement(RequirementKind::Conformance)) {
|
|
// Increase the impact of a conformance fix for a standard library
|
|
// or foundation type, as it's unlikely to be a good suggestion.
|
|
{
|
|
if (resolvedTy->isStdlibType()) {
|
|
impact += 2;
|
|
}
|
|
|
|
if (auto *NTD = resolvedTy->getAnyNominal()) {
|
|
if (getKnownFoundationEntity(NTD->getNameStr()))
|
|
impact += 2;
|
|
}
|
|
}
|
|
|
|
// Also do the same for the builtin compiler types Any and AnyObject, but
|
|
// bump the impact even higher as they cannot conform to protocols at all.
|
|
if (resolvedTy->isAny() || resolvedTy->isAnyObject())
|
|
impact += 4;
|
|
}
|
|
|
|
// If this requirement is associated with an overload choice let's
|
|
// tie impact to how many times this requirement type is mentioned.
|
|
if (auto *ODRE = getAsExpr<OverloadedDeclRefExpr>(anchor)) {
|
|
if (auto *typeVar = requirementType->getAs<TypeVariableType>()) {
|
|
unsigned choiceImpact = 0;
|
|
if (auto choice = cs.findSelectedOverloadFor(ODRE)) {
|
|
choice->adjustedOpenedType.visit([&](Type type) {
|
|
if (type->isEqual(typeVar))
|
|
++choiceImpact;
|
|
});
|
|
}
|
|
// If the type is used multiple times in the signature, increase the
|
|
// impact for every additional use.
|
|
if (choiceImpact > 1)
|
|
impact += choiceImpact - 1;
|
|
}
|
|
}
|
|
|
|
// If this requirement is associated with a call that is itself
|
|
// incorrect, let's increase impact to indicate that this failure
|
|
// has a compounding effect on viability of the overload choice it
|
|
// comes from.
|
|
if (locator.endsWith<LocatorPathElt::AnyRequirement>()) {
|
|
if (auto *expr = getAsExpr(anchor)) {
|
|
if (auto *call = getAsExpr<ApplyExpr>(cs.getParentExpr(expr))) {
|
|
if (call->getFn() == expr &&
|
|
llvm::any_of(cs.getFixes(), [&](const auto &fix) {
|
|
return getAsExpr(fix->getAnchor()) == call;
|
|
}))
|
|
impact += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
return impact;
|
|
}
|
|
|
|
/// Attempt to fix missing arguments by introducing type variables
|
|
/// and inferring their types from parameters.
|
|
static bool fixMissingArguments(ConstraintSystem &cs, ASTNode anchor,
|
|
SmallVectorImpl<AnyFunctionType::Param> &args,
|
|
ArrayRef<AnyFunctionType::Param> params,
|
|
unsigned numMissing,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(args.size() < params.size());
|
|
|
|
auto &ctx = cs.getASTContext();
|
|
// If there are N parameters but a single closure argument
|
|
// (which might be anonymous), it's most likely used as a
|
|
// tuple e.g. `$0.0`.
|
|
std::optional<TypeBase *> argumentTuple;
|
|
if (isSingleTupleParam(ctx, args)) {
|
|
auto argType = args.back().getPlainType();
|
|
// Let's unpack argument tuple into N arguments, this corresponds
|
|
// to something like `foo { (bar: (Int, Int)) in }` where `foo`
|
|
// has a single parameter of type `(Int, Int) -> Void`.
|
|
if (auto *tuple = argType->getAs<TupleType>()) {
|
|
args.pop_back();
|
|
for (const auto &elt : tuple->getElements())
|
|
args.emplace_back(elt.getType(), elt.getName());
|
|
} else if (auto *typeVar = argType->getAs<TypeVariableType>()) {
|
|
auto isParam = [](const Expr *expr) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(expr)) {
|
|
if (auto *decl = DRE->getDecl())
|
|
return isa<ParamDecl>(decl);
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Something like `foo { x in }` or `foo { $0 }`
|
|
if (auto *closure = getAsExpr<ClosureExpr>(anchor)) {
|
|
cs.forEachExpr(closure, [&](Expr *expr) -> Expr * {
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
|
|
if (!isParam(UDE->getBase()))
|
|
return expr;
|
|
|
|
auto name = UDE->getName().getBaseIdentifier();
|
|
unsigned index = 0;
|
|
if (!name.str().getAsInteger(10, index) ||
|
|
llvm::any_of(params, [&](const AnyFunctionType::Param ¶m) {
|
|
return param.getLabel() == name;
|
|
})) {
|
|
argumentTuple.emplace(typeVar);
|
|
args.pop_back();
|
|
return nullptr;
|
|
}
|
|
}
|
|
return expr;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = args.size(), n = params.size(); i != n; ++i) {
|
|
auto *argLoc = cs.getConstraintLocator(
|
|
anchor, LocatorPathElt::SynthesizedArgument(i));
|
|
args.push_back(params[i].withType(
|
|
cs.createTypeVariable(argLoc, TVO_CanBindToNoEscape)));
|
|
}
|
|
|
|
SmallVector<SynthesizedArg, 4> synthesizedArgs;
|
|
synthesizedArgs.reserve(numMissing);
|
|
for (unsigned i = args.size() - numMissing, n = args.size(); i != n; ++i) {
|
|
synthesizedArgs.push_back(SynthesizedArg{i, args[i]});
|
|
}
|
|
|
|
// Treat missing anonymous arguments as valid in closures containing the
|
|
// code completion location, since they may have just not been written yet.
|
|
if (cs.isForCodeCompletion()) {
|
|
if (auto *closure = getAsExpr<ClosureExpr>(anchor)) {
|
|
if (cs.containsIDEInspectionTarget(closure) &&
|
|
(closure->hasAnonymousClosureVars() ||
|
|
(args.empty() && closure->getInLoc().isInvalid())))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto *fix = AddMissingArguments::create(cs, synthesizedArgs,
|
|
cs.getConstraintLocator(locator));
|
|
if (cs.recordFix(fix))
|
|
return true;
|
|
|
|
// If the argument was a single "tuple", let's bind newly
|
|
// synthesized arguments to it.
|
|
if (argumentTuple) {
|
|
// We can ignore parameter flags here as we're imploding a tuple for a
|
|
// simulated ((X, Y, Z)) -> R to (X, Y, Z) -> R conversion. As such, this is
|
|
// similar to e.g { x, y, z in fn((x, y, z)) }.
|
|
cs.addConstraint(ConstraintKind::Bind, *argumentTuple,
|
|
FunctionType::composeTuple(
|
|
ctx, args, ParameterFlagHandling::IgnoreNonEmpty),
|
|
cs.getConstraintLocator(anchor));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool fixExtraneousArguments(ConstraintSystem &cs,
|
|
FunctionType *contextualType,
|
|
ArrayRef<AnyFunctionType::Param> args,
|
|
int numExtraneous,
|
|
ConstraintLocatorBuilder locator) {
|
|
SmallVector<std::pair<unsigned, AnyFunctionType::Param>, 4> extraneous;
|
|
|
|
for (unsigned i = args.size() - numExtraneous, n = args.size(); i != n; ++i) {
|
|
extraneous.push_back({i, args[i]});
|
|
if (auto *typeVar = args[i].getPlainType()->getAs<TypeVariableType>()) {
|
|
cs.recordPotentialHole(typeVar);
|
|
}
|
|
}
|
|
|
|
return cs.recordFix(
|
|
RemoveExtraneousArguments::create(cs, contextualType, extraneous,
|
|
cs.getConstraintLocator(locator)),
|
|
/*impact=*/numExtraneous * 2);
|
|
}
|
|
|
|
bool ConstraintSystem::hasPreconcurrencyCallee(
|
|
ConstraintLocatorBuilder locator) {
|
|
auto calleeLocator = getCalleeLocator(getConstraintLocator(locator));
|
|
auto calleeOverload = findSelectedOverloadFor(calleeLocator);
|
|
if (!calleeOverload || !calleeOverload->choice.isDecl())
|
|
return false;
|
|
|
|
return calleeOverload->choice.getDecl()->preconcurrency();
|
|
}
|
|
|
|
/// Match the throwing specifier of the two function types.
|
|
static ConstraintSystem::TypeMatchResult
|
|
matchFunctionThrowing(ConstraintSystem &cs,
|
|
FunctionType *func1, FunctionType *func2,
|
|
ConstraintKind kind,
|
|
ConstraintSystem::TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// A function type that throws the error type E1 is a subtype of a function
|
|
// that throws error type E2 when E1 is a subtype of E2. For the purpose
|
|
// of this comparison, a non-throwing function has thrown error type 'Never',
|
|
// and an untyped throwing function has thrown error type 'any Error'.
|
|
Type thrownError1 = func1->getEffectiveThrownErrorTypeOrNever();
|
|
Type thrownError2 = func2->getEffectiveThrownErrorTypeOrNever();
|
|
if (!thrownError1 || !thrownError2)
|
|
return cs.getTypeMatchSuccess();
|
|
|
|
switch (compareThrownErrorsForSubtyping(thrownError1, thrownError2, cs.DC)) {
|
|
case ThrownErrorSubtyping::DropsThrows: {
|
|
// We need to drop 'throws' to make this work.
|
|
if (!cs.shouldAttemptFixes())
|
|
return cs.getTypeMatchFailure(locator);
|
|
|
|
auto *fix = DropThrowsAttribute::create(cs, func1, func2,
|
|
cs.getConstraintLocator(locator));
|
|
if (cs.recordFix(fix))
|
|
return cs.getTypeMatchFailure(locator);
|
|
|
|
return cs.getTypeMatchSuccess();
|
|
}
|
|
|
|
case ThrownErrorSubtyping::ExactMatch:
|
|
return cs.getTypeMatchSuccess();
|
|
|
|
case ThrownErrorSubtyping::Subtype:
|
|
// We know this is going to work, but we might still need to generate a
|
|
// constraint if one of the error types involves type variables.
|
|
if (thrownError1->hasTypeVariable() || thrownError2->hasTypeVariable()) {
|
|
// Fall through to the dependent case.
|
|
} else if (kind < ConstraintKind::Subtype) {
|
|
// We aren't allowed to have a subtype, so fail here.
|
|
return cs.getTypeMatchFailure(locator);
|
|
} else {
|
|
// We have a subtype. All set!
|
|
return cs.getTypeMatchSuccess();
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case ThrownErrorSubtyping::Dependent: {
|
|
// The presence of type variables in the thrown error types require that
|
|
// we generate a constraint to unify the thrown error types, so do so now.
|
|
ConstraintKind subKind = (kind < ConstraintKind::Subtype)
|
|
? ConstraintKind::Equal
|
|
: ConstraintKind::Subtype;
|
|
const auto subflags = getDefaultDecompositionOptions(flags);
|
|
auto result = cs.matchTypes(
|
|
thrownError1, thrownError2,
|
|
subKind, subflags,
|
|
locator.withPathElement(LocatorPathElt::ThrownErrorType()));
|
|
if (result == ConstraintSystem::SolutionKind::Error)
|
|
return cs.getTypeMatchFailure(locator);
|
|
|
|
return cs.getTypeMatchSuccess();
|
|
}
|
|
|
|
case ThrownErrorSubtyping::Mismatch: {
|
|
auto thrownErrorLocator = cs.getConstraintLocator(
|
|
locator.withPathElement(LocatorPathElt::ThrownErrorType()));
|
|
if (!cs.shouldAttemptFixes())
|
|
return cs.getTypeMatchFailure(thrownErrorLocator);
|
|
|
|
auto *fix = IgnoreThrownErrorMismatch::create(
|
|
cs, thrownError1, thrownError2, thrownErrorLocator);
|
|
if (cs.recordFix(fix))
|
|
return cs.getTypeMatchFailure(thrownErrorLocator);
|
|
|
|
return cs.getTypeMatchSuccess();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isWitnessMatching(ConstraintLocatorBuilder locator) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
(void) locator.getLocatorParts(path);
|
|
return (path.size() == 1 &&
|
|
path[0].is<LocatorPathElt::Witness>());
|
|
}
|
|
|
|
bool
|
|
ConstraintSystem::matchFunctionIsolations(FunctionType *func1,
|
|
FunctionType *func2,
|
|
ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto isolation1 = func1->getIsolation(), isolation2 = func2->getIsolation();
|
|
|
|
// If we have a difference in isolation kind, we need a conversion.
|
|
// Make sure that we're looking for a conversion, and increase the
|
|
// function-conversion score to make sure this solution is worse than
|
|
// an exact match.
|
|
// FIXME: there may be a better way. see https://github.com/apple/swift/pull/62514
|
|
auto matchIfConversion = [&](bool isErasure = false) -> bool {
|
|
// We generally require a conversion here, but allow some lassitude
|
|
// if we're doing witness-matching.
|
|
if (kind < ConstraintKind::Subtype &&
|
|
!(isErasure && isWitnessMatching(locator)))
|
|
return false;
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
return true;
|
|
};
|
|
|
|
switch (isolation2.getKind()) {
|
|
|
|
// Converting to a non-isolated type.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
switch (isolation1.getKind()) {
|
|
// Exact match.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
return true;
|
|
|
|
// A thunk is going to pass `nil` to the isolated parameter.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
return matchIfConversion();
|
|
|
|
// Erasing global-actor isolation to non-isolation can admit data
|
|
// races; such violations are diagnosed by the actor isolation checker.
|
|
// We deliberately do not allow actor isolation violations to influence
|
|
// overload resolution to preserve the property that an expression can
|
|
// be re-checked against a different isolation context for isolation
|
|
// violations.
|
|
//
|
|
// This also applies to @isolated(any) because we want to be able to
|
|
// decide that we contextually isolated to the function's dynamic
|
|
// isolation.
|
|
case FunctionTypeIsolation::Kind::GlobalActor:
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
return matchIfConversion();
|
|
|
|
// Parameter isolation is value-dependent and cannot be erased.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
|
|
// Converting to a caller isolated async function type.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
switch (isolation1.getKind()) {
|
|
// Exact match.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
return true;
|
|
|
|
// Global actor: Thunk will hop to the global actor
|
|
// and would ignore passed in isolation.
|
|
// Erased: Just like global actor but would hop to
|
|
// the isolation stored in the @isolated(any) function.
|
|
case FunctionTypeIsolation::Kind::GlobalActor:
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
return matchIfConversion();
|
|
|
|
// In this case the isolation is dependent on a
|
|
// specific actor passed in as the isolation parameter
|
|
// and the thunk won't have it.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
return false;
|
|
|
|
// For asynchronous: Thunk would hop the appropriate actor.
|
|
// For synchronous: Thunk would call the function without
|
|
// a hop.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
return matchIfConversion();
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
|
|
// Converting to a global-actor-isolated type.
|
|
case FunctionTypeIsolation::Kind::GlobalActor:
|
|
switch (isolation1.getKind()) {
|
|
// Both types are global-actor-isolated. We *could* allow this as a
|
|
// conversion even for different global actors if the destination type
|
|
// is async, but we've decided we don't want to as a policy.
|
|
case FunctionTypeIsolation::Kind::GlobalActor: {
|
|
const auto subflags = getDefaultDecompositionOptions(flags);
|
|
auto result = matchTypes(
|
|
isolation1.getGlobalActorType(), isolation2.getGlobalActorType(),
|
|
ConstraintKind::Equal, subflags,
|
|
locator.withPathElement(LocatorPathElt::GlobalActorType()));
|
|
return result != SolutionKind::Error;
|
|
}
|
|
|
|
// Adding global actor isolation to a non-isolated function is fine,
|
|
// whether synchronous or asynchronous.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
return matchIfConversion();
|
|
|
|
// A thunk is going to pass in an instance of a global actor
|
|
// to the isolated parameter.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
return matchIfConversion();
|
|
|
|
// Parameter isolation cannot be altered in the same way.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
return false;
|
|
|
|
// Don't allow dynamically-isolated function types to convert to
|
|
// any specific isolation for the same policy reasons that we don't
|
|
// want to allow global-actors to change.
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
|
|
// Converting to a parameter-isolated type.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
switch (isolation1.getKind()) {
|
|
// Exact match. We'll check that the isolated parameters match up later,
|
|
// when we're looking at the parameters.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
return true;
|
|
|
|
// Adding global actor isolation to a non-isolated function is fine,
|
|
// whether synchronous or asynchronous.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
case FunctionTypeIsolation::Kind::GlobalActor:
|
|
return matchIfConversion();
|
|
|
|
// A thunk is going to forward the isolation.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
return matchIfConversion();
|
|
|
|
// Don't allow dynamically-isolated function types to convert to
|
|
// any specific isolation for the same policy reasons that we don't
|
|
// want to allow global-actors to change.
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
switch (isolation1.getKind()) {
|
|
// Exact match.
|
|
case FunctionTypeIsolation::Kind::Erased:
|
|
return true;
|
|
|
|
// We can statically erase any kind of static isolation to dynamic
|
|
// isolation as a conversion.
|
|
case FunctionTypeIsolation::Kind::NonIsolated:
|
|
case FunctionTypeIsolation::Kind::GlobalActor:
|
|
return matchIfConversion(/*erasure*/ true);
|
|
|
|
// It's not possible to form a thunk for this case because
|
|
// we don't know what to pass to the isolated parameter.
|
|
case FunctionTypeIsolation::Kind::NonIsolatedNonsending:
|
|
return false;
|
|
|
|
// Parameter isolation is value-dependent and can't be erased in the
|
|
// abstract, though. We need to be able to recover the isolation from
|
|
// a value.
|
|
case FunctionTypeIsolation::Kind::Parameter:
|
|
return false;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchFunctionTypes(FunctionType *func1, FunctionType *func2,
|
|
ConstraintKind kind, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Match the 'throws' effect.
|
|
TypeMatchResult throwsResult =
|
|
matchFunctionThrowing(*this, func1, func2, kind, flags, locator);
|
|
if (throwsResult.isFailure())
|
|
return throwsResult;
|
|
|
|
// A synchronous function can be a subtype of an 'async' function.
|
|
if (func1->isAsync() != func2->isAsync()) {
|
|
// Cannot drop 'async'.
|
|
if (func1->isAsync() || kind < ConstraintKind::Subtype) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto *fix = DropAsyncAttribute::create(*this, func1, func2,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
bool forClosureInArgumentPosition =
|
|
locator.endsWith<LocatorPathElt::ApplyArgToParam>() &&
|
|
isa<ClosureExpr>(locator.trySimplifyToExpr());
|
|
|
|
// Since it's possible to infer `async` from the body of a
|
|
// closure, score for sync -> async mismatch is increased
|
|
// while solver is matching arguments to parameters to
|
|
// indicate than solution with such a mismatch is always
|
|
// worse than one with synchronous functions on both sides.
|
|
if (!forClosureInArgumentPosition)
|
|
increaseScore(SK_SyncInAsync, locator);
|
|
}
|
|
|
|
// A @Sendable function can be a subtype of a non-@Sendable function.
|
|
if (func1->isSendable() != func2->isSendable()) {
|
|
// Cannot add '@Sendable'.
|
|
if (func2->isSendable() || kind < ConstraintKind::Subtype) {
|
|
if (AddSendableAttribute::attempt(*this, kind, func1, func2, locator))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
// A non-@noescape function type can be a subtype of a @noescape function
|
|
// type.
|
|
if (func1->isNoEscape() != func2->isNoEscape() &&
|
|
(func1->isNoEscape() || kind < ConstraintKind::Subtype)) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto *fix = MarkExplicitlyEscaping::create(*this, func1, func2,
|
|
getConstraintLocator(locator));
|
|
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// () -> sending T can be a subtype of () -> T... but not vis-a-versa.
|
|
if (func1->hasSendingResult() != func2->hasSendingResult() &&
|
|
(!func1->hasSendingResult() || kind < ConstraintKind::Subtype)) {
|
|
auto *fix = AllowSendingMismatch::create(*this, func1, func2,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
if (!matchFunctionIsolations(func1, func2, kind, flags, locator))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// A function with a lifetime dependency in a generic context is equivalent to
|
|
// one without that lifetime dependency when the substituted type is
|
|
// Escapable.
|
|
//
|
|
// TODO: There should also be a subtype relationship from less-constrained to
|
|
// more-constrained lifetime dependencies.
|
|
if (func1->getLifetimeDependencies() != func2->getLifetimeDependencies()) {
|
|
auto escapable = getASTContext().getProtocol(KnownProtocolKind::Escapable)
|
|
->getDeclaredType();
|
|
|
|
for (auto &fromDep : func1->getLifetimeDependencies()) {
|
|
auto toDep = func2->getLifetimeDependenceFor(fromDep.getTargetIndex());
|
|
if (toDep) {
|
|
// If a dependency is present for the same target in both types, then
|
|
// the dependency must match.
|
|
if (fromDep != *toDep) {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// If the dependency is absent from the destination type, constrain the
|
|
// corresponding parameter or result in the source type to be Escapable.
|
|
if (fromDep.getTargetIndex() == func1->getParams().size()) {
|
|
// Result dependency.
|
|
addConstraint(ConstraintKind::ConformsTo,
|
|
func1->getResult(),
|
|
escapable,
|
|
locator);
|
|
} else {
|
|
// Parameter dependency.
|
|
addConstraint(ConstraintKind::ConformsTo,
|
|
func1->getParams()[fromDep.getTargetIndex()].getPlainType(),
|
|
escapable,
|
|
locator);
|
|
}
|
|
}
|
|
}
|
|
|
|
// To contextual type increase the score to avoid ambiguity when solver can
|
|
// find more than one viable binding different only in representation e.g.
|
|
// let _: (@convention(block) () -> Void)? = Bool.random() ? nil : {}
|
|
// so same representation should be always favored.
|
|
auto loc = getConstraintLocator(locator);
|
|
if (loc->findLast<LocatorPathElt::ContextualType>() &&
|
|
func1->getRepresentation() != func2->getRepresentation()) {
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
}
|
|
|
|
if (!matchFunctionRepresentations(func1->getExtInfo(), func2->getExtInfo(),
|
|
kind, Options)) {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// Determine how we match up the input/result types.
|
|
ConstraintKind subKind;
|
|
switch (kind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Equal:
|
|
subKind = kind;
|
|
break;
|
|
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
subKind = ConstraintKind::Subtype;
|
|
break;
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::SubclassOf:
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
case ConstraintKind::OptionalObject:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::FallbackType:
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
case ConstraintKind::PropertyWrapper:
|
|
case ConstraintKind::SyntacticElement:
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
case ConstraintKind::PackElementOf:
|
|
case ConstraintKind::ShapeOf:
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
case ConstraintKind::SameShape:
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
case ConstraintKind::LValueObject:
|
|
llvm_unreachable("Not a relational constraint");
|
|
}
|
|
|
|
// Input types can be contravariant (or equal).
|
|
auto argumentLocator =
|
|
locator.withPathElement(ConstraintLocator::FunctionArgument);
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
SmallVector<AnyFunctionType::Param, 8> func1Params;
|
|
func1Params.append(func1->getParams().begin(), func1->getParams().end());
|
|
|
|
SmallVector<AnyFunctionType::Param, 8> func2Params;
|
|
func2Params.append(func2->getParams().begin(), func2->getParams().end());
|
|
|
|
// Support conversion from `nonisolated(nonsending)` to a function type
|
|
// with an isolated parameter.
|
|
if (subKind == ConstraintKind::Subtype &&
|
|
func1->getIsolation().isNonIsolatedCaller() &&
|
|
func2->getIsolation().isParameter()) {
|
|
// `nonisolated(nonsending)` function gets an implicit isolation parameter
|
|
// introduced during SILGen and thunk is going to forward an isolation from
|
|
// the caller to it.
|
|
// Let's remove the isolated parameter from consideration, function
|
|
// types have to match on everything else.
|
|
llvm::erase_if(func2Params, [](const AnyFunctionType::Param ¶m) {
|
|
return param.isIsolated();
|
|
});
|
|
}
|
|
|
|
// Add a very narrow exception to SE-0110 by allowing functions that
|
|
// take multiple arguments to be passed as an argument in places
|
|
// that expect a function that takes a single tuple (of the same
|
|
// arity);
|
|
auto canImplodeParams = [&](ArrayRef<AnyFunctionType::Param> params,
|
|
const FunctionType *destFn) {
|
|
if (params.size() == 1)
|
|
return false;
|
|
|
|
// We do not support imploding into a @differentiable function.
|
|
if (destFn->isDifferentiable())
|
|
return false;
|
|
|
|
for (auto ¶m : params) {
|
|
// We generally cannot handle parameter flags, though we can carve out an
|
|
// exception for ownership flags such as __owned, which we can thunk, and
|
|
// flags that can freely dropped from a function type such as
|
|
// @_nonEphemeral. Note that @noDerivative can also be freely dropped, as
|
|
// we've already ensured that the destination function is not
|
|
// @differentiable.
|
|
auto flags = param.getParameterFlags();
|
|
flags = flags.withOwnershipSpecifier(
|
|
param.isInOut() ? ParamSpecifier::InOut : ParamSpecifier::Default);
|
|
flags = flags.withNonEphemeral(false)
|
|
.withNoDerivative(false);
|
|
if (!flags.isNone())
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
auto implodeParams = [&](SmallVectorImpl<AnyFunctionType::Param> ¶ms) {
|
|
// Form an imploded tuple type, dropping the parameter flags as although
|
|
// canImplodeParams makes sure we're not dealing with vargs, inout, etc,
|
|
// we may still have e.g ownership flags left over, which we can drop.
|
|
auto input = AnyFunctionType::composeTuple(
|
|
getASTContext(), params, ParameterFlagHandling::IgnoreNonEmpty);
|
|
params.clear();
|
|
// If fixes are disabled let's do an easy thing and implode
|
|
// tuple directly into parameters list.
|
|
if (!shouldAttemptFixes()) {
|
|
params.emplace_back(input);
|
|
return;
|
|
}
|
|
|
|
// Synthesize new argument and bind it to tuple formed from existing
|
|
// arguments, this makes it easier to diagnose cases where we attempt
|
|
// a single tuple element formed when no arguments were present.
|
|
auto argLoc = argumentLocator.withPathElement(
|
|
LocatorPathElt::SynthesizedArgument(0));
|
|
auto *typeVar = createTypeVariable(getConstraintLocator(argLoc),
|
|
TVO_CanBindToNoEscape);
|
|
params.emplace_back(typeVar);
|
|
assignFixedType(typeVar, input);
|
|
};
|
|
|
|
{
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
locator.getLocatorParts(path);
|
|
|
|
// Find the last path element, skipping OptionalInjection elements
|
|
// so that we allow this exception in cases of optional injection.
|
|
auto last = std::find_if(
|
|
path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool {
|
|
return elt.getKind() != ConstraintLocator::OptionalInjection;
|
|
});
|
|
|
|
auto &ctx = getASTContext();
|
|
if (last != path.rend()) {
|
|
if (last->getKind() == ConstraintLocator::ApplyArgToParam) {
|
|
if (isSingleTupleParam(ctx, func2Params) &&
|
|
canImplodeParams(func1Params, /*destFn*/ func2)) {
|
|
implodeParams(func1Params);
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
} else if (!ctx.isSwiftVersionAtLeast(5) &&
|
|
isSingleTupleParam(ctx, func1Params) &&
|
|
canImplodeParams(func2Params, /*destFn*/ func1)) {
|
|
auto *simplified = locator.trySimplifyToExpr();
|
|
// We somehow let tuple unsplatting function conversions
|
|
// through in some cases in Swift 4, so let's let that
|
|
// continue to work, but only for Swift 4.
|
|
if (simplified &&
|
|
(isa<DeclRefExpr>(simplified) ||
|
|
isa<OverloadedDeclRefExpr>(simplified) ||
|
|
isa<UnresolvedDeclRefExpr>(simplified))) {
|
|
implodeParams(func2Params);
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
}
|
|
}
|
|
} else if (last->is<LocatorPathElt::PatternMatch>() &&
|
|
isa<EnumElementPattern>(
|
|
last->castTo<LocatorPathElt::PatternMatch>()
|
|
.getPattern())) {
|
|
// A single paren pattern becomes a labeled tuple pattern
|
|
// e.g. `case .test(let value):` should be able to match
|
|
// `case test(result: Int)`. Note that it also means that:
|
|
// `cast test(result: (String, Int))` would be matched against
|
|
// e.g. `case .test((let x, let y))` but that fails during
|
|
// pattern coercion (behavior consistent with what happens in
|
|
// `TypeCheckPattern`).
|
|
if (func1Params.size() == 1 && !func1Params.front().hasLabel() &&
|
|
func2Params.size() == 1 && func2Params.front().hasLabel()) {
|
|
auto param = func1Params.front();
|
|
auto label = func2Params.front().getLabel();
|
|
|
|
auto labeledParam = FunctionType::Param(param.getPlainType(), label,
|
|
param.getParameterFlags());
|
|
|
|
func1Params.clear();
|
|
func1Params.push_back(labeledParam);
|
|
}
|
|
|
|
// Consider following example:
|
|
//
|
|
// enum E {
|
|
// case foo((x: Int, y: Int))
|
|
// case bar(x: Int, y: Int)
|
|
// }
|
|
//
|
|
// func test(e: E) {
|
|
// if case .foo(let x, let y) = e {}
|
|
// if case .bar(let tuple) = e {}
|
|
// }
|
|
//
|
|
// Both of `if case` expressions have to be supported:
|
|
//
|
|
// 1. `case .foo(let x, let y) = e` allows a single tuple
|
|
// parameter to be "destructured" into multiple arguments.
|
|
//
|
|
// 2. `case .bar(let tuple) = e` allows to match multiple
|
|
// parameters with a single tuple argument.
|
|
if (isSingleTupleParam(ctx, func1Params) &&
|
|
canImplodeParams(func2Params, /*destFn*/ func1)) {
|
|
implodeParams(func2Params);
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
} else if (isSingleTupleParam(ctx, func2Params) &&
|
|
canImplodeParams(func1Params, /*destFn*/ func2)) {
|
|
implodeParams(func1Params);
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (shouldAttemptFixes()) {
|
|
auto *anchor = locator.trySimplifyToExpr();
|
|
if (isa_and_nonnull<ClosureExpr>(anchor) &&
|
|
isSingleTupleParam(ctx, func2Params) &&
|
|
canImplodeParams(func1Params, /*destFn*/ func2)) {
|
|
auto *fix = AllowClosureParamDestructuring::create(
|
|
*this, func2, getConstraintLocator(anchor));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
implodeParams(func1Params);
|
|
}
|
|
}
|
|
}
|
|
|
|
// https://github.com/apple/swift/issues/49345
|
|
// Add a super-narrow hack to allow '(()) -> T' to be passed in place
|
|
// of '() -> T'.
|
|
if (getASTContext().isSwiftVersionAtLeast(4) &&
|
|
!getASTContext().isSwiftVersionAtLeast(5)) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
locator.getLocatorParts(path);
|
|
|
|
// Find the last path element, skipping GenericArgument elements
|
|
// so that we allow this exception in cases of optional types, and
|
|
// skipping OptionalInjection elements so that we allow this
|
|
// exception in cases of optional injection.
|
|
auto last = std::find_if(
|
|
path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool {
|
|
return elt.getKind() != ConstraintLocator::GenericArgument &&
|
|
elt.getKind() != ConstraintLocator::OptionalInjection;
|
|
});
|
|
|
|
if (last != path.rend()) {
|
|
if (last->getKind() == ConstraintLocator::ApplyArgToParam) {
|
|
if (isSingleTupleParam(getASTContext(), func1Params) &&
|
|
func1Params[0].getOldType()->isVoid()) {
|
|
if (func2Params.empty()) {
|
|
func2Params.emplace_back(getASTContext().TheEmptyTupleType);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: ParamPackMatcher should completely replace the non-variadic
|
|
// case too eventually.
|
|
if (containsPackExpansionType(func1Params) ||
|
|
containsPackExpansionType(func2Params)) {
|
|
ParamPackMatcher matcher(func1Params, func2Params, getASTContext(),
|
|
isPackExpansionType);
|
|
if (matcher.match())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
for (auto pair : matcher.pairs) {
|
|
// Compare the parameter types, taking contravariance into account.
|
|
auto result = matchTypes(pair.rhs, pair.lhs, subKind, subflags,
|
|
(func1Params.size() == 1
|
|
? argumentLocator
|
|
: argumentLocator.withPathElement(
|
|
LocatorPathElt::TupleElement(pair.lhsIdx))));
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
} else {
|
|
int diff = func1Params.size() - func2Params.size();
|
|
if (diff != 0) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
// If this is conversion between optional (or IUO) parameter
|
|
// and argument, let's drop the last path element so locator
|
|
// could be simplified down to an argument expression.
|
|
//
|
|
// func foo(_: ((Int, Int) -> Void)?) {}
|
|
// _ = foo { _ in } <- missing second closure parameter.
|
|
if (loc->isLastElement<LocatorPathElt::OptionalInjection>()) {
|
|
auto path = loc->getPath();
|
|
loc = getConstraintLocator(loc->getAnchor(), path.drop_back());
|
|
}
|
|
|
|
auto anchor = simplifyLocatorToAnchor(loc);
|
|
if (!anchor)
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
// The param diff is in a function type coercion context
|
|
//
|
|
// func fn(_: Int) {}
|
|
// let i: Int = 0
|
|
// (fn as (Int, Int) -> Void)(i, i)
|
|
//
|
|
// Since we are not in a function argument application, simply record
|
|
// a function type mismatch instead of an argument fix.
|
|
// Except for when a closure is a subexpr because closure expr parameters
|
|
// syntax can be added or removed by missing/extraneous arguments fix.
|
|
if (loc->isForCoercion() && !isExpr<ClosureExpr>(anchor)) {
|
|
auto *fix = ContextualMismatch::create(*this, func1, func2, loc);
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
} else {
|
|
// If there are missing arguments, let's add them
|
|
// using parameter as a template.
|
|
if (diff < 0) {
|
|
if (fixMissingArguments(*this, anchor, func1Params, func2Params,
|
|
abs(diff), loc))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
} else {
|
|
// If there are extraneous arguments, let's remove
|
|
// them from the list.
|
|
if (fixExtraneousArguments(*this, func2, func1Params, diff, loc))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
}
|
|
}
|
|
|
|
if (diff > 0) {
|
|
// Drop all of the extraneous arguments.
|
|
auto numParams = func2Params.size();
|
|
func1Params.erase(func1Params.begin() + numParams, func1Params.end());
|
|
}
|
|
}
|
|
|
|
bool hasLabelingFailures = false;
|
|
for (unsigned i : indices(func1Params)) {
|
|
auto func1Param = func1Params[i];
|
|
auto func2Param = func2Params[i];
|
|
|
|
// Increase the score if matching an autoclosure parameter to an function
|
|
// type, so we enforce that non-autoclosure overloads are preferred.
|
|
//
|
|
// func autoclosure(f: () -> Int) { }
|
|
// func autoclosure(f: @autoclosure () -> Int) { }
|
|
//
|
|
// let _ = autoclosure as (() -> (Int)) -> () // non-autoclosure preferred
|
|
//
|
|
auto isAutoClosureFunctionMatch = [](AnyFunctionType::Param ¶m1,
|
|
AnyFunctionType::Param ¶m2) {
|
|
return param1.isAutoClosure() &&
|
|
(!param2.isAutoClosure() &&
|
|
param2.getPlainType()->is<FunctionType>());
|
|
};
|
|
|
|
if (isAutoClosureFunctionMatch(func1Param, func2Param) ||
|
|
isAutoClosureFunctionMatch(func2Param, func1Param)) {
|
|
increaseScore(SK_FunctionToAutoClosureConversion, locator);
|
|
}
|
|
|
|
// Variadic bit must match.
|
|
if (func1Param.isVariadic() != func2Param.isVariadic()) {
|
|
if (!(shouldAttemptFixes() && func2Param.isVariadic()))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
auto argType =
|
|
getFixedTypeRecursive(func1Param.getPlainType(), /*wantRValue=*/true);
|
|
auto varargsType = func2Param.getPlainType();
|
|
|
|
// Delay solving this constraint until argument is resolved.
|
|
if (argType->is<TypeVariableType>()) {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, kind, func1, func2, getConstraintLocator(locator)));
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
auto *fix = ExpandArrayIntoVarargs::attempt(
|
|
*this, argType, varargsType,
|
|
argumentLocator.withPathElement(LocatorPathElt::ApplyArgToParam(
|
|
i, i, func2Param.getParameterFlags())));
|
|
|
|
if (!fix || recordFix(fix))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Labels must match.
|
|
//
|
|
// FIXME: We should not end up with labels here at all, but we do
|
|
// from invalid code in diagnostics, and as a result of code completion
|
|
// directly building constraint systems.
|
|
if (func1Param.getLabel() != func2Param.getLabel()) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(argumentLocator);
|
|
|
|
// If we are allowed to attempt fixes, let's ignore labeling
|
|
// failures, and create a fix to re-label arguments if types
|
|
// line up correctly.
|
|
hasLabelingFailures = true;
|
|
}
|
|
|
|
// "isolated" can be added as a subtype relation, but otherwise must match.
|
|
if (func1Param.isIsolated() != func2Param.isIsolated() &&
|
|
!(func2Param.isIsolated() && subKind >= ConstraintKind::Subtype)) {
|
|
return getTypeMatchFailure(argumentLocator);
|
|
}
|
|
|
|
// If functions are differentiable, ensure that @noDerivative is not
|
|
// discarded.
|
|
if (func1->isDifferentiable() && func2->isDifferentiable() &&
|
|
func1Param.isNoDerivative() && !func2Param.isNoDerivative()) {
|
|
return getTypeMatchFailure(argumentLocator);
|
|
}
|
|
|
|
// Do not allow for functions that expect a sending parameter to match
|
|
// with a function that expects a non-sending parameter.
|
|
if (func1Param.getParameterFlags().isSending() &&
|
|
!func2Param.getParameterFlags().isSending()) {
|
|
auto *fix = AllowSendingMismatch::create(
|
|
*this, func1, func2, getConstraintLocator(argumentLocator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
}
|
|
|
|
// FIXME: We should check value ownership too, but it's not completely
|
|
// trivial because of inout-to-pointer conversions.
|
|
|
|
// Compare the parameter types, taking contravariance into account.
|
|
auto result = matchTypes(
|
|
func2Param.getOldType(), func1Param.getOldType(), subKind, subflags,
|
|
(func1Params.size() == 1 ? argumentLocator
|
|
: argumentLocator.withPathElement(
|
|
LocatorPathElt::TupleElement(i))));
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
if (hasLabelingFailures && !hasFixFor(loc)) {
|
|
ConstraintFix *fix =
|
|
loc->isLastElement<LocatorPathElt::ApplyArgToParam>()
|
|
? AllowArgumentMismatch::create(*this, func1, func2, loc)
|
|
: ContextualMismatch::create(*this, func1, func2, loc);
|
|
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(argumentLocator);
|
|
}
|
|
}
|
|
|
|
// Result type can be covariant (or equal).
|
|
return matchTypes(func1->getResult(), func2->getResult(), subKind,
|
|
subflags,
|
|
locator.withPathElement(ConstraintLocator::FunctionResult));
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchSuperclassTypes(Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
auto classDecl2 = type2->getClassOrBoundGenericClass();
|
|
SmallPtrSet<ClassDecl *, 4> superclasses1;
|
|
for (auto super1 = type1->getSuperclass();
|
|
super1;
|
|
super1 = super1->getSuperclass()) {
|
|
auto superclass1 = super1->getClassOrBoundGenericClass();
|
|
if (superclass1 != classDecl2) {
|
|
// Break if we have circular inheritance.
|
|
if (superclass1 && !superclasses1.insert(superclass1).second)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
return matchTypes(super1, type2, ConstraintKind::Bind,
|
|
subflags, locator);
|
|
}
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
static ConstraintSystem::TypeMatchResult matchDeepTypeArguments(
|
|
ConstraintSystem &cs, ConstraintSystem::TypeMatchOptions subflags,
|
|
ArrayRef<Type> args1, ArrayRef<Type> args2,
|
|
ConstraintLocatorBuilder locator,
|
|
llvm::function_ref<void(unsigned)> recordMismatch = [](unsigned) {}) {
|
|
if (args1.size() != args2.size()) {
|
|
return cs.getTypeMatchFailure(locator);
|
|
}
|
|
|
|
auto allMatch = cs.getTypeMatchSuccess();
|
|
for (unsigned i = 0, n = args1.size(); i != n; ++i) {
|
|
auto result = cs.matchTypes(
|
|
args1[i], args2[i], ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(i)));
|
|
|
|
if (result.isFailure()) {
|
|
recordMismatch(i);
|
|
allMatch = result;
|
|
}
|
|
}
|
|
|
|
return allMatch;
|
|
}
|
|
|
|
/// Allow `any Sendable` to match `Any` constraint while matching
|
|
/// generic arguments i.e. `[any Sendable]` -> `[Any]` when `any Sendable`
|
|
/// type comes from context that involves `@preconcurrency` declarations
|
|
/// in non-strict concurrency compiler mode.
|
|
///
|
|
/// Note that it's currently impossible to figure out precisely
|
|
/// where `any Sendable` type came from.
|
|
static bool matchSendableExistentialToAnyInGenericArgumentPosition(
|
|
ConstraintSystem &cs, Type lhs, Type rhs,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Avoid heavier checks if are not `any Sendable` and `Any`.
|
|
if (!(lhs->isSendableExistential() || lhs->isAny()) ||
|
|
!(rhs->isSendableExistential() || rhs->isAny()))
|
|
return false;
|
|
|
|
auto last = locator.last();
|
|
// `any Sendable` -> `Any` conversion is allowed for generic arguments
|
|
// and for function argument/result positions if generic argument is
|
|
// bound to a function type.
|
|
if (!last || !(last->is<LocatorPathElt::GenericArgument>() ||
|
|
last->is<LocatorPathElt::FunctionArgument>() ||
|
|
last->is<LocatorPathElt::FunctionResult>()))
|
|
return false;
|
|
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
{
|
|
std::optional<unsigned> dropFromIdx;
|
|
bool inGenericArgumentContext = false;
|
|
|
|
for (unsigned i = 0, n = path.size(); i < n; ++i) {
|
|
const auto &elt = path[i];
|
|
if (elt.is<LocatorPathElt::GenericType>() ||
|
|
elt.is<LocatorPathElt::LValueConversion>()) {
|
|
if (!dropFromIdx)
|
|
dropFromIdx = i;
|
|
continue;
|
|
}
|
|
|
|
if (elt.is<LocatorPathElt::GenericArgument>()) {
|
|
inGenericArgumentContext = true;
|
|
continue;
|
|
}
|
|
|
|
// For example: `[(any Sendable) -> Void]` -> `[(Any) -> Void]`
|
|
if (elt.is<LocatorPathElt::FunctionArgument>()) {
|
|
if (inGenericArgumentContext) {
|
|
// `matchFunctionTypes` accounts for contravariance even under
|
|
// equality constraint (because it shouldn't matter), but it does
|
|
// in this case.
|
|
std::swap(lhs, rhs);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are not in generic argument context,
|
|
// this conversion don't apply.
|
|
if (!inGenericArgumentContext || !dropFromIdx)
|
|
return false;
|
|
|
|
// Drop all of the elements that would get in a way of
|
|
// finding the underlying declaration reference first.
|
|
path.pop_back_n(path.size() - *dropFromIdx);
|
|
}
|
|
|
|
if (!(lhs->isSendableExistential() && rhs->isAny()))
|
|
return false;
|
|
|
|
std::function<bool(ConstraintLocator *)> isPreconcurrencyContext =
|
|
[&](ConstraintLocator *locator) {
|
|
if (locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
|
|
return isPreconcurrencyContext(
|
|
cs.getConstraintLocator(simplifyLocatorToAnchor(locator)));
|
|
|
|
if (locator->directlyAt<InOutExpr>()) {
|
|
auto *IOE = castToExpr<InOutExpr>(locator->getAnchor());
|
|
return isPreconcurrencyContext(
|
|
cs.getConstraintLocator(IOE->getSubExpr()));
|
|
}
|
|
|
|
auto *calleeLoc = cs.getCalleeLocator(locator);
|
|
if (!calleeLoc)
|
|
return false;
|
|
|
|
auto selectedOverload = cs.findSelectedOverloadFor(calleeLoc);
|
|
if (!(selectedOverload && selectedOverload->choice.isDecl()))
|
|
return false;
|
|
|
|
if (!selectedOverload->choice.getDecl()->preconcurrency()) {
|
|
// If the member is not preconcurrency, its base could be.
|
|
if (auto *UDE =
|
|
getAsExpr<UnresolvedDotExpr>(calleeLoc->getAnchor())) {
|
|
return isPreconcurrencyContext(
|
|
cs.getConstraintLocator(UDE->getBase()));
|
|
}
|
|
if (auto *SE = getAsExpr<SubscriptExpr>(calleeLoc->getAnchor())) {
|
|
return isPreconcurrencyContext(
|
|
cs.getConstraintLocator(SE->getBase()));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!isPreconcurrencyContext(cs.getConstraintLocator(anchor, path)))
|
|
return false;
|
|
|
|
// Increase the score to make sure that if there is an overload that
|
|
// uses `any Sendable` it would be preferred.
|
|
cs.increaseScore(SK_EmptyExistentialConversion, locator);
|
|
return true;
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchDeepEqualityTypes(Type type1, Type type2,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = TMF_GenerateConstraints;
|
|
|
|
// Handle opaque archetypes.
|
|
if (auto opaque1 = type1->getAs<OpaqueTypeArchetypeType>()) {
|
|
auto opaque2 = type2->castTo<OpaqueTypeArchetypeType>();
|
|
assert(opaque1->getDecl() == opaque2->getDecl());
|
|
|
|
// It's possible to declare a generic requirement like Self == Self.Iterator
|
|
// where both types are going to be opaque.
|
|
if (!opaque1->getInterfaceType()->isEqual(opaque2->getInterfaceType()))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto args1 = opaque1->getSubstitutions().getReplacementTypes();
|
|
auto args2 = opaque2->getSubstitutions().getReplacementTypes();
|
|
|
|
if (!shouldAttemptFixes()) {
|
|
// Match up the replacement types of the respective substitution maps.
|
|
return matchDeepTypeArguments(*this, subflags, args1, args2, locator);
|
|
}
|
|
|
|
unsigned numMismatches = 0;
|
|
auto result =
|
|
matchDeepTypeArguments(*this, subflags, args1, args2, locator,
|
|
[&numMismatches](unsigned) { ++numMismatches; });
|
|
|
|
if (numMismatches > 0) {
|
|
auto anchor = locator.getAnchor();
|
|
// TODO(diagnostics): Only assignments are supported at the moment.
|
|
if (!isExpr<AssignExpr>(anchor))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto *fix = IgnoreAssignmentDestinationType::create(
|
|
*this, type1, type2, getConstraintLocator(locator));
|
|
|
|
if (recordFix(fix, /*impact=*/numMismatches))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Handle opened archetype types.
|
|
if (auto opened1 = type1->getAs<ExistentialArchetypeType>()) {
|
|
auto opened2 = type2->castTo<ExistentialArchetypeType>();
|
|
assert(opened1->getInterfaceType()->isEqual(opened2->getInterfaceType()) &&
|
|
opened1->getGenericEnvironment()->getOpenedExistentialUUID() ==
|
|
opened2->getGenericEnvironment()->getOpenedExistentialUUID());
|
|
|
|
auto args1 = opened1->getGenericEnvironment()
|
|
->getOuterSubstitutions()
|
|
.getReplacementTypes();
|
|
auto args2 = opened2->getGenericEnvironment()
|
|
->getOuterSubstitutions()
|
|
.getReplacementTypes();
|
|
|
|
return matchDeepTypeArguments(*this, subflags, args1, args2, locator);
|
|
}
|
|
|
|
// `any Sendable` -> `Any`
|
|
if (matchSendableExistentialToAnyInGenericArgumentPosition(*this, type1,
|
|
type2, locator))
|
|
return getTypeMatchSuccess();
|
|
|
|
// Handle existential types.
|
|
if (auto *existential1 = type1->getAs<ExistentialType>()) {
|
|
auto existential2 = type2->castTo<ExistentialType>();
|
|
|
|
auto result = matchTypes(
|
|
existential1->getConstraintType(), existential2->getConstraintType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(ConstraintLocator::ExistentialConstraintType));
|
|
|
|
if (result.isFailure())
|
|
return result;
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// Arguments of parameterized protocol types have to match on the nose.
|
|
if (auto ppt1 = type1->getAs<ParameterizedProtocolType>()) {
|
|
auto ppt2 = type2->castTo<ParameterizedProtocolType>();
|
|
|
|
auto result = matchTypes(ppt1->getBaseType(),
|
|
ppt2->getBaseType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ParentType));
|
|
|
|
if (result.isFailure())
|
|
return result;
|
|
|
|
return matchDeepTypeArguments(*this, subflags,
|
|
ppt1->getArgs(),
|
|
ppt2->getArgs(),
|
|
locator);
|
|
}
|
|
|
|
// Members of protocol compositions have to match.
|
|
if (auto pct1 = type1->getAs<ProtocolCompositionType>()) {
|
|
auto pct2 = type2->castTo<ProtocolCompositionType>();
|
|
|
|
auto members1 = pct1->getMembers();
|
|
auto members2 = pct2->getMembers();
|
|
if (members1.size() != members2.size())
|
|
return getTypeMatchFailure(locator);
|
|
if (pct1->getInverses() != pct2->getInverses())
|
|
return getTypeMatchFailure(locator);
|
|
if (pct1->hasExplicitAnyObject() != pct2->hasExplicitAnyObject())
|
|
return getTypeMatchFailure(locator);
|
|
for (unsigned i = 0, e = members1.size(); i < e; ++i) {
|
|
auto member1 = members1[i];
|
|
auto member2 = members2[i];
|
|
auto subLocator = locator.withPathElement(
|
|
LocatorPathElt::ProtocolCompositionMemberType(i));
|
|
auto result = matchTypes(member1, member2, ConstraintKind::Bind, subflags,
|
|
subLocator);
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// Handle nominal types that are not directly generic.
|
|
if (auto nominal1 = type1->getAs<NominalType>()) {
|
|
auto nominal2 = type2->castTo<NominalType>();
|
|
|
|
assert((bool)nominal1->getParent() == (bool)nominal2->getParent() &&
|
|
"Mismatched parents of nominal types");
|
|
|
|
if (!nominal1->getParent())
|
|
return getTypeMatchSuccess();
|
|
|
|
// Match up the parents, exactly.
|
|
return matchTypes(nominal1->getParent(), nominal2->getParent(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(ConstraintLocator::ParentType));
|
|
}
|
|
|
|
auto bound1 = type1->castTo<BoundGenericType>();
|
|
auto bound2 = type2->castTo<BoundGenericType>();
|
|
|
|
// Match up the parents, exactly, if there are parents.
|
|
assert((bool)bound1->getParent() == (bool)bound2->getParent() &&
|
|
"Mismatched parents of bound generics");
|
|
if (bound1->getParent()) {
|
|
auto result = matchTypes(bound1->getParent(), bound2->getParent(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ParentType));
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
auto args1 = bound1->getGenericArgs();
|
|
auto args2 = bound2->getGenericArgs();
|
|
|
|
// Match up the generic arguments, exactly.
|
|
|
|
if (shouldAttemptFixes()) {
|
|
auto *baseLoc =
|
|
getConstraintLocator(locator, {LocatorPathElt::GenericType(type1),
|
|
LocatorPathElt::GenericType(type2)});
|
|
|
|
// Optionals have a lot of special diagnostics and only one
|
|
// generic argument so if we're dealing with one, let's allow
|
|
// `repairFailures` to take care of it.
|
|
if (bound1->getDecl()->isOptionalDecl())
|
|
return matchDeepTypeArguments(*this, subflags, args1, args2, baseLoc);
|
|
|
|
auto argMatchingFlags = subflags;
|
|
// Allow the solver to produce separate fixes while matching
|
|
// key path's root/value to a contextual type instead of the
|
|
// standard one fix for all mismatched generic arguments
|
|
// because at least one side of such a relation would be resolved.
|
|
if (!isExpr<KeyPathExpr>(locator.trySimplifyToExpr())) {
|
|
argMatchingFlags |= TMF_ApplyingFix;
|
|
argMatchingFlags |= TMF_MatchingGenericArguments;
|
|
}
|
|
|
|
SmallVector<unsigned, 4> mismatches;
|
|
auto result = matchDeepTypeArguments(
|
|
*this, argMatchingFlags, args1, args2, baseLoc,
|
|
[&mismatches](unsigned position) { mismatches.push_back(position); });
|
|
|
|
if (mismatches.empty())
|
|
return result;
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
auto path = loc->getPath();
|
|
if (!path.empty()) {
|
|
// If we have something like ... -> type req # -> pack element #, we're
|
|
// solving a requirement of the form T : P where T is a type parameter pack
|
|
if (path.back().is<LocatorPathElt::PackElement>())
|
|
path = path.drop_back();
|
|
|
|
if (path.back().is<LocatorPathElt::AnyRequirement>()) {
|
|
if (auto *fix = fixRequirementFailure(*this, type1, type2, locator)) {
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
increaseScore(SK_Fix, loc, mismatches.size());
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned impact = 1;
|
|
|
|
if (type1->getAnyPointerElementType() &&
|
|
type2->getAnyPointerElementType()) {
|
|
// If this is a pointer <-> pointer conversion of different kind,
|
|
// there is a dedicated restriction/fix for that in some cases.
|
|
// To accommodate that, let's increase the impact of this fix.
|
|
impact += 2;
|
|
} else {
|
|
// Increase the solution's score for each mismatch this fixes.
|
|
impact += mismatches.size() - 1;
|
|
}
|
|
|
|
auto *fix = GenericArgumentsMismatch::create(
|
|
*this, type1, type2, mismatches, loc);
|
|
|
|
if (!recordFix(fix, impact))
|
|
return getTypeMatchSuccess();
|
|
|
|
return result;
|
|
}
|
|
return matchDeepTypeArguments(*this, subflags, args1, args2, locator);
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchExistentialTypes(Type type1, Type type2,
|
|
ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// If the first type is a type variable or member thereof, there's nothing
|
|
// we can do now.
|
|
if (type1->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, kind, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
return getTypeMatchAmbiguous();
|
|
}
|
|
|
|
// FIXME: Feels like a hack.
|
|
if (type1->is<InOutType>())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// FIXME; Feels like a hack...nothing actually "conforms" here, and
|
|
// we need to disallow conversions from types containing @noescape
|
|
// functions to Any.
|
|
|
|
// FIXME: special case for nonescaping functions and tuples containing them
|
|
// shouldn't be needed, as functions have conformances to Escapable/Copyable.
|
|
if (type2->isAny() && type1->isNoEscape()) {
|
|
if (shouldAttemptFixes()) {
|
|
auto *fix = MarkExplicitlyEscaping::create(*this, type1, type2,
|
|
getConstraintLocator(locator));
|
|
if (!recordFix(fix))
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
// Handle existential metatypes.
|
|
if (auto meta1 = type1->getAs<MetatypeType>()) {
|
|
ExistentialMetatypeType *meta2;
|
|
if (auto existential = type2->getAs<ExistentialType>()) {
|
|
meta2 = existential->getConstraintType()->getAs<ExistentialMetatypeType>();
|
|
} else {
|
|
meta2 = type2->getAs<ExistentialMetatypeType>();
|
|
}
|
|
if (meta2) {
|
|
return matchExistentialTypes(meta1->getInstanceType(),
|
|
meta2->getInstanceType(), kind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::InstanceType));
|
|
}
|
|
}
|
|
|
|
if (!type2->isExistentialType())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto layout = type2->getExistentialLayout();
|
|
|
|
if (auto layoutConstraint = layout.getLayoutConstraint()) {
|
|
if (layoutConstraint->isClass()) {
|
|
if (kind == ConstraintKind::ConformsTo ||
|
|
kind == ConstraintKind::NonisolatedConformsTo) {
|
|
if (!type1->satisfiesClassConstraint()) {
|
|
if (shouldAttemptFixes()) {
|
|
if (auto last = locator.last()) {
|
|
// If solver is in diagnostic mode and type1 is a hole, or if this
|
|
// is a superclass requirement, let's consider `AnyObject`
|
|
// conformance solved. The actual superclass requirement
|
|
// will also fail (because type can't satisfy it), and it's
|
|
// more interesting for diagnostics.
|
|
auto req = last->getAs<LocatorPathElt::AnyRequirement>();
|
|
if (!req)
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Superclass constraints are never satisfied by existentials,
|
|
// even those that contain the superclass a la `any C & P`.
|
|
if (!type1->isExistentialType() &&
|
|
(type1->isPlaceholder() ||
|
|
req->getRequirementKind() == RequirementKind::Superclass))
|
|
return getTypeMatchSuccess();
|
|
|
|
auto *fix = fixRequirementFailure(*this, type1, type2, locator);
|
|
if (fix && !recordFix(fix)) {
|
|
recordFixedRequirement(getConstraintLocator(locator), type2);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
}
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
} else {
|
|
// Subtype relation to AnyObject also allows class-bound
|
|
// existentials that are not @objc and therefore carry
|
|
// witness tables.
|
|
if (!type1->isClassExistentialType() && !type1->mayHaveSuperclass()) {
|
|
if (shouldAttemptFixes()) {
|
|
llvm::SmallVector<LocatorPathElt, 4> path;
|
|
if (auto anchor = locator.getLocatorParts(path)) {
|
|
// Let's drop `optional` or `generic argument` bits from
|
|
// locator because that helps to diagnose reference equality
|
|
// operators ("===" and "!==") since there is always a
|
|
// `value-to-optional` or `optional-to-optional` conversion
|
|
// associated with them (expected argument is `AnyObject?`).
|
|
if (!path.empty() &&
|
|
(path.back().is<LocatorPathElt::OptionalInjection>() ||
|
|
path.back().is<LocatorPathElt::GenericArgument>()))
|
|
path.pop_back();
|
|
|
|
auto *fixLoc = getConstraintLocator(anchor, path);
|
|
// If after looking through optionals and generic arguments
|
|
// we end up directly on assignment this is a source/destination
|
|
// type mismatch.
|
|
if (fixLoc->directlyAt<AssignExpr>()) {
|
|
auto *fix = IgnoreAssignmentDestinationType::create(
|
|
*this, type1, type2, fixLoc);
|
|
return recordFix(fix) ? getTypeMatchFailure(locator)
|
|
: getTypeMatchSuccess();
|
|
}
|
|
|
|
auto *fix = AllowNonClassTypeToConvertToAnyObject::create(
|
|
*this, type1, fixLoc);
|
|
|
|
return recordFix(fix) ? getTypeMatchFailure(locator)
|
|
: getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
// Keep going.
|
|
}
|
|
}
|
|
|
|
if (layout.explicitSuperclass) {
|
|
auto result = matchTypes(type1, layout.explicitSuperclass,
|
|
ConstraintKind::Subtype,
|
|
subflags, locator);
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
|
|
for (auto *protoDecl : layout.getProtocols()) {
|
|
switch (simplifyConformsToConstraint(type1, protoDecl, kind, locator,
|
|
subflags)) {
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
|
|
case SolutionKind::Error: {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
// If the path ends at `optional payload` it means that this
|
|
// check is part of an implicit value-to-optional conversion,
|
|
// and it could be safely dropped.
|
|
if (!path.empty() && path.back().is<LocatorPathElt::OptionalInjection>())
|
|
path.pop_back();
|
|
|
|
// Determine whether this conformance mismatch is
|
|
// associated with argument to a call, and if so
|
|
// produce a tailored fix.
|
|
if (!path.empty()) {
|
|
auto last = path.back();
|
|
|
|
if (last.is<LocatorPathElt::ApplyArgToParam>() ||
|
|
last.is<LocatorPathElt::AutoclosureResult>()) {
|
|
auto proto = protoDecl->getDeclaredInterfaceType();
|
|
// Impact is 2 here because there are two failures
|
|
// 1 - missing conformance and 2 - incorrect argument type.
|
|
//
|
|
// This would make sure that arguments with incorrect
|
|
// conformances are not prioritized over general argument
|
|
// mismatches.
|
|
if (type1->isOptional()) {
|
|
auto unwrappedType = type1->lookThroughAllOptionalTypes();
|
|
auto result = simplifyConformsToConstraint(
|
|
unwrappedType, protoDecl, kind, locator,
|
|
subflags | TMF_ApplyingFix);
|
|
if (result == SolutionKind::Solved) {
|
|
auto fix = ForceOptional::create(*this, type1, proto,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
break;
|
|
}
|
|
}
|
|
auto fix = AllowArgumentMismatch::create(
|
|
*this, type1, proto, getConstraintLocator(anchor, path));
|
|
if (recordFix(fix, /*impact=*/2))
|
|
return getTypeMatchFailure(locator);
|
|
break;
|
|
}
|
|
|
|
if ((isExpr<ArrayExpr>(anchor) || isExpr<DictionaryExpr>(anchor)) &&
|
|
last.is<LocatorPathElt::TupleElement>()) {
|
|
auto *fix = CollectionElementContextualMismatch::create(
|
|
*this, type1, type2, getConstraintLocator(anchor, path));
|
|
if (recordFix(fix, /*impact=*/2))
|
|
return getTypeMatchFailure(locator);
|
|
break;
|
|
}
|
|
|
|
// TODO(diagnostics): If there are any requirement failures associated
|
|
// with result types which are part of a function type conversion,
|
|
// let's record general conversion mismatch in order for it to capture
|
|
// and display complete function types.
|
|
//
|
|
// Once either reacher locators or better diagnostic presentation for
|
|
// nested type failures is available this check could be removed.
|
|
if (last.is<LocatorPathElt::FunctionResult>())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// If instance types didn't line up correctly, let's produce a
|
|
// diagnostic which mentions them together with their metatypes.
|
|
if (last.is<LocatorPathElt::InstanceType>())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
} else { // There are no elements in the path
|
|
if (!(isExpr<AssignExpr>(anchor) || isExpr<CoerceExpr>(anchor)))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
if (isExpr<CoerceExpr>(anchor)) {
|
|
auto *fix = ContextualMismatch::create(
|
|
*this, type1, type2, getConstraintLocator(anchor, path));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
break;
|
|
}
|
|
|
|
auto proto = protoDecl->getDeclaredInterfaceType();
|
|
auto *fix = MissingConformance::forContextual(
|
|
*this, type1, proto, getConstraintLocator(anchor, path));
|
|
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, check parameterized protocol requirements.
|
|
if (!layout.getParameterizedProtocols().empty()) {
|
|
SmallVector<std::pair<Identifier, Type>, 4> fromReqs;
|
|
|
|
if (type1->isExistentialType()) {
|
|
auto fromLayout = type1->getExistentialLayout();
|
|
for (auto *parameterizedType : fromLayout.getParameterizedProtocols()) {
|
|
auto *protoDecl = parameterizedType->getProtocol();
|
|
auto assocTypes = protoDecl->getPrimaryAssociatedTypes();
|
|
auto argTypes = parameterizedType->getArgs();
|
|
|
|
for (unsigned i : indices(argTypes)) {
|
|
auto argType = argTypes[i];
|
|
fromReqs.push_back(std::make_pair(assocTypes[i]->getName(), argType));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto *parameterizedType : layout.getParameterizedProtocols()) {
|
|
// With two parameterized protocols, we've already made sure conformance
|
|
// constraints are satisfied. Try to match the arguments!
|
|
if (type1->isExistentialType()) {
|
|
auto *protoDecl = parameterizedType->getProtocol();
|
|
auto assocTypes = protoDecl->getPrimaryAssociatedTypes();
|
|
auto argTypes = parameterizedType->getArgs();
|
|
|
|
for (unsigned i : indices(argTypes)) {
|
|
auto argType = argTypes[i];
|
|
bool found = false;
|
|
for (auto fromReq : fromReqs) {
|
|
if (fromReq.first == assocTypes[i]->getName()) {
|
|
// FIXME: Extend the locator path to point to the argument
|
|
// inducing the requirement.
|
|
auto result = matchTypes(fromReq.second, argType,
|
|
ConstraintKind::Bind,
|
|
subflags, locator);
|
|
if (result.isFailure())
|
|
return result;
|
|
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found)
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
} else {
|
|
// The source type is a concrete type.
|
|
//
|
|
// Substitute the source into the requirements of the parameterized type
|
|
// and discharge the requirements of the parameterized protocol.
|
|
//
|
|
// FIXME: Extend the locator path to point to the argument
|
|
// inducing the requirement.
|
|
SmallVector<Requirement, 2> reqs;
|
|
parameterizedType->getRequirements(type1, reqs);
|
|
for (const auto &req : reqs) {
|
|
assert(req.getKind() == RequirementKind::SameType);
|
|
auto result = matchTypes(req.getFirstType(), req.getSecondType(),
|
|
ConstraintKind::Bind,
|
|
subflags, locator);
|
|
if (result.isFailure())
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
static bool isStringCompatiblePointerBaseType(ASTContext &ctx,
|
|
Type baseType) {
|
|
// Allow strings to be passed to pointer-to-byte or pointer-to-void types.
|
|
if (baseType->isInt8())
|
|
return true;
|
|
if (baseType->isUInt8())
|
|
return true;
|
|
if (baseType->isVoid())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the first type with the given number of optionals
|
|
/// is potentially more optional than the second type with its number of
|
|
/// optionals.
|
|
static bool isPotentiallyMoreOptionalThan(Type type1, Type type2) {
|
|
SmallVector<Type, 2> optionals1;
|
|
Type objType1 = type1->lookThroughAllOptionalTypes(optionals1);
|
|
auto numOptionals1 = optionals1.size();
|
|
|
|
SmallVector<Type, 2> optionals2;
|
|
type2->lookThroughAllOptionalTypes(optionals2);
|
|
auto numOptionals2 = optionals2.size();
|
|
|
|
if (numOptionals1 <= numOptionals2 && !objType1->isTypeVariableOrMember())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Enumerate all of the applicable optional conversion restrictions
|
|
static void enumerateOptionalConversionRestrictions(
|
|
Type type1, Type type2,
|
|
ConstraintKind kind, ConstraintLocatorBuilder locator,
|
|
llvm::function_ref<void(ConversionRestrictionKind)> fn) {
|
|
// Optional-to-optional.
|
|
if (type1->getOptionalObjectType() && type2->getOptionalObjectType())
|
|
fn(ConversionRestrictionKind::OptionalToOptional);
|
|
|
|
// Inject a value into an optional.
|
|
if (isPotentiallyMoreOptionalThan(type2, type1)) {
|
|
fn(ConversionRestrictionKind::ValueToOptional);
|
|
}
|
|
}
|
|
|
|
/// Determine whether we can bind the given type variable to the given
|
|
/// fixed type.
|
|
static bool isBindable(TypeVariableType *typeVar, Type type) {
|
|
// Disallow recursive bindings.
|
|
if (ConstraintSystem::typeVarOccursInType(typeVar, type))
|
|
return false;
|
|
|
|
// If type variable we are about to bind represents a pack
|
|
// expansion type, allow the binding to happen regardless of
|
|
// what the \c type is, because contextual type is just a hint
|
|
// in this situation and type variable would be bound to its
|
|
// opened type instead.
|
|
//
|
|
// Note that although inference doesn't allow direct bindings to
|
|
// type variables, they can still get through via `matchTypes`
|
|
// when type is a partially resolved pack expansion that simplifies
|
|
// down to a type variable.
|
|
return typeVar->getImpl().isPackExpansion() ||
|
|
!(type->is<TypeVariableType>() || type->is<DependentMemberType>());
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchTypesBindTypeVar(
|
|
TypeVariableType *typeVar, Type origType, ConstraintKind kind,
|
|
TypeMatchOptions flags, ConstraintLocatorBuilder locator,
|
|
llvm::function_ref<TypeMatchResult()> formUnsolvedResult) {
|
|
assert(typeVar->is<TypeVariableType>() && "Expected a type variable!");
|
|
assert(!origType->is<TypeVariableType>() && "Expected a non-type variable!");
|
|
|
|
// Simplify the right-hand type and perform the "occurs" check.
|
|
typeVar = getRepresentative(typeVar);
|
|
auto type = simplifyType(origType, flags);
|
|
if (!isBindable(typeVar, type)) {
|
|
if (shouldAttemptFixes()) {
|
|
// If type variable is allowed to be a hole and it can't be bound to
|
|
// a particular (full resolved) type, just ignore this binding
|
|
// instead of re-trying it and failing later.
|
|
if (typeVar->getImpl().canBindToHole() && !type->hasTypeVariable())
|
|
return getTypeMatchSuccess();
|
|
|
|
// Just like in cases where both sides are dependent member types
|
|
// with resolved base that can't be simplified to a concrete type
|
|
// let's ignore this mismatch and mark affected type variable as a hole
|
|
// because something else has to be fixed already for this to happen.
|
|
if (type->is<DependentMemberType>() && !type->hasTypeVariable()) {
|
|
// Since the binding couldn't be performed, the type variable is a
|
|
// hole regardless whether it would be bound later to some other
|
|
// type or not. If this is not reflected in constraint system
|
|
// it would let the solver to form a _valid_ solution as if the
|
|
// constraint between the type variable and the unresolved dependent
|
|
// member type never existed.
|
|
increaseScore(SK_Hole, locator);
|
|
recordPotentialHole(typeVar);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
// Since member lookup doesn't check requirements
|
|
// it might sometimes return types which are not
|
|
// visible in the current context e.g. typealias
|
|
// defined in constrained extension, substitution
|
|
// of which might produce error type for base, so
|
|
// assignment should tread lightly and just fail
|
|
// if it encounters such types.
|
|
if (type->hasError())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Equal constraints allow mixed LValue/RValue bindings, but
|
|
// if we bind a type to a type variable that can bind to
|
|
// LValues as part of simplifying the Equal constraint we may
|
|
// later block a binding of the opposite "LValue-ness" to the
|
|
// same type variable that happens as part of simplifying
|
|
// another constraint.
|
|
if (kind == ConstraintKind::Equal) {
|
|
if (typeVar->getImpl().canBindToLValue())
|
|
return formUnsolvedResult();
|
|
|
|
type = type->getRValueType();
|
|
}
|
|
|
|
// Prevent generic arguments from being assigned `any Sendable`
|
|
// directly, that should only happen through inference. This is
|
|
// required because we allow `any Sendable` -> `Any` conversion
|
|
// in modes without strict concurrency enabled to maintain source
|
|
// compatibility and let the developers annotate existing APIs
|
|
// with `any Sendable` and other concurrency attributes.
|
|
if (typeVar->getImpl().getGenericParameter() &&
|
|
!flags.contains(TMF_BindingTypeVariable) &&
|
|
type->isSendableExistential()) {
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
// Attempt to fix situations where type variable can't be bound
|
|
// to a particular type e.g. `l-value` or `inout`.
|
|
auto fixReferenceMismatch = [&](TypeVariableType *typeVar,
|
|
Type type) -> bool {
|
|
if (locator.endsWith<LocatorPathElt::ContextualType>()) {
|
|
auto *fix = IgnoreContextualType::create(*this, typeVar, type,
|
|
getConstraintLocator(locator));
|
|
return !recordFix(fix);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// If the left-hand type variable cannot bind to an lvalue,
|
|
// but we still have an lvalue, fail.
|
|
if (!typeVar->getImpl().canBindToLValue() && type->hasLValueType()) {
|
|
if (shouldAttemptFixes() && fixReferenceMismatch(typeVar, type))
|
|
return getTypeMatchSuccess();
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// If the left-hand type variable cannot bind to an inout,
|
|
// but we still have an inout, fail.
|
|
if (!typeVar->getImpl().canBindToInOut() && type->is<InOutType>()) {
|
|
if (shouldAttemptFixes() && fixReferenceMismatch(typeVar, type))
|
|
return getTypeMatchSuccess();
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// If the left-hand type variable cannot bind to a non-escaping type,
|
|
// but we still have a non-escaping type, fail.
|
|
if (!typeVar->getImpl().canBindToNoEscape() && type->isNoEscape()) {
|
|
if (shouldAttemptFixes()) {
|
|
auto *fix = MarkExplicitlyEscaping::create(*this, typeVar, type,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Allow no-escape function to be bound with recorded fix.
|
|
} else {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
if (typeVar->getImpl().isPackExpansion()) {
|
|
if (!flags.contains(TMF_BindingTypeVariable))
|
|
return formUnsolvedResult();
|
|
|
|
return resolvePackExpansion(typeVar, origType)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// If we're attempting to bind a PackType or PackArchetypeType to a type
|
|
// variable that doesn't support it, we have a pack reference outside of a
|
|
// pack expansion expression.
|
|
if (!typeVar->getImpl().canBindToPack() &&
|
|
(type->is<PackArchetypeType>() || type->is<PackType>())) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto *fix = AllowInvalidPackReference::create(
|
|
*this, type, getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Don't allow the invalid pack reference to propagate to other
|
|
// bindings.
|
|
type = PlaceholderType::get(typeVar->getASTContext(), typeVar);
|
|
}
|
|
|
|
// Binding to a pack expansion type is always an error in Swift 6 mode.
|
|
// This indicates that a pack expansion expression was used in a context
|
|
// that doesn't support it.
|
|
//
|
|
// In Swift 5 and earlier initializer references are handled in a special
|
|
// way that uses a type variable to represent a type of the parameter
|
|
// list. Such type variables should be allowed to bind to a pack expansion
|
|
// type to support cases where initializer has a single unlabeled variadic
|
|
// generic parameter - `init(_ data: repeat each T)`.
|
|
//
|
|
// See BindTupleOfFunctionParams constraint for more details.
|
|
if (!typeVar->getImpl().isPackExpansion() && type->is<PackExpansionType>()) {
|
|
bool representsParameterList =
|
|
typeVar->getImpl()
|
|
.getLocator()
|
|
->isLastElement<LocatorPathElt::ApplyArgument>();
|
|
|
|
if (!(typeVar->getImpl().canBindToPack() && representsParameterList) ||
|
|
getASTContext().isSwiftVersionAtLeast(6)) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
auto *fix = AllowInvalidPackExpansion::create(
|
|
*this, getConstraintLocator(locator));
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Don't allow the pack expansion type to propagate to other
|
|
// bindings.
|
|
type = PlaceholderType::get(typeVar->getASTContext(), typeVar);
|
|
}
|
|
}
|
|
|
|
// We do not allow keypaths to go through AnyObject. Let's create a fix
|
|
// so this can be diagnosed later.
|
|
if (auto loc = typeVar->getImpl().getLocator()) {
|
|
auto locPath = loc->getPath();
|
|
|
|
if (!locPath.empty() &&
|
|
locPath.back().getKind() == ConstraintLocator::KeyPathRoot &&
|
|
type->isAnyObject()) {
|
|
auto *fix = AllowAnyObjectKeyPathRoot::create(
|
|
*this, getConstraintLocator(locator));
|
|
|
|
if (recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
// Okay. Bind below.
|
|
|
|
// A constraint that binds any pointer to a void pointer is
|
|
// ineffective, since any pointer can be converted to a void pointer.
|
|
if (kind == ConstraintKind::BindToPointerType && type->isVoid()) {
|
|
// Bind type1 to Void only as a last resort.
|
|
addConstraint(ConstraintKind::Defaultable, typeVar, type,
|
|
getConstraintLocator(locator));
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// When binding a fixed type to a type variable that cannot contain
|
|
// lvalues or noescape types, any type variables within the fixed
|
|
// type cannot contain lvalues or noescape types either.
|
|
if (type->hasTypeVariable()) {
|
|
type.visit([&](Type t) {
|
|
if (auto *tvt = dyn_cast<TypeVariableType>(t.getPointer())) {
|
|
if (!typeVar->getImpl().canBindToLValue()) {
|
|
tvt->getImpl().setCanBindToLValue(getTrail(),
|
|
/*enabled=*/false);
|
|
}
|
|
if (!typeVar->getImpl().canBindToNoEscape()) {
|
|
tvt->getImpl().setCanBindToNoEscape(getTrail(),
|
|
/*enabled=*/false);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
if (typeVar->getImpl().isClosureType()) {
|
|
return resolveClosure(typeVar, type, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
if (typeVar->getImpl().isTapType()) {
|
|
return resolveTapBody(typeVar, type, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
if (typeVar->getImpl().isKeyPathType()) {
|
|
return resolveKeyPath(typeVar, type, flags, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
assignFixedType(typeVar, type, /*updateState=*/true,
|
|
/*notifyInference=*/!flags.contains(TMF_BindingTypeVariable));
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
static ConstraintFix *fixRequirementFailure(ConstraintSystem &cs, Type type1,
|
|
Type type2, ASTNode anchor,
|
|
ArrayRef<LocatorPathElt> path) {
|
|
// Can't fix not yet properly resolved types.
|
|
if (type1->isTypeVariableOrMember() || type2->isTypeVariableOrMember())
|
|
return nullptr;
|
|
|
|
// If we have something like ... -> type req # -> pack element #, we're
|
|
// solving a requirement of the form T : P where T is a type parameter pack
|
|
if (path.back().is<LocatorPathElt::PackElement>())
|
|
path = path.drop_back();
|
|
|
|
auto req = path.back().castTo<LocatorPathElt::AnyRequirement>();
|
|
if (req.isConditionalRequirement()) {
|
|
// path is - ... -> open generic -> type req # -> cond req #,
|
|
// to identify type requirement we only need `open generic -> type req #`
|
|
// part, because that's how fixes for type requirements are recorded.
|
|
auto reqPath = path.drop_back();
|
|
// If underlying conformance requirement has been fixed,
|
|
// then there is no reason to fix up conditional requirements.
|
|
if (cs.hasFixFor(cs.getConstraintLocator(anchor, reqPath)))
|
|
return nullptr;
|
|
}
|
|
|
|
auto *reqLoc = cs.getConstraintLocator(anchor, path);
|
|
|
|
switch (req.getRequirementKind()) {
|
|
case RequirementKind::SameType:
|
|
return SkipSameTypeRequirement::create(cs, type1, type2, reqLoc);
|
|
|
|
case RequirementKind::SameShape:
|
|
return SkipSameShapeRequirement::create(cs, type1, type2, reqLoc);
|
|
|
|
case RequirementKind::Superclass:
|
|
return SkipSuperclassRequirement::create(cs, type1, type2, reqLoc);
|
|
|
|
case RequirementKind::Layout:
|
|
case RequirementKind::Conformance:
|
|
return MissingConformance::forRequirement(cs, type1, type2, reqLoc);
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
static ConstraintFix *fixPropertyWrapperFailure(
|
|
ConstraintSystem &cs, Type baseTy, ConstraintLocator *locator,
|
|
llvm::function_ref<bool(SelectedOverload, VarDecl *, Type)> attemptFix,
|
|
std::optional<Type> toType = std::nullopt) {
|
|
// Don't attempt this fix if this is a key path dynamic member
|
|
// lookup which produced no results. Unwrapping or wrapping
|
|
// the base type is not going to produce desired results.
|
|
if (locator->isForKeyPathDynamicMemberLookup())
|
|
return nullptr;
|
|
|
|
Expr *baseExpr = nullptr;
|
|
if (auto *anchor = getAsExpr(locator->getAnchor())) {
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchor))
|
|
baseExpr = UDE->getBase();
|
|
else if (auto *SE = dyn_cast<SubscriptExpr>(anchor))
|
|
baseExpr = SE->getBase();
|
|
else if (auto *MRE = dyn_cast<MemberRefExpr>(anchor))
|
|
baseExpr = MRE->getBase();
|
|
else if (auto anchor = simplifyLocatorToAnchor(locator))
|
|
baseExpr = getAsExpr(anchor);
|
|
}
|
|
|
|
if (!baseExpr)
|
|
return nullptr;
|
|
|
|
auto resolvedOverload = cs.findSelectedOverloadFor(baseExpr);
|
|
if (!resolvedOverload)
|
|
return nullptr;
|
|
|
|
auto *decl = resolvedOverload->choice.getDeclOrNull();
|
|
auto *VD = dyn_cast_or_null<VarDecl>(decl);
|
|
if (!VD)
|
|
return nullptr;
|
|
|
|
enum class Fix : uint8_t {
|
|
ProjectedValue,
|
|
PropertyWrapper,
|
|
WrappedValue,
|
|
};
|
|
|
|
auto applyFix = [&](Fix fix, Type type) -> ConstraintFix * {
|
|
if (!VD->hasInterfaceType() || !type)
|
|
return nullptr;
|
|
|
|
if (baseTy->isEqual(type))
|
|
return nullptr;
|
|
|
|
if (baseTy->is<TypeVariableType>() || type->is<TypeVariableType>())
|
|
return nullptr;
|
|
|
|
if (!attemptFix(*resolvedOverload, VD, type))
|
|
return nullptr;
|
|
|
|
switch (fix) {
|
|
case Fix::ProjectedValue:
|
|
case Fix::PropertyWrapper:
|
|
return UsePropertyWrapper::create(cs, VD, fix == Fix::ProjectedValue,
|
|
baseTy, toType.value_or(type), locator);
|
|
|
|
case Fix::WrappedValue:
|
|
return UseWrappedValue::create(cs, VD, baseTy, toType.value_or(type),
|
|
locator);
|
|
}
|
|
llvm_unreachable("Unhandled Fix type in switch");
|
|
};
|
|
|
|
if (auto projectTy = cs.getPropertyWrapperProjectionType(*resolvedOverload)) {
|
|
if (auto *fix = applyFix(Fix::ProjectedValue, projectTy))
|
|
return fix;
|
|
}
|
|
|
|
if (auto backingTy = cs.getPropertyWrapperBackingType(*resolvedOverload)) {
|
|
if (auto *fix = applyFix(Fix::PropertyWrapper, backingTy))
|
|
return fix;
|
|
}
|
|
|
|
if (auto wrappedTy = cs.getWrappedPropertyType(*resolvedOverload)) {
|
|
if (auto *fix = applyFix(Fix::WrappedValue, wrappedTy))
|
|
return fix;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool canBridgeThroughCast(ConstraintSystem &cs, Type fromType,
|
|
Type toType) {
|
|
// If we have a value of type AnyObject that we're trying to convert to
|
|
// a class, force a downcast.
|
|
// FIXME: Also allow types bridged through Objective-C classes.
|
|
if (fromType->isAnyObject() && toType->getClassOrBoundGenericClass())
|
|
return true;
|
|
|
|
auto bridged = TypeChecker::getDynamicBridgedThroughObjCClass(cs.DC,
|
|
fromType, toType);
|
|
if (!bridged)
|
|
return false;
|
|
|
|
// Note: don't perform this recovery for NSNumber;
|
|
if (auto classType = bridged->getAs<ClassType>()) {
|
|
SmallString<16> scratch;
|
|
if (classType->getDecl()->isObjC() &&
|
|
classType->getDecl()->getObjCRuntimeName(scratch) == "NSNumber")
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
repairViaBridgingCast(ConstraintSystem &cs, Type fromType, Type toType,
|
|
SmallVectorImpl<RestrictionOrFix> &conversionsOrFixes,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Don't check if any of the types have type variables or placeholders,
|
|
// `typeCheckCheckedCast` doesn't support checking solver-allocated types.
|
|
if (fromType->hasTypeVariableOrPlaceholder() ||
|
|
toType->hasTypeVariableOrPlaceholder()) {
|
|
return false;
|
|
}
|
|
|
|
auto objectType1 = fromType->getOptionalObjectType();
|
|
auto objectType2 = toType->getOptionalObjectType();
|
|
|
|
if (objectType1 && !objectType2) {
|
|
auto *anchor = locator.trySimplifyToExpr();
|
|
if (!anchor)
|
|
return false;
|
|
|
|
if (auto overload = cs.findSelectedOverloadFor(anchor)) {
|
|
auto *decl = overload->choice.getDeclOrNull();
|
|
if (decl && decl->isImplicitlyUnwrappedOptional())
|
|
fromType = objectType1;
|
|
}
|
|
}
|
|
|
|
if (!canBridgeThroughCast(cs, fromType, toType))
|
|
return false;
|
|
|
|
if (!TypeChecker::checkedCastMaySucceed(fromType, toType, cs.DC))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(ForceDowncast::create(
|
|
cs, fromType, toType, cs.getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
/// Return tuple of type and number of optionals on that type.
|
|
static std::pair<Type, unsigned> getObjectTypeAndNumUnwraps(Type type) {
|
|
SmallVector<Type, 2> optionals;
|
|
Type objType = type->lookThroughAllOptionalTypes(optionals);
|
|
return std::make_pair(objType, optionals.size());
|
|
}
|
|
|
|
static bool
|
|
repairViaOptionalUnwrap(ConstraintSystem &cs, Type fromType, Type toType,
|
|
ConstraintKind matchKind,
|
|
SmallVectorImpl<RestrictionOrFix> &conversionsOrFixes,
|
|
ConstraintLocatorBuilder locator) {
|
|
fromType = fromType->getWithoutSpecifierType();
|
|
|
|
if (!fromType->getOptionalObjectType() || toType->is<TypeVariableType>())
|
|
return false;
|
|
|
|
// If we have an optional type, try to force-unwrap it.
|
|
// FIXME: Should we also try '?'?
|
|
auto *anchor = locator.trySimplifyToExpr();
|
|
if (!anchor)
|
|
return false;
|
|
|
|
// If this is a conversion to a non-optional contextual type e.g.
|
|
// `let _: Bool = try? foo()` and `foo()` produces `Int`
|
|
// we should diagnose it as type mismatch instead of missing unwrap.
|
|
bool possibleContextualMismatch = [&]() {
|
|
if (!locator.endsWith<LocatorPathElt::ContextualType>())
|
|
return false;
|
|
|
|
// If the contextual type is optional as well, it's definitely a
|
|
// missing unwrap.
|
|
if (toType->getOptionalObjectType())
|
|
return false;
|
|
|
|
// If this is a leading-dot syntax member chain with `?.`
|
|
// notation, it wouldn't be possible to infer the base type
|
|
// without the contextual type, so we have to treat it as
|
|
// a missing unwrap.
|
|
if (auto *OEE = getAsExpr<OptionalEvaluationExpr>(anchor)) {
|
|
if (isExpr<UnresolvedMemberChainResultExpr>(OEE->getSubExpr()))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}();
|
|
|
|
// `OptionalEvaluationExpr` doesn't add a new level of
|
|
// optionality but it could be hiding concrete types
|
|
// behind itself which we can use to better understand
|
|
// how many levels of optionality have to be unwrapped.
|
|
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(anchor)) {
|
|
auto *subExpr = OEE->getSubExpr();
|
|
|
|
// First, let's check whether it has been determined that
|
|
// it was incorrect to use `?` in this position.
|
|
if (cs.hasFixFor(cs.getConstraintLocator(subExpr), FixKind::RemoveUnwrap)) {
|
|
if (auto *typeVar =
|
|
fromType->getOptionalObjectType()->getAs<TypeVariableType>()) {
|
|
// If the optional chain is invalid let's unwrap optional and
|
|
// re-introduce the constraint to be solved later once both sides
|
|
// are sufficiently resolved, this would allow to diagnose not only
|
|
// the invalid unwrap but an invalid conversion (if any) as well.
|
|
cs.addConstraint(matchKind, typeVar, toType,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto type = cs.getType(subExpr);
|
|
// If the type of sub-expression is optional, type of the
|
|
// `OptionalEvaluationExpr` could be safely ignored because
|
|
// it doesn't add any type information.
|
|
if (type->getOptionalObjectType())
|
|
fromType = type;
|
|
|
|
// Don't attempt the fix until sub-expression is resolved
|
|
// if chain is not using leading-dot syntax. This is better
|
|
// than attempting to propagate type information down optional
|
|
// chain which is hard to diagnose.
|
|
if (type->isTypeVariableOrMember() &&
|
|
!isa<UnresolvedMemberChainResultExpr>(subExpr))
|
|
return false;
|
|
|
|
// If this is a conversion from optional chain to some
|
|
// other type e.g. contextual type or a parameter type,
|
|
// let's use `Bind` to match object types because
|
|
// object type of the optional chain is a type variable.
|
|
//
|
|
// One exception is contextual conversion - in such cases
|
|
// let's give optional chain a chance to infer its inner type
|
|
// first, that makes it much easier to diagnose contextual
|
|
// mismatch vs. missing optional unwrap.
|
|
if (!possibleContextualMismatch && matchKind >= ConstraintKind::Conversion)
|
|
matchKind = ConstraintKind::Bind;
|
|
}
|
|
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(anchor)) {
|
|
if (DRE->getDecl()->isImplicit()) {
|
|
// The expression that provides the first type is implicit and never
|
|
// spelled out in source code, e.g. $match in an expression pattern.
|
|
// Thus we cannot force unwrap the first type
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (auto *optTryExpr = dyn_cast<OptionalTryExpr>(anchor)) {
|
|
auto subExprType = cs.getType(optTryExpr->getSubExpr());
|
|
const bool isSwift5OrGreater =
|
|
cs.getASTContext().LangOpts.isSwiftVersionAtLeast(5);
|
|
|
|
if (subExprType->getOptionalObjectType()) {
|
|
if (isSwift5OrGreater) {
|
|
// For 'try?' expressions, a ForceOptional fix converts 'try?'
|
|
// to 'try!'. If the sub-expression is optional, then a force-unwrap
|
|
// won't change anything in Swift 5+ because 'try?' already avoids
|
|
// adding an additional layer of Optional there.
|
|
return false;
|
|
}
|
|
} else {
|
|
// In cases when sub-expression isn't optional, 'try?'
|
|
// always adds one level of optionality regardless of
|
|
// language mode, so we can safely try to bind its
|
|
// object type to contextual type without risk of
|
|
// causing more optionality mismatches down the road.
|
|
//
|
|
// For contextual conversions let's give `try?` a chance to
|
|
// infer inner type which, if incorrect, should result in
|
|
// contextual conversion failure instead of optional unwrap.
|
|
matchKind = possibleContextualMismatch ? ConstraintKind::Conversion
|
|
: ConstraintKind::Bind;
|
|
}
|
|
}
|
|
|
|
Type fromObjectType, toObjectType;
|
|
unsigned fromUnwraps, toUnwraps;
|
|
|
|
std::tie(fromObjectType, fromUnwraps) = getObjectTypeAndNumUnwraps(fromType);
|
|
std::tie(toObjectType, toUnwraps) = getObjectTypeAndNumUnwraps(toType);
|
|
|
|
// Since equality is symmetric and it decays into a `Bind`, eagerly
|
|
// unwrapping optionals from either side might be incorrect since
|
|
// there is not enough information about what is expected e.g.
|
|
// `Int?? equal T0?` just like `T0? equal Int??` allows `T0` to be
|
|
// bound to `Int?` and there is no need to unwrap. Solver has to wait
|
|
// until more information becomes available about what `T0` is expected
|
|
// to be before taking action.
|
|
if (matchKind == ConstraintKind::Equal &&
|
|
(fromObjectType->is<TypeVariableType>() ||
|
|
toObjectType->is<TypeVariableType>())) {
|
|
return false;
|
|
}
|
|
|
|
// If `from` is not less optional than `to`, force unwrap is
|
|
// not going to help here. In case of object type of `from`
|
|
// is a type variable, let's assume that it might be optional.
|
|
if (fromUnwraps <= toUnwraps && !fromObjectType->is<TypeVariableType>())
|
|
return false;
|
|
|
|
// If the result of optional chaining is converted to
|
|
// an optional contextual type represented by a type
|
|
// variable e.g. `T?`, there can be no optional mismatch
|
|
// because `T` could be bound to an optional of any depth.
|
|
if (isa<OptionalEvaluationExpr>(anchor) && toUnwraps > 0) {
|
|
if (locator.endsWith<LocatorPathElt::ContextualType>() &&
|
|
toObjectType->is<TypeVariableType>())
|
|
return false;
|
|
}
|
|
|
|
auto result =
|
|
cs.matchTypes(fromObjectType, toObjectType, matchKind,
|
|
ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix, locator);
|
|
if (!result.isSuccess())
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(ForceOptional::create(
|
|
cs, fromType, toType, cs.getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
static bool repairArrayLiteralUsedAsDictionary(
|
|
ConstraintSystem &cs, Type arrayType, Type dictType,
|
|
ConstraintKind matchKind,
|
|
SmallVectorImpl<RestrictionOrFix> &conversionsOrFixes,
|
|
ConstraintLocator *loc) {
|
|
if (auto *fix = TreatArrayLiteralAsDictionary::attempt(cs, dictType,
|
|
arrayType, loc)) {
|
|
// Ignore any attempts at promoting the value to an optional as even after
|
|
// stripping off all optionals above the underlying types won't match (array
|
|
// vs dictionary).
|
|
conversionsOrFixes.erase(
|
|
llvm::remove_if(conversionsOrFixes,
|
|
[&](RestrictionOrFix &E) {
|
|
if (auto restriction = E.getRestriction())
|
|
return *restriction == ConversionRestrictionKind::
|
|
ValueToOptional ||
|
|
*restriction == ConversionRestrictionKind::
|
|
OptionalToOptional;
|
|
return false;
|
|
}),
|
|
conversionsOrFixes.end());
|
|
|
|
conversionsOrFixes.push_back(fix);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Let's check whether this is an out-of-order argument in binary
|
|
/// operator/function with concrete type parameters e.g.
|
|
/// `func ^^(x: Int, y: String)` called as `"" ^^ 42` instead of
|
|
/// `42 ^^ ""` and repair it by using out-of-order fix on the
|
|
/// parent locator.
|
|
static bool repairOutOfOrderArgumentsInBinaryFunction(
|
|
ConstraintSystem &cs, SmallVectorImpl<RestrictionOrFix> &conversionsOrFixes,
|
|
ConstraintLocator *locator) {
|
|
if (!locator->isLastElement<LocatorPathElt::ApplyArgToParam>())
|
|
return false;
|
|
|
|
auto path = locator->getPath();
|
|
auto *parentLoc =
|
|
cs.getConstraintLocator(locator->getAnchor(), path.drop_back());
|
|
|
|
if (cs.hasFixFor(parentLoc, FixKind::MoveOutOfOrderArgument))
|
|
return true;
|
|
|
|
auto *calleeLoc = cs.getCalleeLocator(locator);
|
|
if (!calleeLoc)
|
|
return false;
|
|
|
|
auto overload = cs.findSelectedOverloadFor(calleeLoc);
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
auto *fnType = overload->adjustedOpenedType->getAs<FunctionType>();
|
|
if (!(fnType && fnType->getNumParams() == 2))
|
|
return false;
|
|
|
|
auto argument = simplifyLocatorToAnchor(locator);
|
|
// Argument could be synthesized.
|
|
if (!argument)
|
|
return false;
|
|
|
|
auto argLoc = locator->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
|
|
auto currArgIdx = argLoc.getArgIdx();
|
|
auto currParamIdx = argLoc.getParamIdx();
|
|
|
|
// Argument is extraneous and has been re-ordered to match one
|
|
// of two parameter types.
|
|
if (currArgIdx >= 2 || currArgIdx != currParamIdx)
|
|
return false;
|
|
|
|
auto otherArgIdx = currArgIdx == 0 ? 1 : 0;
|
|
|
|
auto argType = cs.getType(argument);
|
|
auto paramType = fnType->getParams()[otherArgIdx].getOldType();
|
|
|
|
bool isOperatorRef = overload->choice.getDecl()->isOperator();
|
|
|
|
// If one of the parameters is `inout`, we can't flip the arguments.
|
|
{
|
|
auto params = fnType->getParams();
|
|
if (params[0].isInOut() != params[1].isInOut())
|
|
return false;
|
|
}
|
|
|
|
auto getReorderedArgumentLocator = [&](unsigned argIdx) {
|
|
auto paramIdx = argIdx == 0 ? 1 : 0;
|
|
return cs.getConstraintLocator(
|
|
parentLoc, LocatorPathElt::ApplyArgToParam(
|
|
argIdx, paramIdx,
|
|
fnType->getParams()[paramIdx].getParameterFlags()));
|
|
};
|
|
|
|
auto matchArgToParam = [&](Type argType, Type paramType, unsigned argIdx) {
|
|
auto *loc = getReorderedArgumentLocator(argIdx);
|
|
// If argument (and/or parameter) is a generic type let's not even try this
|
|
// fix because it would be impossible to match given types without delaying
|
|
// until more context becomes available.
|
|
if (argType->hasTypeVariable() || paramType->hasTypeVariable())
|
|
return cs.getTypeMatchFailure(loc);
|
|
|
|
// FIXME: There is currently no easy way to avoid attempting
|
|
// fixes, matchTypes do not propagate `TMF_ApplyingFix` flag.
|
|
llvm::SaveAndRestore<ConstraintSystemOptions> options(
|
|
cs.Options, cs.Options - ConstraintSystemFlags::AllowFixes);
|
|
|
|
// Check optionality, if argument is more optional than parameter
|
|
// they are not going to match. This saves us one disjunction because
|
|
// optionals are matched as deep-equality and optional-to-optional.
|
|
{
|
|
unsigned numArgUnwraps;
|
|
unsigned numParamUnwraps;
|
|
|
|
std::tie(argType, numArgUnwraps) = getObjectTypeAndNumUnwraps(argType);
|
|
std::tie(paramType, numParamUnwraps) =
|
|
getObjectTypeAndNumUnwraps(paramType);
|
|
|
|
if (numArgUnwraps > numParamUnwraps)
|
|
return cs.getTypeMatchFailure(loc);
|
|
}
|
|
|
|
return cs.matchTypes(
|
|
argType, paramType,
|
|
isOperatorRef ? ConstraintKind::OperatorArgumentConversion
|
|
: ConstraintKind::ArgumentConversion,
|
|
ConstraintSystem::TypeMatchFlags::TMF_ApplyingFix, loc);
|
|
};
|
|
|
|
auto result = matchArgToParam(argType, paramType, currArgIdx);
|
|
if (result.isSuccess()) {
|
|
// Let's check whether other argument matches current parameter type,
|
|
// if it does - it's definitely out-of-order arguments issue.
|
|
auto *otherArgLoc = getReorderedArgumentLocator(otherArgIdx);
|
|
auto otherArg = simplifyLocatorToAnchor(otherArgLoc);
|
|
// Argument could be synthesized.
|
|
if (!otherArg)
|
|
return false;
|
|
|
|
argType = cs.getType(otherArg);
|
|
paramType = fnType->getParams()[currArgIdx].getOldType();
|
|
|
|
result = matchArgToParam(argType, paramType, otherArgIdx);
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(MoveOutOfOrderArgument::create(
|
|
cs, otherArgIdx, currArgIdx, {{0}, {1}}, parentLoc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to repair typing failures and record fixes if needed.
|
|
/// \return true if at least some of the failures has been repaired
|
|
/// successfully, which allows type matcher to continue.
|
|
bool ConstraintSystem::repairFailures(
|
|
Type lhs, Type rhs, ConstraintKind matchKind, TypeMatchOptions flags,
|
|
SmallVectorImpl<RestrictionOrFix> &conversionsOrFixes,
|
|
ConstraintLocatorBuilder locator) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
// If there is a missing explicit call it could be:
|
|
//
|
|
// a). Contextual e.g. `let _: R = foo`
|
|
// b). Argument is a function value passed to parameter
|
|
// which expects its result type e.g. `foo(bar)`
|
|
// c). Assignment destination type matches return type of
|
|
// of the function value e.g. `foo = bar` or `foo = .bar`
|
|
auto repairByInsertingExplicitCall = [&](Type srcType, Type dstType) -> bool {
|
|
auto fnType = srcType->getAs<FunctionType>();
|
|
if (!fnType)
|
|
return false;
|
|
|
|
// If the locator isn't anchored at an expression, or the expression is
|
|
// implicit, don't try to insert an explicit call into the source code.
|
|
auto *loc = getConstraintLocator(locator);
|
|
auto *anchor = getAsExpr(simplifyLocatorToAnchor(loc));
|
|
if (!anchor || anchor->isImplicit())
|
|
return false;
|
|
|
|
if (isArgumentOfPatternMatchingOperator(loc))
|
|
return false;
|
|
|
|
// Don't attempt this fix for trailing closures.
|
|
if (auto elt = loc->getLastElementAs<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto argumentList = getArgumentList(loc);
|
|
if (argumentList->isTrailingClosureIndex(elt->getArgIdx()))
|
|
return false;
|
|
}
|
|
|
|
// If argument is a function type and all of its parameters have
|
|
// default values, let's see whether error is related to missing
|
|
// explicit call.
|
|
if (fnType->getNumParams() > 0) {
|
|
auto overload = findSelectedOverloadFor(anchor);
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return false;
|
|
|
|
const auto &choice = overload->choice;
|
|
ParameterListInfo info(fnType->getParams(), choice.getDecl(),
|
|
hasAppliedSelf(*this, choice));
|
|
|
|
if (llvm::any_of(indices(fnType->getParams()),
|
|
[&info](const unsigned idx) {
|
|
return !info.hasDefaultArgument(idx);
|
|
}))
|
|
return false;
|
|
}
|
|
|
|
auto resultType = fnType->getResult();
|
|
// If this is situation like `x = { ... }` where closure results in
|
|
// `Void`, let's not suggest to call the closure, because it's most
|
|
// likely not intended.
|
|
if (auto *assignment = getAsExpr<AssignExpr>(anchor)) {
|
|
if (isa<ClosureExpr>(assignment->getSrc()) && resultType->isVoid())
|
|
return false;
|
|
}
|
|
|
|
// If left-hand side is a function type but right-hand
|
|
// side isn't, let's check it would be possible to fix
|
|
// this by forming an explicit call.
|
|
auto convertTo = dstType->lookThroughAllOptionalTypes();
|
|
|
|
// If the RHS is a function type, the source must be a function-returning
|
|
// function.
|
|
if (convertTo->is<FunctionType>() && !resultType->is<FunctionType>())
|
|
return false;
|
|
|
|
// Right-hand side can't be a type variable or dependent member, or `Any`
|
|
// (if function conversion to `Any` didn't succeed there is something else
|
|
// going on e.g. problem with escapiness).
|
|
if (convertTo->isTypeVariableOrMember() || convertTo->isAny())
|
|
return false;
|
|
|
|
ConstraintKind matchKind;
|
|
if (resultType->is<TypeVariableType>()) {
|
|
matchKind = ConstraintKind::Equal;
|
|
} else {
|
|
matchKind = ConstraintKind::Conversion;
|
|
}
|
|
|
|
// FIXME: There is currently no easy way to avoid attempting
|
|
// fixes, matchTypes do not propagate `TMF_ApplyingFix` flag.
|
|
llvm::SaveAndRestore<ConstraintSystemOptions> options(
|
|
Options, Options - ConstraintSystemFlags::AllowFixes);
|
|
|
|
auto result = matchTypes(resultType, dstType, matchKind,
|
|
TypeMatchFlags::TMF_ApplyingFix, locator);
|
|
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(
|
|
InsertExplicitCall::create(*this, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
auto repairByAnyToAnyObjectCast = [&](Type lhs, Type rhs) -> bool {
|
|
if (!(lhs->isAny() && rhs->isAnyObject()))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(MissingConformance::forContextual(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
return true;
|
|
};
|
|
|
|
auto repairByTreatingRValueAsLValue = [&](Type lhs, Type rhs) -> bool {
|
|
if (!lhs->is<LValueType>() &&
|
|
(rhs->is<LValueType>() || rhs->is<InOutType>())) {
|
|
// Conversion from l-value to inout in an operator argument
|
|
// position (which doesn't require explicit `&`) decays into
|
|
// a `Bind` of involved object types, same goes for explicit
|
|
// `&` conversion from l-value to inout type.
|
|
//
|
|
// In case of regular argument conversion although explicit `&`
|
|
// is required we still want to diagnose the problem as one
|
|
// about mutability instead of suggesting to add `&` which wouldn't
|
|
// be correct.
|
|
auto kind = (isExpr<InOutExpr>(anchor) ||
|
|
(rhs->is<InOutType>() &&
|
|
(matchKind == ConstraintKind::ArgumentConversion ||
|
|
matchKind == ConstraintKind::OperatorArgumentConversion)))
|
|
? ConstraintKind::Bind
|
|
: matchKind;
|
|
|
|
auto result = matchTypes(lhs, rhs->getWithoutSpecifierType(), kind,
|
|
TMF_ApplyingFix, locator);
|
|
|
|
if (result.isSuccess()) {
|
|
// If left side is a hole, let's not record a fix since hole can
|
|
// assume any type and already represents a problem elsewhere in
|
|
// the expression.
|
|
if (lhs->isPlaceholder())
|
|
return true;
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
// If this `inout` is in incorrect position, it should be diagnosed
|
|
// by other fixes.
|
|
if (loc->directlyAt<InOutExpr>()) {
|
|
if (!getArgumentLocator(castToExpr(anchor))) {
|
|
conversionsOrFixes.push_back(
|
|
RemoveAddressOf::create(*this, lhs, rhs, loc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
conversionsOrFixes.push_back(TreatRValueAsLValue::create(*this, loc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Check whether given `value` type matches a `RawValue` type of
|
|
// a given raw representable type.
|
|
auto isValueOfRawRepresentable = [&](Type valueType,
|
|
Type rawReprType) -> bool {
|
|
// diagnostic is going to suggest failable initializer anyway.
|
|
if (auto objType = rawReprType->getOptionalObjectType())
|
|
rawReprType = objType;
|
|
|
|
// If value is optional diagnostic would suggest using `Optional.map` in
|
|
// combination with `<Type>(rawValue: ...)` initializer.
|
|
if (auto objType = valueType->getOptionalObjectType())
|
|
valueType = objType;
|
|
|
|
if (rawReprType->isTypeVariableOrMember() || rawReprType->isPlaceholder())
|
|
return false;
|
|
|
|
auto rawValue = isRawRepresentable(*this, rawReprType);
|
|
if (!rawValue)
|
|
return false;
|
|
|
|
auto result = matchTypes(valueType, rawValue, ConstraintKind::Conversion,
|
|
TMF_ApplyingFix, locator);
|
|
return !result.isFailure();
|
|
};
|
|
|
|
// Check whether given `rawReprType` does indeed conform to `RawRepresentable`
|
|
// and if so check that given `expectedType` matches its `RawValue` type. If
|
|
// that condition holds add a tailored fix which is going to suggest to
|
|
// explicitly construct a raw representable type from a given value type.
|
|
auto repairByConstructingRawRepresentableType =
|
|
[&](Type expectedType, Type rawReprType) -> bool {
|
|
if (!isValueOfRawRepresentable(expectedType, rawReprType))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(ExplicitlyConstructRawRepresentable::create(
|
|
*this, rawReprType, expectedType, getConstraintLocator(locator)));
|
|
return true;
|
|
};
|
|
|
|
// Check whether given `rawReprType` does indeed conform to `RawRepresentable`
|
|
// and if so check that given `expectedType` matches its `RawValue` type. If
|
|
// that condition holds add a tailored fix which is going to suggest to
|
|
// use `.rawValue` associated with given raw representable type to match
|
|
// given expected type.
|
|
auto repairByUsingRawValueOfRawRepresentableType =
|
|
[&](Type rawReprType, Type expectedType) -> bool {
|
|
if (!isValueOfRawRepresentable(expectedType, rawReprType))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(UseRawValue::create(
|
|
*this, rawReprType, expectedType, getConstraintLocator(locator)));
|
|
return true;
|
|
};
|
|
|
|
auto hasConversionOrRestriction = [&](ConversionRestrictionKind kind) {
|
|
return llvm::any_of(conversionsOrFixes,
|
|
[kind](const RestrictionOrFix correction) {
|
|
if (auto restriction = correction.getRestriction())
|
|
return restriction == kind;
|
|
return false;
|
|
});
|
|
};
|
|
|
|
auto hasAnyRestriction = [&]() {
|
|
return llvm::any_of(conversionsOrFixes,
|
|
[](const RestrictionOrFix &correction) {
|
|
return bool(correction.getRestriction());
|
|
});
|
|
};
|
|
|
|
// Check whether this is a tuple with a single unlabeled element
|
|
// i.e. `(_: Int)` and return type of that element if so. Note that
|
|
// if the element is pack expansion type the tuple is significant.
|
|
auto isSingleUnlabeledElementTuple = [](Type type) -> Type {
|
|
if (auto *tuple = type->getAs<TupleType>()) {
|
|
if (tuple->getNumElements() == 1 && !tuple->getElement(0).hasName()) {
|
|
auto eltType = tuple->getElement(0).getType();
|
|
return isPackExpansionType(eltType) ? Type() : eltType;
|
|
}
|
|
}
|
|
return Type();
|
|
};
|
|
|
|
if (repairArrayLiteralUsedAsDictionary(*this, lhs, rhs, matchKind,
|
|
conversionsOrFixes,
|
|
getConstraintLocator(locator)))
|
|
return true;
|
|
|
|
if (locator.endsWith<LocatorPathElt::ThrownErrorType>()) {
|
|
conversionsOrFixes.push_back(
|
|
IgnoreThrownErrorMismatch::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
auto maybeRepairKeyPathResultFailure = [&](KeyPathExpr *kpExpr) {
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
if (lhs->isTypeVariableOrMember() || rhs->isTypeVariableOrMember())
|
|
return false;
|
|
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality) ||
|
|
hasConversionOrRestriction(ConversionRestrictionKind::ValueToOptional))
|
|
return false;
|
|
|
|
auto i = kpExpr->getComponents().size() - 1;
|
|
auto lastCompLoc =
|
|
getConstraintLocator(kpExpr, LocatorPathElt::KeyPathComponent(i));
|
|
if (hasFixFor(lastCompLoc, FixKind::AllowTypeOrInstanceMember))
|
|
return true;
|
|
|
|
auto *keyPathLoc = getConstraintLocator(anchor);
|
|
|
|
if (hasFixFor(keyPathLoc))
|
|
return true;
|
|
|
|
if (auto contextualInfo = getContextualTypeInfo(anchor)) {
|
|
if (hasFixFor(getConstraintLocator(
|
|
keyPathLoc,
|
|
LocatorPathElt::ContextualType(contextualInfo->purpose))))
|
|
return true;
|
|
}
|
|
|
|
conversionsOrFixes.push_back(IgnoreContextualType::create(
|
|
*this, lhs, rhs,
|
|
getConstraintLocator(keyPathLoc, ConstraintLocator::KeyPathValue)));
|
|
return true;
|
|
};
|
|
|
|
// Propagate a hole from one type to another. This is useful for contextual
|
|
// types since type resolution forms a top-level ErrorType for types with
|
|
// nested errors, e.g `S<@error_type>` becomes `@error_type`. As such, when
|
|
// matching `S<$T0> == $T1` where `$T1` is a hole from a contextual type, we
|
|
// want to eagerly turn `$T0` into a hole since it's likely that `$T1` would
|
|
// have provided the contextual info for it.
|
|
auto tryPropagateHole = [&](Type from, Type to) {
|
|
if (from->isPlaceholder() && to->hasTypeVariable())
|
|
recordTypeVariablesAsHoles(to);
|
|
};
|
|
|
|
if (path.empty()) {
|
|
if (!anchor)
|
|
return false;
|
|
|
|
// This could be:
|
|
// - `InOutExpr` used with r-value e.g. `foo(&x)` where `x` is a `let`.
|
|
// - `ForceValueExpr` e.g. `foo.bar! = 42` where `bar` or `foo` are
|
|
// immutable or a subscript e.g. `foo["bar"]! = 42`.
|
|
if (repairByTreatingRValueAsLValue(lhs, rhs))
|
|
return true;
|
|
|
|
// If method reference forms a value type of the key path,
|
|
// there is going to be a constraint to match result of the
|
|
// member lookup to the generic parameter `V` of *KeyPath<R, V>
|
|
// type associated with key path expression, which we need to
|
|
// fix-up here unless last component has already a invalid type or
|
|
// instance fix recorded.
|
|
if (isExpr<KeyPathExpr>(anchor)) {
|
|
if (lhs->isKnownKeyPathType() && rhs->isKnownKeyPathType()) {
|
|
// If we have a conversion happening here, we should let fix happen in
|
|
// simplifyRestrictedConstraint.
|
|
if (hasAnyRestriction())
|
|
return false;
|
|
}
|
|
|
|
conversionsOrFixes.push_back(IgnoreContextualType::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
if (isExpr<OverloadedDeclRefExpr>(anchor)) {
|
|
if (lhs->is<LValueType>()) {
|
|
conversionsOrFixes.push_back(
|
|
TreatRValueAsLValue::create(*this, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *OEE = getAsExpr<OptionalEvaluationExpr>(anchor)) {
|
|
// If concrete type of the sub-expression can't be converted to the
|
|
// type associated with optional evaluation result it could only be
|
|
// contextual mismatch where type of the top-level expression
|
|
// comes from contextual type or its parent expression.
|
|
//
|
|
// Because result type of the optional evaluation is supposed to
|
|
// represent the type of its sub-expression with added level of
|
|
// optionality if needed.
|
|
auto contextualTy = simplifyType(rhs)->getOptionalObjectType();
|
|
if (!lhs->getOptionalObjectType() && !lhs->hasTypeVariable() &&
|
|
contextualTy && !contextualTy->isTypeVariableOrMember()) {
|
|
auto *fixLocator = getConstraintLocator(OEE->getSubExpr());
|
|
// If inner expression already has a fix, consider this two-way
|
|
// mismatch as un-salvageable.
|
|
if (hasFixFor(fixLocator))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(
|
|
IgnoreContextualType::create(*this, lhs, rhs, fixLocator));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *AE = getAsExpr<AssignExpr>(anchor)) {
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
return true;
|
|
|
|
if (auto *inoutExpr = dyn_cast<InOutExpr>(AE->getSrc())) {
|
|
auto *loc = getConstraintLocator(inoutExpr);
|
|
|
|
// Remove all of the restrictions because none of them
|
|
// are going to succeed.
|
|
conversionsOrFixes.erase(
|
|
llvm::remove_if(
|
|
conversionsOrFixes,
|
|
[](const auto &entry) { return bool(entry.getRestriction()); }),
|
|
conversionsOrFixes.end());
|
|
|
|
if (hasFixFor(loc, FixKind::RemoveAddressOf))
|
|
return true;
|
|
|
|
conversionsOrFixes.push_back(
|
|
RemoveAddressOf::create(*this, lhs, rhs, loc));
|
|
return true;
|
|
}
|
|
|
|
if (repairByAnyToAnyObjectCast(lhs, rhs))
|
|
return true;
|
|
|
|
if (repairViaBridgingCast(*this, lhs, rhs, conversionsOrFixes, locator))
|
|
return true;
|
|
|
|
if (hasAnyRestriction())
|
|
return false;
|
|
|
|
// If destination is `AnyObject` it means that source doesn't conform.
|
|
if (rhs->getWithoutSpecifierType()
|
|
->lookThroughAllOptionalTypes()
|
|
->isAnyObject()) {
|
|
conversionsOrFixes.push_back(IgnoreAssignmentDestinationType::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
auto *destExpr = AE->getDest();
|
|
// Literal expression as well as call/operator application can't be
|
|
// used as an assignment destination because resulting type is immutable.
|
|
if (isa<ApplyExpr>(destExpr) || isa<LiteralExpr>(destExpr)) {
|
|
conversionsOrFixes.push_back(
|
|
TreatRValueAsLValue::create(*this, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
// If destination has a function type, it might either be
|
|
// a property with a function type or a method reference,
|
|
// e.g. `foo.bar = 42` neither can be used if the destination
|
|
// is not l-value.
|
|
auto destType = getType(destExpr);
|
|
auto destTypeVar = destType->getAs<TypeVariableType>();
|
|
bool destIsOrCanBindToLValue =
|
|
destType->is<LValueType>() ||
|
|
(destTypeVar && destTypeVar->getImpl().canBindToLValue());
|
|
if (!destIsOrCanBindToLValue && rhs->is<FunctionType>()) {
|
|
conversionsOrFixes.push_back(
|
|
TreatRValueAsLValue::create(*this, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind,
|
|
conversionsOrFixes, locator))
|
|
return true;
|
|
|
|
// `rhs` - is an assignment destination and `lhs` is its source.
|
|
if (repairByConstructingRawRepresentableType(lhs, rhs))
|
|
return true;
|
|
|
|
if (repairByUsingRawValueOfRawRepresentableType(lhs, rhs))
|
|
return true;
|
|
|
|
// If either side is a placeholder then let's consider this
|
|
// assignment correctly typed.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
// Let's try to match source and destination types one more
|
|
// time to see whether they line up, if they do - the problem is
|
|
// related to immutability, otherwise it's a type mismatch.
|
|
auto result = matchTypes(lhs, rhs, ConstraintKind::Conversion,
|
|
TMF_ApplyingFix, locator);
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
if (destIsOrCanBindToLValue || result.isFailure()) {
|
|
// Let this assignment failure be diagnosed by the
|
|
// AllowTupleTypeMismatch fix already recorded.
|
|
if (hasFixFor(loc, FixKind::AllowTupleTypeMismatch))
|
|
return true;
|
|
|
|
conversionsOrFixes.push_back(
|
|
IgnoreAssignmentDestinationType::create(*this, lhs, rhs, loc));
|
|
} else {
|
|
conversionsOrFixes.push_back(TreatRValueAsLValue::create(*this, loc));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (auto *VD = getAsDecl<ValueDecl>(anchor)) {
|
|
// Matching a witness to an protocol requirement.
|
|
if (auto witnessElt = path[0].getAs<LocatorPathElt::Witness>()) {
|
|
if (isa<ProtocolDecl>(VD->getDeclContext()) &&
|
|
VD->isProtocolRequirement()) {
|
|
auto *witness = witnessElt->getDecl();
|
|
if ((VD->preconcurrency() || witness->preconcurrency()) &&
|
|
// Note that the condition below is very important,
|
|
// we need to wait until the very last moment to strip
|
|
// the concurrency annotations from the innermost type.
|
|
conversionsOrFixes.empty()) {
|
|
// Allow requirements/witnesses to introduce `swift_attr` and other
|
|
// concurrency related annotations (e.g. `& Sendable` or `@Sendable`)
|
|
// (note that `swift_attr` in type contexts weren't supported
|
|
// before) and for witnesses to adopt them gradually by matching
|
|
// with a warning in non-strict concurrency mode.
|
|
if (!(Context.isSwiftVersionAtLeast(6) ||
|
|
Context.LangOpts.StrictConcurrencyLevel ==
|
|
StrictConcurrency::Complete)) {
|
|
auto strippedLHS = lhs->stripConcurrency(/*recursive=*/true,
|
|
/*dropGlobalActor=*/true);
|
|
auto strippedRHS = rhs->stripConcurrency(/*recursive=*/true,
|
|
/*dropGlobalActor=*/true);
|
|
|
|
// If nothing got stripped there is no reason to re-match
|
|
// the types.
|
|
if (!strippedLHS->isEqual(lhs) || !strippedRHS->isEqual(rhs)) {
|
|
auto result = matchTypes(strippedLHS, strippedRHS, matchKind,
|
|
flags | TMF_ApplyingFix, locator);
|
|
if (!result.isFailure()) {
|
|
increaseScore(SK_MissingSynthesizableConformance, locator);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is a conversion associated with an existential member access
|
|
// along the path, the problem is that the constraint system does not support
|
|
// the (formally sane) upcast required to access the member.
|
|
if (llvm::find_if(path, [](const LocatorPathElt &elt) -> bool {
|
|
return elt.is<LocatorPathElt::ExistentialMemberAccessConversion>();
|
|
}) != path.end()) {
|
|
if (auto overload = findSelectedOverloadFor(castToExpr(anchor))) {
|
|
auto &choice = overload->choice;
|
|
conversionsOrFixes.push_back(AllowMemberRefOnExistential::create(
|
|
*this, choice.getBaseType(), choice.getDecl(),
|
|
DeclNameRef(choice.getDecl()->getName()),
|
|
getConstraintLocator(locator)));
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto elt = path.back();
|
|
switch (elt.getKind()) {
|
|
case ConstraintLocator::LValueConversion: {
|
|
// Ignore l-value conversion element since it has already
|
|
// played its role.
|
|
path.pop_back();
|
|
// If this is a contextual mismatch between l-value types e.g.
|
|
// `@lvalue String vs. @lvalue Int`, let's pretend that it's okay.
|
|
if (!path.empty()) {
|
|
if (path.back().is<LocatorPathElt::ContextualType>()) {
|
|
auto *locator = getConstraintLocator(anchor, path.back());
|
|
conversionsOrFixes.push_back(
|
|
IgnoreContextualType::create(*this, lhs, rhs, locator));
|
|
break;
|
|
}
|
|
|
|
// There is no subtyping between object types of inout argument/parameter.
|
|
if (auto argConv = path.back().getAs<LocatorPathElt::ApplyArgToParam>()) {
|
|
// Attempt conversions first.
|
|
if (hasAnyRestriction())
|
|
break;
|
|
|
|
// Unwraps are allowed to preserve l-valueness so we can suggest
|
|
// them here.
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind,
|
|
conversionsOrFixes, locator))
|
|
return true;
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
auto result = matchTypes(lhs, rhs, ConstraintKind::Conversion,
|
|
TMF_ApplyingFix, locator);
|
|
|
|
ConstraintFix *fix = nullptr;
|
|
if (result.isFailure()) {
|
|
// If this is a "destination" argument to a mutating operator
|
|
// like `+=`, let's consider it contextual and only attempt
|
|
// to fix type mismatch on the "source" right-hand side of
|
|
// such operators.
|
|
if (isOperatorArgument(loc) && argConv->getArgIdx() == 0)
|
|
break;
|
|
|
|
fix = AllowArgumentMismatch::create(*this, lhs, rhs, loc);
|
|
} else {
|
|
fix = AllowInOutConversion::create(*this, lhs, rhs, loc);
|
|
}
|
|
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
// If this is a problem with result type of a subscript setter,
|
|
// let's re-attempt to repair without l-value conversion in the
|
|
// locator to fix underlying type mismatch.
|
|
if (path.back().is<LocatorPathElt::FunctionResult>()) {
|
|
return repairFailures(lhs, rhs, matchKind, flags, conversionsOrFixes,
|
|
getConstraintLocator(anchor, path));
|
|
}
|
|
|
|
// If this is a function type param type mismatch in any position,
|
|
// the mismatch we want to report is for the whole structural type.
|
|
auto last = std::find_if(
|
|
path.rbegin(), path.rend(), [](LocatorPathElt &elt) -> bool {
|
|
return elt.is<LocatorPathElt::FunctionArgument>();
|
|
});
|
|
|
|
if (last != path.rend())
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ApplyArgToParam: {
|
|
auto loc = getConstraintLocator(locator);
|
|
|
|
// If this type mismatch is associated with a synthesized argument,
|
|
// let's just ignore it because the main problem is the absence of
|
|
// the argument.
|
|
if (auto applyLoc = elt.getAs<LocatorPathElt::ApplyArgToParam>()) {
|
|
if (auto *argumentList = getArgumentList(loc)) {
|
|
// This is either synthesized argument or a default value.
|
|
if (applyLoc->getArgIdx() >= argumentList->size()) {
|
|
auto *calleeLoc = getCalleeLocator(loc);
|
|
auto overload = findSelectedOverloadFor(calleeLoc);
|
|
// If this cannot be a default value matching, let's ignore.
|
|
if (!(overload && overload->choice.isDecl()))
|
|
return true;
|
|
|
|
// Ignore decls that don't have meaningful parameter lists - this
|
|
// matches variables and parameters with function types.
|
|
auto *paramList = overload->choice.getDecl()->getParameterList();
|
|
if (!paramList)
|
|
return true;
|
|
|
|
if (!paramList->get(applyLoc->getParamIdx())->getTypeOfDefaultExpr())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't attempt to fix an argument being passed to a
|
|
// _OptionalNilComparisonType parameter. Such an overload should only take
|
|
// effect when a nil literal is used in valid code, and doesn't offer any
|
|
// useful fixes for invalid code.
|
|
if (auto *nominal = rhs->getAnyNominal()) {
|
|
if (nominal->isStdlibDecl() &&
|
|
nominal->getName() == getASTContext().Id_OptionalNilComparisonType) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (isForCodeCompletion()) {
|
|
// If the argument contains the code completion location, the user has not
|
|
// finished typing out this argument yet. Treat the mismatch as valid so
|
|
// we don't penalize this solution.
|
|
if (auto *arg = getAsExpr(simplifyLocatorToAnchor(loc))) {
|
|
// Ignore synthesized args like $match in implicit pattern match
|
|
// operator calls. Their source location is usually the same as the
|
|
// other (explicit) argument's so source range containment alone isn't
|
|
// sufficient.
|
|
bool isSynthesizedArg = arg->isImplicit() && isa<DeclRefExpr>(arg);
|
|
if (!isSynthesizedArg && isForCodeCompletion() &&
|
|
containsIDEInspectionTarget(arg) && !lhs->isVoid() &&
|
|
!lhs->isUninhabited())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
break;
|
|
|
|
bool isPatternMatching = isArgumentOfPatternMatchingOperator(loc);
|
|
// Let's not suggest force downcasts in pattern-matching context.
|
|
if (!isPatternMatching &&
|
|
repairViaBridgingCast(*this, lhs, rhs, conversionsOrFixes, locator))
|
|
break;
|
|
|
|
// Argument is a r-value but parameter expects an l-value e.g.
|
|
//
|
|
// func foo(_ x: inout Int) {}
|
|
// let x: Int = 42
|
|
// foo(x) // `x` can't be converted to `inout Int`.
|
|
//
|
|
// This has to happen before checking for optionality mismatch
|
|
// because otherwise `Int? arg conv inout Int` is going to get
|
|
// fixed as 2 fixes - "force unwrap" + r-value -> l-value mismatch.
|
|
if (repairByTreatingRValueAsLValue(lhs, rhs))
|
|
break;
|
|
|
|
// If argument in l-value type and parameter is `inout` or a pointer,
|
|
// let's see if it's generic parameter matches and suggest adding explicit
|
|
// `&`.
|
|
if (lhs->is<LValueType>() &&
|
|
(rhs->is<InOutType>() || rhs->getAnyPointerElementType())) {
|
|
auto baseType = rhs->is<InOutType>() ? rhs->getInOutObjectType()
|
|
: rhs->getAnyPointerElementType();
|
|
|
|
// Let's use `BindToPointer` constraint here to match up base types
|
|
// of implied `inout` argument and `inout` or pointer parameter.
|
|
// This helps us to avoid implicit conversions associated with
|
|
// `ArgumentConversion` constraint.
|
|
auto result = matchTypes(lhs->getRValueType(), baseType,
|
|
ConstraintKind::BindToPointerType,
|
|
TypeMatchFlags::TMF_ApplyingFix, locator);
|
|
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(AddAddressOf::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the argument is inout and the parameter is not inout or a pointer,
|
|
// suggest removing the &.
|
|
if (lhs->is<InOutType>() && !rhs->is<InOutType>()) {
|
|
auto objectType = rhs->lookThroughAllOptionalTypes();
|
|
if (!objectType->getAnyPointerElementType()) {
|
|
auto result = matchTypes(lhs->getInOutObjectType(), rhs,
|
|
ConstraintKind::ArgumentConversion,
|
|
TypeMatchFlags::TMF_ApplyingFix, locator);
|
|
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(RemoveAddressOf::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If parameter type is `Any` the problem might be related to
|
|
// invalid escapiness of the argument.
|
|
if (rhs->isAny())
|
|
break;
|
|
|
|
// If there are any restrictions here we need to wait and let
|
|
// `simplifyRestrictedConstraintImpl` handle them.
|
|
if (hasAnyRestriction())
|
|
break;
|
|
|
|
if (auto *fix = fixPropertyWrapperFailure(
|
|
*this, lhs, loc,
|
|
[&](SelectedOverload overload, VarDecl *decl, Type newBase) {
|
|
// FIXME: There is currently no easy way to avoid attempting
|
|
// fixes, matchTypes do not propagate `TMF_ApplyingFix` flag.
|
|
llvm::SaveAndRestore<ConstraintSystemOptions> options(
|
|
Options, Options - ConstraintSystemFlags::AllowFixes);
|
|
|
|
TypeMatchOptions flags;
|
|
return matchTypes(newBase, rhs, ConstraintKind::Subtype, flags,
|
|
getConstraintLocator(locator))
|
|
.isSuccess();
|
|
},
|
|
rhs)) {
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
// If this is an implicit 'something-to-pointer' conversion
|
|
// it's going to be diagnosed by specialized fix which deals
|
|
// with generic argument mismatches.
|
|
if (matchKind == ConstraintKind::BindToPointerType) {
|
|
if (!rhs->isPlaceholder())
|
|
break;
|
|
}
|
|
|
|
// If this is a ~= operator implicitly generated by pattern matching
|
|
// let's not try to fix right-hand side of the operator because it's
|
|
// a correct contextual type.
|
|
if (isPatternMatching &&
|
|
elt.castTo<LocatorPathElt::ApplyArgToParam>().getParamIdx() == 1)
|
|
break;
|
|
|
|
if (auto *fix = ExpandArrayIntoVarargs::attempt(*this, lhs, rhs, locator)) {
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
// If parameter is a collection but argument is not, let's try
|
|
// to try and match collection element type to the argument to
|
|
// produce better diagnostics e.g.:
|
|
//
|
|
// ```
|
|
// func foo<T>(_: [T]) {}
|
|
// foo(1) // expected '[Int]', got 'Int'
|
|
// ```
|
|
if (rhs->isKnownStdlibCollectionType()) {
|
|
std::function<Type(Type)> getArrayOrSetType = [&](Type type) -> Type {
|
|
if (auto eltTy = type->getArrayElementType())
|
|
return getArrayOrSetType(eltTy);
|
|
|
|
if (auto eltTy = isSetType(type))
|
|
return getArrayOrSetType(*eltTy);
|
|
|
|
return type;
|
|
};
|
|
|
|
// Let's ignore any optional types associated with element e.g. `[T?]`
|
|
auto rhsEltTy = getArrayOrSetType(rhs)->lookThroughAllOptionalTypes();
|
|
(void)matchTypes(lhs, rhsEltTy, ConstraintKind::Equal, TMF_ApplyingFix,
|
|
locator);
|
|
}
|
|
|
|
// If either type has a placeholder, consider this fixed.
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
// `lhs` - is an argument and `rhs` is a parameter type.
|
|
if (repairByConstructingRawRepresentableType(lhs, rhs))
|
|
break;
|
|
|
|
if (repairByUsingRawValueOfRawRepresentableType(lhs, rhs))
|
|
break;
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
{
|
|
auto *calleeLocator = getCalleeLocator(loc);
|
|
if (hasFixFor(calleeLocator, FixKind::AddQualifierToAccessTopLevelName)) {
|
|
if (auto overload = findSelectedOverloadFor(calleeLocator)) {
|
|
if (auto choice = overload->choice.getDeclOrNull()) {
|
|
// If this is an argument of a symmetric function/operator let's
|
|
// not fix any position rather than first because we'd just end
|
|
// up with ambiguity instead of reporting an actual problem with
|
|
// mismatched type since each argument can have district bindings.
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(choice)) {
|
|
auto *paramList = AFD->getParameters();
|
|
auto firstParamType = paramList->get(0)->getInterfaceType();
|
|
if (elt.castTo<LocatorPathElt::ApplyArgToParam>().getParamIdx() >
|
|
0 &&
|
|
llvm::all_of(*paramList, [&](const ParamDecl *param) -> bool {
|
|
return param->getInterfaceType()->isEqual(firstParamType);
|
|
}))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (repairOutOfOrderArgumentsInBinaryFunction(*this, conversionsOrFixes,
|
|
loc))
|
|
return true;
|
|
|
|
// There is already a remove extraneous arguments fix recorded for this
|
|
// apply arg to param locator, so let's skip the default argument mismatch.
|
|
if (hasFixFor(loc, FixKind::RemoveExtraneousArguments))
|
|
return true;
|
|
|
|
// If parameter is a pack, let's see if we have already recorded
|
|
// either synthesized or extraneous argument fixes.
|
|
if (rhs->is<PackType>()) {
|
|
ArrayRef tmpPath(path);
|
|
|
|
// Ignore argument/parameter type conversion mismatch if we already
|
|
// detected a tuple splat issue.
|
|
if (hasFixFor(loc,
|
|
FixKind::DestructureTupleToMatchPackExpansionParameter))
|
|
return true;
|
|
|
|
// Path would end with `ApplyArgument`.
|
|
auto *argsLoc = getConstraintLocator(anchor, tmpPath.drop_back());
|
|
if (hasFixFor(argsLoc, FixKind::RemoveExtraneousArguments) ||
|
|
hasFixFor(argsLoc, FixKind::AddMissingArguments))
|
|
return true;
|
|
}
|
|
|
|
// If the argument couldn't be found, this could be a default value
|
|
// type mismatch.
|
|
if (!simplifyLocatorToAnchor(loc)) {
|
|
auto *calleeLocator = getCalleeLocator(loc);
|
|
unsigned paramIdx =
|
|
loc->castLastElementTo<LocatorPathElt::ApplyArgToParam>()
|
|
.getParamIdx();
|
|
|
|
if (auto overload = findSelectedOverloadFor(calleeLocator)) {
|
|
if (auto *decl = overload->choice.getDeclOrNull()) {
|
|
if (auto paramList = decl->getParameterList()) {
|
|
if (paramList->get(paramIdx)->getTypeOfDefaultExpr()) {
|
|
conversionsOrFixes.push_back(
|
|
IgnoreDefaultExprTypeMismatch::create(*this, lhs, rhs, loc));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
conversionsOrFixes.push_back(
|
|
AllowArgumentMismatch::create(*this, lhs, rhs, loc));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::KeyPathRoot: {
|
|
// The root mismatch is from base U? to U or a subtype of U in keypath
|
|
// application so let's suggest an unwrap the optional fix.
|
|
if (auto unwrapFix = UnwrapOptionalBaseKeyPathApplication::attempt(
|
|
*this, lhs, rhs, getConstraintLocator(locator))) {
|
|
conversionsOrFixes.push_back(unwrapFix);
|
|
break;
|
|
}
|
|
|
|
conversionsOrFixes.push_back(AllowKeyPathRootTypeMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::WrappedValue: {
|
|
conversionsOrFixes.push_back(AllowWrappedValueMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::FunctionArgument: {
|
|
// Let's drop the last element which points to a single argument
|
|
// and see if this is a contextual mismatch.
|
|
path.pop_back();
|
|
if (path.empty() ||
|
|
!(path.back().getKind() == ConstraintLocator::ApplyArgToParam ||
|
|
path.back().getKind() == ConstraintLocator::ContextualType))
|
|
return false;
|
|
|
|
if (auto argToParamElt =
|
|
path.back().getAs<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto loc = getConstraintLocator(anchor, path);
|
|
|
|
if (auto closure = getAsExpr<ClosureExpr>(simplifyLocatorToAnchor(loc))) {
|
|
auto closureTy = getClosureType(closure);
|
|
// What we have here is a form or tuple splat with no arguments
|
|
// demonstrated by following example:
|
|
//
|
|
// func foo<T: P>(_: T, _: (T.Element) -> Int) {}
|
|
// foo { 42 }
|
|
//
|
|
// In cases like this `T.Element` might be resolved to `Void`
|
|
// which means that we have to try a single empty tuple argument
|
|
// as a narrow exception to SE-0110, see `matchFunctionTypes`.
|
|
//
|
|
// But if `T.Element` didn't get resolved to `Void` we'd like
|
|
// to diagnose this as a missing argument which can't be ignored or
|
|
// a tuple is trying to be inferred as a tuple for destructuring but
|
|
// contextual argument does not match(in this case we remove the extra
|
|
// closure arguments).
|
|
if (closureTy->getNumParams() == 0) {
|
|
conversionsOrFixes.push_back(AddMissingArguments::create(
|
|
*this, {SynthesizedArg{0, AnyFunctionType::Param(lhs)}}, loc));
|
|
break;
|
|
}
|
|
|
|
// Since this is a problem with `FunctionArgument` we know that the
|
|
// contextual type only has one parameter, if closure has more than
|
|
// that the fix is to remove extraneous ones.
|
|
if (closureTy->getNumParams() > 1) {
|
|
auto callee = getCalleeLocator(loc);
|
|
if (auto overload = findSelectedOverloadFor(callee)) {
|
|
auto fnType = simplifyType(overload->adjustedOpenedType)
|
|
->castTo<FunctionType>();
|
|
auto paramIdx = argToParamElt->getParamIdx();
|
|
auto paramType = fnType->getParams()[paramIdx].getParameterType();
|
|
if (auto paramFnType = paramType->getAs<FunctionType>()) {
|
|
conversionsOrFixes.push_back(RemoveExtraneousArguments::create(
|
|
*this, paramFnType, {}, loc));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *parentLoc = getConstraintLocator(anchor, path);
|
|
|
|
if (lhs->is<InOutType>() != rhs->is<InOutType>()) {
|
|
// Since `FunctionArgument` as a last locator element represents
|
|
// a single parameter of the function type involved in a conversion
|
|
// to another function type, see `matchFunctionTypes`. If there is already
|
|
// a fix for the this conversion, we can just ignore individual function
|
|
// argument in-out mismatch failure by considered this fixed.
|
|
if (hasFixFor(parentLoc))
|
|
return true;
|
|
|
|
// We want to call matchTypes with the default decomposition options
|
|
// in case there are type variables that we couldn't bind due to the
|
|
// inout attribute mismatch.
|
|
auto result = matchTypes(lhs->getInOutObjectType(),
|
|
rhs->getInOutObjectType(), matchKind,
|
|
getDefaultDecompositionOptions(TMF_ApplyingFix),
|
|
locator);
|
|
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(AllowInOutConversion::create(*this, lhs,
|
|
rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// In cases like this `FunctionArgument` as a last locator element
|
|
// represents a single parameter of the function type involved in
|
|
// a conversion to another function type, see `matchFunctionTypes`.
|
|
if (parentLoc->isForContextualType() ||
|
|
parentLoc->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
// If either type has a placeholder, consider this fixed.
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
// If there is a fix associated with contextual conversion or
|
|
// a function type itself, let's ignore argument failure but
|
|
// increase a score.
|
|
if (hasFixFor(parentLoc)) {
|
|
increaseScore(SK_Fix, locator);
|
|
return true;
|
|
}
|
|
|
|
// Since there is only one parameter let's give it a chance to diagnose
|
|
// a more specific error in some situations.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality) ||
|
|
hasConversionOrRestriction(ConversionRestrictionKind::Existential) ||
|
|
hasConversionOrRestriction(ConversionRestrictionKind::Superclass))
|
|
break;
|
|
|
|
conversionsOrFixes.push_back(AllowFunctionTypeMismatch::create(
|
|
*this, lhs, rhs, parentLoc, /*index=*/0));
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::TypeParameterRequirement:
|
|
case ConstraintLocator::ConditionalRequirement: {
|
|
// If either type has a placeholder, consider this fixed.
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
// If requirement is something like `T == [Int]` let's let
|
|
// type matcher a chance to match generic parameters before
|
|
// recording a fix, because then we'll know exactly how many
|
|
// generic parameters did not match.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality))
|
|
break;
|
|
|
|
auto *reqLoc = getConstraintLocator(locator);
|
|
|
|
if (isFixedRequirement(reqLoc, rhs))
|
|
return true;
|
|
|
|
// If this is a requirement on sequence of for-in statement where one
|
|
// of the sides is a completely resolved dependent member, skip it
|
|
// since the issue is with the conformance to `Sequence`, otherwise
|
|
// dependent member would have been substituted.
|
|
if (auto *UDE = getAsExpr<UnresolvedDotExpr>(anchor)) {
|
|
if (UDE->isImplicit() &&
|
|
getContextualTypePurpose(UDE->getBase()) == CTP_ForEachSequence) {
|
|
if ((lhs->is<DependentMemberType>() && !lhs->hasTypeVariable()) ||
|
|
(rhs->is<DependentMemberType>() && !rhs->hasTypeVariable()))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *fix = fixRequirementFailure(*this, lhs, rhs, anchor, path)) {
|
|
recordFixedRequirement(reqLoc, rhs);
|
|
conversionsOrFixes.push_back(fix);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ExistentialConstraintType: {
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
// If there are any restrictions/conversions left to attempt, wait.
|
|
if (hasAnyRestriction())
|
|
break;
|
|
|
|
// Drop the element introduced by DeepEquality matcher.
|
|
path.pop_back();
|
|
|
|
// Presence of DeepEquality conversion delayed repair but since the
|
|
// constraint types didn't match easier, let's retry it.
|
|
return repairFailures(ExistentialType::get(lhs), ExistentialType::get(rhs),
|
|
matchKind, flags, conversionsOrFixes,
|
|
getConstraintLocator(anchor, path));
|
|
}
|
|
|
|
case ConstraintLocator::ClosureBody:
|
|
case ConstraintLocator::ClosureResult: {
|
|
// If either type is a placeholder, consider this fixed, eagerly propagating
|
|
// a hole from the contextual type.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
tryPropagateHole(rhs, lhs);
|
|
return true;
|
|
}
|
|
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
break;
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
// If we could record a generic arguments mismatch instead of this fix,
|
|
// don't record a contextual type mismatch here.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality))
|
|
break;
|
|
|
|
auto *fix = IgnoreContextualType::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator));
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ContextualType: {
|
|
// If either type is a placeholder, consider this fixed, eagerly propagating
|
|
// a hole from the contextual type.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
tryPropagateHole(rhs, lhs);
|
|
return true;
|
|
}
|
|
|
|
// If either side is not yet resolved, it's too early for this fix.
|
|
if (lhs->isTypeVariableOrMember() || rhs->isTypeVariableOrMember())
|
|
break;
|
|
|
|
// If there is already a fix for contextual failure, let's not
|
|
// record a duplicate one.
|
|
if (hasFixFor(getConstraintLocator(locator)))
|
|
return true;
|
|
|
|
auto purpose = getContextualTypePurpose(anchor);
|
|
if (rhs->isVoid() && purpose == CTP_ReturnStmt) {
|
|
conversionsOrFixes.push_back(
|
|
RemoveReturn::create(*this, lhs, getConstraintLocator(locator)));
|
|
return true;
|
|
}
|
|
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
break;
|
|
|
|
if (repairByAnyToAnyObjectCast(lhs, rhs))
|
|
break;
|
|
|
|
if (repairViaBridgingCast(*this, lhs, rhs, conversionsOrFixes, locator))
|
|
break;
|
|
|
|
if (lhs->is<FunctionType>() && !rhs->is<AnyFunctionType>() &&
|
|
isExpr<ClosureExpr>(anchor)) {
|
|
auto *fix = ContextualMismatch::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator));
|
|
conversionsOrFixes.push_back(fix);
|
|
}
|
|
|
|
// Solver can unwrap contextual type in an unlabeled one-element tuple
|
|
// while matching type to a tuple that contains one or more pack expansion
|
|
// types (because such tuples can loose their elements under substitution),
|
|
// if that's the case, let's just produce a regular contextual mismatch fix.
|
|
if (auto contextualType = isSingleUnlabeledElementTuple(rhs)) {
|
|
rhs = contextualType;
|
|
}
|
|
|
|
if (purpose == CTP_Initialization && lhs->is<TupleType>() &&
|
|
rhs->is<TupleType>()) {
|
|
auto *fix = AllowTupleTypeMismatch::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator));
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
// Let's wait until both sides are of the same optionality before
|
|
// attempting `.rawValue` fix.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::ValueToOptional))
|
|
break;
|
|
|
|
if (repairByUsingRawValueOfRawRepresentableType(lhs, rhs))
|
|
break;
|
|
|
|
// If there are any restrictions here we need to wait and let
|
|
// `simplifyRestrictedConstraintImpl` handle them.
|
|
if (hasAnyRestriction())
|
|
break;
|
|
|
|
// `lhs` - is an result type and `rhs` is a contextual type.
|
|
if (repairByConstructingRawRepresentableType(lhs, rhs))
|
|
break;
|
|
|
|
conversionsOrFixes.push_back(IgnoreContextualType::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::FunctionResult: {
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
recordAnyTypeVarAsPotentialHole(lhs);
|
|
recordAnyTypeVarAsPotentialHole(rhs);
|
|
return true;
|
|
}
|
|
|
|
if (auto *kpExpr = getAsExpr<KeyPathExpr>(anchor)) {
|
|
return maybeRepairKeyPathResultFailure(kpExpr);
|
|
}
|
|
|
|
auto *loc = getConstraintLocator(anchor, {path.begin(), path.end() - 1});
|
|
// If this is a mismatch between contextual type and (trailing)
|
|
// closure with explicitly specified result type let's record it
|
|
// as contextual type mismatch.
|
|
if (loc->isLastElement<LocatorPathElt::ContextualType>() ||
|
|
loc->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto argument = simplifyLocatorToAnchor(loc);
|
|
if (isExpr<ClosureExpr>(argument)) {
|
|
auto *locator =
|
|
getConstraintLocator(argument, ConstraintLocator::ClosureResult);
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind,
|
|
conversionsOrFixes, locator))
|
|
return true;
|
|
|
|
conversionsOrFixes.push_back(
|
|
IgnoreContextualType::create(*this, lhs, rhs, locator));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Handle function result coerce expression wrong type conversion.
|
|
if (isExpr<CoerceExpr>(anchor)) {
|
|
auto *fix =
|
|
ContextualMismatch::create(*this, lhs, rhs, loc);
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case ConstraintLocator::Member:
|
|
case ConstraintLocator::DynamicLookupResult: {
|
|
// Most likely this is an attempt to use get-only subscript as mutating,
|
|
// or assign a value of a result of function/member ref e.g. `foo() = 42`
|
|
// or `foo.bar = 42`, or `foo.bar()! = 42`.
|
|
if (repairByTreatingRValueAsLValue(rhs, lhs))
|
|
break;
|
|
|
|
// `apply argument` -> `arg/param compare` ->
|
|
// `@autoclosure result` -> `function result`
|
|
if (path.size() > 3) {
|
|
const auto &elt = path[path.size() - 2];
|
|
if (elt.getKind() == ConstraintLocator::AutoclosureResult &&
|
|
repairByInsertingExplicitCall(lhs, rhs))
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::AutoclosureResult: {
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
return true;
|
|
|
|
auto isPointerType = [](Type type) -> bool {
|
|
return bool(
|
|
type->lookThroughAllOptionalTypes()->getAnyPointerElementType());
|
|
};
|
|
|
|
// Let's see whether this is an implicit conversion to a pointer type
|
|
// which is invalid in @autoclosure context e.g. from `inout`, Array
|
|
// or String.
|
|
if (!isPointerType(lhs) && isPointerType(rhs)) {
|
|
auto result = matchTypes(
|
|
lhs, rhs, ConstraintKind::ArgumentConversion,
|
|
TypeMatchFlags::TMF_ApplyingFix,
|
|
locator.withPathElement(ConstraintLocator::FunctionArgument));
|
|
|
|
if (result.isSuccess())
|
|
conversionsOrFixes.push_back(AllowAutoClosurePointerConversion::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
}
|
|
|
|
// In situations like this:
|
|
//
|
|
// struct S<T> {}
|
|
// func foo(_: @autoclosure () -> S<Int>) {}
|
|
// foo(S<String>())
|
|
//
|
|
// Generic type conversion mismatch is a better fix which is going to
|
|
// point to the generic arguments that did not align properly.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality))
|
|
break;
|
|
|
|
conversionsOrFixes.push_back(AllowArgumentMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::TupleElement: {
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
recordAnyTypeVarAsPotentialHole(lhs);
|
|
recordAnyTypeVarAsPotentialHole(rhs);
|
|
return true;
|
|
}
|
|
|
|
if (isExpr<ArrayExpr>(anchor) || isExpr<DictionaryExpr>(anchor)) {
|
|
// If we could record a generic arguments mismatch instead of this fix,
|
|
// don't record a ContextualMismatch here.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality))
|
|
break;
|
|
|
|
// We already have a fix for trying to initialize/assign an array literal
|
|
// to a dictionary type. In this case elements mismatch only add extra
|
|
// verbosity to the diagnostic. So let's skip the fix and only increase
|
|
// the score to focus on suggesting using dictionary literal instead.
|
|
path.pop_back();
|
|
auto loc = getConstraintLocator(anchor, path);
|
|
if (hasFixFor(loc, FixKind::TreatArrayLiteralAsDictionary)) {
|
|
increaseScore(SK_Fix, loc);
|
|
return true;
|
|
}
|
|
|
|
conversionsOrFixes.push_back(CollectionElementContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
// Drop the `tuple element` locator element so that all tuple element
|
|
// mismatches within the same tuple type can be coalesced later.
|
|
auto index = elt.getAs<LocatorPathElt::TupleElement>()->getIndex();
|
|
path.pop_back();
|
|
|
|
// Drop the tuple type path elements too, but extract each tuple type first.
|
|
if (!path.empty() && path.back().is<LocatorPathElt::TupleType>()) {
|
|
rhs = path.back().getAs<LocatorPathElt::TupleType>()->getType();
|
|
path.pop_back();
|
|
lhs = path.back().getAs<LocatorPathElt::TupleType>()->getType();
|
|
path.pop_back();
|
|
}
|
|
|
|
auto *tupleLocator = getConstraintLocator(locator.getAnchor(), path);
|
|
|
|
// Let this fail if it's a contextual mismatch with sequence element types,
|
|
// as there's a special fix for that.
|
|
if (tupleLocator->isLastElement<LocatorPathElt::SequenceElementType>())
|
|
break;
|
|
|
|
// Generic argument/requirement failures have a more general fix which
|
|
// is attached to a parent type and aggregates all argument failures
|
|
// into a single fix.
|
|
if (tupleLocator->isLastElement<LocatorPathElt::AnyRequirement>() ||
|
|
tupleLocator->isLastElement<LocatorPathElt::GenericArgument>())
|
|
break;
|
|
|
|
// If the mismatch is a part of either optional-to-optional or
|
|
// value-to-optional conversions, let's allow fix refer to a complete
|
|
// top level type and not just a part of it.
|
|
if (tupleLocator->findLast<LocatorPathElt::OptionalInjection>())
|
|
break;
|
|
|
|
if (tupleLocator->isForContextualType()) {
|
|
if (auto contextualTy = isSingleUnlabeledElementTuple(rhs)) {
|
|
return repairFailures(lhs, contextualTy, matchKind, flags,
|
|
conversionsOrFixes, tupleLocator);
|
|
}
|
|
}
|
|
|
|
ConstraintFix *fix;
|
|
if (tupleLocator->isLastElement<LocatorPathElt::FunctionArgument>()) {
|
|
fix = AllowFunctionTypeMismatch::create(*this, lhs, rhs, tupleLocator, index);
|
|
} else if (tupleLocator->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
fix = AllowArgumentMismatch::create(*this, lhs, rhs, tupleLocator);
|
|
} else {
|
|
fix = AllowTupleTypeMismatch::create(*this, lhs, rhs, tupleLocator, index);
|
|
}
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::PackElement: {
|
|
path.pop_back();
|
|
|
|
if (!path.empty() && path.back().is<LocatorPathElt::PackType>())
|
|
path.pop_back();
|
|
|
|
if (!path.empty() && path.back().is<LocatorPathElt::PackType>())
|
|
path.pop_back();
|
|
|
|
return repairFailures(lhs, rhs, matchKind, flags, conversionsOrFixes,
|
|
getConstraintLocator(anchor, path));
|
|
}
|
|
|
|
case ConstraintLocator::PackShape: {
|
|
auto *shapeLocator = getConstraintLocator(locator);
|
|
|
|
// FIXME: If the anchor isn't a pack expansion, this shape requirement
|
|
// came from a same-shape generic requirement, which will fail separately
|
|
// with an applied requirement fix. Currently, pack shapes can themselves be
|
|
// pack types with pack expansions, so matching shape types can recursively
|
|
// add ShapeOf constraints. For now, skip fixing the nested ones to avoid
|
|
// cascading diagnostics.
|
|
if (!isExpr<PackExpansionExpr>(shapeLocator->getAnchor()))
|
|
return true;
|
|
|
|
auto *fix = SkipSameShapeRequirement::create(*this, lhs, rhs, shapeLocator);
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::SequenceElementType: {
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
recordAnyTypeVarAsPotentialHole(lhs);
|
|
recordAnyTypeVarAsPotentialHole(rhs);
|
|
return true;
|
|
}
|
|
|
|
// This is going to be diagnosed as `missing conformance`,
|
|
// so no need to create duplicate fixes.
|
|
if (rhs->isExistentialType())
|
|
break;
|
|
|
|
conversionsOrFixes.push_back(CollectionElementContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::SubscriptMember: {
|
|
if (repairByTreatingRValueAsLValue(lhs, rhs))
|
|
break;
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::Condition: {
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
if (repairByInsertingExplicitCall(lhs, rhs))
|
|
return true;
|
|
|
|
conversionsOrFixes.push_back(IgnoreContextualType::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::UnresolvedMemberChainResult: {
|
|
// Ignore this mismatch if base or result is already a hole.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
if (repairByTreatingRValueAsLValue(lhs, rhs))
|
|
break;
|
|
|
|
// If there is a type mismatch here it's contextual e.g.,
|
|
// `let x: E = .foo(42)`, where `.foo` is a member of `E`
|
|
// but produces an incorrect type.
|
|
auto *fix = IgnoreContextualType::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator));
|
|
conversionsOrFixes.push_back(fix);
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice: {
|
|
// If this is an attempt to use readonly IUO as a destination
|
|
// of an assignment e.g.
|
|
//
|
|
// let x: Int! = 0
|
|
// x = 42 <- `x` can be either `Int?` or `Int` but it can't be an l-value.
|
|
if (lhs->is<LValueType>() && !rhs->is<LValueType>()) {
|
|
auto result = matchTypes(lhs->getWithoutSpecifierType(), rhs, matchKind,
|
|
TMF_ApplyingFix, locator);
|
|
|
|
if (result.isSuccess()) {
|
|
conversionsOrFixes.push_back(
|
|
TreatRValueAsLValue::create(*this, getConstraintLocator(locator)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::InstanceType: {
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::OptionalInjection: {
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind, conversionsOrFixes,
|
|
locator))
|
|
return true;
|
|
|
|
if (path.size() > 1) {
|
|
path.pop_back();
|
|
if (path.back().is<LocatorPathElt::SequenceElementType>()) {
|
|
conversionsOrFixes.push_back(
|
|
CollectionElementContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(anchor, path)));
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::TernaryBranch:
|
|
case ConstraintLocator::SingleValueStmtResult: {
|
|
if (lhs->hasPlaceholder() || rhs->hasPlaceholder())
|
|
return true;
|
|
|
|
// If there's a contextual type, let's consider it the source of truth and
|
|
// produce a contextual mismatch instead of per-branch failure, because
|
|
// it's a better pointer than potential then-to-else type mismatch.
|
|
if (auto contextualType =
|
|
getContextualType(anchor, /*forConstraint=*/false)) {
|
|
auto purpose = getContextualTypePurpose(anchor);
|
|
if (contextualType->isEqual(rhs)) {
|
|
auto *loc = getConstraintLocator(
|
|
anchor, LocatorPathElt::ContextualType(purpose));
|
|
if (hasFixFor(loc, FixKind::IgnoreContextualType))
|
|
return true;
|
|
|
|
if (contextualType->isVoid() && purpose == CTP_ReturnStmt) {
|
|
conversionsOrFixes.push_back(RemoveReturn::create(*this, lhs, loc));
|
|
break;
|
|
}
|
|
|
|
conversionsOrFixes.push_back(
|
|
IgnoreContextualType::create(*this, lhs, rhs, loc));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there is no contextual type, this is most likely a contextual type
|
|
// mismatch between the branches.
|
|
conversionsOrFixes.push_back(ContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::EnumPatternImplicitCastMatch: {
|
|
// If either type is a placeholder, consider this fixed.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
// If we're converting to an existential, we'll diagnose failures in
|
|
// the conformance constraint.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::Existential))
|
|
return false;
|
|
|
|
conversionsOrFixes.push_back(ContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::PatternMatch: {
|
|
auto *pattern = elt.castTo<LocatorPathElt::PatternMatch>().getPattern();
|
|
|
|
// TODO: We ought to introduce a new locator element for this.
|
|
bool isMemberMatch =
|
|
lhs->is<FunctionType>() && isa<EnumElementPattern>(pattern);
|
|
|
|
// If member reference couldn't be resolved, let's allow pattern
|
|
// to have holes.
|
|
if (rhs->isPlaceholder() && isMemberMatch) {
|
|
recordAnyTypeVarAsPotentialHole(lhs);
|
|
return true;
|
|
}
|
|
|
|
// If either type is a placeholder, consider this fixed.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
if (isMemberMatch) {
|
|
conversionsOrFixes.push_back(AllowAssociatedValueMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
// `weak` declaration with an explicit non-optional type e.g.
|
|
// `weak x: X = ...` where `X` is a class.
|
|
if (auto *TP = dyn_cast<TypedPattern>(pattern)) {
|
|
if (auto *NP = dyn_cast<NamedPattern>(TP->getSubPattern())) {
|
|
auto *var = NP->getDecl();
|
|
|
|
auto ROK = ReferenceOwnership::Strong;
|
|
if (auto *OA = var->getAttrs().getAttribute<ReferenceOwnershipAttr>())
|
|
ROK = OA->get();
|
|
|
|
if (!lhs->getOptionalObjectType() &&
|
|
optionalityOf(ROK) == ReferenceOwnershipOptionality::Required) {
|
|
conversionsOrFixes.push_back(
|
|
AllowNonOptionalWeak::create(*this, getConstraintLocator(NP)));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
conversionsOrFixes.push_back(ContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::GenericArgument: {
|
|
// If any of the types is a placeholder, consider it fixed.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder())
|
|
return true;
|
|
|
|
// Ignoring the generic argument because we may have a generic requirement
|
|
// failure e.g. `String bind T.Element`, so let's drop the generic argument
|
|
// path element and recurse in repairFailures to check and potentially
|
|
// record the requirement failure fix.
|
|
auto genericArgElt =
|
|
path.pop_back_val().castTo<LocatorPathElt::GenericArgument>();
|
|
|
|
// If we have something like ... -> type req # -> pack element #, we're
|
|
// solving a requirement of the form T : P where T is a type parameter pack
|
|
if (!path.empty() && path.back().is<LocatorPathElt::PackElement>())
|
|
path.pop_back();
|
|
|
|
if (!path.empty()) {
|
|
if (path.back().is<LocatorPathElt::AnyRequirement>()) {
|
|
return repairFailures(lhs, rhs, matchKind, flags, conversionsOrFixes,
|
|
getConstraintLocator(anchor, path));
|
|
}
|
|
|
|
if (auto argConv = path.back().getAs<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto argIdx = argConv->getArgIdx();
|
|
auto paramIdx = argConv->getParamIdx();
|
|
|
|
auto *argLoc = getConstraintLocator(anchor, path);
|
|
if (auto overload = findSelectedOverloadFor(getCalleeLocator(argLoc))) {
|
|
auto *overloadTy =
|
|
simplifyType(overload->boundType)->castTo<FunctionType>();
|
|
auto *argList = getArgumentList(argLoc);
|
|
ASSERT(argList);
|
|
conversionsOrFixes.push_back(AllowArgumentMismatch::create(
|
|
*this, getType(argList->getExpr(argIdx)),
|
|
overloadTy->getParams()[paramIdx].getPlainType(), argLoc));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// When the solver sets `TMF_MatchingGenericArguments` it means
|
|
// that it's matching generic argument pairs to identify any mismatches
|
|
// as part of larger matching of two generic types. Letting this
|
|
// fail results in a single fix that aggregates all mismatch locations.
|
|
//
|
|
// Types are not always resolved enough to enable that which means
|
|
// that the comparison should be delayed, which brings us here - a
|
|
// standalone constraint that represents such a match, in such cases
|
|
// we create a fix per mismatch location and coalesce them during
|
|
// diagnostics.
|
|
if (flags.contains(TMF_MatchingGenericArguments))
|
|
break;
|
|
|
|
if (hasAnyRestriction())
|
|
break;
|
|
|
|
Type fromType;
|
|
Type toType;
|
|
|
|
if (path.size() >= 2) {
|
|
if (path[path.size() - 2].is<LocatorPathElt::GenericType>()) {
|
|
fromType = path[path.size() - 2]
|
|
.castTo<LocatorPathElt::GenericType>()
|
|
.getType();
|
|
}
|
|
|
|
if (path[path.size() - 1].is<LocatorPathElt::GenericType>()) {
|
|
toType = path[path.size() - 1]
|
|
.castTo<LocatorPathElt::GenericType>()
|
|
.getType();
|
|
}
|
|
}
|
|
|
|
if (!fromType || !toType)
|
|
break;
|
|
|
|
Type fromObjectType, toObjectType;
|
|
unsigned fromUnwraps, toUnwraps;
|
|
|
|
std::tie(fromObjectType, fromUnwraps) = getObjectTypeAndNumUnwraps(lhs);
|
|
std::tie(toObjectType, toUnwraps) = getObjectTypeAndNumUnwraps(rhs);
|
|
|
|
// If the bound contextual type is more optional than the binding type, then
|
|
// propogate binding type to contextual type and attempt to solve.
|
|
if (fromUnwraps < toUnwraps) {
|
|
(void)matchTypes(fromObjectType, toObjectType, ConstraintKind::Bind,
|
|
TMF_ApplyingFix, locator);
|
|
}
|
|
|
|
// Drop both `GenericType` elements.
|
|
path.pop_back();
|
|
path.pop_back();
|
|
|
|
ConstraintFix *fix = nullptr;
|
|
auto *fixLoc = getConstraintLocator(anchor, path);
|
|
|
|
if (fixLoc->isLastElement<LocatorPathElt::AnyRequirement>()) {
|
|
fix = fixRequirementFailure(*this, fromType, toType, anchor, path);
|
|
} else if (fixLoc->isLastElement<LocatorPathElt::TupleElement>()) {
|
|
return repairFailures(lhs, rhs, matchKind, flags, conversionsOrFixes,
|
|
fixLoc);
|
|
} else if (!lhs->mayHaveSuperclass() && rhs->isAnyObject()) {
|
|
fix = AllowNonClassTypeToConvertToAnyObject::create(*this, fromType,
|
|
fixLoc);
|
|
} else {
|
|
fix = GenericArgumentsMismatch::create(
|
|
*this, fromType, toType, {genericArgElt.getIndex()}, fixLoc);
|
|
}
|
|
|
|
if (!fix)
|
|
break;
|
|
|
|
conversionsOrFixes.push_back(fix);
|
|
return true;
|
|
}
|
|
|
|
case ConstraintLocator::ResultBuilderBodyResult: {
|
|
// If result type of the body couldn't be determined
|
|
// there is going to be other fix available to diagnose
|
|
// the underlying issue.
|
|
if (lhs->isPlaceholder())
|
|
return true;
|
|
|
|
conversionsOrFixes.push_back(ContextualMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
case ConstraintLocator::GlobalActorType: {
|
|
// Drop global actor element as it servers only to indentify the global
|
|
// actor matching.
|
|
path.pop_back();
|
|
|
|
conversionsOrFixes.push_back(AllowGlobalActorMismatch::create(
|
|
*this, lhs, rhs, getConstraintLocator(anchor, path)));
|
|
break;
|
|
}
|
|
|
|
case ConstraintLocator::CoercionOperand: {
|
|
// If either type is a placeholder, consider this fixed, eagerly propagating
|
|
// a hole from the contextual type.
|
|
if (lhs->isPlaceholder() || rhs->isPlaceholder()) {
|
|
tryPropagateHole(rhs, lhs);
|
|
return true;
|
|
}
|
|
|
|
auto *coercion = castToExpr<CoerceExpr>(anchor);
|
|
|
|
// Coercion from T.Type to T.Protocol.
|
|
if (hasConversionOrRestriction(
|
|
ConversionRestrictionKind::MetatypeToExistentialMetatype))
|
|
return false;
|
|
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::Superclass))
|
|
return false;
|
|
|
|
// Let's check whether the sub-expression is an optional type which
|
|
// is possible to unwrap (either by force or `??`) to satisfy the cast,
|
|
// otherwise we'd have to fallback to force downcast.
|
|
if (repairViaOptionalUnwrap(*this, lhs, rhs, matchKind,
|
|
conversionsOrFixes,
|
|
getConstraintLocator(coercion->getSubExpr())))
|
|
return true;
|
|
|
|
// If the result type of the coercion has an value to optional conversion
|
|
// we can instead suggest the conditional downcast as it is safer in
|
|
// situations like conditional binding.
|
|
auto useConditionalCast =
|
|
llvm::any_of(ConstraintRestrictions, [&](const auto &restriction) {
|
|
Type type1, type2;
|
|
std::tie(type1, type2) = restriction.first;
|
|
auto restrictionKind = restriction.second;
|
|
|
|
if (restrictionKind != ConversionRestrictionKind::ValueToOptional)
|
|
return false;
|
|
|
|
return rhs->isEqual(type1);
|
|
});
|
|
|
|
// Repair a coercion ('as') with a runtime checked cast ('as!' or 'as?').
|
|
if (auto *coerceToCheckCastFix =
|
|
CoerceToCheckedCast::attempt(*this, lhs, rhs, useConditionalCast,
|
|
getConstraintLocator(locator))) {
|
|
conversionsOrFixes.push_back(coerceToCheckCastFix);
|
|
return true;
|
|
}
|
|
|
|
// If it has a deep equality restriction, defer the diagnostic to
|
|
// GenericMismatch.
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::DeepEquality) &&
|
|
!hasConversionOrRestriction(
|
|
ConversionRestrictionKind::OptionalToOptional)) {
|
|
return false;
|
|
}
|
|
|
|
if (hasConversionOrRestriction(ConversionRestrictionKind::Existential))
|
|
return false;
|
|
|
|
auto *fix = ContextualMismatch::create(*this, lhs, rhs,
|
|
getConstraintLocator(locator));
|
|
conversionsOrFixes.push_back(fix);
|
|
return true;
|
|
}
|
|
case ConstraintLocator::KeyPathValue: {
|
|
if (maybeRepairKeyPathResultFailure(getAsExpr<KeyPathExpr>(anchor)))
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return !conversionsOrFixes.empty();
|
|
}
|
|
|
|
static bool isTupleWithUnresolvedPackExpansion(Type type) {
|
|
if (auto *tuple = type->getAs<TupleType>()) {
|
|
return llvm::any_of(tuple->getElements(), [&](const TupleTypeElt &elt) {
|
|
if (auto typeVar = elt.getType()->getAs<TypeVariableType>())
|
|
return typeVar->getImpl().isPackExpansion();
|
|
return false;
|
|
});
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isDependentMemberTypeWithBaseThatContainsUnresolvedPackExpansions(
|
|
ConstraintSystem &cs, Type type) {
|
|
if (!type->is<DependentMemberType>())
|
|
return false;
|
|
|
|
// FIXME: It's really unfortunate we need to use `simplifyType` here since
|
|
// this is called from `matchTypes`. We need to completely simplify the type
|
|
// though since pack expansions can be present in fixed types for nested
|
|
// type vars.
|
|
auto baseTy = cs.simplifyType(type->getDependentMemberRoot());
|
|
llvm::SmallPtrSet<TypeVariableType *, 2> typeVars;
|
|
baseTy->getTypeVariables(typeVars);
|
|
return llvm::any_of(typeVars, [](const TypeVariableType *typeVar) {
|
|
return typeVar->getImpl().isPackExpansion();
|
|
});
|
|
}
|
|
|
|
ConstraintSystem::TypeMatchResult
|
|
ConstraintSystem::matchTypes(Type type1, Type type2, ConstraintKind kind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto origType1 = type1;
|
|
auto origType2 = type2;
|
|
|
|
// If we have type variables that have been bound to fixed types, look through
|
|
// to the fixed type.
|
|
type1 = getFixedTypeRecursive(type1, flags, kind == ConstraintKind::Equal);
|
|
type2 = getFixedTypeRecursive(type2, flags, kind == ConstraintKind::Equal);
|
|
|
|
auto desugar1 = type1->getDesugaredType();
|
|
auto desugar2 = type2->getDesugaredType();
|
|
|
|
// If both sides are dependent members without type variables, it's
|
|
// possible that base type is incorrect e.g. `Foo.Element` where `Foo`
|
|
// is a concrete type substituted for generic parameter,
|
|
// so checking equality here would lead to incorrect behavior,
|
|
// let's defer it until later proper check.
|
|
if (!(desugar1->is<DependentMemberType>() &&
|
|
desugar2->is<DependentMemberType>())) {
|
|
// If the types are obviously equivalent, we're done.
|
|
if (desugar1->isEqual(desugar2) && !isa<InOutType>(desugar2)) {
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
// Local function that should be used to produce the return value whenever
|
|
// this function was unable to resolve the constraint. It should be used
|
|
// within \c matchTypes() as
|
|
//
|
|
// return formUnsolvedResult();
|
|
//
|
|
// along any unsolved path. No other returns should produce
|
|
// SolutionKind::Unsolved or inspect TMF_GenerateConstraints.
|
|
auto formUnsolvedResult = [&](bool useOriginalTypes = false) {
|
|
// If we're supposed to generate constraints (i.e., this is a
|
|
// newly-generated constraint), do so now.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
// Add a new constraint between these types. We consider the current
|
|
// type-matching problem to the "solved" by this addition, because
|
|
// this new constraint will be solved at a later point.
|
|
// Obviously, this must not happen at the top level, or the
|
|
// algorithm would not terminate.
|
|
if (useOriginalTypes) {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, kind, origType1, origType2, getConstraintLocator(locator)));
|
|
} else {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, kind, type1, type2, getConstraintLocator(locator)));
|
|
}
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
return getTypeMatchAmbiguous();
|
|
};
|
|
|
|
auto *typeVar1 = dyn_cast<TypeVariableType>(desugar1);
|
|
auto *typeVar2 = dyn_cast<TypeVariableType>(desugar2);
|
|
|
|
// If either (or both) types are type variables, unify the type variables.
|
|
if (typeVar1 || typeVar2) {
|
|
// Handle the easy case of both being type variables, and being
|
|
// identical, first.
|
|
if (typeVar1 && typeVar2) {
|
|
auto rep1 = getRepresentative(typeVar1);
|
|
auto rep2 = getRepresentative(typeVar2);
|
|
if (rep1 == rep2) {
|
|
// We already merged these two types, so this constraint is
|
|
// trivially solved.
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
switch (kind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Equal: {
|
|
if (typeVar1 && typeVar2) {
|
|
auto rep1 = getRepresentative(typeVar1);
|
|
auto rep2 = getRepresentative(typeVar2);
|
|
|
|
// Pack expansion variables cannot be merged because
|
|
// they involve other type variables.
|
|
if (rep1->getImpl().isPackExpansion() ||
|
|
rep2->getImpl().isPackExpansion())
|
|
return formUnsolvedResult();
|
|
|
|
// If exactly one of the type variables can bind to an lvalue, we
|
|
// can't merge these two type variables.
|
|
if (kind == ConstraintKind::Equal &&
|
|
rep1->getImpl().canBindToLValue()
|
|
!= rep2->getImpl().canBindToLValue())
|
|
return formUnsolvedResult();
|
|
|
|
// Merge the equivalence classes corresponding to these two variables.
|
|
mergeEquivalenceClasses(rep1, rep2, /*updateWorkList=*/true);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// If type variable represents a key path value type, defer binding it to
|
|
// contextual type in diagnostic mode. We want it to be bound from the
|
|
// last key path component to help with diagnostics.
|
|
if (shouldAttemptFixes()) {
|
|
if (typeVar1 && typeVar1->getImpl().isKeyPathValue() &&
|
|
!flags.contains(TMF_BindingTypeVariable))
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
assert((type1->is<TypeVariableType>() != type2->is<TypeVariableType>()) &&
|
|
"Expected a type variable and a non type variable!");
|
|
|
|
auto *typeVar = typeVar1 ? typeVar1 : typeVar2;
|
|
auto type = typeVar1 ? type2 : type1;
|
|
|
|
return matchTypesBindTypeVar(typeVar, type, kind, flags, locator,
|
|
formUnsolvedResult);
|
|
}
|
|
|
|
case ConstraintKind::BindParam: {
|
|
if (typeVar2 && !typeVar1) {
|
|
// Simplify the left-hand type and perform the "occurs" check.
|
|
auto rep2 = getRepresentative(typeVar2);
|
|
type1 = simplifyType(type1, flags);
|
|
if (!isBindable(typeVar2, type1))
|
|
return formUnsolvedResult();
|
|
|
|
if (auto *iot = type1->getAs<InOutType>()) {
|
|
if (!rep2->getImpl().canBindToLValue())
|
|
return getTypeMatchFailure(locator);
|
|
assignFixedType(rep2, LValueType::get(iot->getObjectType()));
|
|
} else {
|
|
assignFixedType(rep2, type1);
|
|
}
|
|
return getTypeMatchSuccess();
|
|
} else if (typeVar1 && !typeVar2) {
|
|
// Simplify the right-hand type and perform the "occurs" check.
|
|
auto rep1 = getRepresentative(typeVar1);
|
|
type2 = simplifyType(type2, flags);
|
|
if (!isBindable(rep1, type2))
|
|
return formUnsolvedResult();
|
|
|
|
if (auto *lvt = type2->getAs<LValueType>()) {
|
|
if (!rep1->getImpl().canBindToInOut())
|
|
return getTypeMatchFailure(locator);
|
|
assignFixedType(rep1, InOutType::get(lvt->getObjectType()));
|
|
} else {
|
|
assignFixedType(rep1, type2);
|
|
}
|
|
return getTypeMatchSuccess();
|
|
} if (typeVar1 && typeVar2) {
|
|
auto rep1 = getRepresentative(typeVar1);
|
|
auto rep2 = getRepresentative(typeVar2);
|
|
|
|
// Pack expansion variables cannot be merged because
|
|
// they involve other type variables.
|
|
if (rep1->getImpl().isPackExpansion() ||
|
|
rep2->getImpl().isPackExpansion())
|
|
return formUnsolvedResult();
|
|
|
|
if (!rep1->getImpl().canBindToInOut() ||
|
|
!rep2->getImpl().canBindToLValue()) {
|
|
// Merge the equivalence classes corresponding to these two variables.
|
|
mergeEquivalenceClasses(rep1, rep2, /*updateWorkList=*/true);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion: {
|
|
if (typeVar1) {
|
|
// Performance optimization: Propagate fully or partially resolved
|
|
// contextual type down into the body of result builder transformed
|
|
// closure by eagerly binding intermediate body result type to the
|
|
// contextual one. This helps to determine when closure body could be
|
|
// solved early.
|
|
//
|
|
// TODO: This could be extended to cover all multi-statement closures.
|
|
//
|
|
// See \c BindingSet::favoredOverConjunction for more details.
|
|
if (!typeVar2 && locator.endsWith<LocatorPathElt::FunctionResult>()) {
|
|
SmallVector<LocatorPathElt> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
// Drop `FunctionResult` element.
|
|
path.pop_back();
|
|
|
|
ClosureExpr *closure = nullptr;
|
|
{
|
|
// This avoids a new locator allocation.
|
|
SourceRange range;
|
|
ArrayRef<LocatorPathElt> scratchPath(path);
|
|
simplifyLocator(anchor, scratchPath, range);
|
|
|
|
if (scratchPath.empty())
|
|
closure = getAsExpr<ClosureExpr>(anchor);
|
|
}
|
|
|
|
if (closure && !closure->hasExplicitResultType() &&
|
|
getAppliedResultBuilderTransform(closure)) {
|
|
return matchTypesBindTypeVar(typeVar1, type2, ConstraintKind::Equal,
|
|
flags, locator, formUnsolvedResult);
|
|
}
|
|
}
|
|
}
|
|
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::SubclassOf:
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
case ConstraintKind::OptionalObject:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::FallbackType:
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
case ConstraintKind::PropertyWrapper:
|
|
case ConstraintKind::SyntacticElement:
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
case ConstraintKind::PackElementOf:
|
|
case ConstraintKind::ShapeOf:
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
case ConstraintKind::SameShape:
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
case ConstraintKind::LValueObject:
|
|
llvm_unreachable("Not a relational constraint");
|
|
}
|
|
}
|
|
|
|
// If one of the types is a member type of a type variable type,
|
|
// there's nothing we can do.
|
|
if (desugar1->isTypeVariableOrMember() ||
|
|
desugar2->isTypeVariableOrMember()) {
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
// If the original type on one side consisted of a tuple type with
|
|
// unresolved pack expansion(s), let's make sure that both sides are
|
|
// tuples to enable proper pack matching for situations like:
|
|
//
|
|
// `Int <conversion> (_: $T3)`
|
|
// where `$T3` is pack expansion of pattern type `$T2`
|
|
//
|
|
// `Int` should be wrapped in a one-element tuple to make sure
|
|
// that tuple matcher can form a pack expansion type that would
|
|
// match `$T3` and propagate `Pack{Int}` to `$T2`.
|
|
//
|
|
// This is also important for situations like: `$T2 conv (Int, $T_exp)`
|
|
// because expansion could be defaulted to an empty pack which means
|
|
// that under substitution that element would disappear and the type
|
|
// would be just `(Int)`.
|
|
//
|
|
// Notable exceptions here are: `Any` which doesn't require wrapping and
|
|
// would be handled by an existential promotion in cases where it's allowed,
|
|
// and `Optional<T>` which would be handled by optional injection.
|
|
if (isTupleWithUnresolvedPackExpansion(origType1) ||
|
|
isTupleWithUnresolvedPackExpansion(origType2)) {
|
|
auto isTypeVariableWrappedInOptional = [](Type type) {
|
|
if (type->getOptionalObjectType()) {
|
|
return type->lookThroughAllOptionalTypes()->isTypeVariableOrMember();
|
|
}
|
|
return false;
|
|
};
|
|
if (isa<TupleType>(desugar1) != isa<TupleType>(desugar2) &&
|
|
!isa<InOutType>(desugar1) && !isa<InOutType>(desugar2) &&
|
|
!isTypeVariableWrappedInOptional(desugar1) &&
|
|
!isTypeVariableWrappedInOptional(desugar2) &&
|
|
!desugar1->isAny() &&
|
|
!desugar2->isAny()) {
|
|
return matchTypes(
|
|
desugar1->is<TupleType>() ? type1
|
|
: TupleType::get({type1}, getASTContext()),
|
|
desugar2->is<TupleType>() ? type2
|
|
: TupleType::get({type2}, getASTContext()),
|
|
kind, flags, locator);
|
|
}
|
|
}
|
|
|
|
// Dependent members cannot be simplified if base type contains unresolved
|
|
// pack expansion type variables because they don't give enough information
|
|
// to substitution logic to form a correct type. For example:
|
|
//
|
|
// ```
|
|
// protocol P { associatedtype V }
|
|
// struct S<each T> : P { typealias V = (repeat (each T)?) }
|
|
// ```
|
|
//
|
|
// If pack expansion is represented as `$T1` and its pattern is `$T2`, a
|
|
// reference to `V` would get a type `S<Pack{$T}>.V` and simplified version
|
|
// would be `Optional<Pack{$T1}>` instead of `Pack{repeat Optional<$T2>}`
|
|
// because `$T1` is treated as a substitution for `each T` until bound.
|
|
if (isDependentMemberTypeWithBaseThatContainsUnresolvedPackExpansions(
|
|
*this, origType1) ||
|
|
isDependentMemberTypeWithBaseThatContainsUnresolvedPackExpansions(
|
|
*this, origType2)) {
|
|
// It's important to preserve the original types here because any attempt
|
|
// at simplification or canonicalization wouldn't produce a correct type
|
|
// util pack expansion type variables are bound.
|
|
return formUnsolvedResult(/*useOriginalTypes=*/true);
|
|
}
|
|
|
|
llvm::SmallVector<RestrictionOrFix, 4> conversionsOrFixes;
|
|
|
|
// Decompose parallel structure.
|
|
TypeMatchOptions subflags =
|
|
getDefaultDecompositionOptions(flags) - TMF_ApplyingFix;
|
|
if (desugar1->getKind() == desugar2->getKind()) {
|
|
switch (desugar1->getKind()) {
|
|
#define SUGARED_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("Type has not been desugared completely");
|
|
|
|
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("artificial type in constraint");
|
|
|
|
case TypeKind::BuiltinTuple:
|
|
llvm_unreachable("BuiltinTupleType in constraint");
|
|
|
|
// Note: Mismatched builtin types fall through to the TypeKind::Error
|
|
// case below.
|
|
#define BUILTIN_GENERIC_TYPE(id, parent)
|
|
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
|
|
case TypeKind::Error:
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// BuiltinGenericType subclasses
|
|
case TypeKind::BuiltinFixedArray: {
|
|
auto *fixed1 = cast<BuiltinGenericType>(desugar1);
|
|
auto *fixed2 = cast<BuiltinGenericType>(desugar2);
|
|
if (fixed1->getBuiltinTypeKind() != fixed2->getBuiltinTypeKind()) {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
auto result = ConstraintSystem::TypeMatchResult::success();
|
|
for (unsigned i
|
|
: indices(fixed1->getSubstitutions().getReplacementTypes())) {
|
|
result = matchTypes(fixed1->getSubstitutions().getReplacementTypes()[i],
|
|
fixed2->getSubstitutions().getReplacementTypes()[i],
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(i)));
|
|
if (result.isFailure()) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
case TypeKind::Placeholder: {
|
|
// If it's allowed to attempt fixes, let's delegate
|
|
// decision to `repairFailures`, since depending on
|
|
// locator we might either ignore such a mismatch,
|
|
// or record a specialized fix.
|
|
if (shouldAttemptFixes())
|
|
break;
|
|
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
case TypeKind::GenericTypeParam:
|
|
llvm_unreachable("unmapped dependent type in type checker");
|
|
|
|
case TypeKind::TypeVariable:
|
|
llvm_unreachable("type variables should have already been handled by now");
|
|
|
|
case TypeKind::DependentMember: {
|
|
// If types are identical, let's consider this constraint solved
|
|
// even though they are dependent members, they would be resolved
|
|
// to the same concrete type.
|
|
if (desugar1->isEqual(desugar2))
|
|
return getTypeMatchSuccess();
|
|
|
|
if (shouldAttemptFixes()) {
|
|
if (!desugar1->hasTypeVariable() && !desugar2->hasTypeVariable()) {
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
auto *fix =
|
|
loc->isLastElement<LocatorPathElt::TypeParameterRequirement>()
|
|
? fixRequirementFailure(*this, type1, type2, loc->getAnchor(),
|
|
loc->getPath())
|
|
: ContextualMismatch::create(*this, type1, type2, loc);
|
|
|
|
if (!fix || recordFix(fix))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
// If one of the dependent member types has no type variables,
|
|
// this comparison is effectively illformed, because dependent
|
|
// member couldn't be simplified down to the actual type, and
|
|
// we wouldn't be able to solve this constraint, so let's just fail.
|
|
// This should only happen outside of diagnostic mode, as otherwise the
|
|
// member is replaced by a placeholder in simplifyType.
|
|
if (!desugar1->hasTypeVariable() || !desugar2->hasTypeVariable())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Nothing we can solve yet, since we need to wait until
|
|
// type variables will get resolved.
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
case TypeKind::Module:
|
|
case TypeKind::PrimaryArchetype:
|
|
case TypeKind::PackArchetype:
|
|
case TypeKind::ElementArchetype: {
|
|
// Give `repairFailures` a chance to fix the problem.
|
|
if (shouldAttemptFixes())
|
|
break;
|
|
|
|
// If two module types or archetypes were not already equal, there's
|
|
// nothing more we can do.
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
case TypeKind::Tuple: {
|
|
// FIXME: TuplePackMatcher doesn't correctly handle matching two
|
|
// abstract contextual tuple types in a generic context.
|
|
if (simplifyType(desugar1)->isEqual(simplifyType(desugar2)))
|
|
return getTypeMatchSuccess();
|
|
|
|
// If the tuple has consecutive pack expansions, packs must be
|
|
// resolved before matching.
|
|
auto delayMatching = [](TupleType *tuple) {
|
|
bool afterPack = false;
|
|
for (auto element : tuple->getElements()) {
|
|
if (afterPack && !element.hasName()) {
|
|
SmallPtrSet<TypeVariableType *, 2> typeVars;
|
|
element.getType()->getTypeVariables(typeVars);
|
|
|
|
bool hasUnresolvedPack = llvm::any_of(typeVars, [](auto *tv) {
|
|
return tv->getImpl().canBindToPack();
|
|
});
|
|
|
|
if (hasUnresolvedPack)
|
|
return true;
|
|
}
|
|
|
|
// Delay matching if one of the elements is unresolved pack
|
|
// expansion represented by a type variable.
|
|
if (auto *typeVar = element.getType()->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().isPackExpansion())
|
|
return true;
|
|
}
|
|
|
|
afterPack = element.getType()->is<PackExpansionType>();
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
|
|
auto *tuple1 = cast<TupleType>(desugar1);
|
|
auto *tuple2 = cast<TupleType>(desugar2);
|
|
if (delayMatching(tuple1) || delayMatching(tuple2)) {
|
|
return formUnsolvedResult();
|
|
}
|
|
|
|
// Closure result is allowed to convert to Void in certain circumstances,
|
|
// let's forego tuple matching because it is guaranteed to fail and jump
|
|
// to `() -> T` to `() -> Void` rule.
|
|
if (locator.endsWith<LocatorPathElt::ClosureBody>()) {
|
|
if (containsPackExpansionType(tuple1) && tuple2->isVoid())
|
|
break;
|
|
}
|
|
|
|
// Add each tuple type to the locator before matching the element types.
|
|
// This is useful for diagnostics, because the error message can use the
|
|
// full tuple type for several element mismatches. Use the original types
|
|
// to preserve sugar such as typealiases.
|
|
auto tmpTupleLoc = locator.withPathElement(LocatorPathElt::TupleType(type1));
|
|
auto tupleLoc = tmpTupleLoc.withPathElement(LocatorPathElt::TupleType(type2));
|
|
auto result = matchTupleTypes(cast<TupleType>(desugar1),
|
|
cast<TupleType>(desugar2),
|
|
kind, subflags, tupleLoc);
|
|
if (result != SolutionKind::Error)
|
|
return result;
|
|
|
|
// FIXME: All cases in this switch should go down to the fix logic
|
|
// to give repairFailures() a chance to run, but this breaks stuff
|
|
// right now.
|
|
break;
|
|
}
|
|
|
|
case TypeKind::Enum:
|
|
case TypeKind::Struct:
|
|
case TypeKind::Class: {
|
|
auto nominal1 = cast<NominalType>(desugar1);
|
|
auto nominal2 = cast<NominalType>(desugar2);
|
|
if (nominal1->getDecl() == nominal2->getDecl())
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
|
|
// Check for CF <-> ObjectiveC bridging.
|
|
if (isa<ClassType>(desugar1) &&
|
|
kind >= ConstraintKind::Subtype) {
|
|
auto class1 = cast<ClassDecl>(nominal1->getDecl());
|
|
auto class2 = cast<ClassDecl>(nominal2->getDecl());
|
|
|
|
// CF -> Objective-C via toll-free bridging.
|
|
if (class1->getForeignClassKind() == ClassDecl::ForeignKind::CFType &&
|
|
class2->getForeignClassKind() != ClassDecl::ForeignKind::CFType &&
|
|
class1->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::CFTollFreeBridgeToObjC);
|
|
}
|
|
|
|
// Objective-C -> CF via toll-free bridging.
|
|
if (class2->getForeignClassKind() == ClassDecl::ForeignKind::CFType &&
|
|
class1->getForeignClassKind() != ClassDecl::ForeignKind::CFType &&
|
|
class2->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ObjCTollFreeBridgeToCF);
|
|
}
|
|
}
|
|
|
|
if (kind >= ConstraintKind::Subtype &&
|
|
nominal1->getDecl() != nominal2->getDecl() &&
|
|
((nominal1->isCGFloat() || nominal2->isCGFloat()) &&
|
|
(nominal1->isDouble() || nominal2->isDouble()))) {
|
|
ConstraintLocatorBuilder location{locator};
|
|
// Look through all value-to-optional promotions to allow
|
|
// conversions like Double -> CGFloat?? and vice versa.
|
|
// T -> Optional<T>
|
|
if (location.endsWith<LocatorPathElt::OptionalInjection>()) {
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = location.getLocatorParts(path);
|
|
|
|
// An attempt at Double/CGFloat conversion through
|
|
// optional chaining. This is not supported at the
|
|
// moment because solution application doesn't know
|
|
// how to map Double to/from CGFloat through optionals.
|
|
if (isExpr<OptionalEvaluationExpr>(anchor)) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
conversionsOrFixes.push_back(ContextualMismatch::create(
|
|
*this, nominal1, nominal2, getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
// Drop all of the applied `value-to-optional` promotions.
|
|
path.erase(llvm::remove_if(
|
|
path,
|
|
[](const LocatorPathElt &elt) {
|
|
return elt.is<LocatorPathElt::OptionalInjection>();
|
|
}),
|
|
path.end());
|
|
|
|
location = getConstraintLocator(anchor, path);
|
|
}
|
|
|
|
// Support implicit Double<->CGFloat conversions only for
|
|
// something which could be directly represented in the AST
|
|
// e.g. argument-to-parameter, contextual conversions etc.
|
|
if (!location.trySimplifyToExpr()) {
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = location.getLocatorParts(path);
|
|
|
|
// Try implicit CGFloat conversion only if:
|
|
// - This is not:
|
|
// - an explicit call to a CGFloat initializer;
|
|
// - an explicit coercion;
|
|
// - a runtime type check (via `is` expression);
|
|
// - a checked or conditional cast;
|
|
// - This is a first type such conversion is attempted for
|
|
// for a given path (AST element).
|
|
|
|
auto isCGFloatInit = [&](ASTNode location) {
|
|
if (auto *call = getAsExpr<CallExpr>(location)) {
|
|
if (auto *typeExpr = dyn_cast<TypeExpr>(call->getFn())) {
|
|
return getInstanceType(typeExpr)->isCGFloat();
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
auto isCoercionOrCast = [](ASTNode anchor,
|
|
ArrayRef<LocatorPathElt> path) {
|
|
// E.g. contextual conversion from coercion/cast
|
|
// to some other type.
|
|
if (!(path.empty() ||
|
|
path.back().is<LocatorPathElt::CoercionOperand>()))
|
|
return false;
|
|
|
|
return isExpr<CoerceExpr>(anchor) || isExpr<IsExpr>(anchor) ||
|
|
isExpr<ConditionalCheckedCastExpr>(anchor) ||
|
|
isExpr<ForcedCheckedCastExpr>(anchor);
|
|
};
|
|
|
|
if (!isCGFloatInit(anchor) && !isCoercionOrCast(anchor, path) &&
|
|
llvm::none_of(path, [&](const LocatorPathElt &rawElt) {
|
|
if (auto elt =
|
|
rawElt.getAs<LocatorPathElt::ImplicitConversion>()) {
|
|
auto convKind = elt->getConversionKind();
|
|
return convKind == ConversionRestrictionKind::DoubleToCGFloat ||
|
|
convKind == ConversionRestrictionKind::CGFloatToDouble;
|
|
}
|
|
return false;
|
|
})) {
|
|
conversionsOrFixes.push_back(
|
|
desugar1->isCGFloat()
|
|
? ConversionRestrictionKind::CGFloatToDouble
|
|
: ConversionRestrictionKind::DoubleToCGFloat);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TypeKind::DynamicSelf:
|
|
// FIXME: Deep equality? What is the rule between two DynamicSelfs?
|
|
break;
|
|
|
|
case TypeKind::Protocol:
|
|
// Nothing to do here; try existential and user-defined conversions below.
|
|
break;
|
|
|
|
case TypeKind::Metatype:
|
|
case TypeKind::ExistentialMetatype: {
|
|
auto meta1 = cast<AnyMetatypeType>(desugar1);
|
|
auto meta2 = cast<AnyMetatypeType>(desugar2);
|
|
|
|
// A.Type < B.Type if A < B and both A and B are classes.
|
|
// P.Type < Q.Type if P < Q, both P and Q are protocols, and P.Type
|
|
// and Q.Type are both existential metatypes
|
|
auto subKind = std::min(kind, ConstraintKind::Subtype);
|
|
// If instance types can't have a subtype relationship
|
|
// it means that such types can be simply equated.
|
|
auto instanceType1 = meta1->getInstanceType();
|
|
auto instanceType2 = meta2->getInstanceType();
|
|
if (isa<MetatypeType>(meta1) &&
|
|
!(instanceType1->mayHaveSuperclass() &&
|
|
instanceType2->getClassOrBoundGenericClass())) {
|
|
subKind = ConstraintKind::Bind;
|
|
}
|
|
|
|
auto result =
|
|
matchTypes(instanceType1, instanceType2, subKind, subflags,
|
|
locator.withPathElement(ConstraintLocator::InstanceType));
|
|
|
|
// If matching of the instance types resulted in the failure make sure
|
|
// to give `repairFailure` a chance to run to attempt to fix the issue.
|
|
if (shouldAttemptFixes() && result.isFailure())
|
|
break;
|
|
|
|
return result;
|
|
}
|
|
|
|
case TypeKind::Function: {
|
|
auto func1 = cast<FunctionType>(desugar1);
|
|
auto func2 = cast<FunctionType>(desugar2);
|
|
|
|
auto result = matchFunctionTypes(func1, func2, kind, flags, locator);
|
|
|
|
if (shouldAttemptFixes() && result.isFailure())
|
|
break;
|
|
|
|
return result;
|
|
}
|
|
|
|
case TypeKind::GenericFunction:
|
|
llvm_unreachable("Polymorphic function type should have been opened");
|
|
|
|
case TypeKind::Existential:
|
|
case TypeKind::ProtocolComposition:
|
|
case TypeKind::ParameterizedProtocol:
|
|
switch (kind) {
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindParam:
|
|
// If we are matching types for equality, we might still have
|
|
// type variables inside the protocol composition's superclass
|
|
// constraint.
|
|
if (desugar1->getKind() == desugar2->getKind())
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
break;
|
|
|
|
default:
|
|
// Subtype constraints where the RHS is an existential type are
|
|
// handled below.
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
case TypeKind::LValue:
|
|
if (kind == ConstraintKind::BindParam)
|
|
return getTypeMatchFailure(locator);
|
|
return matchTypes(cast<LValueType>(desugar1)->getObjectType(),
|
|
cast<LValueType>(desugar2)->getObjectType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::LValueConversion));
|
|
|
|
case TypeKind::InOut:
|
|
if (kind == ConstraintKind::BindParam)
|
|
return getTypeMatchFailure(locator);
|
|
|
|
if (kind == ConstraintKind::OperatorArgumentConversion) {
|
|
conversionsOrFixes.push_back(
|
|
RemoveAddressOf::create(*this, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
break;
|
|
}
|
|
|
|
return matchTypes(cast<InOutType>(desugar1)->getObjectType(),
|
|
cast<InOutType>(desugar2)->getObjectType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(ConstraintLocator::LValueConversion));
|
|
|
|
case TypeKind::UnboundGeneric:
|
|
llvm_unreachable("Unbound generic type should have been opened");
|
|
|
|
case TypeKind::BoundGenericClass:
|
|
case TypeKind::BoundGenericEnum:
|
|
case TypeKind::BoundGenericStruct: {
|
|
auto bound1 = cast<BoundGenericType>(desugar1);
|
|
auto bound2 = cast<BoundGenericType>(desugar2);
|
|
|
|
if (bound1->getDecl() == bound2->getDecl())
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
break;
|
|
}
|
|
|
|
// Opaque archetypes are globally bound, so we can match them for deep
|
|
// equality.
|
|
case TypeKind::OpaqueTypeArchetype: {
|
|
auto opaque1 = cast<OpaqueTypeArchetypeType>(desugar1);
|
|
auto opaque2 = cast<OpaqueTypeArchetypeType>(desugar2);
|
|
|
|
if (opaque1->getDecl() == opaque2->getDecl()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeKind::ExistentialArchetype: {
|
|
auto opened1 = cast<ExistentialArchetypeType>(desugar1);
|
|
auto opened2 = cast<ExistentialArchetypeType>(desugar2);
|
|
// If they have the same interface type and UUID, two ExistentialArchetypeTypes
|
|
// match if their generic arguments do as well.
|
|
if (opened1->getInterfaceType()->isEqual(opened2->getInterfaceType()) &&
|
|
opened1->getGenericEnvironment()->getOpenedExistentialUUID() ==
|
|
opened2->getGenericEnvironment()->getOpenedExistentialUUID()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeKind::Pack: {
|
|
auto tmpPackLoc = locator.withPathElement(LocatorPathElt::PackType(type1));
|
|
auto packLoc = tmpPackLoc.withPathElement(LocatorPathElt::PackType(type2));
|
|
|
|
auto result =
|
|
matchPackTypes(cast<PackType>(desugar1), cast<PackType>(desugar2),
|
|
kind, subflags, packLoc);
|
|
|
|
// Let `repairFailures` attempt to "fix" this.
|
|
if (shouldAttemptFixes() && result.isFailure())
|
|
break;
|
|
|
|
return result;
|
|
}
|
|
case TypeKind::PackExpansion: {
|
|
auto expansion1 = cast<PackExpansionType>(desugar1);
|
|
auto expansion2 = cast<PackExpansionType>(desugar2);
|
|
|
|
return matchPackExpansionTypes(expansion1, expansion2, kind, subflags,
|
|
locator);
|
|
}
|
|
|
|
case TypeKind::PackElement: {
|
|
auto pack1 = cast<PackElementType>(desugar1)->getPackType();
|
|
auto pack2 = cast<PackElementType>(desugar2)->getPackType();
|
|
|
|
return matchTypes(pack1, pack2, kind, subflags, locator);
|
|
}
|
|
|
|
case TypeKind::ErrorUnion:
|
|
break;
|
|
|
|
case TypeKind::Integer:
|
|
if (shouldAttemptFixes())
|
|
break;
|
|
|
|
// If we're asking if two integer types are the same, then we know they
|
|
// aren't.
|
|
return getTypeMatchFailure(locator);
|
|
}
|
|
}
|
|
|
|
if (kind == ConstraintKind::BindToPointerType) {
|
|
if (desugar2->isEqual(getASTContext().TheEmptyTupleType))
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
if (kind == ConstraintKind::BindParam) {
|
|
if (auto *iot = dyn_cast<InOutType>(desugar1)) {
|
|
if (auto *lvt = dyn_cast<LValueType>(desugar2)) {
|
|
return matchTypes(iot->getObjectType(), lvt->getObjectType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::LValueConversion));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kind >= ConstraintKind::Conversion) {
|
|
// An lvalue of type T1 can be converted to a value of type T2 so long as
|
|
// T1 is convertible to T2 (by loading the value). Note that we cannot get
|
|
// a value of inout type as an lvalue though.
|
|
if (type1->is<LValueType>() && !type2->is<InOutType>()) {
|
|
auto result = matchTypes(type1->getWithoutSpecifierType(), type2, kind,
|
|
subflags, locator);
|
|
if (result.isSuccess() || !shouldAttemptFixes())
|
|
return result;
|
|
}
|
|
}
|
|
|
|
if (kind >= ConstraintKind::Subtype) {
|
|
// Subclass-to-superclass conversion.
|
|
if (type1->mayHaveSuperclass() &&
|
|
type2->getClassOrBoundGenericClass() &&
|
|
type1->getClassOrBoundGenericClass()
|
|
!= type2->getClassOrBoundGenericClass()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass);
|
|
}
|
|
|
|
// Existential-to-superclass conversion.
|
|
if (type1->isClassExistentialType() &&
|
|
type2->getClassOrBoundGenericClass()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass);
|
|
}
|
|
|
|
// Metatype-to-existential-metatype conversion.
|
|
//
|
|
// Equivalent to a conformance relation on the instance types.
|
|
if (type1->is<MetatypeType>() &&
|
|
type2->is<ExistentialMetatypeType>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::MetatypeToExistentialMetatype);
|
|
}
|
|
|
|
// Existential-metatype-to-superclass-metatype conversion.
|
|
if (type2->is<MetatypeType>()) {
|
|
if (auto *meta1 = type1->getAs<ExistentialMetatypeType>()) {
|
|
if (meta1->getInstanceType()->isClassExistentialType()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ExistentialMetatypeToMetatype);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Concrete value to existential conversion.
|
|
if (!type1->is<LValueType>() &&
|
|
type2->isExistentialType()) {
|
|
|
|
// Penalize conversions to Any.
|
|
if (kind >= ConstraintKind::Conversion && type2->isAny())
|
|
increaseScore(ScoreKind::SK_EmptyExistentialConversion, locator);
|
|
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::Existential);
|
|
}
|
|
|
|
// T -> AnyHashable.
|
|
if (desugar2->isAnyHashable()) {
|
|
// Don't allow this in operator contexts or we'll end up allowing
|
|
// 'T() == U()' for unrelated T and U that just happen to be Hashable.
|
|
// We can remove this special case when we implement operator hiding.
|
|
if (!type1->is<LValueType>() &&
|
|
kind != ConstraintKind::OperatorArgumentConversion) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::HashableToAnyHashable);
|
|
}
|
|
}
|
|
|
|
// Metatype to object conversion.
|
|
//
|
|
// Class and protocol metatypes are interoperable with certain Objective-C
|
|
// runtime classes, but only when ObjC interop is enabled.
|
|
|
|
// Foreign reference types do *not* conform to AnyObject.
|
|
if (type1->isForeignReferenceType() && type2->isAnyObject())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
if (getASTContext().LangOpts.EnableObjCInterop) {
|
|
// These conversions are between concrete types that don't need further
|
|
// resolution, so we can consider them immediately solved.
|
|
auto addSolvedRestrictedConstraint
|
|
= [&](ConversionRestrictionKind restriction) -> TypeMatchResult {
|
|
addRestrictedConstraint(ConstraintKind::Subtype, restriction,
|
|
type1, type2, locator);
|
|
return getTypeMatchSuccess();
|
|
};
|
|
|
|
if (auto meta1 = type1->getAs<MetatypeType>()) {
|
|
if (meta1->getInstanceType()->mayHaveSuperclass()
|
|
&& type2->isAnyObject()) {
|
|
increaseScore(ScoreKind::SK_UserConversion, locator);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ClassMetatypeToAnyObject);
|
|
}
|
|
// Single @objc protocol value metatypes can be converted to the ObjC
|
|
// Protocol class type.
|
|
auto isProtocolClassType = [&](Type t) -> bool {
|
|
if (auto classDecl = t->getClassOrBoundGenericClass())
|
|
if (classDecl->getName() == getASTContext().Id_Protocol
|
|
&& classDecl->getModuleContext()->getName()
|
|
== getASTContext().Id_ObjectiveC)
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto constraintType = meta1->getInstanceType();
|
|
if (auto existential = constraintType->getAs<ExistentialType>())
|
|
constraintType = existential->getConstraintType();
|
|
|
|
if (auto protoTy = constraintType->getAs<ProtocolType>()) {
|
|
if (protoTy->getDecl()->isObjC()
|
|
&& isProtocolClassType(type2)) {
|
|
increaseScore(ScoreKind::SK_UserConversion, locator);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ProtocolMetatypeToProtocolClass);
|
|
}
|
|
}
|
|
}
|
|
if (auto meta1 = type1->getAs<ExistentialMetatypeType>()) {
|
|
// Class-constrained existential metatypes can be converted to AnyObject.
|
|
if (meta1->getInstanceType()->isClassExistentialType()
|
|
&& type2->isAnyObject()) {
|
|
increaseScore(ScoreKind::SK_UserConversion, locator);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ExistentialMetatypeToAnyObject);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special implicit nominal conversions.
|
|
if (!type1->is<LValueType>()) {
|
|
// Array -> Array.
|
|
if (desugar1->isArray() && desugar2->isArray()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::ArrayUpcast);
|
|
// Dictionary -> Dictionary.
|
|
} else if (isDictionaryType(desugar1) && isDictionaryType(desugar2)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::DictionaryUpcast);
|
|
// Set -> Set.
|
|
} else if (isSetType(desugar1) && isSetType(desugar2)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::SetUpcast);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pointer arguments can be converted from pointer-compatible types.
|
|
if (kind >= ConstraintKind::ArgumentConversion) {
|
|
// It is never legal to form an autoclosure that results in these
|
|
// implicit conversions to pointer types.
|
|
bool isAutoClosureArgument = locator.isForAutoclosureResult();
|
|
|
|
Type unwrappedType2 = type2;
|
|
bool type2IsOptional = false;
|
|
if (Type unwrapped = type2->getOptionalObjectType()) {
|
|
type2IsOptional = true;
|
|
unwrappedType2 = unwrapped;
|
|
}
|
|
PointerTypeKind pointerKind;
|
|
if (Type pointeeTy =
|
|
unwrappedType2->getAnyPointerElementType(pointerKind)) {
|
|
switch (pointerKind) {
|
|
case PTK_UnsafeRawPointer:
|
|
case PTK_UnsafeMutableRawPointer:
|
|
case PTK_UnsafePointer:
|
|
case PTK_UnsafeMutablePointer:
|
|
// UnsafeMutablePointer can be converted from an inout reference to a
|
|
// scalar or array.
|
|
if (auto inoutType1 = dyn_cast<InOutType>(desugar1)) {
|
|
if (!isAutoClosureArgument) {
|
|
auto inoutBaseType = getFixedTypeRecursive(
|
|
inoutType1->getInOutObjectType(), /*wantRValue=*/true);
|
|
|
|
// Wait until the base type of `inout` is sufficiently resolved
|
|
// before making any assessments regarding conversions.
|
|
if (inoutBaseType->isTypeVariableOrMember())
|
|
return formUnsolvedResult();
|
|
|
|
auto baseIsArray = inoutBaseType->isArray();
|
|
|
|
if (baseIsArray)
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ArrayToPointer);
|
|
|
|
// Only try an inout-to-pointer conversion if we know it's not
|
|
// an array being converted to a raw pointer type. Such
|
|
// conversions can only use array-to-pointer.
|
|
if (!baseIsArray || !isRawPointerKind(pointerKind)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::InoutToPointer);
|
|
|
|
// If regular inout-to-pointer conversion doesn't work,
|
|
// let's try C pointer conversion that has special semantics
|
|
// for imported declarations.
|
|
if (isArgumentOfImportedDecl(locator)) {
|
|
conversionsOrFixes.push_back(
|
|
baseIsArray ? ConversionRestrictionKind::ArrayToCPointer
|
|
: ConversionRestrictionKind::InoutToCPointer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Operators cannot use these implicit conversions.
|
|
if (kind == ConstraintKind::ArgumentConversion) {
|
|
// We can potentially convert from an UnsafeMutablePointer
|
|
// of a different type, if we're a void pointer.
|
|
Type unwrappedType1 = type1;
|
|
bool type1IsOptional = false;
|
|
if (Type unwrapped = type1->getOptionalObjectType()) {
|
|
type1IsOptional = true;
|
|
unwrappedType1 = unwrapped;
|
|
}
|
|
|
|
// Don't handle normal optional-related conversions here.
|
|
if (unwrappedType1->isEqual(unwrappedType2))
|
|
break;
|
|
|
|
PointerTypeKind type1PointerKind;
|
|
bool type1IsPointer{
|
|
unwrappedType1->getAnyPointerElementType(type1PointerKind)};
|
|
bool optionalityMatches = !type1IsOptional || type2IsOptional;
|
|
if (type1IsPointer && optionalityMatches) {
|
|
if (type1PointerKind == PTK_UnsafeMutablePointer) {
|
|
// Favor an UnsafeMutablePointer-to-UnsafeMutablePointer
|
|
// conversion.
|
|
if (type1PointerKind != pointerKind)
|
|
increaseScore(ScoreKind::SK_ValueToPointerConversion,
|
|
locator);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
// UnsafeMutableRawPointer -> UnsafeRawPointer
|
|
else if (type1PointerKind == PTK_UnsafeMutableRawPointer &&
|
|
pointerKind == PTK_UnsafeRawPointer) {
|
|
if (type1PointerKind != pointerKind)
|
|
increaseScore(ScoreKind::SK_ValueToPointerConversion,
|
|
locator);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
}
|
|
// UnsafePointer and UnsafeRawPointer can also be converted from an
|
|
// array or string value, or a UnsafePointer or
|
|
// AutoreleasingUnsafeMutablePointer.
|
|
if (pointerKind == PTK_UnsafePointer
|
|
|| pointerKind == PTK_UnsafeRawPointer) {
|
|
if (!isAutoClosureArgument) {
|
|
if (type1->isArray()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ArrayToPointer);
|
|
|
|
// If regular array-to-pointer conversion doesn't work,
|
|
// let's try C pointer conversion that has special semantics
|
|
// for imported declarations.
|
|
if (isArgumentOfImportedDecl(locator)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ArrayToCPointer);
|
|
}
|
|
}
|
|
|
|
// The pointer can be converted from a string, if the element
|
|
// type is compatible.
|
|
auto &ctx = getASTContext();
|
|
if (type1->isString()) {
|
|
auto baseTy = getFixedTypeRecursive(pointeeTy, false);
|
|
|
|
if (baseTy->isTypeVariableOrMember() ||
|
|
isStringCompatiblePointerBaseType(ctx, baseTy))
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::StringToPointer);
|
|
}
|
|
}
|
|
|
|
if (type1IsPointer && optionalityMatches &&
|
|
(type1PointerKind == PTK_UnsafePointer ||
|
|
type1PointerKind == PTK_AutoreleasingUnsafeMutablePointer)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
}
|
|
|
|
// If both sides are non-optional pointers, let's check whether
|
|
// this argument supports Swift -> C pointer conversions.
|
|
//
|
|
// Do some light verification before recording restriction to
|
|
// avoid allocating constraints for obviously invalid cases.
|
|
if (type1IsPointer && !type1IsOptional && !type2IsOptional &&
|
|
(shouldAttemptFixes() || isArgumentOfImportedDecl(locator))) {
|
|
// UnsafeRawPointer -> UnsafePointer<[U]Int8>
|
|
if (type1PointerKind == PTK_UnsafeRawPointer &&
|
|
pointerKind == PTK_UnsafePointer) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToCPointer);
|
|
}
|
|
|
|
// UnsafeMutableRawPointer -> Unsafe[Mutable]Pointer<[U]Int8>
|
|
if (type1PointerKind == PTK_UnsafeMutableRawPointer &&
|
|
(pointerKind == PTK_UnsafePointer ||
|
|
pointerKind == PTK_UnsafeMutablePointer)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToCPointer);
|
|
}
|
|
|
|
// Unsafe[Mutable]Pointer -> Unsafe[Mutable]Pointer
|
|
if (type1PointerKind == PTK_UnsafePointer &&
|
|
pointerKind == PTK_UnsafePointer) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToCPointer);
|
|
}
|
|
|
|
if (type1PointerKind == PTK_UnsafeMutablePointer &&
|
|
(pointerKind == PTK_UnsafePointer ||
|
|
pointerKind == PTK_UnsafeMutablePointer)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToCPointer);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
// PTK_AutoreleasingUnsafeMutablePointer can be converted from an
|
|
// inout reference to a scalar.
|
|
if (!isAutoClosureArgument && type1->is<InOutType>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::InoutToPointer);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kind >= ConstraintKind::OperatorArgumentConversion) {
|
|
// If the RHS is an inout type, the LHS must be an @lvalue type.
|
|
if (auto *lvt = type1->getAs<LValueType>()) {
|
|
if (auto *iot = type2->getAs<InOutType>()) {
|
|
return matchTypes(lvt->getObjectType(), iot->getObjectType(),
|
|
ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::LValueConversion));
|
|
}
|
|
}
|
|
}
|
|
|
|
// A value of type T! can be converted to type U if T is convertible
|
|
// to U by force-unwrapping the source value.
|
|
// A value of type T, T?, or T! can be converted to type U? or U! if
|
|
// T is convertible to U.
|
|
if (!type1->is<LValueType>() && kind >= ConstraintKind::Subtype) {
|
|
enumerateOptionalConversionRestrictions(
|
|
type1, type2, kind, locator,
|
|
[&](ConversionRestrictionKind restriction) {
|
|
conversionsOrFixes.push_back(restriction);
|
|
});
|
|
}
|
|
|
|
// Allow '() -> T' to '() -> ()' and '() -> Never' to '() -> T' for closure
|
|
// literals and expressions representing an implied result of closures and
|
|
// if/switch expressions.
|
|
if (auto elt = locator.last()) {
|
|
if (kind >= ConstraintKind::Subtype &&
|
|
(type1->isUninhabited() || type2->isVoid())) {
|
|
// Implied results can occur for closure bodies, returns, and if/switch
|
|
// expression branches.
|
|
//
|
|
// We only allow the Void conversion for implied results in a closure
|
|
// context. In the more general case, we only allow the Never conversion.
|
|
// For explicit branches, no conversions are allowed, unless this is for
|
|
// a single expression body closure, in which case we still allow the
|
|
// Never conversion.
|
|
auto *loc = getConstraintLocator(locator);
|
|
if (elt->is<LocatorPathElt::ClosureBody>() ||
|
|
loc->isForContextualType(CTP_ReturnStmt) ||
|
|
loc->isForContextualType(CTP_ClosureResult) ||
|
|
loc->isForSingleValueStmtBranch()) {
|
|
bool allowConversion = false;
|
|
if (auto *E = getAsExpr(simplifyLocatorToAnchor(loc))) {
|
|
if (auto kind = isImpliedResult(E)) {
|
|
switch (*kind) {
|
|
case ImpliedResultKind::Regular:
|
|
allowConversion = type1->isUninhabited();
|
|
break;
|
|
case ImpliedResultKind::ForClosure:
|
|
allowConversion = true;
|
|
break;
|
|
}
|
|
} else if (elt->is<LocatorPathElt::ClosureBody>()) {
|
|
// Even if explicit, we always allow uninhabited types in single
|
|
// expression closures.
|
|
allowConversion = type1->isUninhabited();
|
|
}
|
|
}
|
|
if (allowConversion) {
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Matching types where one side is a pack expansion and the other is not
|
|
// means a pack expansion was used where it isn't supported.
|
|
if (type1->is<PackExpansionType>() != type2->is<PackExpansionType>()) {
|
|
if (!shouldAttemptFixes())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
if (type1->isPlaceholder() || type2->isPlaceholder())
|
|
return getTypeMatchSuccess();
|
|
|
|
// If parameter pack expansion contains more than one element and the other
|
|
// side is a tuple, record a fix.
|
|
auto *loc = getConstraintLocator(locator);
|
|
if (loc->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
if (auto packExpansion = type2->getAs<PackExpansionType>()) {
|
|
auto countType = simplifyType(packExpansion->getCountType(), flags);
|
|
if (auto paramPack = countType->getAs<PackType>()) {
|
|
if (type1->is<TupleType>() && paramPack->getNumElements() >= 1) {
|
|
if (recordFix(DestructureTupleToMatchPackExpansionParameter::create(
|
|
*this, paramPack, loc))) {
|
|
return getTypeMatchFailure(loc);
|
|
}
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (recordFix(AllowInvalidPackExpansion::create(*this, loc)))
|
|
return getTypeMatchFailure(locator);
|
|
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// Attempt fixes iff it's allowed, both types are concrete and
|
|
// we are not in the middle of attempting one already.
|
|
if (shouldAttemptFixes() && !flags.contains(TMF_ApplyingFix)) {
|
|
if (repairFailures(type1, type2, kind, flags, conversionsOrFixes,
|
|
locator)) {
|
|
if (conversionsOrFixes.empty())
|
|
return getTypeMatchSuccess();
|
|
}
|
|
}
|
|
|
|
if (conversionsOrFixes.empty())
|
|
return getTypeMatchFailure(locator);
|
|
|
|
// Where there is more than one potential conversion, create a disjunction
|
|
// so that we'll explore all of the options.
|
|
if (conversionsOrFixes.size() > 1) {
|
|
auto fixedLocator = getConstraintLocator(locator);
|
|
SmallVector<Constraint *, 2> constraints;
|
|
|
|
for (auto potential : conversionsOrFixes) {
|
|
auto constraintKind = kind;
|
|
|
|
if (auto restriction = potential.getRestriction()) {
|
|
// Determine the constraint kind. For a deep equality constraint, only
|
|
// perform equality.
|
|
if (*restriction == ConversionRestrictionKind::DeepEquality)
|
|
constraintKind = ConstraintKind::Bind;
|
|
|
|
constraints.push_back(
|
|
Constraint::createRestricted(*this, constraintKind, *restriction,
|
|
type1, type2, fixedLocator));
|
|
|
|
if (constraints.back()->getKind() == ConstraintKind::Bind)
|
|
constraints.back()->setFavored();
|
|
|
|
continue;
|
|
}
|
|
|
|
auto fix = *potential.getFix();
|
|
constraints.push_back(
|
|
Constraint::createFixed(*this, constraintKind, fix, type1, type2,
|
|
fixedLocator));
|
|
}
|
|
|
|
// Sort favored constraints first.
|
|
std::sort(constraints.begin(), constraints.end(),
|
|
[&](Constraint *lhs, Constraint *rhs) -> bool {
|
|
if (lhs->isFavored() == rhs->isFavored())
|
|
return false;
|
|
|
|
return lhs->isFavored();
|
|
});
|
|
|
|
addDisjunctionConstraint(constraints, fixedLocator);
|
|
return getTypeMatchSuccess();
|
|
}
|
|
|
|
// For a single potential conversion, directly recurse, so that we
|
|
// don't allocate a new constraint or constraint locator.
|
|
|
|
auto formTypeMatchResult = [&](SolutionKind kind) {
|
|
switch (kind) {
|
|
case SolutionKind::Error:
|
|
return getTypeMatchFailure(locator);
|
|
|
|
case SolutionKind::Solved:
|
|
return getTypeMatchSuccess();
|
|
|
|
case SolutionKind::Unsolved:
|
|
return getTypeMatchAmbiguous();
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
};
|
|
|
|
// Handle restrictions.
|
|
if (auto restriction = conversionsOrFixes[0].getRestriction()) {
|
|
return formTypeMatchResult(simplifyRestrictedConstraint(*restriction, type1,
|
|
type2, kind,
|
|
subflags, locator));
|
|
}
|
|
|
|
// Handle fixes.
|
|
auto fix = *conversionsOrFixes[0].getFix();
|
|
return formTypeMatchResult(simplifyFixConstraint(fix, type1, type2, kind,
|
|
subflags, locator));
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyConstructionConstraint(
|
|
Type valueType, FunctionType *fnType, TypeMatchOptions flags,
|
|
DeclContext *useDC,
|
|
FunctionRefInfo functionRefInfo, ConstraintLocator *locator) {
|
|
|
|
// Desugar the value type.
|
|
auto desugarValueType = valueType->getDesugaredType();
|
|
|
|
switch (desugarValueType->getKind()) {
|
|
#define SUGARED_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("Type has not been desugared completely");
|
|
|
|
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("artificial type in constraint");
|
|
|
|
case TypeKind::BuiltinTuple:
|
|
llvm_unreachable("BuiltinTupleType in constraint");
|
|
|
|
case TypeKind::Error:
|
|
case TypeKind::Placeholder:
|
|
return SolutionKind::Error;
|
|
|
|
case TypeKind::GenericFunction:
|
|
case TypeKind::GenericTypeParam:
|
|
llvm_unreachable("unmapped dependent type");
|
|
|
|
case TypeKind::TypeVariable:
|
|
case TypeKind::DependentMember:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case TypeKind::Tuple: {
|
|
// If this is an attempt to construct `Void` with arguments,
|
|
// let's diagnose it.
|
|
if (shouldAttemptFixes()) {
|
|
if (valueType->isVoid() && fnType->getNumParams() > 0) {
|
|
auto contextualType = FunctionType::get({}, fnType->getResult());
|
|
if (fixExtraneousArguments(
|
|
*this, contextualType, fnType->getParams(),
|
|
fnType->getNumParams(),
|
|
getConstraintLocator(locator,
|
|
ConstraintLocator::FunctionArgument)))
|
|
return SolutionKind::Error;
|
|
|
|
fnType = contextualType;
|
|
}
|
|
}
|
|
SmallVector<AnyFunctionType::Param, 4> args;
|
|
for (auto idx : indices(fnType->getParams())) {
|
|
auto &arg = fnType->getParams()[idx];
|
|
|
|
// We can disregard '_const', it's not applicable for tuple construction.
|
|
auto flags = arg.getParameterFlags().withCompileTimeLiteral(false);
|
|
|
|
// We cannot handle inout for tuple construction.
|
|
if (flags.isInOut()) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
auto *argLoc = getConstraintLocator(locator, {
|
|
LocatorPathElt::ApplyArgument(),
|
|
LocatorPathElt::ApplyArgToParam(idx, idx, ParameterTypeFlags())
|
|
});
|
|
auto argTy = arg.getParameterType();
|
|
if (recordFix(RemoveAddressOf::create(*this, argTy, argTy, argLoc)))
|
|
return SolutionKind::Error;
|
|
|
|
flags = flags.withInOut(false);
|
|
}
|
|
args.push_back(arg.withFlags(flags));
|
|
}
|
|
|
|
// Tuple construction is simply tuple conversion. We should have already
|
|
// handled the parameter flags. If any future parameter flags are added,
|
|
// they should also be verified above.
|
|
Type argType = AnyFunctionType::composeTuple(
|
|
getASTContext(), args, ParameterFlagHandling::AssertEmpty);
|
|
Type resultType = fnType->getResult();
|
|
|
|
ConstraintLocatorBuilder builder(locator);
|
|
if (matchTypes(resultType, desugarValueType, ConstraintKind::Bind, flags,
|
|
builder.withPathElement(ConstraintLocator::ApplyFunction))
|
|
.isFailure())
|
|
return SolutionKind::Error;
|
|
|
|
return matchTypes(argType, valueType, ConstraintKind::Conversion,
|
|
getDefaultDecompositionOptions(flags), locator);
|
|
}
|
|
|
|
case TypeKind::Enum:
|
|
case TypeKind::Struct:
|
|
case TypeKind::Class:
|
|
case TypeKind::BoundGenericClass:
|
|
case TypeKind::BoundGenericEnum:
|
|
case TypeKind::BoundGenericStruct:
|
|
case TypeKind::PrimaryArchetype:
|
|
case TypeKind::ExistentialArchetype:
|
|
case TypeKind::OpaqueTypeArchetype:
|
|
case TypeKind::PackArchetype:
|
|
case TypeKind::ElementArchetype:
|
|
case TypeKind::DynamicSelf:
|
|
case TypeKind::ProtocolComposition:
|
|
case TypeKind::ParameterizedProtocol:
|
|
case TypeKind::Protocol:
|
|
case TypeKind::Existential:
|
|
case TypeKind::ErrorUnion:
|
|
// Break out to handle the actual construction below.
|
|
break;
|
|
|
|
case TypeKind::UnboundGeneric:
|
|
llvm_unreachable("Unbound generic type should have been opened");
|
|
|
|
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
case TypeKind::ExistentialMetatype:
|
|
case TypeKind::Metatype:
|
|
case TypeKind::Function:
|
|
case TypeKind::LValue:
|
|
case TypeKind::InOut:
|
|
case TypeKind::Module:
|
|
case TypeKind::Pack:
|
|
case TypeKind::PackExpansion:
|
|
case TypeKind::PackElement: {
|
|
// If solver is in the diagnostic mode and this is an invalid base,
|
|
// let's give solver a chance to repair it to produce a good diagnostic.
|
|
if (shouldAttemptFixes())
|
|
break;
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
case TypeKind::Integer: {
|
|
llvm_unreachable("implement me");
|
|
}
|
|
}
|
|
|
|
auto fnLocator = getConstraintLocator(locator,
|
|
ConstraintLocator::ApplyFunction);
|
|
auto memberTypeLoc =
|
|
getConstraintLocator(fnLocator, LocatorPathElt::ConstructorMemberType(
|
|
/*shortFormOrSelfDelegating*/ true));
|
|
|
|
auto memberType = createTypeVariable(memberTypeLoc, TVO_CanBindToNoEscape);
|
|
|
|
// The constructor will have function type T -> T2, for a fresh type
|
|
// variable T. T2 is the result type provided via the construction
|
|
// constraint itself.
|
|
addValueMemberConstraint(MetatypeType::get(valueType, getASTContext()),
|
|
// OK: simplifyConstructionConstraint() is only used
|
|
// for `T(...)` init calls, not `T.init(...)` calls,
|
|
// so there's no module selector on `init`.
|
|
DeclNameRef::createConstructor(),
|
|
memberType,
|
|
useDC, functionRefInfo,
|
|
/*outerAlternatives=*/{},
|
|
getConstraintLocator(
|
|
fnLocator,
|
|
ConstraintLocator::ConstructorMember));
|
|
|
|
// HACK: Bind the function's parameter list as a tuple to a type variable.
|
|
// This only exists to preserve compatibility with rdar://85263844, as it can
|
|
// affect the prioritization of bindings, which can affect behavior for tuple
|
|
// matching as tuple subtyping is currently a *weaker* constraint than tuple
|
|
// conversion.
|
|
if (!getASTContext().isSwiftVersionAtLeast(6)) {
|
|
auto paramTypeVar = createTypeVariable(
|
|
getConstraintLocator(locator, ConstraintLocator::ApplyArgument),
|
|
TVO_CanBindToLValue | TVO_CanBindToInOut | TVO_CanBindToNoEscape |
|
|
TVO_CanBindToPack);
|
|
addConstraint(ConstraintKind::BindTupleOfFunctionParams, memberType,
|
|
paramTypeVar, locator);
|
|
}
|
|
|
|
addApplicationConstraint(fnType, memberType,
|
|
/*trailingClosureMatching=*/std::nullopt, useDC,
|
|
fnLocator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifySubclassOfConstraint(
|
|
Type type,
|
|
Type classType,
|
|
ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags) {
|
|
if (!classType->getClassOrBoundGenericClass())
|
|
return SolutionKind::Error;
|
|
|
|
// Dig out the fixed type to which this type refers.
|
|
type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true);
|
|
if (shouldAttemptFixes() && type->isPlaceholder()) {
|
|
// If the type associated with this subclass check is a "hole" in the
|
|
// constraint system, let's consider this check a success without recording
|
|
// a fix, because it's just a consequence of the other failure, e.g.
|
|
//
|
|
// func foo<T: NSObject>(_: T) {}
|
|
// foo(Foo.bar) <- if `Foo` doesn't have `bar` there is
|
|
// no reason to complain the subclass.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *subclassOf = Constraint::create(
|
|
*this, ConstraintKind::SubclassOf, type, classType,
|
|
getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(subclassOf);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (type->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// SubclassOf constraints are generated when opening a generic
|
|
// signature with a RequirementKind::Superclass requirement, so
|
|
// we must handle pack types on the left by splitting up into
|
|
// smaller constraints.
|
|
if (auto *packType = type->getAs<PackType>()) {
|
|
for (unsigned i = 0, e = packType->getNumElements(); i < e; ++i) {
|
|
auto eltType = packType->getElementType(i);
|
|
if (auto *packExpansionType = eltType->getAs<PackExpansionType>()) {
|
|
auto patternLoc =
|
|
locator.withPathElement(ConstraintLocator::PackExpansionPattern);
|
|
addConstraint(ConstraintKind::SubclassOf, packExpansionType->getPatternType(),
|
|
classType, patternLoc);
|
|
} else {
|
|
addConstraint(ConstraintKind::SubclassOf, eltType,
|
|
classType, locator.withPathElement(LocatorPathElt::PackElement(i)));
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// A class-constrained existential like 'C & P' does not satisfy an
|
|
// AnyObject requirement, if 'P' is not self-conforming.
|
|
//
|
|
// While matchSuperclassTypes() will still match here because 'C & P'
|
|
// satisfies a Subtype constraint with 'C', 'C & P' cannot satisfy a
|
|
// superclass requirement in a generic signature, so rule that out here.
|
|
if (type->satisfiesClassConstraint()) {
|
|
// If we have an exact match of class declarations, ensure the
|
|
// generic arguments match.
|
|
if (type->getClassOrBoundGenericClass() ==
|
|
classType->getClassOrBoundGenericClass()) {
|
|
auto result = matchTypes(type, classType, ConstraintKind::Bind,
|
|
flags, locator);
|
|
if (!result.isFailure())
|
|
return SolutionKind::Solved;
|
|
|
|
// Otherwise, ensure the left hand side is a proper subclass of the
|
|
// right hand side.
|
|
} else {
|
|
auto result = matchSuperclassTypes(type, classType, flags, locator);
|
|
if (!result.isFailure())
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
// Record a fix if we didn't match one of the two cases above.
|
|
if (shouldAttemptFixes()) {
|
|
if (auto *fix = fixRequirementFailure(*this, type, classType, locator)) {
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
|
|
Type type,
|
|
Type protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags) {
|
|
|
|
if (auto proto = protocol->getAs<ProtocolType>()) {
|
|
return simplifyConformsToConstraint(type, proto->getDecl(), kind,
|
|
locator, flags);
|
|
}
|
|
|
|
auto conformsToSubKind = (kind == ConstraintKind::NonisolatedConformsTo)
|
|
? kind
|
|
: ConstraintKind::ConformsTo;
|
|
|
|
// Dig out the fixed type to which this type refers.
|
|
type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true);
|
|
|
|
// ConformsTo constraints are generated when opening a generic
|
|
// signature with a RequirementKind::Conformance requirement, so
|
|
// we must handle pack types on the left by splitting up into
|
|
// smaller constraints.
|
|
if (auto *packType = type->getAs<PackType>()) {
|
|
for (unsigned i = 0, e = packType->getNumElements(); i < e; ++i) {
|
|
auto eltType = packType->getElementType(i);
|
|
if (auto *packExpansionType = eltType->getAs<PackExpansionType>()) {
|
|
auto patternLoc =
|
|
locator.withPathElement(ConstraintLocator::PackExpansionPattern);
|
|
addConstraint(conformsToSubKind,
|
|
packExpansionType->getPatternType(), protocol,
|
|
patternLoc);
|
|
} else {
|
|
addConstraint(conformsToSubKind, eltType, protocol,
|
|
locator.withPathElement(LocatorPathElt::PackElement(i)));
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto result = matchExistentialTypes(type, protocol, kind, flags, locator);
|
|
|
|
if (shouldAttemptFixes() && result.isFailure()) {
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
ArrayRef<LocatorPathElt> path = loc->getPath();
|
|
while (!path.empty()) {
|
|
if (!path.back().is<LocatorPathElt::InstanceType>())
|
|
break;
|
|
|
|
path = path.drop_back();
|
|
}
|
|
|
|
if (path.size() != loc->getPath().size()) {
|
|
loc = getConstraintLocator(loc->getAnchor(), path);
|
|
}
|
|
|
|
ConstraintFix *fix = nullptr;
|
|
if (loc->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
fix = AllowArgumentMismatch::create(*this, type, protocol, loc);
|
|
} else if (loc->isLastElement<LocatorPathElt::ContextualType>()) {
|
|
fix = ContextualMismatch::create(*this, type, protocol, loc);
|
|
}
|
|
|
|
if (fix) {
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ConstraintSystem::recordSynthesizedConformance(
|
|
ConstraintLocator *locator,
|
|
ProtocolDecl *proto) {
|
|
bool inserted = SynthesizedConformances.insert({locator, proto}).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState)
|
|
recordChange(SolverTrail::Change::RecordedSynthesizedConformance(locator));
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
|
|
Type type,
|
|
ProtocolDecl *protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags) {
|
|
const auto rawType = type;
|
|
auto *typeVar = type->getAs<TypeVariableType>();
|
|
|
|
// Dig out the fixed type to which this type refers.
|
|
type = getFixedTypeRecursive(type, flags, /*wantRValue=*/true);
|
|
if (shouldAttemptFixes() && type->isPlaceholder()) {
|
|
// If the type associated with this conformance check is a "hole" in the
|
|
// constraint system, let's consider this check a success without recording
|
|
// a fix, because it's just a consequence of the other failure, e.g.
|
|
//
|
|
// func foo<T: BinaryInteger>(_: T) {}
|
|
// foo(Foo.bar) <- if `Foo` doesn't have `bar` there is
|
|
// no reason to complain about missing conformance.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *conformance = Constraint::create(
|
|
*this, kind, type, protocol->getDeclaredInterfaceType(),
|
|
getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(conformance);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (type->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
auto conformsToSubKind = kind;
|
|
if (kind != ConstraintKind::NonisolatedConformsTo)
|
|
conformsToSubKind = ConstraintKind::ConformsTo;
|
|
|
|
// ConformsTo constraints are generated when opening a generic
|
|
// signature with a RequirementKind::Conformance requirement, so
|
|
// we must handle pack types on the left by splitting up into
|
|
// smaller constraints.
|
|
if (auto *packType = type->getAs<PackType>()) {
|
|
for (unsigned i = 0, e = packType->getNumElements(); i < e; ++i) {
|
|
auto eltType = packType->getElementType(i);
|
|
if (auto *packExpansionType = eltType->getAs<PackExpansionType>()) {
|
|
auto patternLoc =
|
|
locator.withPathElement(ConstraintLocator::PackExpansionPattern);
|
|
addConstraint(conformsToSubKind,
|
|
packExpansionType->getPatternType(),
|
|
protocol->getDeclaredInterfaceType(),
|
|
patternLoc);
|
|
} else {
|
|
addConstraint(conformsToSubKind, eltType,
|
|
protocol->getDeclaredInterfaceType(),
|
|
locator.withPathElement(LocatorPathElt::PackElement(i)));
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// We sometimes get a pack expansion type here.
|
|
if (auto *expansionType = type->getAs<PackExpansionType>()) {
|
|
addConstraint(
|
|
conformsToSubKind, expansionType->getPatternType(),
|
|
protocol->getDeclaredInterfaceType(),
|
|
locator.withPathElement(LocatorPathElt::PackExpansionPattern()));
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
/// Record the given conformance as the result, adding any conditional
|
|
/// requirements if necessary.
|
|
auto recordConformance = [&](ProtocolConformanceRef conformance) {
|
|
if (isConformanceUnavailable(conformance, loc))
|
|
increaseScore(SK_Unavailable, locator);
|
|
|
|
unsigned numMissing = 0;
|
|
conformance.forEachMissingConformance([&numMissing](auto *missing) {
|
|
++numMissing;
|
|
return false;
|
|
});
|
|
|
|
if (numMissing > 0)
|
|
increaseScore(SK_MissingSynthesizableConformance, locator, numMissing);
|
|
|
|
// If we aren't allowed to have an isolated conformance, check for any
|
|
// isolated conformances here.
|
|
if (kind == ConstraintKind::NonisolatedConformsTo &&
|
|
!conformance.getProtocol()->isMarkerProtocol()) {
|
|
// Grab the first isolated conformance, if there is one.
|
|
ProtocolConformanceRef isolatedConformance;
|
|
conformance.forEachIsolatedConformance([&](ProtocolConformanceRef conf) {
|
|
if (!isolatedConformance)
|
|
isolatedConformance = conf;
|
|
return true;
|
|
});
|
|
|
|
if (isolatedConformance && isolatedConformance.isConcrete()) {
|
|
auto fix = IgnoreIsolatedConformance::create(
|
|
*this, getConstraintLocator(locator),
|
|
isolatedConformance.getConcrete());
|
|
if (recordFix(fix)) {
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
|
|
// This conformance may be conditional, in which case we need to consider
|
|
// those requirements as constraints too.
|
|
if (conformance.isConcrete()) {
|
|
unsigned index = 0;
|
|
auto *conformanceLoc = getConstraintLocator(
|
|
loc,
|
|
LocatorPathElt::ConformanceRequirement(conformance.getConcrete()));
|
|
|
|
for (const auto &req : conformance.getConditionalRequirements()) {
|
|
addConstraint(
|
|
req, getConstraintLocator(conformanceLoc,
|
|
LocatorPathElt::ConditionalRequirement(
|
|
index++, req.getKind())),
|
|
/*isFavored=*/false, kind == ConstraintKind::NonisolatedConformsTo);
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
// For purposes of argument type matching, existential types don't need to
|
|
// conform -- they only need to contain the protocol, so check that
|
|
// separately.
|
|
switch (kind) {
|
|
case ConstraintKind::Subtype: {
|
|
auto pair = TypeChecker::containsProtocol(
|
|
type, protocol, /*allowMissing=*/true);
|
|
if (pair.first)
|
|
return SolutionKind::Solved;
|
|
if (pair.second)
|
|
return recordConformance(pair.second);
|
|
} break;
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::LiteralConformsTo: {
|
|
// If existential type is used as a for-in sequence, let's open it
|
|
// and check whether underlying type conforms to `Sequence`.
|
|
if (type->isExistentialType()) {
|
|
if (auto elt = loc->getLastElementAs<LocatorPathElt::ContextualType>()) {
|
|
if (elt->getPurpose() == CTP_ForEachSequence) {
|
|
type = openAnyExistentialType(type, loc).first;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether this type conforms to the protocol.
|
|
auto conformance = lookupConformance(type, protocol);
|
|
if (conformance) {
|
|
return recordConformance(conformance);
|
|
}
|
|
|
|
// Account for ad-hoc requirements on some distributed actor
|
|
// requirements.
|
|
if (auto witnessInfo = locator.isForWitnessGenericParameterRequirement()) {
|
|
auto *GP = witnessInfo->second;
|
|
|
|
// Conformance requirement between on `Res` and `SerializationRequirement`
|
|
// of `DistributedActorSystem.remoteCall` are not expressible at the moment
|
|
// but they are verified by Sema so it's okay to omit them here and lookup
|
|
// dynamically during IRGen.
|
|
if (auto *witness = dyn_cast<FuncDecl>(witnessInfo->first)) {
|
|
auto synthesizeConformance = [&]() {
|
|
auto witnessLoc = getConstraintLocator(
|
|
locator.getAnchor(), LocatorPathElt::Witness(witness));
|
|
// FIXME: Why are we recording the same locator more than once here?
|
|
if (SynthesizedConformances.count(witnessLoc) == 0)
|
|
recordSynthesizedConformance(witnessLoc, protocol);
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
if (witness->isGeneric()) {
|
|
// `DistributedActorSystem.remoteCall`
|
|
if (witness->isDistributedActorSystemRemoteCall(/*isVoidReturn=*/false)) {
|
|
if (GP->isEqual(cast<FuncDecl>(witness)->getResultInterfaceType()))
|
|
return synthesizeConformance();
|
|
}
|
|
|
|
// `DistributedTargetInvocationEncoder.record{Argument, ResultType}`
|
|
// `DistributedTargetInvocationDecoder.decodeNextArgument`
|
|
// `DistributedTargetInvocationResultHandler.onReturn`
|
|
if (witness->isDistributedTargetInvocationEncoderRecordArgument() ||
|
|
witness->isDistributedTargetInvocationEncoderRecordReturnType() ||
|
|
witness
|
|
->isDistributedTargetInvocationDecoderDecodeNextArgument() ||
|
|
witness->isDistributedTargetInvocationResultHandlerOnReturn()) {
|
|
auto genericParams = witness->getGenericParams()->getParams();
|
|
if (GP->isEqual(genericParams.front()->getDeclaredInterfaceType()))
|
|
return synthesizeConformance();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
auto arrayLiteralProto =
|
|
getASTContext().getProtocol(KnownProtocolKind::ExpressibleByArrayLiteral);
|
|
auto anchor = loc->getAnchor();
|
|
auto arrayLiteral = getAsExpr<ArrayExpr>(anchor);
|
|
|
|
// If we're attempting to bind an array literal to an 'InlineArray'
|
|
// parameter, then check if the counts are equal and solve.
|
|
if (kind == ConstraintKind::LiteralConformsTo &&
|
|
protocol == arrayLiteralProto &&
|
|
(type->isInlineArray() || type->is_InlineArray()) &&
|
|
arrayLiteral) {
|
|
auto iaTy = type->castTo<BoundGenericStructType>();
|
|
|
|
// <let count: Int, Element>
|
|
// Attempt to bind the number of elements in the literal with the
|
|
// contextual count. This will diagnose if the literal does not enough
|
|
// or too many elements.
|
|
auto contextualCount = iaTy->getGenericArgs()[0];
|
|
auto literalCount = IntegerType::get(
|
|
std::to_string(arrayLiteral->getNumElements()),
|
|
/* isNegative */ false,
|
|
iaTy->getASTContext());
|
|
|
|
// If the counts are already equal, '2' == '2', then we're done.
|
|
if (contextualCount->isEqual(literalCount)) {
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// If our contextual count is not known, e.g., InlineArray<_, Int> = [1, 2],
|
|
// then just eagerly bind the count to what the literal count is.
|
|
if (contextualCount->isTypeVariableOrMember()) {
|
|
addConstraint(ConstraintKind::Bind, contextualCount, literalCount,
|
|
locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Otherwise this is an error and the counts aren't equal to each other.
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
auto fix = AllowInlineArrayLiteralCountMismatch::create(*this,
|
|
contextualCount,
|
|
literalCount, loc);
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
} break;
|
|
|
|
default:
|
|
llvm_unreachable("bad constraint kind");
|
|
}
|
|
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
auto protocolTy = protocol->getDeclaredInterfaceType();
|
|
|
|
// If this conformance has been fixed already, let's just consider this done.
|
|
if (isFixedRequirement(loc, protocolTy))
|
|
return SolutionKind::Solved;
|
|
|
|
// If this is a generic requirement let's try to record that
|
|
// conformance is missing and consider this a success, which
|
|
// makes it much easier to diagnose problems like that.
|
|
{
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
// If this is a `nil` literal, it would be a contextual failure.
|
|
if (auto *Nil = getAsExpr<NilLiteralExpr>(anchor)) {
|
|
auto *fixLocator = getConstraintLocator(
|
|
getContextualType(Nil, /*forConstraint=*/false)
|
|
? locator.withPathElement(LocatorPathElt::ContextualType(
|
|
getContextualTypePurpose(Nil)))
|
|
: locator);
|
|
|
|
// Only requirement placed directly on `nil` literal is
|
|
// `ExpressibleByNilLiteral`, so if `nil` is an argument
|
|
// to an application, let's update locator accordingly to
|
|
// diagnose possible ambiguities with multiple mismatched
|
|
// overload choices.
|
|
if (fixLocator->directlyAt<NilLiteralExpr>()) {
|
|
if (auto *loc = getArgumentLocator(castToExpr(fixLocator->getAnchor())))
|
|
fixLocator = loc;
|
|
}
|
|
|
|
// Here the roles are reversed - `nil` is something we are trying to
|
|
// convert to `type` by making sure that it conforms to a specific
|
|
// protocol.
|
|
auto *fix =
|
|
ContextualMismatch::create(*this, protocolTy, type, fixLocator);
|
|
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
// If there is a missing conformance between source and destination
|
|
// of the assignment, let's ignore current the types and instead use
|
|
// source/destination types directly to make it possible to diagnose
|
|
// protocol compositions.
|
|
if (auto *assignment = getAsExpr<AssignExpr>(anchor)) {
|
|
// If the locator's last element points to the function result,
|
|
// let's check whether there is a problem with function argument
|
|
// as well, and if so, avoid producing a fix here, because
|
|
// contextual mismatch mentions the source/destination
|
|
// types of the assignment.
|
|
if (locator.endsWith<LocatorPathElt::FunctionResult>() &&
|
|
hasFixFor(
|
|
getConstraintLocator(anchor, LocatorPathElt::FunctionArgument())))
|
|
return SolutionKind::Solved;
|
|
|
|
auto srcType = getType(assignment->getSrc());
|
|
auto dstType = getType(assignment->getDest());
|
|
|
|
auto *fix = IgnoreAssignmentDestinationType::create(
|
|
*this, srcType, dstType, loc);
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
if (path.empty())
|
|
return SolutionKind::Error;
|
|
|
|
// If this is a conformance failure related to a contextual type
|
|
// let's record it as a "contextual mismatch" because diagnostic
|
|
// is going to be dependent on other contextual information.
|
|
if (path.back().is<LocatorPathElt::ContextualType>()) {
|
|
auto *fix = ContextualMismatch::create(*this, type, protocolTy, loc);
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
// Conditional conformance requirements could produce chains of
|
|
// `path element -> pack expansion pattern -> pack element`.
|
|
while (!path.empty()) {
|
|
// If we have something like ... -> type req # -> pack element #, we're
|
|
// solving a requirement of the form T : P where T is a type parameter pack
|
|
if (path.back().is<LocatorPathElt::PackElement>()) {
|
|
path.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// This is similar to `PackElement` but locator points to the requirement
|
|
// associated with pack expansion pattern (i.e. `repeat each T: P`) where
|
|
// the path is something like:
|
|
// `... -> type req # -> pack expansion pattern`.
|
|
if (path.back().is<LocatorPathElt::PackExpansionPattern>()) {
|
|
path.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Matching existentials could introduce constraints with `instance type`
|
|
// element at the end if the confirming type wasn't fully resolved.
|
|
if (path.back().is<LocatorPathElt::InstanceType>()) {
|
|
path.pop_back();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (auto req = path.back().getAs<LocatorPathElt::AnyRequirement>()) {
|
|
// If this is a requirement associated with `Self` which is bound
|
|
// to `Any`, let's consider this "too incorrect" to continue.
|
|
//
|
|
// This helps us to filter out cases like operator overloads where
|
|
// `Self` type comes from e.g. default for collection element -
|
|
// `[1, "hello"].map { $0 + 1 }`. Main problem here is that
|
|
// collection type couldn't be determined without unification to
|
|
// `Any` and `+` failing for all numeric overloads is just a consequence.
|
|
if (typeVar && type->isAny()) {
|
|
if (auto *GP = typeVar->getImpl().getGenericParameter()) {
|
|
if (auto *GPD = GP->getDecl()) {
|
|
auto *DC = GPD->getDeclContext();
|
|
if (DC->isTypeContext() && DC->getSelfInterfaceType()->isEqual(GP))
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto rawValue = isRawRepresentable(*this, type)) {
|
|
if (!rawValue->isTypeVariableOrMember() &&
|
|
lookupConformance(rawValue, protocol)) {
|
|
auto *fix = UseRawValue::create(*this, type, protocolTy, loc);
|
|
// Since this is a conformance requirement failure (where the
|
|
// source is most likely an argument), let's increase its impact
|
|
// to disambiguate vs. conversion failure of the same kind.
|
|
return recordFix(fix, /*impact=*/2) ? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
auto anchor = locator.getAnchor();
|
|
|
|
if (isExpr<UnresolvedMemberExpr>(anchor) &&
|
|
req->is<LocatorPathElt::TypeParameterRequirement>()) {
|
|
auto *memberLoc = getConstraintLocator(anchor, path.front());
|
|
|
|
auto signature = path[path.size() - 2]
|
|
.castTo<LocatorPathElt::OpenedGeneric>()
|
|
.getSignature();
|
|
auto requirement = signature.getRequirements()[req->getIndex()];
|
|
|
|
auto attemptInvalidStaticMemberRefOnMetatypeFix = [&]() {
|
|
// If the failed requirement isn't the first generic parameter,
|
|
// it can't be a static member reference on a protocol metatype.
|
|
if (!requirement.getFirstType()->isEqual(getASTContext().TheSelfType))
|
|
return false;
|
|
|
|
// If we don't know the overload yet, conservatively assume it's
|
|
// a static member reference on a protocol metatype.
|
|
auto overload = findSelectedOverloadFor(memberLoc);
|
|
if (!overload)
|
|
return true;
|
|
|
|
auto *decl = overload->choice.getDeclOrNull();
|
|
if (!decl)
|
|
return true;
|
|
|
|
// Otherwise, we can do a precise check.
|
|
if (!decl->isStatic())
|
|
return false;
|
|
|
|
return decl->getDeclContext()->getSelfProtocolDecl() != nullptr;
|
|
};
|
|
|
|
if (attemptInvalidStaticMemberRefOnMetatypeFix()) {
|
|
auto *fix = AllowInvalidStaticMemberRefOnProtocolMetatype::create(
|
|
*this, memberLoc);
|
|
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
if (auto *fix =
|
|
fixRequirementFailure(*this, type, protocolTy, anchor, path)) {
|
|
auto impact = assessRequirementFailureImpact(*this, rawType, locator);
|
|
if (!recordFix(fix, impact)) {
|
|
// Record this conformance requirement as "fixed".
|
|
recordFixedRequirement(getConstraintLocator(anchor, path),
|
|
protocolTy);
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (path.back().is<LocatorPathElt::MemberRefBase>()) {
|
|
auto *fix = ContextualMismatch::create(*this, protocolTy, type, loc);
|
|
if (!recordFix(fix))
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Conformance constraint that is introduced by an implicit conversion
|
|
// for example to `AnyHashable`.
|
|
if ((kind == ConstraintKind::ConformsTo ||
|
|
kind == ConstraintKind::NonisolatedConformsTo) &&
|
|
path.back().is<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto *fix = AllowArgumentMismatch::create(*this, type, protocolTy, loc);
|
|
return recordFix(fix, /*impact=*/2) ? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
// If this is an implicit Hashable conformance check generated for each
|
|
// index argument of the keypath subscript component, we could just treat
|
|
// it as though it conforms.
|
|
if (loc->isResultOfKeyPathDynamicMemberLookup() ||
|
|
loc->isKeyPathSubscriptComponent() ||
|
|
loc->isKeyPathMemberComponent() ||
|
|
loc->isKeyPathApplyComponent()) {
|
|
if (protocol ==
|
|
getASTContext().getProtocol(KnownProtocolKind::Hashable)) {
|
|
auto *fix =
|
|
TreatKeyPathSubscriptIndexAsHashable::create(*this, type, loc);
|
|
if (!recordFix(fix))
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
}
|
|
|
|
// There's nothing more we can do; fail.
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyTransitivelyConformsTo(
|
|
Type type, Type protocolTy, ConstraintLocatorBuilder locator,
|
|
TypeMatchOptions flags) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// Since this is a performance optimization, let's ignore it
|
|
// in diagnostic mode.
|
|
if (shouldAttemptFixes())
|
|
return SolutionKind::Solved;
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *conformance =
|
|
Constraint::create(*this, ConstraintKind::TransitivelyConformsTo,
|
|
type, protocolTy, getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(conformance);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
auto resolvedTy = getFixedTypeRecursive(type, /*wantRValue=*/true);
|
|
if (resolvedTy->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// If the composition consists of a class + protocol,
|
|
// we can't check conformance of the argument because
|
|
// parameter could pick one of the components.
|
|
if (resolvedTy.findIf(
|
|
[](Type type) { return type->is<ProtocolCompositionType>(); }))
|
|
return SolutionKind::Solved;
|
|
|
|
// All bets are off for pointers, there are multiple combinations
|
|
// to check and it doesn't see worth to do that upfront.
|
|
{
|
|
PointerTypeKind pointerKind;
|
|
if (resolvedTy->getAnyPointerElementType(pointerKind))
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto *protocol = protocolTy->castTo<ProtocolType>()->getDecl();
|
|
|
|
// First, let's check whether the type itself conforms,
|
|
// if it does - we are done.
|
|
if (lookupConformance(resolvedTy, protocol))
|
|
return SolutionKind::Solved;
|
|
|
|
// If the type doesn't conform, let's check whether
|
|
// an Optional or Unsafe{Mutable}Pointer from it would.
|
|
|
|
// If the current score is equal to the best score, fail without checking
|
|
// implicit conversions, because an implicit conversion would lead to a
|
|
// worse score anyway.
|
|
if (solverState && solverState->BestScore && CurrentScore == *solverState->BestScore)
|
|
return SolutionKind::Error;
|
|
|
|
SmallVector<Type, 4> typesToCheck;
|
|
|
|
// T -> Optional<T>
|
|
if (!resolvedTy->getOptionalObjectType())
|
|
typesToCheck.push_back(OptionalType::get(resolvedTy));
|
|
|
|
// AnyHashable
|
|
if (auto *anyHashable = ctx.getAnyHashableDecl())
|
|
typesToCheck.push_back(anyHashable->getDeclaredInterfaceType());
|
|
|
|
// Rest of the implicit conversions depend on the resolved type.
|
|
{
|
|
auto getPointerFor = [&ctx](PointerTypeKind ptrKind,
|
|
std::optional<Type> elementTy =
|
|
std::nullopt) -> Type {
|
|
switch (ptrKind) {
|
|
case PTK_UnsafePointer:
|
|
assert(elementTy);
|
|
return BoundGenericType::get(ctx.getUnsafePointerDecl(),
|
|
/*parent=*/Type(), {*elementTy});
|
|
case PTK_UnsafeMutablePointer:
|
|
assert(elementTy);
|
|
return BoundGenericType::get(ctx.getUnsafeMutablePointerDecl(),
|
|
/*parent=*/Type(), {*elementTy});
|
|
|
|
case PTK_UnsafeRawPointer:
|
|
return ctx.getUnsafeRawPointerDecl()->getDeclaredInterfaceType();
|
|
|
|
case PTK_UnsafeMutableRawPointer:
|
|
return ctx.getUnsafeMutableRawPointerDecl()->getDeclaredInterfaceType();
|
|
|
|
case PTK_AutoreleasingUnsafeMutablePointer:
|
|
llvm_unreachable("no implicit conversion");
|
|
}
|
|
};
|
|
|
|
// String -> UnsafePointer<Void>
|
|
if (auto *string = ctx.getStringDecl()) {
|
|
if (resolvedTy->isEqual(string->getDeclaredInterfaceType())) {
|
|
typesToCheck.push_back(
|
|
getPointerFor(PTK_UnsafePointer, ctx.TheEmptyTupleType));
|
|
}
|
|
}
|
|
|
|
// Array<T> -> Unsafe{Raw}Pointer<T>
|
|
if (auto elt = resolvedTy->getArrayElementType()) {
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafePointer, elt));
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafeRawPointer, elt));
|
|
}
|
|
|
|
// inout argument -> UnsafePointer<T>, UnsafeMutablePointer<T>,
|
|
// UnsafeRawPointer, UnsafeMutableRawPointer.
|
|
if (type->is<InOutType>()) {
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafePointer, resolvedTy));
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafeMutablePointer, resolvedTy));
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafeRawPointer));
|
|
typesToCheck.push_back(getPointerFor(PTK_UnsafeMutableRawPointer));
|
|
}
|
|
}
|
|
|
|
return llvm::any_of(
|
|
typesToCheck,
|
|
[&](Type type) { return bool(lookupConformance(type, protocol)); })
|
|
? SolutionKind::Solved
|
|
: SolutionKind::Error;
|
|
}
|
|
|
|
/// Determine the kind of checked cast to perform from the given type to
|
|
/// the given type.
|
|
///
|
|
/// This routine does not attempt to check whether the cast can actually
|
|
/// succeed; that's the caller's responsibility.
|
|
static CheckedCastKind getCheckedCastKind(ConstraintSystem *cs,
|
|
Type fromType,
|
|
Type toType) {
|
|
// Array downcasts are handled specially.
|
|
if (fromType->isArray() && toType->isArray()) {
|
|
return CheckedCastKind::ArrayDowncast;
|
|
}
|
|
|
|
// Dictionary downcasts are handled specially.
|
|
if (cs->isDictionaryType(fromType) && cs->isDictionaryType(toType)) {
|
|
return CheckedCastKind::DictionaryDowncast;
|
|
}
|
|
|
|
// Set downcasts are handled specially.
|
|
if (cs->isSetType(fromType) && cs->isSetType(toType)) {
|
|
return CheckedCastKind::SetDowncast;
|
|
}
|
|
|
|
return CheckedCastKind::ValueCast;
|
|
}
|
|
|
|
// Optional types always conform to `ExpressibleByNilLiteral`.
|
|
static bool isCastToExpressibleByNilLiteral(ConstraintSystem &cs, Type fromType,
|
|
Type toType) {
|
|
auto &ctx = cs.getASTContext();
|
|
auto *nilLiteral = ctx.getProtocol(KnownProtocolKind::ExpressibleByNilLiteral);
|
|
if (!nilLiteral)
|
|
return false;
|
|
|
|
return toType->isEqual(nilLiteral->getDeclaredExistentialType()) &&
|
|
fromType->getOptionalObjectType();
|
|
}
|
|
|
|
static ConstraintFix *maybeWarnAboutExtraneousCast(
|
|
ConstraintSystem &cs, Type origFromType, Type origToType, Type fromType,
|
|
Type toType, SmallVector<Type, 4> fromOptionals,
|
|
SmallVector<Type, 4> toOptionals,
|
|
ConstraintSystem::TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
if (locator.endsWith<LocatorPathElt::GenericArgument>())
|
|
return nullptr;
|
|
|
|
// Both types have to be resolved, `typeCheckCheckedCast` doesn't support
|
|
// checking solver-allocated types.
|
|
if (fromType->hasTypeVariableOrPlaceholder() ||
|
|
toType->hasTypeVariableOrPlaceholder()) {
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
auto *castExpr = getAsExpr<ExplicitCastExpr>(anchor);
|
|
if (!castExpr)
|
|
return nullptr;
|
|
|
|
// "from" could be less optional than "to" e.g. `0 as Any?`, so
|
|
// we need to store the difference as a signed integer.
|
|
int extraOptionals = fromOptionals.size() - toOptionals.size();
|
|
|
|
// "from" expression could be a type variable wrapped in an optional e.g.
|
|
// Optional<$T0>. So when that is the case we have to add this additional
|
|
// optionality levels to from type.
|
|
const auto subExprType = cs.getType(castExpr->getSubExpr());
|
|
if (subExprType->getOptionalObjectType()) {
|
|
SmallVector<Type, 4> subExprOptionals;
|
|
const auto unwrappedSubExprType =
|
|
subExprType->lookThroughAllOptionalTypes(subExprOptionals);
|
|
if (unwrappedSubExprType->is<TypeVariableType>()) {
|
|
extraOptionals += subExprOptionals.size();
|
|
for (size_t i = 0; i != subExprOptionals.size(); ++i) {
|
|
origFromType = OptionalType::get(origFromType);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Removing the optionality from to type when the force cast expr is an IUO.
|
|
const auto *const TR = castExpr->getCastTypeRepr();
|
|
if (isExpr<ForcedCheckedCastExpr>(anchor) && TR &&
|
|
TR->getKind() == TypeReprKind::ImplicitlyUnwrappedOptional) {
|
|
extraOptionals++;
|
|
}
|
|
|
|
// In cases of 'try?' where origFromType isn't optional that meaning
|
|
// sub-expression isn't optional, always adds one level of optionality
|
|
// because the result of the expression is always an optional type
|
|
// regardless of language mode.
|
|
auto *sub = castExpr->getSubExpr()->getSemanticsProvidingExpr();
|
|
if (isExpr<OptionalTryExpr>(sub) && !origFromType->getOptionalObjectType()) {
|
|
origFromType = OptionalType::get(fromType);
|
|
extraOptionals++;
|
|
}
|
|
|
|
// Except for forced cast expressions, if optionals are more than a single
|
|
// level difference or there is a single level between the types but an extra
|
|
// level of optional is added to subexpr via OptionalEvaluationExpr, we don't
|
|
// need to record any fix.
|
|
if (!isExpr<ForcedCheckedCastExpr>(anchor) &&
|
|
(extraOptionals > 1 ||
|
|
isExpr<OptionalEvaluationExpr>(castExpr->getSubExpr())))
|
|
return nullptr;
|
|
|
|
// Always succeed
|
|
if (isCastToExpressibleByNilLiteral(cs, origFromType, toType)) {
|
|
return AllowNoopCheckedCast::create(cs, fromType, toType,
|
|
CheckedCastKind::Coercion,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
|
|
// If both original are metatypes we have to use them because most of the
|
|
// logic on how correctly handle metatypes casting is on
|
|
// typeCheckCheckedCast.
|
|
if (origFromType->is<AnyMetatypeType>() &&
|
|
origToType->is<AnyMetatypeType>()) {
|
|
fromType = origFromType;
|
|
toType = origToType;
|
|
}
|
|
|
|
auto castKind = TypeChecker::typeCheckCheckedCast(
|
|
fromType, toType, CheckedCastContextKind::None, cs.DC);
|
|
|
|
if (castKind == CheckedCastKind::Unresolved) {
|
|
return AllowCheckedCastToUnrelated::attempt(
|
|
cs, origFromType, origToType, castKind,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
|
|
if (castKind == CheckedCastKind::ValueCast) {
|
|
// https://github.com/apple/swift/issues/44221
|
|
// Special 'is' case diagnostics for CFTypes.
|
|
return AllowNoopExistentialToCFTypeCheckedCast::attempt(
|
|
cs, origFromType, origToType, castKind,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
|
|
if (!(castKind == CheckedCastKind::Coercion ||
|
|
castKind == CheckedCastKind::BridgingCoercion))
|
|
return nullptr;
|
|
|
|
if (auto *fix = AllowUnsupportedRuntimeCheckedCast::attempt(
|
|
cs, fromType, toType, castKind, cs.getConstraintLocator(locator))) {
|
|
return fix;
|
|
}
|
|
if (extraOptionals > 0) {
|
|
// Conditional cast in this case can be an attempt to just unwrap a nil
|
|
// value.
|
|
if (isExpr<ConditionalCheckedCastExpr>(anchor) &&
|
|
castKind == CheckedCastKind::BridgingCoercion) {
|
|
return nullptr;
|
|
}
|
|
|
|
return AllowCheckedCastCoercibleOptionalType::create(
|
|
cs, origFromType, origToType, castKind,
|
|
cs.getConstraintLocator(locator));
|
|
} else {
|
|
// No optionals, just a trivial cast that always succeeds.
|
|
return AllowNoopCheckedCast::create(cs, origFromType, origToType, castKind,
|
|
cs.getConstraintLocator(locator));
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyCheckedCastConstraint(
|
|
Type fromType, Type toType,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
/// Form an unresolved result.
|
|
auto formUnsolved = [&] {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::CheckedCast, fromType,
|
|
toType, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
Type origFromType =
|
|
getFixedTypeRecursive(fromType, flags, /*wantRValue=*/true);
|
|
Type origToType = getFixedTypeRecursive(toType, flags, /*wantRValue=*/true);
|
|
|
|
SmallVector<Type, 4> fromOptionals;
|
|
SmallVector<Type, 4> toOptionals;
|
|
|
|
do {
|
|
// Dig out the fixed type this type refers to.
|
|
fromType = getFixedTypeRecursive(fromType, flags, /*wantRValue=*/true);
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (fromType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Dig out the fixed type this type refers to.
|
|
toType = getFixedTypeRecursive(toType, flags, /*wantRValue=*/true);
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (toType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
Type origFromType = fromType;
|
|
Type origToType = toType;
|
|
|
|
// Peel off optionals metatypes from the types, because we might cast through
|
|
// them.
|
|
toType = toType->lookThroughAllOptionalTypes(toOptionals);
|
|
fromType = fromType->lookThroughAllOptionalTypes(fromOptionals);
|
|
|
|
// Peel off metatypes, since if we can cast two types, we can cast their
|
|
// metatypes.
|
|
while (auto toMetatype = toType->getAs<MetatypeType>()) {
|
|
auto fromMetatype = fromType->getAs<MetatypeType>();
|
|
if (!fromMetatype)
|
|
break;
|
|
toType = toMetatype->getInstanceType();
|
|
fromType = fromMetatype->getInstanceType();
|
|
}
|
|
|
|
// Peel off a potential layer of existential<->concrete metatype conversion.
|
|
if (auto toMetatype = toType->getAs<AnyMetatypeType>()) {
|
|
if (auto fromMetatype = fromType->getAs<MetatypeType>()) {
|
|
toType = toMetatype->getInstanceType();
|
|
fromType = fromMetatype->getInstanceType();
|
|
}
|
|
}
|
|
|
|
// Peel off marker protocol requirements if this is an existential->concrete
|
|
// cast. Handles cases like `WritableKeyPath<...> & Sendable as KeyPath`
|
|
// that require inference which is only attempted if both sides are classes.
|
|
if (fromType->isExistentialType() && !toType->isExistentialType()) {
|
|
if (auto *existential = fromType->getAs<ExistentialType>()) {
|
|
if (auto *PCT = existential->getConstraintType()
|
|
->getAs<ProtocolCompositionType>()) {
|
|
auto newConstraintTy = PCT->withoutMarkerProtocols();
|
|
if (!newConstraintTy->isEqual(PCT)) {
|
|
fromType = newConstraintTy->getClassOrBoundGenericClass()
|
|
? newConstraintTy
|
|
: ExistentialType::get(newConstraintTy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've decomposed the types further, so adopt the subflags.
|
|
flags = subflags;
|
|
|
|
// If nothing changed, we're done.
|
|
if (fromType.getPointer() == origFromType.getPointer() &&
|
|
toType.getPointer() == origToType.getPointer())
|
|
break;
|
|
} while (true);
|
|
|
|
auto attemptRecordCastFixIfSolved = [&](SolutionKind result) {
|
|
if (result != SolutionKind::Solved)
|
|
return;
|
|
|
|
if (auto *fix = maybeWarnAboutExtraneousCast(
|
|
*this, origFromType, origToType, fromType, toType, fromOptionals,
|
|
toOptionals, flags, locator)) {
|
|
(void)recordFix(fix);
|
|
}
|
|
};
|
|
|
|
auto kind = getCheckedCastKind(this, fromType, toType);
|
|
switch (kind) {
|
|
case CheckedCastKind::ArrayDowncast: {
|
|
auto fromBaseType = fromType->getArrayElementType();
|
|
auto toBaseType = toType->getArrayElementType();
|
|
|
|
auto elementLocator =
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0));
|
|
auto result = simplifyCheckedCastConstraint(fromBaseType, toBaseType,
|
|
subflags, elementLocator);
|
|
attemptRecordCastFixIfSolved(result);
|
|
return result;
|
|
}
|
|
|
|
case CheckedCastKind::DictionaryDowncast: {
|
|
Type fromKeyType, fromValueType;
|
|
std::tie(fromKeyType, fromValueType) = *isDictionaryType(fromType);
|
|
|
|
Type toKeyType, toValueType;
|
|
std::tie(toKeyType, toValueType) = *isDictionaryType(toType);
|
|
|
|
auto keyLocator =
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0));
|
|
if (simplifyCheckedCastConstraint(fromKeyType, toKeyType, subflags,
|
|
keyLocator) == SolutionKind::Error)
|
|
return SolutionKind::Error;
|
|
|
|
auto valueLocator =
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(1));
|
|
auto result = simplifyCheckedCastConstraint(fromValueType, toValueType,
|
|
subflags, valueLocator);
|
|
attemptRecordCastFixIfSolved(result);
|
|
return result;
|
|
}
|
|
|
|
case CheckedCastKind::SetDowncast: {
|
|
auto fromBaseType = *isSetType(fromType);
|
|
auto toBaseType = *isSetType(toType);
|
|
|
|
auto elementLocator =
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0));
|
|
auto result = simplifyCheckedCastConstraint(fromBaseType, toBaseType,
|
|
subflags, elementLocator);
|
|
attemptRecordCastFixIfSolved(result);
|
|
return result;
|
|
}
|
|
|
|
case CheckedCastKind::ValueCast: {
|
|
// If casting among classes, and there are open
|
|
// type variables remaining, introduce a subtype constraint to help resolve
|
|
// them.
|
|
if (fromType->getClassOrBoundGenericClass()
|
|
&& toType->getClassOrBoundGenericClass()
|
|
&& (fromType->hasTypeVariable() || toType->hasTypeVariable())) {
|
|
addConstraint(ConstraintKind::Subtype, toType, fromType,
|
|
getConstraintLocator(locator));
|
|
}
|
|
|
|
// Attempts to record warning fixes when both types are known by the
|
|
// compiler and we can infer that the runtime checked cast will always
|
|
// succeed or fail.
|
|
if (auto *fix = maybeWarnAboutExtraneousCast(
|
|
*this, origFromType, origToType, fromType, toType, fromOptionals,
|
|
toOptionals, flags, locator)) {
|
|
(void)recordFix(fix);
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case CheckedCastKind::Coercion:
|
|
case CheckedCastKind::BridgingCoercion:
|
|
case CheckedCastKind::Unresolved:
|
|
llvm_unreachable("Not a valid result");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled CheckedCastKind in switch.");
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyOptionalObjectConstraint(
|
|
Type first, Type second,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Resolve the optional type.
|
|
Type optLValueTy = getFixedTypeRecursive(first, flags, /*wantRValue=*/false);
|
|
Type optTy = optLValueTy->getRValueType();
|
|
if (optTy.getPointer() != optLValueTy.getPointer())
|
|
optTy = getFixedTypeRecursive(optTy, /*wantRValue=*/false);
|
|
|
|
if (optTy->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::OptionalObject, optLValueTy,
|
|
second, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
if (optTy->isPlaceholder()) {
|
|
if (auto *typeVar = second->getAs<TypeVariableType>())
|
|
recordPotentialHole(typeVar);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
Type objectTy = optTy->getOptionalObjectType();
|
|
// If the base type is not optional, let's attempt a fix (if possible)
|
|
// and assume that `!` is just not there.
|
|
if (!objectTy) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
// Let's see if we can apply a specific fix here.
|
|
if (optTy->isPlaceholder())
|
|
return SolutionKind::Solved;
|
|
|
|
auto fnType = optTy->getAs<FunctionType>();
|
|
if (fnType && fnType->getNumParams() == 0) {
|
|
// For function types with no parameters, let's try to
|
|
// offer a "make it a call" fix if possible.
|
|
auto optionalResultType = fnType->getResult()->getOptionalObjectType();
|
|
if (optionalResultType) {
|
|
if (matchTypes(optionalResultType, second, ConstraintKind::Bind,
|
|
flags | TMF_ApplyingFix, locator)
|
|
.isSuccess()) {
|
|
auto *fix =
|
|
InsertExplicitCall::create(*this, getConstraintLocator(locator));
|
|
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *fix =
|
|
RemoveUnwrap::create(*this, optTy, getConstraintLocator(locator));
|
|
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
// If the fix was successful let's record
|
|
// "fixed" object type and continue.
|
|
objectTy = optTy;
|
|
}
|
|
|
|
// The object type is an lvalue if the optional was.
|
|
if (optLValueTy->is<LValueType>())
|
|
objectTy = LValueType::get(objectTy);
|
|
|
|
// Equate it to the other type in the constraint.
|
|
addConstraint(ConstraintKind::Bind, objectTy, second, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyBindTupleOfFunctionParamsConstraint(
|
|
Type first, Type second, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto simplified = simplifyType(first);
|
|
auto simplifiedCopy = simplified;
|
|
|
|
unsigned unwrapCount = 0;
|
|
if (shouldAttemptFixes()) {
|
|
while (auto objectTy = simplified->getOptionalObjectType()) {
|
|
simplified = objectTy;
|
|
|
|
// Track how many times we do this so that we can record a fix for each.
|
|
++unwrapCount;
|
|
}
|
|
|
|
if (simplified->isPlaceholder()) {
|
|
if (auto *typeVar = second->getAs<TypeVariableType>())
|
|
recordPotentialHole(typeVar);
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
if (simplified->isTypeVariableOrMember()) {
|
|
if (!flags.contains(TMF_GenerateConstraints))
|
|
return SolutionKind::Unsolved;
|
|
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::BindTupleOfFunctionParams,
|
|
simplified, second, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto *funcTy = simplified->getAs<FunctionType>();
|
|
if (!funcTy)
|
|
return SolutionKind::Error;
|
|
|
|
auto tupleTy =
|
|
AnyFunctionType::composeTuple(getASTContext(), funcTy->getParams(),
|
|
ParameterFlagHandling::IgnoreNonEmpty);
|
|
|
|
addConstraint(ConstraintKind::Bind, tupleTy, second,
|
|
locator.withPathElement(ConstraintLocator::FunctionArgument));
|
|
|
|
if (unwrapCount > 0) {
|
|
auto *fix = ForceOptional::create(*this, simplifiedCopy, second,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix, /*impact=*/unwrapCount))
|
|
return SolutionKind::Error;
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchPackElementType(Type elementType, Type patternType,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto tryFix = [&](llvm::function_ref<ConstraintFix *(void)> fix) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
if (recordFix(fix()))
|
|
return SolutionKind::Error;
|
|
|
|
recordAnyTypeVarAsPotentialHole(elementType);
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
ASSERT(loc->directlyAt<PackExpansionExpr>());
|
|
auto *packExpansion = castToExpr<PackExpansionExpr>(loc->getAnchor());
|
|
|
|
ASSERT(!patternType->hasTypeVariable());
|
|
auto shapeClass = patternType->getReducedShape();
|
|
|
|
// `each` was applied to a concrete type.
|
|
if (!shapeClass->is<PackArchetypeType>()) {
|
|
return tryFix([&]() {
|
|
return AllowInvalidPackElement::create(*this, patternType, loc);
|
|
});
|
|
}
|
|
|
|
auto shapeParam = CanGenericTypeParamType(cast<GenericTypeParamType>(
|
|
shapeClass->mapTypeOutOfContext()->getCanonicalType()));
|
|
|
|
auto *genericEnv = getPackExpansionEnvironment(packExpansion);
|
|
if (genericEnv) {
|
|
if (shapeParam != genericEnv->getOpenedElementShapeClass()) {
|
|
return tryFix([&]() {
|
|
auto envShape = genericEnv->mapTypeIntoContext(
|
|
genericEnv->getOpenedElementShapeClass());
|
|
if (auto *pack = dyn_cast<PackType>(envShape))
|
|
envShape = pack->unwrapSingletonPackExpansion()->getPatternType();
|
|
|
|
return SkipSameShapeRequirement::create(
|
|
*this, envShape, shapeClass,
|
|
getConstraintLocator(loc, ConstraintLocator::PackShape));
|
|
});
|
|
}
|
|
} else {
|
|
genericEnv = createPackExpansionEnvironment(packExpansion, shapeParam);
|
|
}
|
|
|
|
auto expectedElementTy =
|
|
genericEnv->mapContextualPackTypeIntoElementContext(patternType);
|
|
assert(!expectedElementTy->is<PackType>());
|
|
|
|
addConstraint(ConstraintKind::Equal, elementType, expectedElementTy, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyPackElementOfConstraint(Type first, Type second,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto elementType = simplifyType(first, flags);
|
|
auto patternType = simplifyType(second, flags);
|
|
|
|
auto formUnsolved = [&]() {
|
|
if (!flags.contains(TMF_GenerateConstraints))
|
|
return SolutionKind::Unsolved;
|
|
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::PackElementOf, first, second,
|
|
getConstraintLocator(locator)));
|
|
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
// If neither side is fully resolved yet, there is nothing we can do.
|
|
if (elementType->hasTypeVariable() && patternType->hasTypeVariable())
|
|
return formUnsolved();
|
|
|
|
if (shouldAttemptFixes()) {
|
|
if (elementType->isPlaceholder() || patternType->isPlaceholder())
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (isSingleUnlabeledPackExpansionTuple(patternType)) {
|
|
auto *packVar = addMaterializePackExpansionConstraint(patternType, locator);
|
|
addConstraint(ConstraintKind::PackElementOf, elementType, packVar, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Let's try to resolve element type based on the pattern type.
|
|
if (!patternType->hasTypeVariable())
|
|
return matchPackElementType(elementType, patternType, locator);
|
|
|
|
// Otherwise we are inferred or checking pattern type.
|
|
|
|
auto *packEnv = DC->getGenericEnvironmentOfContext();
|
|
|
|
// Map element archetypes to the pack context to check for equality.
|
|
if (elementType->hasElementArchetype())
|
|
elementType = packEnv->mapElementTypeIntoPackContext(elementType);
|
|
|
|
addConstraint(ConstraintKind::Equal, elementType, patternType, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
static bool isForKeyPathSubscript(ConstraintSystem &cs,
|
|
ConstraintLocator *locator) {
|
|
if (!locator || !locator->getAnchor())
|
|
return false;
|
|
|
|
if (auto *SE = getAsExpr<SubscriptExpr>(locator->getAnchor())) {
|
|
return SE->getArgs()->isUnary() &&
|
|
SE->getArgs()->getLabel(0) == cs.getASTContext().Id_keyPath;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mayBeForKeyPathSubscriptWithoutLabel(ConstraintSystem &cs,
|
|
ConstraintLocator *locator) {
|
|
if (!locator || !locator->getAnchor())
|
|
return false;
|
|
|
|
if (auto *SE = getAsExpr<SubscriptExpr>(locator->getAnchor())) {
|
|
if (auto *unary = SE->getArgs()->getUnlabeledUnaryExpr())
|
|
return isa<KeyPathExpr>(unary) || isa<CodeCompletionExpr>(unary);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether all of the given candidate overloads
|
|
/// found through conditional conformances of a given base type.
|
|
/// This is useful to figure out whether it makes sense to
|
|
/// perform dynamic member lookup or not.
|
|
static bool
|
|
allFromConditionalConformances(ConstraintSystem &cs, Type baseTy,
|
|
ArrayRef<OverloadChoice> candidates) {
|
|
auto *NTD = baseTy->getAnyNominal();
|
|
if (!NTD)
|
|
return false;
|
|
|
|
return llvm::all_of(candidates, [&](const OverloadChoice &choice) {
|
|
auto *decl = choice.getDeclOrNull();
|
|
if (!decl)
|
|
return false;
|
|
|
|
auto *candidateDC = decl->getDeclContext();
|
|
|
|
if (auto *extension = dyn_cast<ExtensionDecl>(candidateDC)) {
|
|
if (extension->isConstrainedExtension())
|
|
return true;
|
|
}
|
|
|
|
if (auto *protocol = candidateDC->getSelfProtocolDecl()) {
|
|
auto conformance = cs.lookupConformance(baseTy, protocol);
|
|
if (!conformance.isConcrete())
|
|
return false;
|
|
|
|
return !conformance.getConcrete()->getConditionalRequirements().empty();
|
|
}
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
// Check whether given key path dynamic member lookup is self-recursive,
|
|
// which happens when root type of the key path is the same as base type
|
|
// of the member and lookup is attempted on non-existing property e.g.
|
|
//
|
|
// @dynamicMemberLookup
|
|
// struct Recurse<T> {
|
|
// subscript<U>(dynamicMember member: KeyPath<Recurse<T>, U>) -> Int {
|
|
// return 1
|
|
// }
|
|
// }
|
|
//
|
|
// If we going to lookup any no-existent property or member on `Recursive`
|
|
// using key path dynamic member lookup it would attempt to lookup such
|
|
// member on root type which is also `Recursive` which leads to an infinite
|
|
// recursion.
|
|
static bool isSelfRecursiveKeyPathDynamicMemberLookup(
|
|
ConstraintSystem &cs, Type keyPathRootTy, ConstraintLocator *locator) {
|
|
// Let's check whether this is a recursive call to keypath
|
|
// dynamic member lookup on the same type.
|
|
if (!locator ||
|
|
!locator->isLastElement<LocatorPathElt::KeyPathDynamicMember>())
|
|
return false;
|
|
|
|
auto path = locator->getPath();
|
|
auto *choiceLoc =
|
|
cs.getConstraintLocator(locator->getAnchor(), path.drop_back());
|
|
|
|
if (auto overload = cs.findSelectedOverloadFor(choiceLoc)) {
|
|
auto baseTy = overload->choice.getBaseType();
|
|
|
|
// If it's `Foo<Int>` vs. `Foo<String>` it doesn't really matter
|
|
// for dynamic lookup because it's going to be performed on `Foo`.
|
|
if (baseTy->is<BoundGenericType>() &&
|
|
keyPathRootTy->is<BoundGenericType>()) {
|
|
auto *baseDecl = baseTy->castTo<BoundGenericType>()->getDecl();
|
|
auto *keyPathRootDecl =
|
|
keyPathRootTy->castTo<BoundGenericType>()->getDecl();
|
|
return baseDecl == keyPathRootDecl;
|
|
}
|
|
|
|
// Previous base type could be r-value because that could be
|
|
// a base type of subscript "as written" for which we attempt
|
|
// a dynamic member lookup.
|
|
auto baseTy1 = baseTy->getRValueType();
|
|
// Root type of key path is always wrapped in an l-value
|
|
// before lookup is performed, so we need to unwrap that.
|
|
auto baseTy2 = keyPathRootTy->getRValueType();
|
|
|
|
if (baseTy1->isEqual(baseTy2))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given a ValueMember, UnresolvedValueMember, or TypeMember constraint,
|
|
/// perform a lookup into the specified base type to find a candidate list.
|
|
/// The list returned includes the viable candidates as well as the unviable
|
|
/// ones (along with reasons why they aren't viable).
|
|
///
|
|
/// If includeInaccessibleMembers is set to true, this burns compile time to
|
|
/// try to identify and classify inaccessible members that may be being
|
|
/// referenced.
|
|
MemberLookupResult ConstraintSystem::
|
|
performMemberLookup(ConstraintKind constraintKind, DeclNameRef memberName,
|
|
Type baseTy, FunctionRefInfo functionRefInfo,
|
|
ConstraintLocator *memberLocator,
|
|
bool includeInaccessibleMembers) {
|
|
Type baseObjTy = baseTy->getRValueType();
|
|
Type instanceTy = baseObjTy;
|
|
|
|
auto &ctx = getASTContext();
|
|
auto memberNode = simplifyLocatorToAnchor(memberLocator);
|
|
auto memberLoc = memberNode ? memberNode.getStartLoc() : SourceLoc();
|
|
|
|
if (auto baseObjMeta = baseObjTy->getAs<AnyMetatypeType>()) {
|
|
instanceTy = baseObjMeta->getInstanceType();
|
|
}
|
|
|
|
MemberLookupResult result;
|
|
|
|
if (instanceTy->isTypeVariableOrMember()) {
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
return result;
|
|
}
|
|
|
|
// Delay member lookup until single-element tuple with pack expansion
|
|
// is sufficiently resolved.
|
|
if (isSingleUnlabeledPackExpansionTuple(instanceTy)) {
|
|
auto elementTy = instanceTy->castTo<TupleType>()->getElementType(0);
|
|
if (elementTy->is<TypeVariableType>()) {
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Okay, start building up the result list.
|
|
result.OverallResult = MemberLookupResult::HasResults;
|
|
|
|
// Add key path result.
|
|
// If we are including inaccessible members, check for the use of a keypath
|
|
// subscript without a `keyPath:` label. Add it to the result so that it
|
|
// can be caught by the missing argument label checking later.
|
|
if (isForKeyPathSubscript(*this, memberLocator) ||
|
|
(mayBeForKeyPathSubscriptWithoutLabel(*this, memberLocator) &&
|
|
includeInaccessibleMembers)) {
|
|
if (baseTy->isAnyObject()) {
|
|
result.addUnviable(
|
|
OverloadChoice(baseTy, OverloadChoiceKind::KeyPathApplication),
|
|
MemberLookupResult::UR_KeyPathWithAnyObjectRootType);
|
|
} else {
|
|
result.ViableCandidates.push_back(
|
|
OverloadChoice(baseTy, OverloadChoiceKind::KeyPathApplication));
|
|
}
|
|
}
|
|
|
|
// If the base type is a tuple type, look for the named or indexed member
|
|
// of the tuple.
|
|
if (auto baseTuple = baseObjTy->getAs<TupleType>()) {
|
|
if (!memberName.isSpecial()) {
|
|
StringRef nameStr = memberName.getBaseIdentifier().str();
|
|
// Accessing `.element` on an abstract tuple materializes a pack.
|
|
// (deprecated behavior)
|
|
if (nameStr == "element" && baseTuple->getNumElements() == 1 &&
|
|
isPackExpansionType(baseTuple->getElementType(0))) {
|
|
auto elementType = baseTuple->getElementType(0);
|
|
|
|
if (elementType->is<PackExpansionType>()) {
|
|
result.ViableCandidates.push_back(
|
|
OverloadChoice(baseTy, OverloadChoiceKind::MaterializePack));
|
|
} else {
|
|
assert(elementType->is<TypeVariableType>());
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int fieldIdx = -1;
|
|
// Resolve a number reference into the tuple type.
|
|
unsigned Value = 0;
|
|
if (!nameStr.getAsInteger(10, Value) &&
|
|
Value < baseTuple->getNumElements()) {
|
|
fieldIdx = Value;
|
|
} else {
|
|
fieldIdx = baseTuple->getNamedElementId(memberName.getBaseIdentifier());
|
|
}
|
|
|
|
if (fieldIdx != -1) {
|
|
// Add an overload set that selects this field.
|
|
result.ViableCandidates.push_back(OverloadChoice(baseTy, fieldIdx));
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *selfTy = instanceTy->getAs<DynamicSelfType>())
|
|
instanceTy = selfTy->getSelfType();
|
|
|
|
// Dynamically isolated function types have a magic '.isolation'
|
|
// member that extracts the isolation value.
|
|
if (auto *fn = instanceTy->getAs<FunctionType>()) {
|
|
if (fn->getIsolation().isErased() &&
|
|
memberName.isSimpleName(Context.Id_isolation)) {
|
|
result.ViableCandidates.push_back(
|
|
OverloadChoice(baseTy, OverloadChoiceKind::ExtractFunctionIsolation));
|
|
}
|
|
}
|
|
|
|
if (!instanceTy->mayHaveMembers())
|
|
return result;
|
|
|
|
// If we have a simple name, determine whether there are argument
|
|
// labels we can use to restrict the set of lookup results.
|
|
if (baseObjTy->isAnyObject() && memberName.isSimpleName()) {
|
|
// If we're referencing AnyObject and we have argument labels, put
|
|
// the argument labels into the name: we don't want to look for
|
|
// anything else, because the cost of the general search is so
|
|
// high.
|
|
if (auto *args = getArgumentList(memberLocator)) {
|
|
SmallVector<Identifier, 4> scratch;
|
|
memberName = memberName.withArgumentLabels(
|
|
ctx, args->getArgumentLabels(scratch));
|
|
}
|
|
}
|
|
|
|
DeclNameRef lookupName = memberName;
|
|
if (memberName.isCompoundName()) {
|
|
auto &context = getASTContext();
|
|
|
|
// Remove any $ prefixes for lookup
|
|
SmallVector<Identifier, 4> lookupLabels;
|
|
for (auto label : memberName.getArgumentNames()) {
|
|
if (label.hasDollarPrefix()) {
|
|
auto unprefixed = label.str().drop_front();
|
|
lookupLabels.push_back(context.getIdentifier(unprefixed));
|
|
} else {
|
|
lookupLabels.push_back(label);
|
|
}
|
|
}
|
|
|
|
lookupName = lookupName.withArgumentLabels(context, lookupLabels);
|
|
}
|
|
|
|
// Look for members within the base.
|
|
LookupResult &lookup = lookupMember(instanceTy, lookupName, memberLoc);
|
|
|
|
// If this is true, we're using type construction syntax (Foo()) rather
|
|
// than an explicit call to `init` (Foo.init()).
|
|
bool isImplicitInit = false;
|
|
TypeBase *favoredType = nullptr;
|
|
if (memberName.isSimpleName(DeclBaseName::createConstructor())) {
|
|
SmallVector<LocatorPathElt, 2> parts;
|
|
if (auto anchor = memberLocator->getAnchor()) {
|
|
auto path = memberLocator->getPath();
|
|
if (!path.empty())
|
|
if (path.back().getKind() == ConstraintLocator::ConstructorMember)
|
|
isImplicitInit = true;
|
|
|
|
if (performanceHacksEnabled()) {
|
|
if (auto *applyExpr = getAsExpr<ApplyExpr>(anchor)) {
|
|
if (auto *argExpr = applyExpr->getArgs()->getUnlabeledUnaryExpr()) {
|
|
favoredType = getFavoredType(argExpr);
|
|
|
|
if (!favoredType) {
|
|
optimizeConstraints(argExpr);
|
|
favoredType = getFavoredType(argExpr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are pattern-matching an enum element and we found any enum elements,
|
|
// ignore anything that isn't an enum element.
|
|
bool onlyAcceptEnumElements = false;
|
|
if (memberLocator &&
|
|
memberLocator->isLastElement<LocatorPathElt::PatternMatch>() &&
|
|
isa<EnumElementPattern>(
|
|
memberLocator->getLastElementAs<LocatorPathElt::PatternMatch>()
|
|
->getPattern())) {
|
|
for (const auto &result: lookup) {
|
|
if (isa<EnumElementDecl>(result.getValueDecl())) {
|
|
onlyAcceptEnumElements = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the instance type is String bridged to NSString, compute
|
|
// the type we'll look in for bridging.
|
|
Type bridgedType;
|
|
if (baseObjTy->isString()) {
|
|
if (Type classType = ctx.getBridgedToObjC(DC, instanceTy)) {
|
|
bridgedType = classType;
|
|
}
|
|
}
|
|
|
|
// Exclude some of the dynamic member choices from results
|
|
// because using such choices would result in a self-recursive reference.
|
|
//
|
|
// This is required because if there are no viable/unviable choices
|
|
// `performMemberLookup` is going to attempt to lookup inaccessible
|
|
// members and results would include dynamic member subscripts which
|
|
// have already been excluded.
|
|
llvm::SmallPtrSet<ValueDecl *, 2> excludedDynamicMembers;
|
|
|
|
// Delay solving member constraint for unapplied methods
|
|
// where the base type has a conditional Sendable conformance
|
|
auto shouldDelayDueToPartiallyResolvedBaseType =
|
|
[&](Type baseTy, ValueDecl *decl,
|
|
FunctionRefInfo functionRefInfo) -> bool {
|
|
if (!Context.LangOpts.hasFeature(Feature::InferSendableFromCaptures))
|
|
return false;
|
|
|
|
if (!Context.getProtocol(KnownProtocolKind::Sendable))
|
|
return false;
|
|
|
|
auto shouldCheckSendabilityOfBase = [&]() {
|
|
if (!isa_and_nonnull<FuncDecl>(decl))
|
|
return Type();
|
|
|
|
if (!decl->isInstanceMember() &&
|
|
!decl->getDeclContext()->getSelfProtocolDecl())
|
|
return Type();
|
|
|
|
auto hasAppliedSelf =
|
|
decl->hasCurriedSelf() && doesMemberRefApplyCurriedSelf(baseTy, decl);
|
|
auto numApplies = getNumApplications(hasAppliedSelf, functionRefInfo);
|
|
if (numApplies >= decl->getNumCurryLevels())
|
|
return Type();
|
|
|
|
return decl->isInstanceMember() ? baseTy->getMetatypeInstanceType()
|
|
: baseTy;
|
|
};
|
|
|
|
Type baseTyToCheck = shouldCheckSendabilityOfBase();
|
|
if (!baseTyToCheck)
|
|
return false;
|
|
|
|
auto sendableProtocol = Context.getProtocol(KnownProtocolKind::Sendable);
|
|
auto baseConformance = lookupConformance(baseTyToCheck, sendableProtocol);
|
|
|
|
return llvm::any_of(baseConformance.getConditionalRequirements(),
|
|
[&](const auto &req) {
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
return false;
|
|
|
|
return (req.getFirstType()->hasTypeVariable() &&
|
|
(req.getProtocolDecl()->isSpecificProtocol(
|
|
KnownProtocolKind::Sendable) ||
|
|
req.getProtocolDecl()->isSpecificProtocol(
|
|
KnownProtocolKind::SendableMetatype)));
|
|
});
|
|
};
|
|
|
|
// Local function that adds the given declaration if it is a
|
|
// reasonable choice.
|
|
auto addChoice = [&](OverloadChoice candidate) {
|
|
auto decl = candidate.getDecl();
|
|
|
|
// Reject circular references immediately.
|
|
if (decl->isRecursiveValidation())
|
|
return;
|
|
|
|
// If the result is invalid, skip it unless solving for code completion
|
|
// For code completion include the result because we can partially match
|
|
// against function types that only have one parameter with error type.
|
|
if (decl->isInvalid() && !isForCodeCompletion()) {
|
|
result.markErrorAlreadyDiagnosed();
|
|
return;
|
|
}
|
|
|
|
// If we only accept enum elements but this isn't one, ignore it.
|
|
if (onlyAcceptEnumElements && !isa<EnumElementDecl>(decl))
|
|
return;
|
|
|
|
// Dig out the instance type and figure out what members of the instance type
|
|
// we are going to see.
|
|
auto baseTy = candidate.getBaseType();
|
|
const auto baseObjTy = baseTy->getRValueType();
|
|
|
|
// If we need to delay, update the status but record the member.
|
|
if (shouldDelayDueToPartiallyResolvedBaseType(
|
|
baseObjTy, decl, candidate.getFunctionRefInfo())) {
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
}
|
|
|
|
bool hasInstanceMembers = false;
|
|
bool hasInstanceMethods = false;
|
|
bool hasStaticMembers = false;
|
|
Type instanceTy = baseObjTy;
|
|
if (baseObjTy->is<ModuleType>()) {
|
|
hasStaticMembers = true;
|
|
} else if (auto baseObjMeta = baseObjTy->getAs<AnyMetatypeType>()) {
|
|
instanceTy = baseObjMeta->getInstanceType();
|
|
if (baseObjMeta->is<ExistentialMetatypeType>()) {
|
|
// An instance of an existential metatype is a concrete type conforming
|
|
// to the existential, say Self. Instance members of the concrete type
|
|
// have type Self -> T -> U, but we don't know what Self is at compile
|
|
// time so we cannot refer to them. Static methods are fine, on the other
|
|
// hand -- we already know that they do not have Self or associated type
|
|
// requirements, since otherwise we would not be able to refer to the
|
|
// existential metatype in the first place.
|
|
hasStaticMembers = true;
|
|
} else if (instanceTy->isExistentialType()) {
|
|
// A protocol metatype has instance methods with type P -> T -> U, but
|
|
// not instance properties or static members, unless result type of a
|
|
// member conforms to this protocol -- the metatype value itself
|
|
// doesn't give us a witness so there's no static method to bind.
|
|
hasInstanceMethods = true;
|
|
hasStaticMembers |=
|
|
memberLocator->isLastElement<LocatorPathElt::UnresolvedMember>();
|
|
} else {
|
|
// Metatypes of nominal types and archetypes have instance methods and
|
|
// static members, but not instance properties.
|
|
// FIXME: partial application of properties
|
|
hasInstanceMethods = true;
|
|
hasStaticMembers = true;
|
|
}
|
|
|
|
// If we're at the root of an unevaluated context, we can
|
|
// reference instance members on the metatype.
|
|
if (memberLocator &&
|
|
UnevaluatedRootExprs.count(getAsExpr(memberLocator->getAnchor()))) {
|
|
hasInstanceMembers = true;
|
|
}
|
|
} else {
|
|
// Otherwise, we can access all instance members.
|
|
hasInstanceMembers = true;
|
|
hasInstanceMethods = true;
|
|
}
|
|
|
|
// If the invocation's argument expression has a favored type,
|
|
// use that information to determine whether a specific overload for
|
|
// the candidate should be favored.
|
|
if (performanceHacksEnabled()) {
|
|
if (isa<ConstructorDecl>(decl) && favoredType &&
|
|
result.FavoredChoice == ~0U) {
|
|
auto *ctor = cast<ConstructorDecl>(decl);
|
|
|
|
// Only try and favor monomorphic unary initializers.
|
|
if (!ctor->isGenericContext()) {
|
|
if (!ctor->getMethodInterfaceType()->hasError()) {
|
|
// The constructor might have an error type because we don't skip
|
|
// invalid decls for code completion
|
|
auto args = ctor->getMethodInterfaceType()
|
|
->castTo<FunctionType>()
|
|
->getParams();
|
|
if (args.size() == 1 && !args[0].hasLabel() &&
|
|
args[0].getPlainType()->isEqual(favoredType)) {
|
|
if (!isDeclUnavailable(decl, memberLocator))
|
|
result.FavoredChoice = result.ViableCandidates.size();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const auto isUnsupportedExistentialMemberAccess = [&] {
|
|
if (!instanceTy->isExistentialType())
|
|
return false;
|
|
|
|
// If the base type is composed with marker protocol(s) i.e.
|
|
// `<<Type>> & Sendable`, let's skip this check because such
|
|
// compositions are always opened and simplified down to a
|
|
// superclass bound post-Sema.
|
|
if (auto *existential = instanceTy->getAs<ExistentialType>()) {
|
|
auto *compositionTy =
|
|
existential->getConstraintType()->getAs<ProtocolCompositionType>();
|
|
if (compositionTy &&
|
|
!compositionTy->withoutMarkerProtocols()->isExistentialType())
|
|
return false;
|
|
}
|
|
|
|
// We may not be able to derive a well defined type for an existential
|
|
// member access if the member's signature references 'Self'.
|
|
switch (isMemberAvailableOnExistential(instanceTy, decl)) {
|
|
case ExistentialMemberAccessLimitation::Unsupported:
|
|
// TODO: Write-only accesses are not supported yet.
|
|
case ExistentialMemberAccessLimitation::WriteOnly:
|
|
return true;
|
|
|
|
case ExistentialMemberAccessLimitation::ReadOnly:
|
|
case ExistentialMemberAccessLimitation::None:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// See if we have an instance method, instance member or static method,
|
|
// and check if it can be accessed on our base type.
|
|
|
|
if (decl->isInstanceMember()) {
|
|
if (baseObjTy->is<AnyMetatypeType>()) {
|
|
// `AnyObject` has special semantics, so let's just let it be.
|
|
// Otherwise adjust base type and reference kind to make it
|
|
// look as if lookup was done on the instance, that helps
|
|
// with diagnostics.
|
|
auto choice =
|
|
instanceTy->isAnyObject()
|
|
? candidate
|
|
: OverloadChoice::getDecl(instanceTy, decl,
|
|
FunctionRefInfo::singleBaseNameApply());
|
|
|
|
const bool invalidMethodRef = isa<FuncDecl>(decl) && !hasInstanceMethods;
|
|
const bool invalidMemberRef = !isa<FuncDecl>(decl) && !hasInstanceMembers;
|
|
|
|
if (invalidMethodRef || invalidMemberRef) {
|
|
// If this is definitely an invalid way to reference a method or member
|
|
// on the metatype, let's stop here.
|
|
result.addUnviable(choice,
|
|
MemberLookupResult::UR_InstanceMemberOnType);
|
|
return;
|
|
} else if (isUnsupportedExistentialMemberAccess()) {
|
|
// If the member reference itself is legal, but it turns out to be an
|
|
// unsupported existential member access, do not make further
|
|
// assumptions about the correctness of a potential call -- let
|
|
// the unsupported member access error prevail.
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_UnavailableInExistential);
|
|
return;
|
|
} else {
|
|
// Otherwise, still add an unviable result to the set, because it
|
|
// could be an invalid call that was supposed to be performed on an
|
|
// instance of the type.
|
|
//
|
|
// New candidate shouldn't affect performance because such
|
|
// choice would only be attempted when solver is in diagnostic mode.
|
|
result.addUnviable(choice,
|
|
MemberLookupResult::UR_InstanceMemberOnType);
|
|
|
|
}
|
|
}
|
|
|
|
if (auto *UDE =
|
|
getAsExpr<UnresolvedDotExpr>(memberLocator->getAnchor())) {
|
|
auto *base = UDE->getBase();
|
|
if (auto *accessor = DC->getInnermostPropertyAccessorContext()) {
|
|
if (accessor->isInitAccessor() && isa<DeclRefExpr>(base) &&
|
|
accessor->getImplicitSelfDecl() ==
|
|
cast<DeclRefExpr>(base)->getDecl()) {
|
|
bool isValidReference = false;
|
|
|
|
// If name doesn't appear in either `initializes` or `accesses`
|
|
// then it's invalid instance member.
|
|
|
|
isValidReference |= llvm::any_of(
|
|
accessor->getInitializedProperties(), [&](VarDecl *prop) {
|
|
return prop->createNameRef() == memberName;
|
|
});
|
|
|
|
isValidReference |= llvm::any_of(
|
|
accessor->getAccessedProperties(), [&](VarDecl *prop) {
|
|
return prop->createNameRef() == memberName;
|
|
});
|
|
|
|
if (!isValidReference) {
|
|
result.addUnviable(
|
|
candidate,
|
|
MemberLookupResult::UR_UnavailableWithinInitAccessor);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the underlying type of a typealias is fully concrete, it is legal
|
|
// to access the type with a protocol metatype base.
|
|
} else if (instanceTy->isExistentialType() &&
|
|
isa<TypeAliasDecl>(decl) &&
|
|
!cast<TypeAliasDecl>(decl)
|
|
->getUnderlyingType()->getCanonicalType()
|
|
->hasTypeParameter()) {
|
|
|
|
/* We're OK */
|
|
} else if (hasStaticMembers && baseObjTy->is<MetatypeType>() &&
|
|
instanceTy->isExistentialType()) {
|
|
// Static member lookup on protocol metatype in generic context
|
|
// requires `Self` of the protocol to be bound to some concrete
|
|
// type via same-type requirement, otherwise it would be
|
|
// impossible to find a witness for this member.
|
|
|
|
if (!isa<ExtensionDecl>(decl->getDeclContext())) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_TypeMemberOnInstance);
|
|
return;
|
|
}
|
|
|
|
// Cannot instantiate a protocol or reference a member on
|
|
// protocol composition type.
|
|
if (isa<ConstructorDecl>(decl) ||
|
|
instanceTy->is<ProtocolCompositionType>()) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_TypeMemberOnInstance);
|
|
return;
|
|
}
|
|
|
|
if (getConcreteReplacementForProtocolSelfType(decl)) {
|
|
result.addViable(candidate);
|
|
} else {
|
|
result.addUnviable(
|
|
candidate,
|
|
MemberLookupResult::UR_InvalidStaticMemberOnProtocolMetatype);
|
|
}
|
|
|
|
return;
|
|
} else {
|
|
if (!hasStaticMembers) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_TypeMemberOnInstance);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (isUnsupportedExistentialMemberAccess()) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_UnavailableInExistential);
|
|
return;
|
|
}
|
|
|
|
// If we have an rvalue base, make sure that the result isn't 'mutating'
|
|
// (only valid on lvalues).
|
|
if (!baseTy->is<AnyMetatypeType>() &&
|
|
!baseTy->is<LValueType>() &&
|
|
decl->isInstanceMember()) {
|
|
if (auto *FD = dyn_cast<FuncDecl>(decl))
|
|
if (FD->isMutating()) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_MutatingMemberOnRValue);
|
|
return;
|
|
}
|
|
|
|
// Subscripts and computed properties are ok on rvalues so long
|
|
// as the getter is nonmutating.
|
|
if (auto storage = dyn_cast<AbstractStorageDecl>(decl)) {
|
|
if (storage->isGetterMutating()) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::UR_MutatingGetterOnRValue);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether this is overload choice found via keypath
|
|
// based dynamic member lookup. Since it's unknown upfront
|
|
// what kind of declaration lookup is going to find, let's
|
|
// double check here that given keypath is appropriate for it.
|
|
if (memberLocator) {
|
|
using KPDynamicMemberElt = LocatorPathElt::KeyPathDynamicMember;
|
|
if (auto kpElt = memberLocator->getLastElementAs<KPDynamicMemberElt>()) {
|
|
auto *keyPath = kpElt->getKeyPathDecl();
|
|
if (isSelfRecursiveKeyPathDynamicMemberLookup(*this, baseTy,
|
|
memberLocator)) {
|
|
excludedDynamicMembers.insert(candidate.getDecl());
|
|
return;
|
|
}
|
|
|
|
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl)) {
|
|
// If this is an attempt to access read-only member via
|
|
// writable key path, let's fail this choice early.
|
|
auto &ctx = getASTContext();
|
|
if (isReadOnlyKeyPathComponent(storage, SourceLoc()) &&
|
|
(keyPath == ctx.getWritableKeyPathDecl() ||
|
|
keyPath == ctx.getReferenceWritableKeyPathDecl())) {
|
|
result.addUnviable(
|
|
candidate,
|
|
MemberLookupResult::UR_WritableKeyPathOnReadOnlyMember);
|
|
return;
|
|
}
|
|
|
|
// A nonmutating setter indicates a reference-writable base,
|
|
// on the other hand if setter is mutating there is no point
|
|
// of attempting `ReferenceWritableKeyPath` overload.
|
|
if (storage->isSetterMutating() &&
|
|
keyPath == ctx.getReferenceWritableKeyPathDecl()) {
|
|
result.addUnviable(candidate,
|
|
MemberLookupResult::
|
|
UR_ReferenceWritableKeyPathOnMutatingMember);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, we're good, add the candidate to the list.
|
|
result.addViable(candidate);
|
|
};
|
|
|
|
// Local function that turns a ValueDecl into a properly configured
|
|
// OverloadChoice.
|
|
auto getOverloadChoice =
|
|
[&](ValueDecl *cand, bool isBridged, bool isUnwrappedOptional,
|
|
bool isFallbackUnwrap = false) -> OverloadChoice {
|
|
// If we're looking into an existential type, check whether this
|
|
// result was found via dynamic lookup.
|
|
if (instanceTy->isAnyObject()) {
|
|
assert(cand->getDeclContext()->isTypeContext() && "Dynamic lookup bug");
|
|
|
|
// We found this declaration via dynamic lookup, record it as such.
|
|
return OverloadChoice::getDeclViaDynamic(baseTy, cand, functionRefInfo);
|
|
}
|
|
|
|
// If we have a bridged type, we found this declaration via bridging.
|
|
if (isBridged)
|
|
return OverloadChoice::getDeclViaBridge(bridgedType, cand,
|
|
functionRefInfo);
|
|
|
|
// If we got the choice by unwrapping an optional type, unwrap the base
|
|
// type.
|
|
if (isUnwrappedOptional) {
|
|
auto ovlBaseTy = MetatypeType::get(baseTy->castTo<MetatypeType>()
|
|
->getInstanceType()
|
|
->getOptionalObjectType());
|
|
return OverloadChoice::getDeclViaUnwrappedOptional(
|
|
ovlBaseTy, cand,
|
|
/*isFallback=*/isFallbackUnwrap, functionRefInfo);
|
|
}
|
|
|
|
// While looking for subscript choices it's possible to find
|
|
// `subscript(dynamicMember: {Writable}KeyPath)` on types
|
|
// marked as `@dynamicMemberLookup`, let's mark this candidate
|
|
// as representing "dynamic lookup" unless it's a direct call
|
|
// to such subscript (in that case label is expected to match).
|
|
if (auto *subscript = dyn_cast<SubscriptDecl>(cand)) {
|
|
if (memberLocator && instanceTy->hasDynamicMemberLookupAttribute() &&
|
|
isValidKeyPathDynamicMemberLookup(subscript)) {
|
|
auto *args = getArgumentList(memberLocator);
|
|
|
|
if (!(args && args->isUnary() &&
|
|
args->getLabel(0) == getASTContext().Id_dynamicMember)) {
|
|
return OverloadChoice::getDynamicMemberLookup(
|
|
baseTy, subscript, ctx.getIdentifier("subscript"),
|
|
/*isKeyPathBased=*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
return OverloadChoice::getDecl(baseTy, cand, functionRefInfo);
|
|
};
|
|
|
|
// Add all results from this lookup.
|
|
for (auto result : lookup)
|
|
addChoice(getOverloadChoice(result.getValueDecl(),
|
|
/*isBridged=*/false,
|
|
/*isUnwrappedOptional=*/false));
|
|
|
|
// Backward compatibility hack. In Swift 4, `init` and init were
|
|
// the same name, so you could write "foo.init" to look up a
|
|
// method or property named `init`.
|
|
if (!ctx.isSwiftVersionAtLeast(5) &&
|
|
memberName.getBaseName().isConstructor() && !isImplicitInit) {
|
|
auto &compatLookup = lookupMember(instanceTy,
|
|
DeclNameRef(ctx.getIdentifier("init")),
|
|
memberLoc);
|
|
for (auto result : compatLookup)
|
|
addChoice(getOverloadChoice(result.getValueDecl(),
|
|
/*isBridged=*/false,
|
|
/*isUnwrappedOptional=*/false));
|
|
}
|
|
|
|
// If the instance type is a bridged to an Objective-C type, perform
|
|
// a lookup into that Objective-C type.
|
|
if (bridgedType) {
|
|
LookupResult &bridgedLookup = lookupMember(bridgedType, memberName,
|
|
memberLoc);
|
|
ModuleDecl *foundationModule = nullptr;
|
|
for (auto result : bridgedLookup) {
|
|
// Ignore results from the Objective-C "Foundation"
|
|
// module. Those core APIs are explicitly provided by the
|
|
// Foundation module overlay.
|
|
auto module = result.getValueDecl()->getModuleContext();
|
|
if (foundationModule) {
|
|
if (module == foundationModule)
|
|
continue;
|
|
} else if (ClangModuleUnit::hasClangModule(module) &&
|
|
module->getName().str() == "Foundation") {
|
|
// Cache the foundation module name so we don't need to look
|
|
// for it again.
|
|
foundationModule = module;
|
|
continue;
|
|
}
|
|
|
|
addChoice(getOverloadChoice(result.getValueDecl(),
|
|
/*isBridged=*/true,
|
|
/*isUnwrappedOptional=*/false));
|
|
}
|
|
}
|
|
|
|
// If we have candidates, and we're doing a member lookup for a pattern
|
|
// match, unwrap optionals and try again to allow implicit creation of
|
|
// optional "some" patterns (spelled "?").
|
|
if (result.ViableCandidates.empty() && result.UnviableCandidates.empty() &&
|
|
memberLocator &&
|
|
memberLocator->isLastElement<LocatorPathElt::PatternMatch>() &&
|
|
instanceTy->getOptionalObjectType() &&
|
|
baseObjTy->is<AnyMetatypeType>()) {
|
|
SmallVector<Type, 2> optionals;
|
|
Type instanceObjectTy = instanceTy->lookThroughAllOptionalTypes(optionals);
|
|
Type metaObjectType = MetatypeType::get(instanceObjectTy);
|
|
auto result = performMemberLookup(
|
|
constraintKind, memberName, metaObjectType,
|
|
functionRefInfo, memberLocator, includeInaccessibleMembers);
|
|
result.numImplicitOptionalUnwraps = optionals.size();
|
|
result.actualBaseType = metaObjectType;
|
|
return result;
|
|
}
|
|
|
|
// If we're looking into a metatype for an unresolved member lookup, look
|
|
// through optional types.
|
|
//
|
|
// FIXME: Unify with the above code path.
|
|
if (baseObjTy->is<AnyMetatypeType>() &&
|
|
constraintKind == ConstraintKind::UnresolvedValueMember) {
|
|
if (auto objectType = instanceTy->getOptionalObjectType()) {
|
|
// If we don't have a wrapped type yet, we can't look through the optional
|
|
// type.
|
|
if (objectType->getAs<TypeVariableType>() && result.ViableCandidates.empty()) {
|
|
MemberLookupResult result;
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
return result;
|
|
}
|
|
|
|
if (objectType->mayHaveMembers()) {
|
|
// If there are viable members directly on `Optional`, let's
|
|
// prioritize them and mark any results found on wrapped type
|
|
// as a fallback results.
|
|
bool isFallback = !result.ViableCandidates.empty();
|
|
LookupResult &optionalLookup = lookupMember(objectType, memberName,
|
|
memberLoc);
|
|
for (auto result : optionalLookup)
|
|
addChoice(getOverloadChoice(result.getValueDecl(),
|
|
/*bridged*/ false,
|
|
/*isUnwrappedOptional=*/true,
|
|
/*isUnwrapFallback=*/isFallback));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're about to fail lookup because there are no viable candidates
|
|
// or if all of the candidates come from conditional conformances (which
|
|
// might not be applicable), and we are looking for members in a type with
|
|
// the @dynamicMemberLookup attribute, then we resolve a reference to a
|
|
// `subscript(dynamicMember:)` method and pass the member name as a string
|
|
// parameter.
|
|
if (constraintKind == ConstraintKind::ValueMember &&
|
|
memberName.isSimpleName() && !memberName.isSpecial() &&
|
|
instanceTy->hasDynamicMemberLookupAttribute()) {
|
|
const auto &candidates = result.ViableCandidates;
|
|
|
|
if ((candidates.empty() ||
|
|
allFromConditionalConformances(*this, instanceTy, candidates)) &&
|
|
!isSelfRecursiveKeyPathDynamicMemberLookup(*this, baseTy,
|
|
memberLocator)) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// Recursively look up `subscript(dynamicMember:)` methods in this type.
|
|
DeclNameRef subscriptName(
|
|
{ ctx, DeclBaseName::createSubscript(), { ctx.Id_dynamicMember } });
|
|
auto subscripts = performMemberLookup(
|
|
constraintKind, subscriptName, baseTy, functionRefInfo, memberLocator,
|
|
includeInaccessibleMembers);
|
|
|
|
// Reflect the candidates found as `DynamicMemberLookup` results.
|
|
auto name = memberName.getBaseIdentifier();
|
|
for (const auto &candidate : subscripts.ViableCandidates) {
|
|
auto *SD = cast<SubscriptDecl>(candidate.getDecl());
|
|
bool isKeyPathBased = isValidKeyPathDynamicMemberLookup(SD);
|
|
|
|
if (isValidStringDynamicMemberLookup(SD, DC->getParentModule()) ||
|
|
isKeyPathBased)
|
|
result.addViable(OverloadChoice::getDynamicMemberLookup(
|
|
baseTy, SD, name, isKeyPathBased));
|
|
}
|
|
|
|
for (auto index : indices(subscripts.UnviableCandidates)) {
|
|
auto *SD =
|
|
cast<SubscriptDecl>(subscripts.UnviableCandidates[index].getDecl());
|
|
auto choice = OverloadChoice::getDynamicMemberLookup(
|
|
baseTy, SD, name, isValidKeyPathDynamicMemberLookup(SD));
|
|
result.addUnviable(choice, subscripts.UnviableReasons[index]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have no viable or unviable candidates, and we're generating,
|
|
// diagnostics, rerun the query with various excluded members included, so we
|
|
// can include them in the unviable candidates list.
|
|
if (result.ViableCandidates.empty() && result.UnviableCandidates.empty() &&
|
|
includeInaccessibleMembers) {
|
|
NameLookupOptions lookupOptions =
|
|
defaultConstraintSolverMemberLookupOptions;
|
|
|
|
// Local function that looks up additional candidates using the given lookup
|
|
// options, recording the results as unviable candidates.
|
|
auto lookupUnviable =
|
|
[&](DeclNameRef memberName,
|
|
NameLookupOptions lookupOptions,
|
|
MemberLookupResult::UnviableReason reason) -> bool {
|
|
auto lookup = TypeChecker::lookupMember(DC, instanceTy, memberName,
|
|
memberLoc, lookupOptions);
|
|
for (auto entry : lookup) {
|
|
auto *cand = entry.getValueDecl();
|
|
|
|
// If the result is invalid, skip it.
|
|
if (cand->isInvalid()) {
|
|
result.markErrorAlreadyDiagnosed();
|
|
break;
|
|
}
|
|
|
|
if (excludedDynamicMembers.count(cand))
|
|
continue;
|
|
|
|
result.addUnviable(getOverloadChoice(cand, /*isBridged=*/false,
|
|
/*isUnwrappedOptional=*/false),
|
|
reason);
|
|
}
|
|
|
|
return !lookup.empty();
|
|
};
|
|
|
|
// Look for members that were excluded because of a module selector.
|
|
if (memberName.hasModuleSelector()) {
|
|
DeclNameRef unqualifiedMemberName{memberName.getFullName()};
|
|
|
|
if (lookupUnviable(unqualifiedMemberName,
|
|
lookupOptions,
|
|
MemberLookupResult::UR_WrongModule))
|
|
return result;
|
|
}
|
|
|
|
// Ignore access control so we get candidates that might have been missed
|
|
// before.
|
|
if (lookupUnviable(memberName,
|
|
lookupOptions | NameLookupFlags::IgnoreAccessControl,
|
|
MemberLookupResult::UR_Inaccessible))
|
|
return result;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Determine whether the given type refers to a non-final class (or
|
|
/// dynamic self of one).
|
|
static bool isNonFinalClass(Type type) {
|
|
if (auto dynamicSelf = type->getAs<DynamicSelfType>())
|
|
type = dynamicSelf->getSelfType();
|
|
|
|
if (auto classDecl = type->getClassOrBoundGenericClass())
|
|
return !classDecl->isSemanticallyFinal();
|
|
|
|
if (auto archetype = type->getAs<ArchetypeType>())
|
|
if (auto super = archetype->getSuperclass())
|
|
return isNonFinalClass(super);
|
|
|
|
return type->isExistentialType();
|
|
}
|
|
|
|
/// Determine whether given constructor reference is valid or does it require
|
|
/// any fixes e.g. when base is a protocol metatype.
|
|
static ConstraintFix *validateInitializerRef(ConstraintSystem &cs,
|
|
ConstructorDecl *init,
|
|
ConstraintLocator *locator) {
|
|
auto anchor = locator->getAnchor();
|
|
if (!anchor)
|
|
return nullptr;
|
|
|
|
// Avoid checking implicit conversions injected by the compiler.
|
|
if (locator->findFirst<LocatorPathElt::ImplicitConversion>())
|
|
return nullptr;
|
|
|
|
auto getType = [&cs](Expr *expr) -> Type {
|
|
return cs.simplifyType(cs.getType(expr))->getRValueType();
|
|
};
|
|
|
|
Expr *baseExpr = nullptr;
|
|
Type baseType;
|
|
|
|
// Explicit initializer reference e.g. `T.init(...)` or `T.init`.
|
|
if (auto *UDE = getAsExpr<UnresolvedDotExpr>(anchor)) {
|
|
baseExpr = UDE->getBase();
|
|
baseType = getType(baseExpr);
|
|
if (baseType->is<MetatypeType>()) {
|
|
auto instanceType = baseType->getAs<MetatypeType>()->getInstanceType();
|
|
if (!cs.isTypeReference(baseExpr) && instanceType->isExistentialType()) {
|
|
return AllowInvalidInitRef::onProtocolMetatype(
|
|
cs, baseType, init, /*isStaticallyDerived=*/true,
|
|
baseExpr->getSourceRange(), locator);
|
|
}
|
|
}
|
|
// Initializer call e.g. `T(...)`
|
|
} else if (auto *CE = getAsExpr<CallExpr>(anchor)) {
|
|
baseExpr = CE->getFn();
|
|
baseType = getType(baseExpr);
|
|
// FIXME: Historically, UnresolvedMemberExprs have allowed implicit
|
|
// construction through a metatype value, but this should probably be
|
|
// illegal.
|
|
if (!isa<UnresolvedMemberExpr>(baseExpr)) {
|
|
// If this is an initializer call without explicit mention
|
|
// of `.init` on metatype value.
|
|
if (auto *AMT = baseType->getAs<AnyMetatypeType>()) {
|
|
auto instanceType = AMT->getInstanceType();
|
|
if (!cs.isTypeReference(baseExpr)) {
|
|
if (baseType->is<MetatypeType>() &&
|
|
instanceType->isAnyExistentialType()) {
|
|
return AllowInvalidInitRef::onProtocolMetatype(
|
|
cs, baseType, init, cs.isStaticallyDerivedMetatype(baseExpr),
|
|
baseExpr->getSourceRange(), locator);
|
|
}
|
|
|
|
if (!instanceType->isExistentialType() ||
|
|
instanceType->isAnyExistentialType()) {
|
|
return AllowInvalidInitRef::onNonConstMetatype(cs, baseType, init,
|
|
locator);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Initializer reference which requires contextual base type e.g.
|
|
// `.init(...)`. Could also be a nested type or typealias being constructed
|
|
// via implicit member syntax, e.g., `let _: Base = .Nested()` where
|
|
// `Base.Nested: Base`.
|
|
} else if (auto *UME = getAsExpr<UnresolvedMemberExpr>(anchor)) {
|
|
// If we're accessing a nested type to perform the construction implicitly,
|
|
// then the type we're constructing may not actually be the base of the
|
|
// UnresolvedMemberExpr--instead, it will be the type of the nested type
|
|
// member.
|
|
// We need to find type variable which represents contextual base.
|
|
auto *baseLocator = cs.getConstraintLocator(
|
|
UME, locator->isLastElement<LocatorPathElt::ConstructorMember>()
|
|
? ConstraintLocator::UnresolvedMember
|
|
: ConstraintLocator::MemberRefBase);
|
|
|
|
// FIXME: Type variables responsible for contextual base could be cached
|
|
// in the constraint system to speed up lookup.
|
|
auto result = llvm::find_if(
|
|
cs.getTypeVariables(), [&baseLocator](const TypeVariableType *typeVar) {
|
|
return typeVar->getImpl().getLocator() == baseLocator;
|
|
});
|
|
|
|
assert(result != cs.getTypeVariables().end());
|
|
baseType = cs.simplifyType(*result)->getRValueType();
|
|
// Constraint for member base is formed as '$T.Type[.<member] = ...`
|
|
// which means MetatypeType has to be added after finding a type variable.
|
|
if (baseLocator->isLastElement<LocatorPathElt::MemberRefBase>())
|
|
baseType = MetatypeType::get(baseType);
|
|
} else if (getAsExpr<KeyPathExpr>(anchor)) {
|
|
// Key path can't refer to initializers e.g. `\Type.init`
|
|
return AllowInvalidRefInKeyPath::forRef(cs, baseType, init, locator);
|
|
}
|
|
|
|
if (!baseType)
|
|
return nullptr;
|
|
|
|
if (!baseType->is<AnyMetatypeType>()) {
|
|
bool applicable = false;
|
|
// Special case -- in a protocol extension initializer with a class
|
|
// constrained Self type, 'self' has archetype type, and only
|
|
// required initializers can be called.
|
|
if (baseExpr && !baseExpr->isSuperExpr()) {
|
|
auto &ctx = cs.getASTContext();
|
|
if (auto *DRE =
|
|
dyn_cast<DeclRefExpr>(baseExpr->getSemanticsProvidingExpr())) {
|
|
if (DRE->getDecl()->getName() == ctx.Id_self) {
|
|
if (getType(DRE)->is<ArchetypeType>())
|
|
applicable = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!applicable)
|
|
return nullptr;
|
|
}
|
|
|
|
auto instanceType = baseType->getMetatypeInstanceType();
|
|
bool isStaticallyDerived = true;
|
|
// If this is expression like `.init(...)` where base type is
|
|
// determined by a contextual type.
|
|
if (!baseExpr) {
|
|
isStaticallyDerived = !(instanceType->is<DynamicSelfType>() ||
|
|
instanceType->is<ArchetypeType>());
|
|
// Otherwise this is something like `T.init(...)`
|
|
} else {
|
|
isStaticallyDerived = cs.isStaticallyDerivedMetatype(baseExpr);
|
|
}
|
|
|
|
auto baseRange = baseExpr ? baseExpr->getSourceRange() : SourceRange();
|
|
// FIXME: The "hasClangNode" check here is a complete hack.
|
|
if (isNonFinalClass(instanceType) && !isStaticallyDerived &&
|
|
!init->hasClangNode() &&
|
|
!(init->isRequired() || init->getDeclContext()->getSelfProtocolDecl())) {
|
|
return AllowInvalidInitRef::dynamicOnMetatype(cs, baseType, init, baseRange,
|
|
locator);
|
|
// Constructors cannot be called on a protocol metatype, because there is no
|
|
// metatype to witness it.
|
|
} else if (baseType->is<MetatypeType>() &&
|
|
instanceType->isExistentialType()) {
|
|
return AllowInvalidInitRef::onProtocolMetatype(
|
|
cs, baseType, init, isStaticallyDerived, baseRange, locator);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static ConstraintFix *fixMemberRef(
|
|
ConstraintSystem &cs, Type baseTy, DeclNameRef memberName,
|
|
const OverloadChoice &choice, ConstraintLocator *locator,
|
|
std::optional<MemberLookupResult::UnviableReason> reason = std::nullopt) {
|
|
// Not all of the choices handled here are going
|
|
// to refer to a declaration.
|
|
if (auto *decl = choice.getDeclOrNull()) {
|
|
if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (auto *fix = validateInitializerRef(cs, CD, locator))
|
|
return fix;
|
|
}
|
|
|
|
if (locator->isForKeyPathDynamicMemberLookup() ||
|
|
locator->isForKeyPathComponent() ||
|
|
locator->isKeyPathSubscriptComponent()) {
|
|
if (auto *fix =
|
|
AllowInvalidRefInKeyPath::forRef(cs, baseTy, decl, locator))
|
|
return fix;
|
|
}
|
|
}
|
|
|
|
if (reason) {
|
|
switch (*reason) {
|
|
case MemberLookupResult::UR_InstanceMemberOnType:
|
|
case MemberLookupResult::UR_TypeMemberOnInstance: {
|
|
return choice.isDecl()
|
|
? AllowTypeOrInstanceMember::create(
|
|
cs, baseTy, choice.getDecl(), memberName, locator)
|
|
: nullptr;
|
|
}
|
|
|
|
case MemberLookupResult::UR_WrongModule:
|
|
ASSERT(choice.isDecl());
|
|
return AllowMemberFromWrongModule::create(cs, baseTy, choice.getDecl(),
|
|
memberName, locator);
|
|
|
|
case MemberLookupResult::UR_Inaccessible:
|
|
assert(choice.isDecl());
|
|
return AllowInaccessibleMember::create(cs, baseTy, choice.getDecl(),
|
|
memberName, locator);
|
|
|
|
case MemberLookupResult::UR_UnavailableInExistential: {
|
|
return choice.isDecl()
|
|
? AllowMemberRefOnExistential::create(
|
|
cs, baseTy, choice.getDecl(), memberName, locator)
|
|
: nullptr;
|
|
}
|
|
|
|
case MemberLookupResult::UR_MutatingMemberOnRValue:
|
|
case MemberLookupResult::UR_MutatingGetterOnRValue: {
|
|
return choice.isDecl()
|
|
? AllowMutatingMemberOnRValueBase::create(
|
|
cs, baseTy, choice.getDecl(), memberName, locator)
|
|
: nullptr;
|
|
}
|
|
|
|
// TODO(diagnostics): Add a new fix that is suggests to
|
|
// add `subscript(dynamicMember: {Writable}KeyPath<T, U>)`
|
|
// overload here, that would help if such subscript has
|
|
// not been provided.
|
|
case MemberLookupResult::UR_WritableKeyPathOnReadOnlyMember:
|
|
return TreatRValueAsLValue::create(cs, cs.getConstraintLocator(locator));
|
|
case MemberLookupResult::UR_ReferenceWritableKeyPathOnMutatingMember:
|
|
break;
|
|
case MemberLookupResult::UR_KeyPathWithAnyObjectRootType:
|
|
return AllowAnyObjectKeyPathRoot::create(cs, locator);
|
|
|
|
case MemberLookupResult::UR_InvalidStaticMemberOnProtocolMetatype:
|
|
return AllowInvalidStaticMemberRefOnProtocolMetatype::create(cs, locator);
|
|
|
|
case MemberLookupResult::UR_UnavailableWithinInitAccessor:
|
|
return AllowInvalidMemberReferenceInInitAccessor::create(cs, memberName,
|
|
locator);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Convert the given enum element pattern into an expression pattern
|
|
/// and synthesize ~= operator application to find the type of the
|
|
/// element.
|
|
static bool inferEnumMemberThroughTildeEqualsOperator(
|
|
ConstraintSystem &cs, EnumElementPattern *pattern, Type enumTy,
|
|
Type elementTy, ConstraintLocator *locator) {
|
|
if (!pattern->hasUnresolvedOriginalExpr())
|
|
return true;
|
|
|
|
auto &ctx = cs.getASTContext();
|
|
|
|
// Retrieve a corresponding ExprPattern which we can solve with ~=.
|
|
auto *EP = evaluateOrFatal(ctx.evaluator,
|
|
EnumElementExprPatternRequest{pattern});
|
|
|
|
auto target = SyntacticElementTarget::forExprPattern(EP);
|
|
|
|
DiagnosticTransaction diagnostics(ctx.Diags);
|
|
{
|
|
if (cs.preCheckTarget(target)) {
|
|
// Skip diagnostics if they are disabled, otherwise it would result in
|
|
// duplicate diagnostics, since this operation is going to be repeated
|
|
// in diagnostic mode.
|
|
if (!cs.shouldAttemptFixes())
|
|
diagnostics.abort();
|
|
|
|
return true;
|
|
}
|
|
}
|
|
cs.setType(EP->getMatchVar(), enumTy);
|
|
cs.setType(EP, enumTy);
|
|
|
|
if (cs.generateConstraints(target))
|
|
return true;
|
|
|
|
// Sub-expression associated with expression pattern is the enum element
|
|
// access which needs to be connected to the provided element type.
|
|
cs.addConstraint(ConstraintKind::Conversion, cs.getType(EP->getSubExpr()),
|
|
elementTy, cs.getConstraintLocator(EP));
|
|
|
|
cs.setTargetFor(pattern, target);
|
|
return false;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyMemberConstraint(
|
|
ConstraintKind kind, Type baseTy, DeclNameRef member, Type memberTy,
|
|
DeclContext *useDC, FunctionRefInfo functionRefInfo,
|
|
ArrayRef<OverloadChoice> outerAlternatives, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locatorB) {
|
|
// We'd need to record original base type because it might be a type
|
|
// variable representing another missing member.
|
|
auto origBaseTy = baseTy;
|
|
// Resolve the base type, if we can. If we can't resolve the base type,
|
|
// then we can't solve this constraint.
|
|
baseTy = simplifyType(baseTy, flags);
|
|
Type baseObjTy = baseTy->getRValueType();
|
|
|
|
auto locator = getConstraintLocator(locatorB);
|
|
|
|
auto formUnsolved = [&](bool activate = false) {
|
|
// If requested, generate a constraint.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *memberRef = Constraint::createMemberOrOuterDisjunction(
|
|
*this, kind, baseTy, memberTy, member, useDC, functionRefInfo,
|
|
outerAlternatives, locator);
|
|
|
|
addUnsolvedConstraint(memberRef);
|
|
|
|
if (activate)
|
|
activateConstraint(memberRef);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// If the base type of this member lookup is a "hole" there is no
|
|
// reason to perform a lookup because it wouldn't return any results.
|
|
if (shouldAttemptFixes()) {
|
|
auto markMemberTypeAsPotentialHole = [&](Type memberTy) {
|
|
recordAnyTypeVarAsPotentialHole(simplifyType(memberTy));
|
|
};
|
|
|
|
// If this is an unresolved member ref e.g. `.foo` and its contextual base
|
|
// type has been determined to be a "hole", let's mark the resulting member
|
|
// type as a potential hole and continue solving.
|
|
if (kind == ConstraintKind::UnresolvedValueMember) {
|
|
// Let's look through all metatypes to find "underlying" type
|
|
// of this lookup.
|
|
Type underlyingType = baseObjTy;
|
|
while (auto *MT = underlyingType->getAs<AnyMetatypeType>()) {
|
|
underlyingType = MT->getInstanceType();
|
|
}
|
|
|
|
// Let's delay solving this constraint in diagnostic
|
|
// mode until it's certain that there is no way to
|
|
// find out what the base type is.
|
|
if (underlyingType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Let's record a fix only if the hole originates either
|
|
// at the result of the chain (that could happen since solving
|
|
// of this constraint is delayed until base could be resolved),
|
|
// or it is certain that base type can't be bound to any other
|
|
// type but a hole.
|
|
auto shouldRecordFixForHole = [&](PlaceholderType *baseType) {
|
|
auto *originator =
|
|
baseType->getOriginator().dyn_cast<TypeVariableType *>();
|
|
|
|
if (!originator)
|
|
return false;
|
|
|
|
auto *originatorLoc = originator->getImpl().getLocator();
|
|
|
|
// It could either be a hole associated directly with the base
|
|
// or a hole which came from result type of the chain.
|
|
if (originatorLoc->isLastElement<
|
|
LocatorPathElt::UnresolvedMemberChainResult>()) {
|
|
auto *UMCR = castToExpr<UnresolvedMemberChainResultExpr>(
|
|
originatorLoc->getAnchor());
|
|
return UMCR->getChainBase() == getAsExpr(locator->getAnchor());
|
|
}
|
|
|
|
return originatorLoc == locator;
|
|
};
|
|
|
|
if (auto *hole = underlyingType->getAs<PlaceholderType>()) {
|
|
if (shouldRecordFixForHole(hole)) {
|
|
auto *fix = SpecifyBaseTypeForContextualMember::create(*this, member,
|
|
locator);
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
markMemberTypeAsPotentialHole(memberTy);
|
|
return SolutionKind::Solved;
|
|
}
|
|
} else if ((kind == ConstraintKind::ValueMember ||
|
|
kind == ConstraintKind::ValueWitness) &&
|
|
baseObjTy->getMetatypeInstanceType()->isPlaceholder()) {
|
|
// If base type is a "hole" there is no reason to record any
|
|
// more "member not found" fixes for chained member references.
|
|
markMemberTypeAsPotentialHole(memberTy);
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
// Special handling of injected references to `makeIterator` and `next`
|
|
// in for-in loops.
|
|
if (auto *expr = getAsExpr(locator->getAnchor())) {
|
|
// `next()` could be wrapped in `await` expression.
|
|
auto memberRef =
|
|
getAsExpr<UnresolvedDotExpr>(expr->getSemanticsProvidingExpr());
|
|
|
|
if (memberRef && memberRef->isImplicit() &&
|
|
locator->isLastElement<LocatorPathElt::Member>()) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// Cannot simplify this constraint yet since we don't know whether
|
|
// the base type is going to be existential or not.
|
|
if (baseObjTy->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Check whether the given dot expression is a reference
|
|
// to the given name with the given set of argument labels
|
|
// (aka compound name).
|
|
auto isRefTo = [&](UnresolvedDotExpr *UDE, Identifier name,
|
|
ArrayRef<StringRef> labels) {
|
|
auto refName = UDE->getName().getFullName();
|
|
return refName.isCompoundName(name, labels);
|
|
};
|
|
|
|
auto *baseExpr = memberRef->getBase();
|
|
// Handle `makeIterator` reference.
|
|
if (getContextualTypePurpose(baseExpr) == CTP_ForEachSequence &&
|
|
isRefTo(memberRef, ctx.Id_makeIterator, /*lables=*/{})) {
|
|
auto *sequenceProto = cast<ProtocolDecl>(
|
|
getContextualType(baseExpr, /*forConstraint=*/false)
|
|
->getAnyNominal());
|
|
bool isAsync = sequenceProto->getKnownProtocolKind() ==
|
|
KnownProtocolKind::AsyncSequence;
|
|
|
|
auto *makeIterator = isAsync ? ctx.getAsyncSequenceMakeAsyncIterator()
|
|
: ctx.getSequenceMakeIterator();
|
|
|
|
return simplifyValueWitnessConstraint(
|
|
ConstraintKind::ValueWitness, baseTy, makeIterator, memberTy, useDC,
|
|
FunctionRefInfo::singleBaseNameApply(), flags, locator);
|
|
}
|
|
|
|
// Handle `next` reference.
|
|
if (getContextualTypePurpose(baseExpr) == CTP_ForEachSequence &&
|
|
(isRefTo(memberRef, ctx.Id_next, /*labels=*/{}) ||
|
|
isRefTo(memberRef, ctx.Id_next, /*labels=*/{ "isolation" }))) {
|
|
auto *iteratorProto = cast<ProtocolDecl>(
|
|
getContextualType(baseExpr, /*forConstraint=*/false)
|
|
->getAnyNominal());
|
|
bool isAsync = iteratorProto->getKnownProtocolKind() ==
|
|
KnownProtocolKind::AsyncIteratorProtocol;
|
|
|
|
auto loc = locator->getAnchor().getStartLoc();
|
|
auto *next = TypeChecker::getForEachIteratorNextFunction(DC, loc, isAsync);
|
|
|
|
return simplifyValueWitnessConstraint(
|
|
ConstraintKind::ValueWitness, baseTy, next, memberTy, useDC,
|
|
FunctionRefInfo::singleBaseNameApply(), flags, locator);
|
|
}
|
|
}
|
|
}
|
|
|
|
MemberLookupResult result =
|
|
performMemberLookup(kind, member, baseTy, functionRefInfo, locator,
|
|
/*includeInaccessibleMembers*/ shouldAttemptFixes());
|
|
|
|
switch (result.OverallResult) {
|
|
case MemberLookupResult::Unsolved:
|
|
return formUnsolved();
|
|
|
|
case MemberLookupResult::ErrorAlreadyDiagnosed:
|
|
case MemberLookupResult::HasResults:
|
|
// Keep going!
|
|
break;
|
|
}
|
|
|
|
SmallVector<Constraint *, 4> candidates;
|
|
|
|
// If we found viable candidates, then we're done!
|
|
if (!result.ViableCandidates.empty()) {
|
|
// If we had to look in a different type, use that.
|
|
if (result.actualBaseType)
|
|
baseTy = result.actualBaseType;
|
|
|
|
generateOverloadConstraints(
|
|
candidates, memberTy, result.ViableCandidates, useDC, locator,
|
|
result.getFavoredIndex(), /*requiresFix=*/false,
|
|
[&](unsigned, const OverloadChoice &choice) {
|
|
return fixMemberRef(*this, baseTy, member, choice, locator);
|
|
});
|
|
|
|
if (!outerAlternatives.empty()) {
|
|
// If local scope has a single choice,
|
|
// it should always be preferred.
|
|
if (candidates.size() == 1)
|
|
candidates.front()->setFavored();
|
|
|
|
// We *might* include any non-members that we found in outer contexts in
|
|
// some special cases, for backwards compatibility: first, we have to be
|
|
// looking for one of the special names ('min' or 'max'), and second, all
|
|
// of the inner (viable) results need to come from conditional
|
|
// conformances. The second condition is how the problem here was
|
|
// encountered: a type ('Range') was made to conditionally conform to a
|
|
// new protocol ('Sequence'), which introduced some extra methods
|
|
// ('min' and 'max') that shadowed global functions that people regularly
|
|
// called within extensions to that type (usually adding 'clamp').
|
|
bool treatAsViable =
|
|
(member.isSimpleName("min") || member.isSimpleName("max")) &&
|
|
allFromConditionalConformances(*this, baseTy,
|
|
result.ViableCandidates);
|
|
|
|
generateOverloadConstraints(
|
|
candidates, memberTy, outerAlternatives, useDC, locator, std::nullopt,
|
|
/*requiresFix=*/!treatAsViable,
|
|
[&](unsigned, const OverloadChoice &) {
|
|
return treatAsViable ? nullptr
|
|
: AddQualifierToAccessTopLevelName::create(
|
|
*this, locator);
|
|
});
|
|
}
|
|
}
|
|
|
|
if (!result.UnviableCandidates.empty()) {
|
|
// Generate constraints for unavailable choices if they have a fix,
|
|
// and disable them by default, they'd get picked up in the "salvage" mode.
|
|
generateOverloadConstraints(
|
|
candidates, memberTy, result.UnviableCandidates, useDC, locator,
|
|
/*favoredChoice=*/std::nullopt, /*requiresFix=*/true,
|
|
[&](unsigned idx, const OverloadChoice &choice) {
|
|
return fixMemberRef(*this, baseTy, member, choice, locator,
|
|
result.UnviableReasons[idx]);
|
|
});
|
|
}
|
|
|
|
// Attempt to record a warning where the unresolved member could be
|
|
// ambiguous with optional member. e.g.
|
|
// enum Foo {
|
|
// case none
|
|
// }
|
|
//
|
|
// let _: Foo? = .none // Although base is inferred as Optional.none
|
|
// it could be also Foo.none.
|
|
if (auto *fix = SpecifyBaseTypeForOptionalUnresolvedMember::attempt(
|
|
*this, kind, baseObjTy, member, functionRefInfo, result, locator)) {
|
|
(void)recordFix(fix);
|
|
}
|
|
|
|
// If there were no results from a direct enum lookup, let's attempt
|
|
// to resolve this member via ~= operator application.
|
|
if (candidates.empty()) {
|
|
if (auto patternLoc =
|
|
locator->getLastElementAs<LocatorPathElt::PatternMatch>()) {
|
|
if (auto *enumElement =
|
|
dyn_cast<EnumElementPattern>(patternLoc->getPattern())) {
|
|
auto enumType = baseObjTy->getMetatypeInstanceType();
|
|
|
|
// Optional base type does not trigger `~=` synthesis, but it tries
|
|
// to find member on both `Optional` and its wrapped type.
|
|
if (!enumType->getOptionalObjectType()) {
|
|
// If the synthesis of ~= resulted in errors (i.e. broken stdlib)
|
|
// that would be diagnosed inline, so let's just fall through and
|
|
// let this situation be diagnosed as a missing member.
|
|
auto hadErrors = inferEnumMemberThroughTildeEqualsOperator(
|
|
*this, enumElement, enumType, memberTy, locator);
|
|
|
|
// Let's consider current member constraint solved because it's
|
|
// replaced by a new set of constraints that would resolve member
|
|
// type.
|
|
if (!hadErrors)
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!candidates.empty()) {
|
|
addOverloadSet(candidates, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// If the lookup found no hits at all (either viable or unviable), diagnose it
|
|
// as such and try to recover in various ways.
|
|
if (shouldAttemptFixes()) {
|
|
auto fixMissingMember = [&](Type baseTy, Type memberTy,
|
|
ConstraintLocator *locator) -> SolutionKind {
|
|
// Let's check whether there are any generic parameters associated with
|
|
// base type, and record potential holes if so.
|
|
simplifyType(baseTy).visit([&](Type type) {
|
|
if (auto *typeVar = type->getAs<TypeVariableType>()) {
|
|
if (!typeVar->getImpl().hasRepresentativeOrFixed())
|
|
recordPotentialHole(typeVar);
|
|
}
|
|
});
|
|
|
|
auto success = [&]() -> SolutionKind {
|
|
// Record a hole for memberTy to make it possible to form solutions
|
|
// when contextual result type cannot be deduced e.g. `let _ = x.foo`.
|
|
if (auto *memberTypeVar = memberTy->getAs<TypeVariableType>()) {
|
|
if (getFixedType(memberTypeVar)) {
|
|
// If member has been bound before the base and the base was
|
|
// incorrect at that (e.g. fallback to default `Any` type),
|
|
// then we need to re-activate all of the constraints
|
|
// associated with this member reference otherwise some of
|
|
// the constraints could be left unchecked in inactive state.
|
|
// This is especially important for key path expressions because
|
|
// `key path` constraint can't be retired until all components
|
|
// are simplified.
|
|
addTypeVariableConstraintsToWorkList(memberTypeVar);
|
|
} else if (isa<Expr *>(locator->getAnchor()) &&
|
|
!getSemanticsProvidingParentExpr(
|
|
getAsExpr(locator->getAnchor()))) {
|
|
// If there are no contextual expressions that could provide
|
|
// a type for the member type variable, let's default it to
|
|
// a placeholder eagerly so it could be propagated to the
|
|
// pattern if necessary.
|
|
recordTypeVariablesAsHoles(memberTypeVar);
|
|
} else if (locator->isLastElement<LocatorPathElt::PatternMatch>()) {
|
|
// Let's handle member patterns specifically because they use
|
|
// equality instead of argument application constraint, so allowing
|
|
// them to bind member could mean missing valid hole positions in
|
|
// the pattern.
|
|
recordTypeVariablesAsHoles(memberTypeVar);
|
|
} else {
|
|
recordPotentialHole(memberTypeVar);
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
bool alreadyDiagnosed = (result.OverallResult ==
|
|
MemberLookupResult::ErrorAlreadyDiagnosed);
|
|
auto *fix = DefineMemberBasedOnUse::create(*this, baseTy, member,
|
|
alreadyDiagnosed, locator);
|
|
|
|
auto instanceTy = baseObjTy->getMetatypeInstanceType();
|
|
|
|
auto impact = 4;
|
|
// Impact is higher if the base type is any function type
|
|
// because function types can't have any members other than self
|
|
if (instanceTy->is<AnyFunctionType>()) {
|
|
impact += 10;
|
|
}
|
|
|
|
auto *anchorExpr = getAsExpr(locator->getAnchor());
|
|
if (anchorExpr) {
|
|
if (auto *UDE = dyn_cast<UnresolvedDotExpr>(anchorExpr)) {
|
|
// The issue is related to a missing `Sequence` protocol
|
|
// conformance if either `makeIterator` or `next` are missing.
|
|
if (UDE->isImplicit()) {
|
|
// Missing `makeIterator` since the base is sequence expression.
|
|
if (getContextualTypePurpose(UDE->getBase()) == CTP_ForEachSequence)
|
|
return success();
|
|
|
|
// Missing `next` where the base is result of `makeIterator`.
|
|
if (auto *base = dyn_cast<DeclRefExpr>(UDE->getBase())) {
|
|
if (auto var = dyn_cast_or_null<VarDecl>(base->getDecl())) {
|
|
if (var->getNameStr().contains("$generator") &&
|
|
(UDE->getName().getBaseIdentifier() == Context.Id_next))
|
|
return success();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Increasing the impact for missing member in any argument position so
|
|
// it doesn't affect situations where there are another fixes involved.
|
|
if (getArgumentLocator(anchorExpr))
|
|
impact += 5;
|
|
}
|
|
|
|
if (recordFix(fix, impact))
|
|
return SolutionKind::Error;
|
|
|
|
return success();
|
|
};
|
|
|
|
if (baseObjTy->getOptionalObjectType()) {
|
|
// If the base type was an optional, look through it.
|
|
|
|
// If the base type is optional because we haven't chosen to force an
|
|
// implicit optional, don't try to fix it. The IUO will be forced instead.
|
|
if (auto dotExpr = getAsExpr<UnresolvedDotExpr>(locator->getAnchor())) {
|
|
auto baseExpr = dotExpr->getBase();
|
|
if (auto overload = findSelectedOverloadFor(baseExpr)) {
|
|
auto iuoKind = overload->choice.getIUOReferenceKind(*this);
|
|
if (iuoKind == IUOReferenceKind::Value)
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// Let's check whether the problem is related to optionality of base
|
|
// type, or there is no member with a given name.
|
|
result =
|
|
performMemberLookup(kind, member, baseObjTy->getOptionalObjectType(),
|
|
functionRefInfo, locator,
|
|
/*includeInaccessibleMembers*/ true);
|
|
|
|
if (result.OverallResult == MemberLookupResult::Unsolved)
|
|
return formUnsolved();
|
|
|
|
// If unwrapped type still couldn't find anything for a given name,
|
|
// let's fallback to a "not such member" fix.
|
|
if (result.ViableCandidates.empty() && result.UnviableCandidates.empty())
|
|
return fixMissingMember(origBaseTy, memberTy, locator);
|
|
|
|
bool baseIsKeyPathRootType = [&]() {
|
|
auto keyPathComponent =
|
|
locator->getLastElementAs<LocatorPathElt::KeyPathComponent>();
|
|
return keyPathComponent && keyPathComponent->getIndex() == 0;
|
|
}();
|
|
|
|
// The result of the member access can either be the expected member type
|
|
// (for '!' or optional members with '?'), or the original member type
|
|
// with one extra level of optionality ('?' with non-optional members).
|
|
auto innerTV = createTypeVariable(locator,
|
|
TVO_CanBindToLValue |
|
|
TVO_CanBindToNoEscape);
|
|
Type optTy = TypeChecker::getOptionalType(SourceLoc(), innerTV);
|
|
assert(!optTy->hasError());
|
|
SmallVector<Constraint *, 2> optionalities;
|
|
auto nonoptionalResult = Constraint::createFixed(
|
|
*this, ConstraintKind::Bind,
|
|
UnwrapOptionalBase::create(*this, member, baseObjTy, locator),
|
|
memberTy, innerTV, locator);
|
|
optionalities.push_back(nonoptionalResult);
|
|
|
|
if (!baseIsKeyPathRootType) {
|
|
auto optionalResult = Constraint::createFixed(
|
|
*this, ConstraintKind::Bind,
|
|
UnwrapOptionalBase::createWithOptionalResult(*this, member,
|
|
baseObjTy, locator),
|
|
optTy, memberTy, locator);
|
|
optionalities.push_back(optionalResult);
|
|
}
|
|
|
|
addDisjunctionConstraint(optionalities, locator);
|
|
|
|
// Look through one level of optional.
|
|
addValueMemberConstraint(baseObjTy->getOptionalObjectType(), member,
|
|
innerTV, useDC, functionRefInfo,
|
|
outerAlternatives, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
auto solveWithNewBaseOrName = [&](Type baseType,
|
|
DeclNameRef memberName) -> SolutionKind {
|
|
return simplifyMemberConstraint(kind, baseType, memberName, memberTy,
|
|
useDC, functionRefInfo, outerAlternatives,
|
|
flags | TMF_ApplyingFix, locatorB);
|
|
};
|
|
|
|
// If this member reference is a result of a previous fix, let's not allow
|
|
// any more fixes expect when base is optional, because it could also be
|
|
// an IUO which requires a separate fix.
|
|
if (flags.contains(TMF_ApplyingFix))
|
|
return SolutionKind::Error;
|
|
|
|
// Check if any property wrappers on the base of the member lookup have
|
|
// matching members that we can fall back to, or if the type wraps any
|
|
// properties that have matching members.
|
|
if (auto *fix = fixPropertyWrapperFailure(
|
|
*this, baseTy, locator,
|
|
[&](SelectedOverload overload, VarDecl *decl, Type newBase) {
|
|
return solveWithNewBaseOrName(newBase, member) ==
|
|
SolutionKind::Solved;
|
|
})) {
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
// If base is an archetype or metatype of archetype, check for an unintended
|
|
// extra generic parameter.
|
|
if (auto archetype =
|
|
baseTy->getMetatypeInstanceType()->getAs<ArchetypeType>()) {
|
|
if (auto genericTy =
|
|
archetype->mapTypeOutOfContext()->getAs<GenericTypeParamType>()) {
|
|
for (auto param : DC->getGenericSignatureOfContext()
|
|
.getGenericParams()) {
|
|
// Find a param at the same depth and one index past the type we're
|
|
// dealing with
|
|
if (param->getDepth() != genericTy->getDepth() ||
|
|
param->getIndex() != genericTy->getIndex() + 1)
|
|
continue;
|
|
auto paramDecl = param->getDecl();
|
|
if (!paramDecl)
|
|
continue;
|
|
|
|
auto descriptor = UnqualifiedLookupDescriptor{
|
|
DeclNameRef(param->getName()),
|
|
paramDecl->getDeclContext()->getModuleScopeContext(),
|
|
SourceLoc(),
|
|
UnqualifiedLookupFlags::TypeLookup};
|
|
auto lookup = evaluateOrDefault(
|
|
Context.evaluator, UnqualifiedLookupRequest{descriptor}, {});
|
|
for (auto &result : lookup) {
|
|
if (auto proto =
|
|
dyn_cast_or_null<ProtocolDecl>(result.getValueDecl())) {
|
|
auto result =
|
|
baseTy->is<MetatypeType>()
|
|
? solveWithNewBaseOrName(ExistentialMetatypeType::get(
|
|
proto->getDeclaredInterfaceType()),
|
|
member)
|
|
: solveWithNewBaseOrName(proto->getDeclaredInterfaceType(),
|
|
member);
|
|
if (result == SolutionKind::Solved)
|
|
return recordFix(
|
|
DefineMemberBasedOnUnintendedGenericParam::create(
|
|
*this, baseTy, member, param->getName(),
|
|
locator))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *funcType = baseTy->getAs<FunctionType>()) {
|
|
// We can't really suggest anything useful unless
|
|
// function takes no arguments, otherwise it
|
|
// would make sense to report this a missing member.
|
|
if (funcType->getNumParams() == 0) {
|
|
auto result = solveWithNewBaseOrName(funcType->getResult(), member);
|
|
// If there is indeed a member with given name in result type
|
|
// let's return, otherwise let's fall-through and report
|
|
// this problem as a missing member.
|
|
if (result == SolutionKind::Solved)
|
|
return recordFix(InsertExplicitCall::create(
|
|
*this, getConstraintLocator(
|
|
locator, ConstraintLocator::MemberRefBase)))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
// Instead of using subscript operator spelled out `subscript` directly.
|
|
if (member.getBaseName() == getTokenText(tok::kw_subscript)) {
|
|
auto result =
|
|
solveWithNewBaseOrName(baseTy, DeclNameRef::createSubscript());
|
|
// Looks like it was indeed meant to be a subscript operator.
|
|
if (result == SolutionKind::Solved)
|
|
return recordFix(UseSubscriptOperator::create(*this, locator))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
// FIXME(diagnostics): This is more of a hack than anything.
|
|
// Let's not try to suggest that there is no member related to an
|
|
// obscure underscored type, the real problem would be somewhere
|
|
// else. This helps to diagnose pattern matching cases.
|
|
{
|
|
if (auto *metatype = baseTy->getAs<MetatypeType>()) {
|
|
auto instanceTy = metatype->getInstanceType();
|
|
if (auto *NTD = instanceTy->getAnyNominal()) {
|
|
if (NTD->getName() == getASTContext().Id_OptionalNilComparisonType)
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
|
|
result = performMemberLookup(kind, member, baseTy, functionRefInfo, locator,
|
|
/*includeInaccessibleMembers*/ true);
|
|
|
|
// FIXME(diagnostics): If there were no viable results, but there are
|
|
// unviable ones, we'd have to introduce fix for each specific problem.
|
|
if (!result.UnviableCandidates.empty())
|
|
return SolutionKind::Error;
|
|
|
|
// Since member with given base and name doesn't exist, let's try to
|
|
// fake its presence based on use, that makes it possible to diagnose
|
|
// problems related to member lookup more precisely.
|
|
|
|
return fixMissingMember(origBaseTy, memberTy, locator);
|
|
}
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyValueWitnessConstraint(
|
|
ConstraintKind kind, Type baseType, ValueDecl *requirement, Type memberType,
|
|
DeclContext *useDC, FunctionRefInfo functionRefInfo,
|
|
TypeMatchOptions flags, ConstraintLocatorBuilder locator) {
|
|
// We'd need to record original base type because it might be a type
|
|
// variable representing another missing member.
|
|
auto origBaseType = baseType;
|
|
|
|
auto formUnsolved = [&] {
|
|
// If requested, generate a constraint.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *witnessConstraint = Constraint::createValueWitness(
|
|
*this, kind, origBaseType, memberType, requirement, useDC,
|
|
functionRefInfo, getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(witnessConstraint);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
auto fail = [&] {
|
|
// The constraint failed, so mark the member type as a "hole".
|
|
// We cannot do anything further here.
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
recordAnyTypeVarAsPotentialHole(memberType);
|
|
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
// Resolve the base type, if we can. If we can't resolve the base type,
|
|
// then we can't solve this constraint.
|
|
Type baseObjectType = getFixedTypeRecursive(
|
|
baseType, flags, /*wantRValue=*/true);
|
|
if (baseObjectType->isTypeVariableOrMember()) {
|
|
return formUnsolved();
|
|
}
|
|
|
|
// If base type is an existential, let's open it before checking
|
|
// conformance.
|
|
if (baseObjectType->isExistentialType()) {
|
|
baseObjectType =
|
|
ExistentialArchetypeType::get(baseObjectType->getCanonicalType());
|
|
}
|
|
|
|
// Check conformance to the protocol. If it doesn't conform, this constraint
|
|
// fails. Don't attempt to fix it.
|
|
// FIXME: Look in the constraint system to see if we've resolved the
|
|
// conformance already?
|
|
auto proto = requirement->getDeclContext()->getSelfProtocolDecl();
|
|
assert(proto && "Value witness constraint for a non-requirement");
|
|
auto conformance = lookupConformance(baseObjectType, proto);
|
|
if (!conformance)
|
|
return fail();
|
|
|
|
// Reference the requirement.
|
|
Type resolvedBaseType = simplifyType(baseType, flags);
|
|
if (resolvedBaseType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
auto witness =
|
|
conformance.getWitnessByName(requirement->getName());
|
|
if (!witness)
|
|
return fail();
|
|
|
|
auto choice = OverloadChoice::getDecl(
|
|
resolvedBaseType, witness.getDecl(), functionRefInfo);
|
|
addBindOverloadConstraint(memberType, choice, getConstraintLocator(locator),
|
|
useDC);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyDefaultableConstraint(
|
|
Type first, Type second, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
first = getFixedTypeRecursive(first, flags, true);
|
|
|
|
if (first->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::Defaultable, first, second,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// Otherwise, any type is fine.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyFallbackTypeConstraint(
|
|
Type defaultableType, Type fallbackType,
|
|
ArrayRef<TypeVariableType *> referencedVars, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
defaultableType =
|
|
getFixedTypeRecursive(defaultableType, flags, /*wantRValue=*/true);
|
|
|
|
if (defaultableType->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, ConstraintKind::FallbackType, defaultableType, fallbackType,
|
|
getConstraintLocator(locator), referencedVars));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// Propagate placeholders into an inferred closure type. Without this
|
|
// we'd produce superfluous diagnostics about parameter/result types.
|
|
if (defaultableType->isPlaceholder() && locator.directlyAt<ClosureExpr>()) {
|
|
recordTypeVariablesAsHoles(fallbackType);
|
|
}
|
|
|
|
// Otherwise, any type is fine.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyPropertyWrapperConstraint(
|
|
Type wrapperType, Type wrappedValueType, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
wrapperType = getFixedTypeRecursive(wrapperType, flags, /*wantRValue=*/true);
|
|
auto *loc = getConstraintLocator(locator);
|
|
|
|
if (wrapperType->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, ConstraintKind::PropertyWrapper, wrapperType, wrappedValueType, loc));
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// If the wrapper type is a hole or a dependent member with no type variables,
|
|
// don't record a fix, because this indicates that there was an error
|
|
// elsewhere in the constraint system.
|
|
if (wrapperType->isPlaceholder() || wrapperType->is<DependentMemberType>())
|
|
return SolutionKind::Solved;
|
|
|
|
auto *wrappedVar = getAsDecl<VarDecl>(locator.getAnchor());
|
|
assert(wrappedVar && wrappedVar->hasAttachedPropertyWrapper());
|
|
|
|
// The wrapper type must be a property wrapper.
|
|
auto *nominal = wrapperType->getDesugaredType()->getAnyNominal();
|
|
if (!(nominal && nominal->getAttrs().hasAttribute<PropertyWrapperAttr>())) {
|
|
if (shouldAttemptFixes()) {
|
|
auto *fix = AllowInvalidPropertyWrapperType::create(
|
|
*this, wrapperType, getConstraintLocator(locator));
|
|
if (!recordFix(fix))
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto typeInfo = nominal->getPropertyWrapperTypeInfo();
|
|
|
|
// Implicit property wrappers must support projected-value initialization.
|
|
if (wrappedVar->hasImplicitPropertyWrapper() &&
|
|
!(typeInfo.projectedValueVar && typeInfo.hasProjectedValueInit)) {
|
|
if (shouldAttemptFixes()) {
|
|
auto *fix = RemoveProjectedValueArgument::create(
|
|
*this, wrapperType, cast<ParamDecl>(wrappedVar), getConstraintLocator(locator));
|
|
if (!recordFix(fix))
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto resolvedType = wrapperType->getTypeOfMember(typeInfo.valueVar);
|
|
if (typeInfo.valueVar->isSettable(nullptr) && typeInfo.valueVar->isSetterAccessibleFrom(DC) &&
|
|
!typeInfo.valueVar->isSetterMutating()) {
|
|
resolvedType = LValueType::get(resolvedType);
|
|
}
|
|
|
|
addConstraint(ConstraintKind::Bind, wrappedValueType, resolvedType, locator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyOneWayConstraint(
|
|
ConstraintKind kind,
|
|
Type first, Type second, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Determine whether the second type can be fully simplified. Only then
|
|
// will this constraint be resolved.
|
|
Type secondSimplified = simplifyType(second);
|
|
if (secondSimplified->hasTypeVariable()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, kind, first, second,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// Propagate holes through one-way constraints.
|
|
if (secondSimplified->isPlaceholder()) {
|
|
recordAnyTypeVarAsPotentialHole(first);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Translate this constraint into an equality or bind-parameter constraint,
|
|
// as appropriate.
|
|
ASSERT(kind == ConstraintKind::OneWayEqual);
|
|
return matchTypes(first, secondSimplified, ConstraintKind::Equal, flags,
|
|
locator);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyUnresolvedMemberChainBaseConstraint(
|
|
Type first, Type second, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto resultTy = getFixedTypeRecursive(first, flags, /*wantRValue=*/true);
|
|
auto baseTy = getFixedTypeRecursive(second, flags, /*wantRValue=*/true);
|
|
|
|
if (baseTy->isTypeVariableOrMember() || resultTy->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::UnresolvedMemberChainBase,
|
|
first, second, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
if (baseTy->is<ProtocolType>()) {
|
|
auto *baseExpr =
|
|
castToExpr<UnresolvedMemberChainResultExpr>(locator.getAnchor())
|
|
->getChainBase();
|
|
auto *memberLoc =
|
|
getConstraintLocator(baseExpr, ConstraintLocator::UnresolvedMember);
|
|
|
|
if (shouldAttemptFixes() && hasFixFor(memberLoc))
|
|
return SolutionKind::Solved;
|
|
|
|
auto *memberRef = findResolvedMemberRef(memberLoc);
|
|
if (memberRef && (memberRef->isStatic() || isa<TypeAliasDecl>(memberRef))) {
|
|
return simplifyConformsToConstraint(
|
|
resultTy, baseTy, ConstraintKind::ConformsTo,
|
|
getConstraintLocator(memberLoc, ConstraintLocator::MemberRefBase),
|
|
flags);
|
|
}
|
|
}
|
|
|
|
return matchTypes(baseTy, resultTy, ConstraintKind::Equal, flags, locator);
|
|
}
|
|
|
|
static Type getOpenedResultBuilderTypeFor(ConstraintSystem &cs,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto lastElt = locator.last();
|
|
if (!lastElt)
|
|
return Type();
|
|
|
|
auto argToParamElt = lastElt->getAs<LocatorPathElt::ApplyArgToParam>();
|
|
if (!argToParamElt)
|
|
return Type();
|
|
|
|
auto *calleeLocator = cs.getCalleeLocator(cs.getConstraintLocator(locator));
|
|
auto selectedOverload = cs.findSelectedOverloadFor(calleeLocator);
|
|
if (!(selectedOverload &&
|
|
(selectedOverload->choice.getKind() == OverloadChoiceKind::Decl ||
|
|
selectedOverload->choice.getKind() ==
|
|
OverloadChoiceKind::DeclViaUnwrappedOptional)))
|
|
return Type();
|
|
|
|
auto *choice = selectedOverload->choice.getDecl();
|
|
bool skipCurriedSelf = hasAppliedSelf(cs, selectedOverload->choice);
|
|
|
|
if (choice->hasCurriedSelf() && !skipCurriedSelf)
|
|
return Type();
|
|
|
|
if (!choice->hasParameterList())
|
|
return Type();
|
|
|
|
auto *PD = getParameterAt(choice, argToParamElt->getParamIdx());
|
|
assert(PD);
|
|
|
|
auto builderType = PD->getResultBuilderType();
|
|
if (!builderType)
|
|
return Type();
|
|
|
|
// If the builder type has a type parameter, substitute in the type
|
|
// variables.
|
|
if (builderType->hasTypeParameter()) {
|
|
// Find the opened type for this callee and substitute in the type
|
|
// parameters.
|
|
auto substitutions = cs.getOpenedTypes(calleeLocator);
|
|
if (!substitutions.empty()) {
|
|
builderType = cs.openType(builderType, substitutions, locator,
|
|
/*preparedOverload=*/nullptr);
|
|
}
|
|
|
|
assert(!builderType->hasTypeParameter());
|
|
}
|
|
return builderType;
|
|
}
|
|
|
|
void ConstraintSystem::recordIsolatedParam(ParamDecl *param) {
|
|
bool inserted = isolatedParams.insert(param).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState)
|
|
recordChange(SolverTrail::Change::RecordedIsolatedParam(param));
|
|
}
|
|
|
|
void ConstraintSystem::removeIsolatedParam(ParamDecl *param) {
|
|
bool erased = isolatedParams.erase(param);
|
|
ASSERT(erased);
|
|
}
|
|
|
|
void ConstraintSystem::recordPreconcurrencyClosure(
|
|
const ClosureExpr *closure) {
|
|
bool inserted = preconcurrencyClosures.insert(closure).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState) {
|
|
recordChange(SolverTrail::Change::RecordedPreconcurrencyClosure(
|
|
const_cast<ClosureExpr *>(closure)));
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::removePreconcurrencyClosure(
|
|
const ClosureExpr *closure) {
|
|
bool erased = preconcurrencyClosures.erase(closure);
|
|
ASSERT(erased);
|
|
}
|
|
|
|
bool ConstraintSystem::resolveClosure(TypeVariableType *typeVar,
|
|
Type contextualType,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto *closureLocator = typeVar->getImpl().getLocator();
|
|
auto *closure = castToExpr<ClosureExpr>(closureLocator->getAnchor());
|
|
auto *inferredClosureType = getClosureType(closure);
|
|
|
|
// Note if this closure is isolated by preconcurrency.
|
|
if (hasPreconcurrencyCallee(locator))
|
|
recordPreconcurrencyClosure(closure);
|
|
|
|
// Let's look through all optionals associated with contextual
|
|
// type to make it possible to infer parameter/result type of
|
|
// the closure faster e.g.:
|
|
//
|
|
// func test(_: ((Int) -> Void)?) {
|
|
// ...
|
|
// }
|
|
//
|
|
// test { $0 + ... }
|
|
//
|
|
// In this case dropping optionality from contextual type
|
|
// `((Int) -> Void)?` allows `resolveClosure` to infer type
|
|
// of `$0` directly (via `getContextualParamAt`) instead of
|
|
// having to use type variable inference mechanism.
|
|
contextualType = contextualType->lookThroughAllOptionalTypes();
|
|
|
|
auto getContextualParamAt =
|
|
[&contextualType, &inferredClosureType](
|
|
unsigned index) -> std::optional<AnyFunctionType::Param> {
|
|
auto *fnType = contextualType->getAs<FunctionType>();
|
|
if (!fnType)
|
|
return std::nullopt;
|
|
|
|
auto numContextualParams = fnType->getNumParams();
|
|
|
|
if (numContextualParams == 1) {
|
|
const auto ¶m = fnType->getParams()[0];
|
|
if (auto *tuple = param.getPlainType()->getAs<TupleType>()) {
|
|
// If arity is the same it's a tuple splat which is allowed
|
|
// for closures (see SE-0110 for more details):
|
|
//
|
|
// func test(_: ((Int, Int)) -> Void) {}
|
|
// test { (arg, _) in
|
|
// ...
|
|
// }
|
|
if (tuple->getNumElements() == inferredClosureType->getNumParams() &&
|
|
param.getParameterFlags().isNone()) {
|
|
const auto &elt = tuple->getElement(index);
|
|
return AnyFunctionType::Param(elt.getType(), elt.getName());
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
if (numContextualParams != inferredClosureType->getNumParams() ||
|
|
numContextualParams <= index)
|
|
return std::nullopt;
|
|
|
|
return fnType->getParams()[index];
|
|
};
|
|
|
|
// Check whether given contextual parameter type could be
|
|
// used to bind external closure parameter type.
|
|
auto isSuitableContextualType = [](Type contextualTy) {
|
|
// We need to wait until contextual type
|
|
// is fully resolved before binding it.
|
|
if (contextualTy->isTypeVariableOrMember())
|
|
return false;
|
|
|
|
// Cannot propagate pack expansion type from context,
|
|
// it has to be handled by type matching logic.
|
|
if (isPackExpansionType(contextualTy))
|
|
return false;
|
|
|
|
// If contextual type has an error, let's wait for inference,
|
|
// otherwise contextual would interfere with diagnostics.
|
|
if (contextualTy->hasError())
|
|
return false;
|
|
|
|
if (isa<TypeAliasType>(contextualTy.getPointer())) {
|
|
auto underlyingTy = contextualTy->getDesugaredType();
|
|
// FIXME: typealias pointing to an existential type is special
|
|
// because if the typealias has type variables then we'd end up
|
|
// opening existential from a type with unresolved generic
|
|
// parameter(s), which CSApply can't currently simplify while
|
|
// building type-checked AST because `ExistentialArchetypeType` doesn't
|
|
// propagate flags. Example is as simple as `{ $0.description }`
|
|
// where `$0` is `Error` that inferred from a (generic) typealias.
|
|
if (underlyingTy->isExistentialType() && contextualTy->hasTypeVariable())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// If contextual type is not a function type or `Any` and this
|
|
// closure is used as an argument, let's skip resolution.
|
|
//
|
|
// Doing so improves performance if closure is passed as an argument
|
|
// to a (heavily) overloaded declaration, avoid unrelated errors,
|
|
// propagate holes, and record a more impactful fix.
|
|
if (!contextualType->isTypeVariableOrMember() &&
|
|
!(contextualType->is<FunctionType>() || contextualType->isAny()) &&
|
|
locator.endsWith<LocatorPathElt::ApplyArgToParam>()) {
|
|
if (!shouldAttemptFixes())
|
|
return false;
|
|
|
|
assignFixedType(typeVar, PlaceholderType::get(getASTContext(), typeVar));
|
|
recordTypeVariablesAsHoles(inferredClosureType);
|
|
|
|
return !recordFix(
|
|
AllowArgumentMismatch::create(*this, typeVar, contextualType,
|
|
getConstraintLocator(locator)),
|
|
/*impact=*/15);
|
|
}
|
|
|
|
// Determine whether a result builder will be applied.
|
|
auto resultBuilderType = getOpenedResultBuilderTypeFor(*this, locator);
|
|
|
|
auto *paramList = closure->getParameters();
|
|
SmallVector<AnyFunctionType::Param, 4> parameters;
|
|
bool hasIsolatedParam = false;
|
|
for (unsigned i = 0, n = paramList->size(); i != n; ++i) {
|
|
auto param = inferredClosureType->getParams()[i];
|
|
auto *paramDecl = paramList->get(i);
|
|
|
|
// In case of anonymous or name-only parameters, let's infer
|
|
// inout/variadic/isolated flags from context, that helps to propagate
|
|
// type information into the internal type of the parameter and reduces
|
|
// inference solver has to make.
|
|
if (!paramDecl->getTypeRepr()) {
|
|
if (auto contextualParam = getContextualParamAt(i)) {
|
|
auto flags = param.getParameterFlags();
|
|
|
|
// Note when a parameter is inferred to be isolated.
|
|
if (contextualParam->isIsolated() && !flags.isIsolated() && paramDecl)
|
|
recordIsolatedParam(paramDecl);
|
|
|
|
// Carry-over the ownership specifier from the contextual parameter.
|
|
auto paramOwnership =
|
|
contextualParam->getParameterFlags().getOwnershipSpecifier();
|
|
|
|
// `sending` is already carried over; skip this related ownership kind.
|
|
if (paramOwnership == ParamSpecifier::ImplicitlyCopyableConsuming)
|
|
paramOwnership = flags.getOwnershipSpecifier();
|
|
|
|
param = param.withFlags(flags.withInOut(contextualParam->isInOut())
|
|
.withVariadic(contextualParam->isVariadic())
|
|
.withIsolated(contextualParam->isIsolated())
|
|
.withSending(contextualParam->isSending())
|
|
.withOwnershipSpecifier(paramOwnership));
|
|
}
|
|
}
|
|
|
|
if (paramDecl->hasAttachedPropertyWrapper()) {
|
|
Type backingType;
|
|
Type wrappedValueType;
|
|
|
|
if (paramDecl->hasImplicitPropertyWrapper()) {
|
|
if (auto contextualType = getContextualParamAt(i)) {
|
|
backingType = contextualType->getPlainType();
|
|
} else {
|
|
// There may not be a contextual parameter type if the contextual
|
|
// type is not a function type or if closure body declares too many
|
|
// parameters.
|
|
auto *paramLoc =
|
|
getConstraintLocator(closure, LocatorPathElt::TupleElement(i));
|
|
backingType = createTypeVariable(paramLoc, TVO_CanBindToHole);
|
|
}
|
|
|
|
wrappedValueType = createTypeVariable(getConstraintLocator(paramDecl),
|
|
TVO_CanBindToHole | TVO_CanBindToLValue);
|
|
} else {
|
|
auto *wrapperAttr = paramDecl->getOutermostAttachedPropertyWrapper();
|
|
auto wrapperType = paramDecl->getAttachedPropertyWrapperType(0);
|
|
backingType = replaceInferableTypesWithTypeVars(
|
|
wrapperType, getConstraintLocator(wrapperAttr->getTypeRepr()));
|
|
wrappedValueType = computeWrappedValueType(paramDecl, backingType);
|
|
}
|
|
|
|
auto *backingVar = paramDecl->getPropertyWrapperBackingProperty();
|
|
setType(backingVar, backingType);
|
|
|
|
auto *localWrappedVar = paramDecl->getPropertyWrapperWrappedValueVar();
|
|
setType(localWrappedVar, wrappedValueType);
|
|
|
|
if (auto *projection = paramDecl->getPropertyWrapperProjectionVar()) {
|
|
setType(projection, computeProjectedValueType(paramDecl, backingType));
|
|
}
|
|
|
|
if (!paramDecl->getName().hasDollarPrefix()) {
|
|
if (generateWrappedPropertyTypeConstraints(paramDecl, backingType,
|
|
param.getParameterType()))
|
|
return false;
|
|
}
|
|
|
|
auto result = applyPropertyWrapperToParameter(backingType, param.getParameterType(),
|
|
paramDecl, paramDecl->getName(),
|
|
ConstraintKind::Equal,
|
|
getConstraintLocator(closure),
|
|
getConstraintLocator(closure));
|
|
if (result.isFailure())
|
|
return false;
|
|
}
|
|
|
|
Type internalType;
|
|
if (paramDecl->getTypeRepr()) {
|
|
// Internal type is the type used in the body of the closure,
|
|
// so "external" type translates to it as follows:
|
|
// - `Int...` -> `[Int]`,
|
|
// - `inout Int` -> `@lvalue Int`.
|
|
internalType = param.getParameterType();
|
|
} else {
|
|
auto *paramLoc =
|
|
getConstraintLocator(closure, LocatorPathElt::TupleElement(i));
|
|
|
|
auto *typeVar = createTypeVariable(paramLoc, TVO_CanBindToLValue |
|
|
TVO_CanBindToNoEscape);
|
|
|
|
// If external parameter is variadic it translates into an array in
|
|
// the body of the closure.
|
|
internalType =
|
|
param.isVariadic() ? VariadicSequenceType::get(typeVar) : Type(typeVar);
|
|
|
|
auto externalType = param.getOldType();
|
|
|
|
// Performance optimization.
|
|
//
|
|
// If there is a concrete contextual type we could use, let's bind
|
|
// it to the external type right away because internal type has to
|
|
// be equal to that type anyway (through `BindParam` on external type
|
|
// i.e. <internal> bind param <external> conv <concrete contextual>).
|
|
//
|
|
// Note: it's correct to avoid doing this, but it would result
|
|
// in (a lot) more checking since solver would have to re-discover,
|
|
// re-attempt and fail parameter type while solving for overloaded
|
|
// choices in the body.
|
|
if (auto contextualParam = getContextualParamAt(i)) {
|
|
auto paramTy = simplifyType(contextualParam->getOldType());
|
|
if (isSuitableContextualType(paramTy))
|
|
addConstraint(ConstraintKind::Bind, externalType, paramTy, paramLoc);
|
|
}
|
|
|
|
addConstraint(
|
|
ConstraintKind::BindParam, externalType, typeVar, paramLoc);
|
|
}
|
|
|
|
hasIsolatedParam |= param.isIsolated();
|
|
|
|
setType(paramDecl, internalType);
|
|
parameters.push_back(param);
|
|
}
|
|
|
|
// Propagate @Sendable from the contextual type to the closure.
|
|
auto closureExtInfo = inferredClosureType->getExtInfo();
|
|
if (auto contextualFnType = contextualType->getAs<FunctionType>()) {
|
|
if (contextualFnType->isSendable())
|
|
closureExtInfo = closureExtInfo.withSendable();
|
|
}
|
|
|
|
// Propagate sending result from the contextual type to the closure.
|
|
if (auto contextualFnType = contextualType->getAs<FunctionType>()) {
|
|
if (contextualFnType->hasExtInfo() && contextualFnType->hasSendingResult())
|
|
closureExtInfo = closureExtInfo.withSendingResult();
|
|
}
|
|
|
|
// Isolated parameters override any other kind of isolation we might infer.
|
|
if (hasIsolatedParam) {
|
|
closureExtInfo = closureExtInfo.withIsolation(
|
|
FunctionTypeIsolation::forParameter());
|
|
}
|
|
|
|
auto closureType =
|
|
FunctionType::get(parameters, inferredClosureType->getResult(),
|
|
closureExtInfo);
|
|
assignFixedType(typeVar, closureType);
|
|
|
|
// If there is a result builder to apply, do so now.
|
|
if (resultBuilderType) {
|
|
if (auto result = matchResultBuilder(
|
|
closure, resultBuilderType, closureType->getResult(),
|
|
ConstraintKind::Conversion, contextualType, locator)) {
|
|
return result->isSuccess();
|
|
}
|
|
}
|
|
|
|
SyntacticElementTarget target(closure, contextualType);
|
|
setTargetFor(closure, target);
|
|
|
|
// Generate constraints from the body of this closure.
|
|
return !generateConstraints(AnyFunctionRef{closure}, closure->getBody());
|
|
}
|
|
|
|
bool ConstraintSystem::resolvePackExpansion(TypeVariableType *typeVar,
|
|
Type contextualType) {
|
|
assert(typeVar->getImpl().isPackExpansion());
|
|
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
|
|
Type openedExpansionType =
|
|
locator->castLastElementTo<LocatorPathElt::PackExpansionType>()
|
|
.getOpenedType();
|
|
|
|
assignFixedType(typeVar, openedExpansionType);
|
|
return true;
|
|
}
|
|
|
|
bool ConstraintSystem::resolveTapBody(TypeVariableType *typeVar,
|
|
Type contextualType,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto *tapLoc = typeVar->getImpl().getLocator();
|
|
auto *tapExpr = castToExpr<TapExpr>(tapLoc->getAnchor());
|
|
|
|
// Assign a type to tap expression itself.
|
|
assignFixedType(typeVar, contextualType);
|
|
// Set type to `$interpolation` variable declared in the body of tap
|
|
// expression.
|
|
setType(tapExpr->getVar(), contextualType);
|
|
|
|
// With all of the contextual information recorded in the constraint system,
|
|
// it's time to generate constraints for the body of this tap expression.
|
|
return !generateConstraints(tapExpr);
|
|
}
|
|
|
|
bool ConstraintSystem::resolveKeyPath(TypeVariableType *typeVar,
|
|
Type contextualType,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Key path types recently gained Copyable, Escapable requirements.
|
|
// The solver cannot account for that during inference because Root
|
|
// and Value types are required to be only resolved enough to infer
|
|
// a capability of a key path itself.
|
|
if (auto *BGT = contextualType->getAs<BoundGenericType>()) {
|
|
auto keyPathTy = openUnboundGenericType(
|
|
BGT->getDecl(), BGT->getParent(), locator, /*isTypeResolution=*/false);
|
|
|
|
assignFixedType(
|
|
typeVar, keyPathTy, /*updateState=*/true,
|
|
/*notifyInference=*/!flags.contains(TMF_BindingTypeVariable));
|
|
addConstraint(ConstraintKind::Equal, keyPathTy, contextualType, locator);
|
|
return true;
|
|
}
|
|
|
|
assignFixedType(typeVar, contextualType, /*updateState=*/true,
|
|
/*notifyInference=*/!flags.contains(TMF_BindingTypeVariable));
|
|
return true;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyDynamicTypeOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
// Local function to form an unsolved result.
|
|
auto formUnsolved = [&] {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::DynamicTypeOf, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// Solve forward.
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
if (!type2->isTypeVariableOrMember()) {
|
|
Type dynamicType2;
|
|
if (type2->isAnyExistentialType()) {
|
|
dynamicType2 = ExistentialMetatypeType::get(type2);
|
|
} else {
|
|
dynamicType2 = MetatypeType::get(type2);
|
|
}
|
|
return matchTypes(type1, dynamicType2, ConstraintKind::Bind, subflags,
|
|
locator);
|
|
}
|
|
|
|
// Okay, can't solve forward. See what we can do backwards.
|
|
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
|
|
if (type1->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// If we have an existential metatype, that's good enough to solve
|
|
// the constraint.
|
|
if (auto metatype1 = type1->getAs<ExistentialMetatypeType>())
|
|
return matchTypes(metatype1->getInstanceType(), type2,
|
|
ConstraintKind::Bind,
|
|
subflags, locator);
|
|
|
|
// If we have a normal metatype, we can't solve backwards unless we
|
|
// know what kind of object it is.
|
|
if (auto metatype1 = type1->getAs<MetatypeType>()) {
|
|
Type instanceType1 = getFixedTypeRecursive(metatype1->getInstanceType(),
|
|
true);
|
|
if (instanceType1->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
return matchTypes(instanceType1, type2, ConstraintKind::Bind, subflags,
|
|
locator);
|
|
}
|
|
|
|
// We don't have a non-metatype result, produce a fix.
|
|
if (shouldAttemptFixes()) {
|
|
// If we have a hole as a contextual type, eagerly produce holes in the
|
|
// argument of `type(of:)`.
|
|
if (type1->isPlaceholder()) {
|
|
recordTypeVariablesAsHoles(type2);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Otherwise we have some invalid contextual type, record a fix and let the
|
|
// argument be turned into a hole if needed.
|
|
recordAnyTypeVarAsPotentialHole(type2);
|
|
|
|
recordFix(IgnoreNonMetatypeDynamicType::create(
|
|
*this, type2, type1, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyBridgingConstraint(Type type1,
|
|
Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
/// Form an unresolved result.
|
|
auto formUnsolved = [&] {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::BridgingConversion, type1,
|
|
type2, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// Local function to look through optional types. It produces the
|
|
// fully-unwrapped type and a count of the total # of optional types that were
|
|
// unwrapped.
|
|
auto unwrapType = [&](Type type) -> std::pair<Type, unsigned> {
|
|
unsigned count = 0;
|
|
while (Type objectType = type->getOptionalObjectType()) {
|
|
++count;
|
|
|
|
TypeMatchOptions unusedOptions;
|
|
type = getFixedTypeRecursive(objectType, unusedOptions, /*wantRValue=*/true);
|
|
}
|
|
|
|
return { type, count };
|
|
};
|
|
|
|
const auto rawType1 = type1;
|
|
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
|
|
if (type1->isTypeVariableOrMember() || type2->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Noncopyable & Nonescapable types can't be involved in bridging conversions
|
|
// since a bridged type assumes such abilities are granted.
|
|
if (!type1->hasTypeVariable()
|
|
&& (type1->isNoncopyable() || !type1->isEscapable())) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
Type unwrappedFromType;
|
|
unsigned numFromOptionals;
|
|
std::tie(unwrappedFromType, numFromOptionals) = unwrapType(type1);
|
|
|
|
Type unwrappedToType;
|
|
unsigned numToOptionals;
|
|
std::tie(unwrappedToType, numToOptionals) = unwrapType(type2);
|
|
|
|
if (unwrappedFromType->isTypeVariableOrMember() ||
|
|
unwrappedToType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Update the score.
|
|
increaseScore(SK_UserConversion, locator); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Local function to count the optional injections that will be performed
|
|
// after the bridging conversion.
|
|
auto countOptionalInjections = [&] {
|
|
if (numToOptionals > numFromOptionals)
|
|
increaseScore(SK_ValueToOptional, locator,
|
|
numToOptionals - numFromOptionals);
|
|
};
|
|
|
|
// Anything can be explicitly converted to AnyObject using the universal
|
|
// bridging conversion. This allows both extraneous optionals in the source
|
|
// (because optionals themselves can be boxed for AnyObject) and in the
|
|
// destination (we'll perform the extra injections at the end).
|
|
if (unwrappedToType->isAnyObject()) {
|
|
countOptionalInjections();
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// In a previous version of Swift, we could accidentally drop the coercion
|
|
// constraint in certain cases. In most cases this led to either miscompiles
|
|
// or crashes later down the pipeline, but for coercions between collections
|
|
// we generated somewhat reasonable code that performed a force cast. To
|
|
// maintain compatibility with that behavior, allow the coercion between
|
|
// two collections, but add a warning fix telling the user to use as! or as?
|
|
// instead. In Swift 6 mode, this becomes an error.
|
|
//
|
|
// We only need to perform this compatibility logic if this is a coercion of
|
|
// something that isn't a collection expr (as collection exprs would have
|
|
// crashed in codegen due to CSApply peepholing them). Additionally, the LHS
|
|
// type must be a (potentially optional) type variable, as only such a
|
|
// constraint could have been previously been left unsolved.
|
|
auto canUseCompatFix = [&]() {
|
|
if (Context.isSwiftVersionAtLeast(6))
|
|
return false;
|
|
|
|
if (!rawType1->lookThroughAllOptionalTypes()->isTypeVariableOrMember())
|
|
return false;
|
|
|
|
SmallVector<LocatorPathElt, 4> elts;
|
|
auto anchor = locator.getLocatorParts(elts);
|
|
if (elts.empty() || !elts.back().is<LocatorPathElt::CoercionOperand>())
|
|
return false;
|
|
|
|
auto *coercion = getAsExpr<CoerceExpr>(anchor);
|
|
if (!coercion)
|
|
return false;
|
|
|
|
auto *subject = coercion->getSubExpr();
|
|
while (auto *paren = dyn_cast<ParenExpr>(subject))
|
|
subject = paren->getSubExpr();
|
|
|
|
return !isa<CollectionExpr>(subject);
|
|
}();
|
|
|
|
// Unless we're allowing the collection compatibility fix, the source cannot
|
|
// be more optional than the destination.
|
|
if (!canUseCompatFix && numFromOptionals > numToOptionals)
|
|
return SolutionKind::Error;
|
|
|
|
auto makeCollectionResult = [&](SolutionKind result) -> SolutionKind {
|
|
// If we encountered an error and can use the compatibility fix, do so.
|
|
if (canUseCompatFix) {
|
|
if (numFromOptionals > numToOptionals || result == SolutionKind::Error) {
|
|
auto *loc = getConstraintLocator(locator);
|
|
auto *fix = AllowCoercionToForceCast::create(*this, type1, type2, loc);
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
}
|
|
return result;
|
|
};
|
|
|
|
// Bridging the elements of an array.
|
|
if (auto fromElement = unwrappedFromType->getArrayElementType()) {
|
|
if (auto toElement = unwrappedToType->getArrayElementType()) {
|
|
countOptionalInjections();
|
|
auto result = simplifyBridgingConstraint(
|
|
fromElement, toElement, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0)));
|
|
return makeCollectionResult(result);
|
|
}
|
|
}
|
|
|
|
// Bridging the keys/values of a dictionary.
|
|
if (auto fromKeyValue = isDictionaryType(unwrappedFromType)) {
|
|
if (auto toKeyValue = isDictionaryType(unwrappedToType)) {
|
|
ConstraintFix *compatFix = nullptr;
|
|
if (canUseCompatFix) {
|
|
compatFix = AllowCoercionToForceCast::create(
|
|
*this, type1, type2, getConstraintLocator(locator));
|
|
}
|
|
addExplicitConversionConstraint(fromKeyValue->first, toKeyValue->first,
|
|
ForgetChoice,
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(0)),
|
|
compatFix);
|
|
addExplicitConversionConstraint(fromKeyValue->second, toKeyValue->second,
|
|
ForgetChoice,
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(1)),
|
|
compatFix);
|
|
countOptionalInjections();
|
|
return makeCollectionResult(SolutionKind::Solved);
|
|
}
|
|
}
|
|
|
|
// Bridging the elements of a set.
|
|
if (auto fromElement = isSetType(unwrappedFromType)) {
|
|
if (auto toElement = isSetType(unwrappedToType)) {
|
|
countOptionalInjections();
|
|
auto result = simplifyBridgingConstraint(
|
|
*fromElement, *toElement, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0)));
|
|
return makeCollectionResult(result);
|
|
}
|
|
}
|
|
|
|
// The source cannot be more optional than the destination, because bridging
|
|
// conversions don't allow us to implicitly check for a value in the optional.
|
|
if (numFromOptionals > numToOptionals) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Explicit bridging from a value type to an Objective-C class type.
|
|
auto &ctx = getASTContext();
|
|
if (unwrappedFromType->isPotentiallyBridgedValueType() &&
|
|
(unwrappedToType->isBridgeableObjectType() ||
|
|
(unwrappedToType->isExistentialType() &&
|
|
!unwrappedToType->isAny()))) {
|
|
countOptionalInjections();
|
|
if (Type classType = ctx.getBridgedToObjC(DC, unwrappedFromType)) {
|
|
return matchTypes(classType, unwrappedToType, ConstraintKind::Conversion,
|
|
subflags, locator);
|
|
}
|
|
}
|
|
|
|
// Bridging from an Objective-C class type to a value type.
|
|
// Note that specifically require a class or class-constrained archetype
|
|
// here, because archetypes cannot be bridged.
|
|
if (unwrappedFromType->mayHaveSuperclass() &&
|
|
unwrappedToType->isPotentiallyBridgedValueType()) {
|
|
Type bridgedValueType;
|
|
if (auto objcClass = ctx.getBridgedToObjC(DC, unwrappedToType,
|
|
&bridgedValueType)) {
|
|
// Bridging NSNumber to NSValue is one-way, since there are multiple Swift
|
|
// value types that bridge to those object types. It requires a checked
|
|
// cast to get back.
|
|
if (ctx.isObjCClassWithMultipleSwiftBridgedTypes(objcClass))
|
|
return SolutionKind::Error;
|
|
|
|
// If the bridged value type is generic, the generic arguments
|
|
// must either match or be bridged.
|
|
// FIXME: This should be an associated type of the protocol.
|
|
auto &ctx = getASTContext();
|
|
if (auto fromBGT = unwrappedToType->getAs<BoundGenericType>()) {
|
|
if (fromBGT->isArray()) {
|
|
// [AnyObject]
|
|
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
|
|
ctx.getAnyObjectType(),
|
|
getConstraintLocator(locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(0))));
|
|
} else if (fromBGT->isDictionary()) {
|
|
// [NSObject : AnyObject]
|
|
auto nsObjectType = ctx.getNSObjectType();
|
|
if (!nsObjectType) {
|
|
// Not a bridging case. Should we detect this earlier?
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
|
|
nsObjectType,
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(0))));
|
|
|
|
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[1],
|
|
ctx.getAnyObjectType(),
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(1))));
|
|
} else if (fromBGT->isSet()) {
|
|
auto nsObjectType = ctx.getNSObjectType();
|
|
if (!nsObjectType) {
|
|
// Not a bridging case. Should we detect this earlier?
|
|
return SolutionKind::Error;
|
|
}
|
|
addConstraint(ConstraintKind::Bind, fromBGT->getGenericArgs()[0],
|
|
nsObjectType,
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(0))));
|
|
} else {
|
|
// Nothing special to do; matchTypes will match generic arguments.
|
|
}
|
|
}
|
|
|
|
// Make sure we have the bridged value type.
|
|
if (matchTypes(unwrappedToType, bridgedValueType, ConstraintKind::Bind,
|
|
subflags, locator).isFailure())
|
|
return SolutionKind::Error;
|
|
|
|
countOptionalInjections();
|
|
return matchTypes(unwrappedFromType, objcClass, ConstraintKind::Subtype,
|
|
subflags, locator);
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyEscapableFunctionOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
// Local function to form an unsolved result.
|
|
auto formUnsolved = [&] {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::EscapableFunctionOf,
|
|
type1, type2, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
if (auto fn2 = type2->getAs<FunctionType>()) {
|
|
// Solve forward by binding the other type variable to the escapable
|
|
// variation of this type.
|
|
auto fn1 = fn2->withExtInfo(fn2->getExtInfo().withNoEscape(false));
|
|
return matchTypes(type1, fn1, ConstraintKind::Bind, subflags, locator);
|
|
}
|
|
if (!type2->isTypeVariableOrMember())
|
|
// We definitely don't have a function, so bail.
|
|
return SolutionKind::Error;
|
|
|
|
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
|
|
if (auto fn1 = type1->getAs<FunctionType>()) {
|
|
// We should have the escaping end of the relation.
|
|
if (fn1->getExtInfo().isNoEscape())
|
|
return SolutionKind::Error;
|
|
|
|
// Solve backward by binding the other type variable to the noescape
|
|
// variation of this type.
|
|
auto fn2 = fn1->withExtInfo(fn1->getExtInfo().withNoEscape(true));
|
|
return matchTypes(type2, fn2, ConstraintKind::Bind, subflags, locator);
|
|
}
|
|
if (!type1->isTypeVariableOrMember())
|
|
// We definitely don't have a function, so bail.
|
|
return SolutionKind::Error;
|
|
|
|
return formUnsolved();
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyOpenedExistentialOfConstraint(
|
|
Type type1, Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
if (type2->isAnyExistentialType()) {
|
|
// We have the existential side. Produce an opened archetype and bind
|
|
// type1 to it.
|
|
Type openedTy =
|
|
openAnyExistentialType(type2, getConstraintLocator(locator)).first;
|
|
return matchTypes(type1, openedTy, ConstraintKind::Bind, subflags, locator);
|
|
}
|
|
if (!type2->isTypeVariableOrMember())
|
|
// We definitely don't have an existential, so bail.
|
|
return SolutionKind::Error;
|
|
|
|
// If type1 is constrained to anything concrete, the constraint fails.
|
|
// It can only be bound to a type we opened for it.
|
|
type1 = getFixedTypeRecursive(type1, flags, /*wantRValue=*/true);
|
|
if (!type1->isTypeVariableOrMember())
|
|
return SolutionKind::Error;
|
|
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, ConstraintKind::OpenedExistentialOf,
|
|
type1, type2, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyKeyPathConstraint(
|
|
Type keyPathTy,
|
|
Type rootTy,
|
|
Type valueTy,
|
|
ArrayRef<TypeVariableType *> componentTypeVars,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto subflags = getDefaultDecompositionOptions(flags);
|
|
keyPathTy = getFixedTypeRecursive(keyPathTy, /*want rvalue*/ true);
|
|
|
|
auto formUnsolved = [&]() -> SolutionKind {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(Constraint::create(
|
|
*this, ConstraintKind::KeyPath, keyPathTy, rootTy, valueTy,
|
|
getConstraintLocator(locator), componentTypeVars));
|
|
return SolutionKind::Solved;
|
|
}
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
if (keyPathTy->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
auto tryMatchRootAndValueFromContextualType = [&](Type contextualTy) -> bool {
|
|
Type contextualRootTy = Type(), contextualValueTy = Type();
|
|
|
|
// Placeholders are only allowed in the diagnostic mode so it's
|
|
// okay to simply return `true` here.
|
|
if (contextualTy->isPlaceholder())
|
|
return true;
|
|
|
|
// Situations like `any KeyPath<...> & Sendable`.
|
|
if (contextualTy->isExistentialType()) {
|
|
contextualTy = contextualTy->getExistentialLayout().explicitSuperclass;
|
|
assert(contextualTy);
|
|
}
|
|
|
|
if (auto bgt = contextualTy->getAs<BoundGenericType>()) {
|
|
// We can get root and value from a concrete key path type.
|
|
assert(bgt->isKeyPath() || bgt->isWritableKeyPath() ||
|
|
bgt->isReferenceWritableKeyPath());
|
|
|
|
contextualRootTy = bgt->getGenericArgs()[0];
|
|
contextualValueTy = bgt->getGenericArgs()[1];
|
|
}
|
|
|
|
if (auto fnTy = contextualTy->getAs<FunctionType>()) {
|
|
assert(fnTy->getParams().size() == 1);
|
|
// Key paths may be converted to a function of compatible type. We will
|
|
// later form from this key path an implicit closure of the form
|
|
// `{ root in root[keyPath: kp] }` so any conversions that are valid with
|
|
// a source type of `(Root) -> Value` should be valid here too.
|
|
auto rootParam = AnyFunctionType::Param(rootTy);
|
|
auto kpFnTy = FunctionType::get(rootParam, valueTy, fnTy->getExtInfo());
|
|
|
|
// Note: because the keypath is applied to `root` as a parameter internal
|
|
// to the closure, we use the function parameter's "parameter type" rather
|
|
// than the raw type. This enables things like:
|
|
// ```
|
|
// let countKeyPath: (String...) -> Int = \.count
|
|
// ```
|
|
auto paramTy = fnTy->getParams()[0].getParameterType();
|
|
auto paramParam = AnyFunctionType::Param(paramTy);
|
|
auto paramFnTy = FunctionType::get(paramParam, fnTy->getResult(),
|
|
fnTy->getExtInfo());
|
|
|
|
// Form a key path type as well to make sure that root and value
|
|
// types satisfy all of its requirements.
|
|
// Note that `KeyPath` types used to have no requirements but now
|
|
// they do require `Root` and `Value` to be `Copyable` and `Escapable`.
|
|
{
|
|
auto keyPathTy =
|
|
openUnboundGenericType(
|
|
getASTContext().getKeyPathDecl(),
|
|
/*parent=*/Type(),
|
|
locator.withPathElement(LocatorPathElt::KeyPathType()),
|
|
/*isTypeResolution=*/false)
|
|
->castTo<BoundGenericType>();
|
|
addConstraint(ConstraintKind::Bind, keyPathTy->getGenericArgs()[0],
|
|
rootTy,
|
|
locator.withPathElement(LocatorPathElt::KeyPathRoot()));
|
|
addConstraint(ConstraintKind::Bind, keyPathTy->getGenericArgs()[1],
|
|
valueTy,
|
|
locator.withPathElement(LocatorPathElt::KeyPathValue()));
|
|
}
|
|
|
|
return !matchTypes(kpFnTy, paramFnTy, ConstraintKind::Conversion,
|
|
subflags, locator)
|
|
.isFailure();
|
|
}
|
|
|
|
assert(contextualRootTy && contextualValueTy);
|
|
|
|
if (matchTypes(rootTy, contextualRootTy, ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(ConstraintLocator::KeyPathRoot))
|
|
.isFailure())
|
|
return false;
|
|
|
|
if (matchTypes(valueTy, contextualValueTy, ConstraintKind::Bind, subflags,
|
|
locator.withPathElement(ConstraintLocator::KeyPathValue))
|
|
.isFailure())
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
// If key path has to be converted to a function, let's check that
|
|
// the contextual type has precisely one parameter.
|
|
if (auto *fnTy = keyPathTy->getAs<FunctionType>()) {
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
|
|
// Key paths never throw, so if the function has a thrown error type
|
|
// that is a type variable, infer it to be Never.
|
|
if (auto thrownError = fnTy->getThrownError()) {
|
|
if (thrownError->isTypeVariableOrMember()) {
|
|
(void)matchTypes(thrownError, getASTContext().getNeverType(),
|
|
ConstraintKind::Equal, TMF_GenerateConstraints,
|
|
locator);
|
|
}
|
|
}
|
|
|
|
if (fnTy->getParams().size() != 1) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
recordAnyTypeVarAsPotentialHole(rootTy);
|
|
recordAnyTypeVarAsPotentialHole(valueTy);
|
|
|
|
auto *fix = AllowMultiArgFuncKeyPathMismatch::create(
|
|
*this, fnTy, getConstraintLocator(locator));
|
|
// Pretend the keypath type got resolved and move on.
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
// If we have a hole somewhere in the key path, the solver won't be able to
|
|
// infer the key path type. So let's just assume this is solved.
|
|
if (shouldAttemptFixes()) {
|
|
auto keyPath = castToExpr<KeyPathExpr>(locator.getAnchor());
|
|
|
|
if (hasFixFor(getConstraintLocator(keyPath),
|
|
FixKind::AllowKeyPathWithoutComponents))
|
|
return SolutionKind::Solved;
|
|
|
|
// If the root type has been bound to a hole, we cannot infer it.
|
|
if (getFixedTypeRecursive(rootTy, /*wantRValue*/ true)->isPlaceholder())
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return tryMatchRootAndValueFromContextualType(keyPathTy)
|
|
? SolutionKind::Solved
|
|
: SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyKeyPathApplicationConstraint(
|
|
Type keyPathTy,
|
|
Type rootTy,
|
|
Type valueTy,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
keyPathTy = getFixedTypeRecursive(keyPathTy, flags, /*wantRValue=*/true);
|
|
|
|
auto unsolved = [&]() -> SolutionKind {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(Constraint::create(*this,
|
|
ConstraintKind::KeyPathApplication,
|
|
keyPathTy, rootTy, valueTy, getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// When locator points to a KeyPathDynamicMemberLookup, reject the
|
|
// key path application.
|
|
if (locator.endsWith<LocatorPathElt::KeyPathDynamicMember>())
|
|
return SolutionKind::Error;
|
|
|
|
if (keyPathTy->isAnyKeyPath()) {
|
|
// Read-only keypath, whose projected value is upcast to `Any?`.
|
|
// The root type can be anything.
|
|
Type resultTy = getASTContext().getAnyExistentialType();
|
|
resultTy = OptionalType::get(resultTy);
|
|
return matchTypes(resultTy, valueTy, ConstraintKind::Bind,
|
|
subflags, locator);
|
|
}
|
|
|
|
if (keyPathTy->isPlaceholder()) {
|
|
if (rootTy->hasTypeVariable()) {
|
|
recordAnyTypeVarAsPotentialHole(rootTy);
|
|
}
|
|
if (valueTy->hasTypeVariable()) {
|
|
recordAnyTypeVarAsPotentialHole(valueTy);
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (auto bgt = keyPathTy->getAs<BoundGenericType>()) {
|
|
// We have the key path type. Match it to the other ends of the constraint.
|
|
auto kpRootTy = bgt->getGenericArgs()[0];
|
|
|
|
// Try to match the root type.
|
|
rootTy = getFixedTypeRecursive(rootTy, flags, /*wantRValue=*/false);
|
|
|
|
auto matchRoot = [&](ConstraintKind kind) -> bool {
|
|
auto rootMatches =
|
|
matchTypes(rootTy, kpRootTy, kind, subflags,
|
|
locator.withPathElement(LocatorPathElt::KeyPathRoot()));
|
|
switch (rootMatches) {
|
|
case SolutionKind::Error:
|
|
return false;
|
|
case SolutionKind::Solved:
|
|
return true;
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
}
|
|
llvm_unreachable("unhandled match");
|
|
};
|
|
|
|
if (bgt->isPartialKeyPath()) {
|
|
// Read-only keypath, whose projected value is upcast to `Any`.
|
|
auto resultTy = getASTContext().getAnyExistentialType();
|
|
|
|
if (!matchRoot(ConstraintKind::Conversion))
|
|
return SolutionKind::Error;
|
|
|
|
return matchTypes(resultTy, valueTy,
|
|
ConstraintKind::Bind, subflags, locator);
|
|
}
|
|
|
|
if (bgt->getGenericArgs().size() < 2)
|
|
return SolutionKind::Error;
|
|
auto kpValueTy = bgt->getGenericArgs()[1];
|
|
|
|
/// Solve for an rvalue base.
|
|
auto solveRValue = [&]() -> ConstraintSystem::SolutionKind {
|
|
// An rvalue base can be converted to a supertype.
|
|
return matchTypes(kpValueTy, valueTy,
|
|
ConstraintKind::Bind, subflags, locator);
|
|
};
|
|
/// Solve for a base whose lvalueness is to be determined.
|
|
auto solveUnknown = [&]() -> ConstraintSystem::SolutionKind {
|
|
if (matchTypes(kpValueTy, valueTy, ConstraintKind::Equal, subflags,
|
|
locator).isFailure())
|
|
return SolutionKind::Error;
|
|
return unsolved();
|
|
};
|
|
/// Solve for an lvalue base.
|
|
auto solveLValue = [&]() -> ConstraintSystem::SolutionKind {
|
|
return matchTypes(LValueType::get(kpValueTy), valueTy,
|
|
ConstraintKind::Bind, subflags, locator);
|
|
};
|
|
|
|
if (bgt->isKeyPath()) {
|
|
// Read-only keypath.
|
|
if (!matchRoot(ConstraintKind::Conversion))
|
|
return SolutionKind::Error;
|
|
|
|
return solveRValue();
|
|
}
|
|
if (bgt->isWritableKeyPath()) {
|
|
// Writable keypath. The result can be an lvalue if the root was.
|
|
// We can't convert the base without giving up lvalue-ness, though.
|
|
if (!matchRoot(ConstraintKind::Equal))
|
|
return SolutionKind::Error;
|
|
|
|
if (rootTy->is<LValueType>())
|
|
return solveLValue();
|
|
if (rootTy->isTypeVariableOrMember())
|
|
// We don't know whether the value is an lvalue yet.
|
|
return solveUnknown();
|
|
return solveRValue();
|
|
}
|
|
if (bgt->isReferenceWritableKeyPath()) {
|
|
if (!matchRoot(ConstraintKind::Conversion))
|
|
return SolutionKind::Error;
|
|
|
|
// Reference-writable keypath. The result can always be an lvalue.
|
|
return solveLValue();
|
|
}
|
|
// Otherwise, we don't have a key path type at all.
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
if (!keyPathTy->isTypeVariableOrMember()) {
|
|
if (shouldAttemptFixes()) {
|
|
auto *fix = IgnoreKeyPathSubscriptIndexMismatch::create(
|
|
*this, keyPathTy, getConstraintLocator(locator));
|
|
recordAnyTypeVarAsPotentialHole(valueTy);
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
return unsolved();
|
|
}
|
|
|
|
bool ConstraintSystem::simplifyAppliedOverloadsImpl(
|
|
Constraint *disjunction, TypeVariableType *fnTypeVar,
|
|
FunctionType *argFnType, unsigned numOptionalUnwraps,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Don't attempt to filter overloads when solving for code completion
|
|
// because presence of code completion token means that any call
|
|
// could be malformed e.g. missing arguments e.g. `foo([.#^MEMBER^#`
|
|
if (isForCodeCompletion()) {
|
|
bool ArgContainsCCTypeVar = Type(argFnType).findIf(isCodeCompletionTypeVar);
|
|
if (ArgContainsCCTypeVar || isCodeCompletionTypeVar(fnTypeVar)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (shouldAttemptFixes()) {
|
|
auto arguments = argFnType->getParams();
|
|
bool allHoles =
|
|
arguments.size() > 0 &&
|
|
llvm::all_of(arguments, [&](const AnyFunctionType::Param &arg) -> bool {
|
|
auto argType = arg.getPlainType();
|
|
if (argType->isPlaceholder())
|
|
return true;
|
|
|
|
if (auto *typeVar = argType->getAs<TypeVariableType>())
|
|
return hasFixFor(typeVar->getImpl().getLocator());
|
|
|
|
return false;
|
|
});
|
|
|
|
// If this is an operator application and all of the arguments are holes,
|
|
// let's disable all but one overload to make sure holes don't cause
|
|
// performance problems because hole could be bound to any type.
|
|
//
|
|
// Non-operator calls are exempted because they have fewer overloads,
|
|
// and it's possible to filter them based on labels.
|
|
if (allHoles && isOperatorDisjunction(disjunction)) {
|
|
auto choices = disjunction->getNestedConstraints();
|
|
for (auto *choice : choices.slice(1))
|
|
choice->setDisabled();
|
|
}
|
|
}
|
|
|
|
/// The common result type amongst all function overloads.
|
|
Type commonResultType;
|
|
|
|
auto markFailure = [&] {
|
|
commonResultType = ErrorType::get(getASTContext());
|
|
};
|
|
|
|
auto updateCommonResultType = [&](Type choiceResultType) {
|
|
// For now, don't attempt to establish a common result type when there
|
|
// are type parameters.
|
|
if (choiceResultType->hasTypeParameter())
|
|
return markFailure();
|
|
|
|
// If we haven't seen a common result type yet, record what we found.
|
|
if (!commonResultType) {
|
|
commonResultType = choiceResultType;
|
|
return;
|
|
}
|
|
|
|
// If we found something different, fail.
|
|
if (!commonResultType->isEqual(choiceResultType))
|
|
return markFailure();
|
|
};
|
|
|
|
auto *argList = getArgumentList(getConstraintLocator(locator));
|
|
|
|
// If argument list has trailing closures and this is `init` call to
|
|
// a callable type, let's not filter anything since there is a possibility
|
|
// that it needs an implicit `.callAsFunction` to work.
|
|
if (argList && argList->hasAnyTrailingClosures()) {
|
|
if (disjunction->getLocator()
|
|
->isLastElement<LocatorPathElt::ConstructorMember>()) {
|
|
auto choice = disjunction->getNestedConstraints()[0]->getOverloadChoice();
|
|
if (auto *decl = choice.getDeclOrNull()) {
|
|
auto *dc = decl->getDeclContext();
|
|
if (auto *parent = dc->getSelfNominalTypeDecl()) {
|
|
auto type = parent->getDeclaredInterfaceType();
|
|
if (type->isCallAsFunctionType(DC))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consider each of the constraints in the disjunction.
|
|
retry_after_fail:
|
|
bool hasUnhandledConstraints = false;
|
|
bool labelMismatch = false;
|
|
auto filterResult =
|
|
filterDisjunction(disjunction, /*restoreOnFail=*/shouldAttemptFixes(),
|
|
[&](Constraint *constraint) {
|
|
assert(constraint->getKind() == ConstraintKind::BindOverload);
|
|
|
|
auto choice = constraint->getOverloadChoice();
|
|
|
|
// Determine whether the argument labels we have conflict with those of
|
|
// this overload choice.
|
|
if (argList) {
|
|
auto args = argFnType->getParams();
|
|
|
|
SmallVector<FunctionType::Param, 8> argsWithLabels;
|
|
argsWithLabels.append(args.begin(), args.end());
|
|
FunctionType::relabelParams(argsWithLabels, argList);
|
|
|
|
auto labelsMatch = [&](MatchCallArgumentListener &listener) {
|
|
if (areConservativelyCompatibleArgumentLabels(
|
|
*this, choice, argsWithLabels, listener,
|
|
argList->getFirstTrailingClosureIndex()))
|
|
return true;
|
|
|
|
labelMismatch = true;
|
|
return false;
|
|
};
|
|
|
|
AllowLabelMismatches listener;
|
|
|
|
// This overload has more problems than just missing/invalid labels.
|
|
if (!labelsMatch(listener))
|
|
return false;
|
|
|
|
// If overload did match, let's check if it needs to be disabled
|
|
// in "performance" mode because it has missing labels.
|
|
if (listener.hadLabelingIssues()) {
|
|
// In performance mode, let's just disable the choice,
|
|
// this decision could be rolled back for diagnostics.
|
|
if (!shouldAttemptFixes())
|
|
return false;
|
|
|
|
// Match expected vs. actual to see whether the only kind
|
|
// of problem here is missing label(s).
|
|
auto onlyMissingLabels =
|
|
[argList](ArrayRef<Identifier> expectedLabels) {
|
|
if (argList->size() != expectedLabels.size())
|
|
return false;
|
|
|
|
for (auto i : indices(*argList)) {
|
|
auto actual = argList->getLabel(i);
|
|
auto expected = expectedLabels[i];
|
|
|
|
if (actual.compare(expected) != 0 && !actual.empty())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
auto replacementLabels = listener.getLabelReplacements();
|
|
// Either it's just one argument or all issues are missing labels.
|
|
if (!replacementLabels || onlyMissingLabels(*replacementLabels)) {
|
|
constraint->setDisabled(/*enableForDiagnostics=*/true);
|
|
// Don't include this overload in "common result" computation
|
|
// because it has issues.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the type that this choice will have.
|
|
Type choiceType = getEffectiveOverloadType(
|
|
constraint->getLocator(), choice, /*allowMembers=*/true,
|
|
constraint->getDeclContext());
|
|
if (!choiceType) {
|
|
hasUnhandledConstraints = true;
|
|
return true;
|
|
}
|
|
|
|
// If types of arguments/parameters and result lined up exactly,
|
|
// let's favor this overload choice.
|
|
//
|
|
// Note this check ignores `ExtInfo` on purpose and only compares
|
|
// types, if there are overloads that differ only in effects then
|
|
// all of them are going to be considered and filtered as part of
|
|
// "favored" group after forming a valid partial solution.
|
|
if (auto *choiceFnType = choiceType->getAs<FunctionType>()) {
|
|
if (FunctionType::equalParams(argFnType->getParams(),
|
|
choiceFnType->getParams()) &&
|
|
argFnType->getResult()->isEqual(choiceFnType->getResult()))
|
|
constraint->setFavored();
|
|
}
|
|
|
|
// Account for any optional unwrapping/binding
|
|
for (unsigned i : range(numOptionalUnwraps)) {
|
|
(void)i;
|
|
if (Type objectType = choiceType->getOptionalObjectType())
|
|
choiceType = objectType;
|
|
}
|
|
|
|
// FIXME: The !getSelfProtocolDecl() check is load-bearing, because
|
|
// this optimization interacts poorly with existential opening
|
|
// somehow. It should all be removed.
|
|
if (auto *choiceFnType = choiceType->getAs<FunctionType>()) {
|
|
if (isa<ConstructorDecl>(choice.getDecl()) &&
|
|
!choice.getDecl()->getDeclContext()->getSelfProtocolDecl()) {
|
|
auto choiceResultType = choice.getBaseType()
|
|
->getRValueType()
|
|
->getMetatypeInstanceType();
|
|
|
|
if (choiceResultType->getOptionalObjectType()) {
|
|
hasUnhandledConstraints = true;
|
|
return true;
|
|
}
|
|
|
|
if (choiceFnType->getResult()->getOptionalObjectType())
|
|
choiceResultType = OptionalType::get(choiceResultType);
|
|
|
|
updateCommonResultType(choiceResultType);
|
|
} else {
|
|
updateCommonResultType(choiceFnType->getResult());
|
|
}
|
|
} else {
|
|
markFailure();
|
|
}
|
|
|
|
return true;
|
|
});
|
|
|
|
switch (filterResult) {
|
|
case SolutionKind::Error:
|
|
if (labelMismatch && shouldAttemptFixes()) {
|
|
argList = nullptr;
|
|
goto retry_after_fail;
|
|
}
|
|
return true;
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
|
|
// If there was a constraint that we couldn't reason about, don't use the
|
|
// results of any common-type computations.
|
|
if (hasUnhandledConstraints)
|
|
return false;
|
|
|
|
// If we have a common result type, bind the expected result type to it.
|
|
if (commonResultType && !commonResultType->is<ErrorType>()) {
|
|
if (isDebugMode()) {
|
|
llvm::errs().indent(solverState ? solverState->getCurrentIndent() : 0)
|
|
<< "(common result type for $T" << fnTypeVar->getID() << " is "
|
|
<< commonResultType.getString(PrintOptions::forDebugging()) << ")\n";
|
|
}
|
|
|
|
// Introduction of a `Bind` constraint here could result in the disconnect
|
|
// in the constraint system with unintended consequences because e.g.
|
|
// in case of key path application it could disconnect one of the
|
|
// components like subscript from the rest of the context.
|
|
addConstraint(ConstraintKind::Equal, argFnType->getResult(),
|
|
commonResultType, locator);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ConstraintSystem::simplifyAppliedOverloads(
|
|
Constraint *disjunction, ConstraintLocatorBuilder locator) {
|
|
auto choices = disjunction->getNestedConstraints();
|
|
assert(choices.size() >= 2);
|
|
assert(choices.front()->getKind() == ConstraintKind::BindOverload);
|
|
|
|
// If we've already bound the overload type var, bail.
|
|
auto *typeVar = choices.front()->getFirstType()->getAs<TypeVariableType>();
|
|
if (!typeVar || getFixedType(typeVar))
|
|
return false;
|
|
|
|
// Try to find an applicable fn constraint that applies the overload choice.
|
|
auto result = findConstraintThroughOptionals(
|
|
typeVar, OptionalWrappingDirection::Unwrap,
|
|
[&](Constraint *match, TypeVariableType *currentRep) {
|
|
// Check to see if we have an applicable fn with a type var RHS that
|
|
// matches the disjunction.
|
|
if (match->getKind() != ConstraintKind::ApplicableFunction)
|
|
return false;
|
|
|
|
auto *rhsTyVar = match->getSecondType()->getAs<TypeVariableType>();
|
|
return rhsTyVar && currentRep == getRepresentative(rhsTyVar);
|
|
});
|
|
|
|
if (!result)
|
|
return false;
|
|
|
|
auto *applicableFn = result->first;
|
|
auto *fnTypeVar = applicableFn->getSecondType()->castTo<TypeVariableType>();
|
|
auto argFnType = applicableFn->getFirstType()->castTo<FunctionType>();
|
|
recordAppliedDisjunction(disjunction->getLocator(), argFnType);
|
|
return simplifyAppliedOverloadsImpl(disjunction, fnTypeVar, argFnType,
|
|
/*numOptionalUnwraps*/ result->second,
|
|
applicableFn->getLocator());
|
|
}
|
|
|
|
bool ConstraintSystem::simplifyAppliedOverloads(
|
|
Type fnType, FunctionType *argFnType, ConstraintLocatorBuilder locator) {
|
|
// If we've already bound the function type, bail.
|
|
auto *fnTypeVar = fnType->getAs<TypeVariableType>();
|
|
if (!fnTypeVar || getFixedType(fnTypeVar))
|
|
return false;
|
|
|
|
// Try to find a corresponding bind overload disjunction.
|
|
unsigned numOptionalUnwraps = 0;
|
|
auto *disjunction =
|
|
getUnboundBindOverloadDisjunction(fnTypeVar, &numOptionalUnwraps);
|
|
if (!disjunction)
|
|
return false;
|
|
|
|
recordAppliedDisjunction(disjunction->getLocator(), argFnType);
|
|
return simplifyAppliedOverloadsImpl(disjunction, fnTypeVar, argFnType,
|
|
numOptionalUnwraps, locator);
|
|
}
|
|
|
|
/// Create an implicit dot-member reference expression to be used
|
|
/// as a root for injected `.callAsFunction` call.
|
|
static UnresolvedDotExpr *
|
|
createImplicitRootForCallAsFunction(ConstraintSystem &cs, Type refType,
|
|
ArgumentList *arguments,
|
|
ConstraintLocator *calleeLocator) {
|
|
auto &ctx = cs.getASTContext();
|
|
auto *baseExpr = castToExpr(calleeLocator->getAnchor());
|
|
|
|
SmallVector<Identifier, 2> closureLabelsScratch;
|
|
// Create implicit `.callAsFunction` expression to use as an anchor
|
|
// for new argument list that only has trailing closures in it.
|
|
auto *implicitRef = UnresolvedDotExpr::createImplicit(
|
|
ctx, baseExpr, {ctx.Id_callAsFunction},
|
|
arguments->getArgumentLabels(closureLabelsScratch));
|
|
|
|
{
|
|
// Record a type of the new reference in the constraint system.
|
|
cs.setType(implicitRef, refType);
|
|
// Record new `.callAsFunction` in the constraint system.
|
|
cs.recordImplicitCallAsFunctionRoot(calleeLocator, implicitRef);
|
|
|
|
auto *implicitRefLocator = cs.getConstraintLocator(
|
|
implicitRef, ConstraintLocator::ApplyArgument);
|
|
cs.associateArgumentList(implicitRefLocator, arguments);
|
|
}
|
|
|
|
return implicitRef;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyApplicableFnConstraint(
|
|
FunctionType *func1, Type type2,
|
|
std::optional<TrailingClosureMatching> trailingClosureMatching,
|
|
DeclContext *useDC,
|
|
TypeMatchOptions flags, ConstraintLocatorBuilder locator) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// Before stripping lvalue-ness and optional types, save the original second
|
|
// type for handling `func callAsFunction` and `@dynamicCallable`
|
|
// applications. This supports the following cases:
|
|
// - Generating constraints for `mutating func callAsFunction`. The nominal
|
|
// type (`type2`) should be an lvalue type.
|
|
// - Extending `Optional` itself with `func callAsFunction` or
|
|
// `@dynamicCallable` functionality. Optional types are stripped below if
|
|
// `shouldAttemptFixes()` is true.
|
|
auto origLValueType2 =
|
|
getFixedTypeRecursive(type2, flags, /*wantRValue=*/false);
|
|
// Drill down to the concrete type on the right hand side.
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
auto desugar2 = type2->getDesugaredType();
|
|
|
|
// If a type variable representing "function type" is a hole
|
|
// or it could be bound to some concrete type with a help of
|
|
// a fix, let's propagate holes to the "input" type. Doing so
|
|
// provides more information to upcoming argument and result matching.
|
|
if (shouldAttemptFixes()) {
|
|
if (auto *typeVar = type2->getAs<TypeVariableType>()) {
|
|
auto *locator = typeVar->getImpl().getLocator();
|
|
if (hasFixFor(locator)) {
|
|
recordAnyTypeVarAsPotentialHole(func1);
|
|
}
|
|
}
|
|
Type underlyingType = desugar2;
|
|
while (auto *MT = underlyingType->getAs<AnyMetatypeType>()) {
|
|
underlyingType = MT->getInstanceType();
|
|
}
|
|
underlyingType =
|
|
getFixedTypeRecursive(underlyingType, flags, /*wantRValue=*/true);
|
|
if (underlyingType->isPlaceholder()) {
|
|
recordAnyTypeVarAsPotentialHole(func1);
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
SmallVector<LocatorPathElt, 2> parts;
|
|
auto anchor = locator.getLocatorParts(parts);
|
|
bool isOperator =
|
|
(isExpr<PrefixUnaryExpr>(anchor) || isExpr<PostfixUnaryExpr>(anchor) ||
|
|
isExpr<BinaryExpr>(anchor));
|
|
|
|
auto hasInOut = [&]() {
|
|
for (auto param : func1->getParams())
|
|
if (param.isInOut())
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
// Local function to form an unsolved result.
|
|
auto formUnsolved = [&](bool activate = false) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *application = Constraint::createApplicableFunction(
|
|
*this, func1, type2, trailingClosureMatching, useDC,
|
|
getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(application);
|
|
if (activate)
|
|
activateConstraint(application);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// If right-hand side is a type variable, the constraint is unsolved.
|
|
if (desugar2->isTypeVariableOrMember()) {
|
|
return formUnsolved();
|
|
}
|
|
|
|
// Strip the 'ApplyFunction' off the locator.
|
|
// FIXME: Perhaps ApplyFunction can go away entirely?
|
|
assert(!parts.empty() && "Nonsensical applicable-function locator");
|
|
assert(parts.back().getKind() == ConstraintLocator::ApplyFunction);
|
|
assert(parts.back().getNewSummaryFlags() == 0);
|
|
parts.pop_back();
|
|
ConstraintLocatorBuilder outerLocator =
|
|
getConstraintLocator(anchor, parts, locator.getSummaryFlags());
|
|
|
|
// If the types are obviously equivalent, we're done. This optimization
|
|
// is not valid for operators though, where an inout parameter does not
|
|
// have an explicit inout argument.
|
|
if (func1 == desugar2) {
|
|
// Note that this could throw.
|
|
recordPotentialThrowSite(
|
|
PotentialThrowSite::Application, Type(desugar2), outerLocator);
|
|
|
|
if (!isOperator || !hasInOut()) {
|
|
recordMatchCallArgumentResult(
|
|
getConstraintLocator(
|
|
outerLocator.withPathElement(ConstraintLocator::ApplyArgument)),
|
|
MatchCallArgumentResult::forArity(func1->getNumParams()));
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
// Handle applications of types with `callAsFunction` methods.
|
|
// Do this before stripping optional types below, when `shouldAttemptFixes()`
|
|
// is true.
|
|
if (desugar2->isCallAsFunctionType(DC)) {
|
|
auto memberLoc = getConstraintLocator(
|
|
locator.withPathElement(ConstraintLocator::ImplicitCallAsFunction));
|
|
// Add a `callAsFunction` member constraint, binding the member type to a
|
|
// type variable.
|
|
auto memberTy = createTypeVariable(memberLoc, /*options=*/0);
|
|
// TODO: Revisit this if `static func callAsFunction` is to be supported.
|
|
// Static member constraint requires `FunctionRefInfo::DoubleApply`.
|
|
addValueMemberConstraint(origLValueType2,
|
|
DeclNameRef(ctx.Id_callAsFunction), memberTy, DC,
|
|
FunctionRefInfo::singleBaseNameApply(),
|
|
/*outerAlternatives*/ {}, memberLoc);
|
|
// Add new applicable function constraint based on the member type
|
|
// variable.
|
|
addApplicationConstraint(func1, memberTy, trailingClosureMatching, useDC,
|
|
locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Record the second type before unwrapping optionals.
|
|
auto origType2 = desugar2;
|
|
unsigned unwrapCount = 0;
|
|
if (shouldAttemptFixes()) {
|
|
// If we have an optional type, try forcing it to see if that
|
|
// helps. Note that we only deal with function and metatype types
|
|
// below, so there is no reason not to attempt to strip these off
|
|
// immediately.
|
|
while (auto objectType2 = desugar2->getOptionalObjectType()) {
|
|
type2 = objectType2;
|
|
desugar2 = type2->getDesugaredType();
|
|
|
|
// Track how many times we do this so that we can record a fix for each.
|
|
++unwrapCount;
|
|
}
|
|
}
|
|
|
|
// For a function, bind the output and convert the argument to the input.
|
|
if (auto func2 = dyn_cast<FunctionType>(desugar2)) {
|
|
// Note that this could throw.
|
|
recordPotentialThrowSite(
|
|
PotentialThrowSite::Application, Type(desugar2), outerLocator);
|
|
|
|
ConstraintKind subKind = (isOperator
|
|
? ConstraintKind::OperatorArgumentConversion
|
|
: ConstraintKind::ArgumentConversion);
|
|
|
|
auto *argumentsLoc = getConstraintLocator(
|
|
outerLocator.withPathElement(ConstraintLocator::ApplyArgument));
|
|
|
|
auto *argumentList = getArgumentList(argumentsLoc);
|
|
// The argument type must be convertible to the input type.
|
|
SmallVector<std::pair<TypeVariableType *, ExistentialArchetypeType *>, 2>
|
|
openedExistentials;
|
|
auto matchCallResult = ::matchCallArguments(
|
|
*this, func2, argumentList, func1->getParams(), func2->getParams(),
|
|
subKind, argumentsLoc, trailingClosureMatching, openedExistentials);
|
|
|
|
switch (matchCallResult) {
|
|
case SolutionKind::Error: {
|
|
auto resultTy = func2->getResult();
|
|
|
|
// If this is a call that constructs a callable type with
|
|
// trailing closure(s), closure(s) might not belong to
|
|
// the constructor but rather to implicit `callAsFunction`,
|
|
// there is no way to determine that without trying.
|
|
if (resultTy->isCallAsFunctionType(DC) &&
|
|
argumentList->hasAnyTrailingClosures()) {
|
|
auto *calleeLoc = getCalleeLocator(argumentsLoc);
|
|
|
|
bool isInit = false;
|
|
if (auto overload = findSelectedOverloadFor(calleeLoc)) {
|
|
isInit = bool(dyn_cast_or_null<ConstructorDecl>(
|
|
overload->choice.getDeclOrNull()));
|
|
}
|
|
|
|
if (!isInit)
|
|
return SolutionKind::Error;
|
|
|
|
auto &ctx = getASTContext();
|
|
auto numTrailing = argumentList->getNumTrailingClosures();
|
|
|
|
SmallVector<Argument, 4> newArguments(
|
|
argumentList->getNonTrailingArgs());
|
|
SmallVector<Argument, 4> trailingClosures(
|
|
argumentList->getTrailingClosures());
|
|
|
|
// Original argument list with all the trailing closures removed.
|
|
auto *newArgumentList = ArgumentList::createParsed(
|
|
ctx, argumentList->getLParenLoc(), newArguments,
|
|
argumentList->getRParenLoc(),
|
|
/*firstTrailingClosureIndex=*/std::nullopt);
|
|
|
|
auto trailingClosureTypes = func1->getParams().take_back(numTrailing);
|
|
// The original result type is going to become a result of
|
|
// implicit `.callAsFunction` instead since `.callAsFunction`
|
|
// is inserted between `.init` and trailing closures.
|
|
auto callAsFunctionResultTy = func1->getResult();
|
|
|
|
// The implicit replacement for original result type which
|
|
// represents a callable type produced by `.init` call.
|
|
auto callableType =
|
|
createTypeVariable(getConstraintLocator({}), /*flags=*/0);
|
|
|
|
// The original application type with all the trailing closures
|
|
// dropped from it and result replaced to the implicit variable.
|
|
func1 = FunctionType::get(func1->getParams().drop_back(numTrailing),
|
|
callableType, func1->getExtInfo());
|
|
|
|
auto matchCallResult = ::matchCallArguments(
|
|
*this, func2, newArgumentList, func1->getParams(),
|
|
func2->getParams(), subKind, argumentsLoc, trailingClosureMatching,
|
|
openedExistentials);
|
|
|
|
if (matchCallResult != SolutionKind::Solved)
|
|
return SolutionKind::Error;
|
|
|
|
auto *implicitCallArgumentList =
|
|
ArgumentList::createImplicit(ctx, trailingClosures,
|
|
/*firstTrailingClosureIndex=*/0);
|
|
|
|
auto *implicitRef = createImplicitRootForCallAsFunction(
|
|
*this, callAsFunctionResultTy, implicitCallArgumentList, calleeLoc);
|
|
|
|
auto callAsFunctionArguments =
|
|
FunctionType::get(trailingClosureTypes, callAsFunctionResultTy,
|
|
FunctionType::ExtInfo());
|
|
|
|
// Form an unsolved constraint to apply trailing closures to a
|
|
// callable type produced by `.init`. This constraint would become
|
|
// active when `callableType` is bound.
|
|
addUnsolvedConstraint(Constraint::createApplicableFunction(
|
|
*this, callAsFunctionArguments, callableType,
|
|
trailingClosureMatching, useDC,
|
|
getConstraintLocator(implicitRef,
|
|
ConstraintLocator::ApplyFunction)));
|
|
break;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
case SolutionKind::Unsolved: {
|
|
// Only occurs when there is an ambiguity between forward scanning and
|
|
// backward scanning for the unlabeled trailing closure. Create a
|
|
// disjunction so that we explore both paths, and can diagnose
|
|
// ambiguities later.
|
|
assert(!trailingClosureMatching.has_value());
|
|
|
|
auto applyLocator = getConstraintLocator(locator);
|
|
auto forwardConstraint = Constraint::createApplicableFunction(
|
|
*this, func1, type2, TrailingClosureMatching::Forward, useDC,
|
|
applyLocator);
|
|
auto backwardConstraint = Constraint::createApplicableFunction(
|
|
*this, func1, type2, TrailingClosureMatching::Backward, useDC,
|
|
applyLocator);
|
|
addDisjunctionConstraint({forwardConstraint, backwardConstraint},
|
|
applyLocator);
|
|
break;
|
|
}
|
|
|
|
case SolutionKind::Solved:
|
|
// Keep going.
|
|
break;
|
|
}
|
|
|
|
// Erase all of the opened existentials.
|
|
Type result2 = func2->getResult();
|
|
if (result2->hasTypeVariable() && !openedExistentials.empty()) {
|
|
for (const auto &opened : openedExistentials) {
|
|
auto originalTy = result2;
|
|
if (auto *lvalueTy = dyn_cast<LValueType>(originalTy.getPointer())) {
|
|
originalTy = lvalueTy->getObjectType();
|
|
}
|
|
|
|
const auto erasedTy = typeEraseOpenedExistentialReference(
|
|
originalTy, opened.second->getExistentialType(), opened.first,
|
|
TypePosition::Covariant);
|
|
|
|
if (originalTy.getPointer() != erasedTy.getPointer()) {
|
|
// We currently cannot keep lvalueness if the object type changed.
|
|
result2 = erasedTy;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The result types are equivalent.
|
|
if (matchFunctionResultTypes(
|
|
func1->getResult(), result2, subflags,
|
|
locator.withPathElement(ConstraintLocator::FunctionResult))
|
|
.isFailure())
|
|
return SolutionKind::Error;
|
|
|
|
if (unwrapCount == 0)
|
|
return SolutionKind::Solved;
|
|
|
|
// Record any fixes we attempted to get to the correct solution.
|
|
auto *fix = ForceOptional::create(*this, origType2, func1,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix, /*impact=*/unwrapCount))
|
|
return SolutionKind::Error;
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// For a metatype, perform a construction.
|
|
if (auto meta2 = dyn_cast<AnyMetatypeType>(desugar2)) {
|
|
auto instance2 = getFixedTypeRecursive(meta2->getInstanceType(), true);
|
|
if (instance2->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// Construct the instance from the input arguments.
|
|
auto simplified = simplifyConstructionConstraint(
|
|
instance2, func1, subflags,
|
|
useDC, FunctionRefInfo::singleBaseNameApply(),
|
|
getConstraintLocator(outerLocator));
|
|
|
|
// Record any fixes we attempted to get to the correct solution.
|
|
if (simplified == SolutionKind::Solved) {
|
|
if (unwrapCount == 0)
|
|
return SolutionKind::Solved;
|
|
|
|
auto *fix = ForceOptional::create(*this, origType2, func1,
|
|
getConstraintLocator(locator));
|
|
if (recordFix(fix, /*impact=*/unwrapCount))
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
return simplified;
|
|
}
|
|
|
|
// Handle applications of @dynamicCallable types.
|
|
auto result = simplifyDynamicCallableApplicableFnConstraint(
|
|
func1, origType2, subflags, locator);
|
|
|
|
if (shouldAttemptFixes() && result == SolutionKind::Error) {
|
|
// Skip this fix if the type is not yet resolved or
|
|
// it's a function type/metatype which points to argument mismatches.
|
|
if (desugar2->is<TypeVariableType>() || desugar2->is<FunctionType>() ||
|
|
desugar2->is<AnyMetatypeType>())
|
|
return SolutionKind::Error;
|
|
|
|
// If there are any type variables associated with arguments/result
|
|
// they have to be marked as "holes".
|
|
recordAnyTypeVarAsPotentialHole(func1);
|
|
|
|
if (desugar2->isPlaceholder())
|
|
return SolutionKind::Solved;
|
|
|
|
auto *fix = RemoveInvalidCall::create(*this, getConstraintLocator(locator));
|
|
// Let's make this fix as high impact so if there is a function or member
|
|
// overload with e.g. argument-to-parameter type mismatches it would take
|
|
// a higher priority.
|
|
return recordFix(fix, /*impact=*/3) ? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Looks up and returns the @dynamicCallable required methods (if they exist)
|
|
/// implemented by a type.
|
|
static llvm::DenseSet<FuncDecl *>
|
|
lookupDynamicCallableMethods(NominalTypeDecl *decl, ConstraintSystem &CS,
|
|
const ConstraintLocatorBuilder &locator,
|
|
Identifier argumentName, bool hasKeywordArgs) {
|
|
auto &ctx = CS.getASTContext();
|
|
|
|
// The generic arguments don't matter because we only want the member decls,
|
|
// not concrete overload choices (we form those later when adding the overload
|
|
// set). We map into context here to avoid an OverloadChoice assertion for an
|
|
// interface type base.
|
|
// TODO: We really ought to separate out the actual lookup part of
|
|
// `performMemberLookup` from the choice construction. That would allow us to
|
|
// requestify the lookup of dynamicCallable members on a per-decl basis, and
|
|
// map them onto viable and unviable choices onto a given base type.
|
|
auto type = decl->getDeclaredTypeInContext();
|
|
|
|
DeclNameRef methodName({ ctx, ctx.Id_dynamicallyCall, { argumentName } });
|
|
auto matches = CS.performMemberLookup(
|
|
ConstraintKind::ValueMember, methodName, type,
|
|
FunctionRefInfo::singleBaseNameApply(), CS.getConstraintLocator(locator),
|
|
/*includeInaccessibleMembers*/ false);
|
|
// Filter valid candidates.
|
|
auto candidates = matches.ViableCandidates;
|
|
auto filter = [&](OverloadChoice choice) {
|
|
auto cand = cast<FuncDecl>(choice.getDecl());
|
|
return !isValidDynamicCallableMethod(cand, hasKeywordArgs);
|
|
};
|
|
candidates.erase(
|
|
std::remove_if(candidates.begin(), candidates.end(), filter),
|
|
candidates.end());
|
|
|
|
llvm::DenseSet<FuncDecl *> methods;
|
|
for (auto candidate : candidates)
|
|
methods.insert(cast<FuncDecl>(candidate.getDecl()));
|
|
return methods;
|
|
}
|
|
|
|
/// Looks up and returns the @dynamicCallable required methods (if they exist)
|
|
/// implemented by a given nominal type decl.
|
|
static DynamicCallableMethods
|
|
lookupDynamicCallableMethods(NominalTypeDecl *decl, ConstraintSystem &CS,
|
|
const ConstraintLocatorBuilder &locator) {
|
|
auto it = CS.DynamicCallableCache.find(decl);
|
|
if (it != CS.DynamicCallableCache.end())
|
|
return it->second;
|
|
|
|
// The decl must have @dynamicCallable.
|
|
auto &ctx = CS.getASTContext();
|
|
HasDynamicCallableAttributeRequest req(decl);
|
|
if (!evaluateOrDefault(ctx.evaluator, req, false))
|
|
return DynamicCallableMethods();
|
|
|
|
DynamicCallableMethods methods;
|
|
methods.argumentsMethods =
|
|
lookupDynamicCallableMethods(decl, CS, locator, ctx.Id_withArguments,
|
|
/*hasKeywordArgs*/ false);
|
|
methods.keywordArgumentsMethods =
|
|
lookupDynamicCallableMethods(decl, CS, locator,
|
|
ctx.Id_withKeywordArguments,
|
|
/*hasKeywordArgs*/ true);
|
|
CS.DynamicCallableCache[decl] = methods;
|
|
return methods;
|
|
}
|
|
|
|
/// Returns the @dynamicCallable required methods (if they exist) implemented
|
|
/// by a type.
|
|
static DynamicCallableMethods
|
|
getDynamicCallableMethods(Type type, ConstraintSystem &CS,
|
|
const ConstraintLocatorBuilder &locator) {
|
|
SmallVector<NominalTypeDecl *, 4> decls;
|
|
namelookup::tryExtractDirectlyReferencedNominalTypes(type, decls);
|
|
|
|
DynamicCallableMethods result;
|
|
for (auto *decl : decls)
|
|
result.addMethods(lookupDynamicCallableMethods(decl, CS, locator));
|
|
|
|
return result;
|
|
}
|
|
|
|
// TODO: Refactor/simplify this function.
|
|
// - It should perform less duplicate work with its caller
|
|
// `ConstraintSystem::simplifyApplicableFnConstraint`.
|
|
// - It should generate a member constraint instead of manually forming an
|
|
// overload set for `func dynamicallyCall` candidates.
|
|
// - It should support `mutating func dynamicallyCall`. This should fall out of
|
|
// using member constraints with an lvalue base type.
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyDynamicCallableApplicableFnConstraint(
|
|
Type type1,
|
|
Type type2,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto &ctx = getASTContext();
|
|
|
|
// By construction, the left hand side is a function type: $T1 -> $T2.
|
|
assert(type1->is<FunctionType>());
|
|
|
|
// Drill down to the concrete type on the right hand side.
|
|
type2 = getFixedTypeRecursive(type2, flags, /*wantRValue=*/true);
|
|
auto desugar2 = type2->getDesugaredType();
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
// If the types are obviously equivalent, we're done.
|
|
if (type1.getPointer() == desugar2)
|
|
return SolutionKind::Solved;
|
|
|
|
// Local function to form an unsolved result.
|
|
auto formUnsolved = [&] {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this,
|
|
ConstraintKind::DynamicCallableApplicableFunction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// If right-hand side is a type variable, the constraint is unsolved.
|
|
if (desugar2->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// If right-hand side is a function type, it must be a valid
|
|
// `dynamicallyCall` method type. Bind the output and convert the argument
|
|
// to the input.
|
|
auto func1 = type1->castTo<FunctionType>();
|
|
if (auto func2 = dyn_cast<FunctionType>(desugar2)) {
|
|
// The argument type must be convertible to the input type.
|
|
assert(func1->getParams().size() == 1 && func2->getParams().size() == 1 &&
|
|
"Expected `dynamicallyCall` method with one parameter");
|
|
assert((func2->getParams()[0].getLabel() == ctx.Id_withArguments ||
|
|
func2->getParams()[0].getLabel() == ctx.Id_withKeywordArguments) &&
|
|
"Expected 'dynamicallyCall' method argument label 'withArguments' "
|
|
"or 'withKeywordArguments'");
|
|
if (matchTypes(func1->getParams()[0].getPlainType(),
|
|
func2->getParams()[0].getPlainType(),
|
|
ConstraintKind::ArgumentConversion,
|
|
subflags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ApplyArgument)).isFailure())
|
|
return SolutionKind::Error;
|
|
|
|
// The result types are equivalent.
|
|
if (matchFunctionResultTypes(
|
|
func1->getResult(), func2->getResult(), subflags,
|
|
locator.withPathElement(ConstraintLocator::FunctionResult))
|
|
.isFailure())
|
|
return SolutionKind::Error;
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// If the right-hand side is not a function type, it must be a valid
|
|
// @dynamicCallable type. Attempt to get valid `dynamicallyCall` methods.
|
|
auto methods = getDynamicCallableMethods(desugar2, *this, locator);
|
|
if (!methods.isValid()) return SolutionKind::Error;
|
|
|
|
// Determine whether to call a `withArguments` method or a
|
|
// `withKeywordArguments` method.
|
|
bool useKwargsMethod = methods.argumentsMethods.empty();
|
|
useKwargsMethod |= llvm::any_of(
|
|
func1->getParams(), [](AnyFunctionType::Param p) { return p.hasLabel(); });
|
|
|
|
auto candidates = useKwargsMethod ?
|
|
methods.keywordArgumentsMethods :
|
|
methods.argumentsMethods;
|
|
|
|
// Create a type variable for the `dynamicallyCall` method.
|
|
auto loc = getConstraintLocator(locator);
|
|
auto tv = createTypeVariable(loc,
|
|
TVO_CanBindToLValue |
|
|
TVO_CanBindToNoEscape);
|
|
|
|
// Record the 'dynamicallyCall` method overload set.
|
|
SmallVector<OverloadChoice, 4> choices;
|
|
for (auto candidate : candidates) {
|
|
if (candidate->isInvalid()) continue;
|
|
choices.push_back(OverloadChoice::getDecl(type2, candidate,
|
|
FunctionRefInfo::singleBaseNameApply()));
|
|
}
|
|
|
|
if (choices.empty()) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
// TODO(diagnostics): This is not going to be necessary once
|
|
// `@dynamicCallable` uses existing `member` machinery.
|
|
|
|
auto argLabel = useKwargsMethod ? ctx.Id_withKeywordArguments
|
|
: ctx.Id_withArguments;
|
|
DeclNameRef memberName({ ctx, ctx.Id_dynamicallyCall, {argLabel} });
|
|
|
|
auto *fix = DefineMemberBasedOnUse::create(
|
|
*this, desugar2, memberName, /*alreadyDiagnosed=*/false,
|
|
getConstraintLocator(loc, ConstraintLocator::DynamicCallable));
|
|
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
recordPotentialHole(tv);
|
|
recordAnyTypeVarAsPotentialHole(func1);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
addOverloadSet(tv, choices, DC, loc);
|
|
|
|
// Create a type variable for the argument to the `dynamicallyCall` method.
|
|
auto tvParam = createTypeVariable(loc, TVO_CanBindToNoEscape);
|
|
AnyFunctionType *funcType =
|
|
FunctionType::get({ AnyFunctionType::Param(tvParam) }, func1->getResult());
|
|
addConstraint(ConstraintKind::DynamicCallableApplicableFunction,
|
|
funcType, tv, locator);
|
|
|
|
// Get argument type for the `dynamicallyCall` method.
|
|
Type argumentType;
|
|
if (!useKwargsMethod) {
|
|
auto arrayLitProto =
|
|
ctx.getProtocol(KnownProtocolKind::ExpressibleByArrayLiteral);
|
|
addConstraint(ConstraintKind::ConformsTo, tvParam,
|
|
arrayLitProto->getDeclaredInterfaceType(), locator);
|
|
auto elementAssocType = arrayLitProto->getAssociatedType(
|
|
ctx.Id_ArrayLiteralElement);
|
|
argumentType = DependentMemberType::get(tvParam, elementAssocType);
|
|
} else {
|
|
auto dictLitProto =
|
|
ctx.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral);
|
|
addConstraint(ConstraintKind::ConformsTo, tvParam,
|
|
dictLitProto->getDeclaredInterfaceType(), locator);
|
|
auto valueAssocType = dictLitProto->getAssociatedType(ctx.Id_Value);
|
|
argumentType = DependentMemberType::get(tvParam, valueAssocType);
|
|
}
|
|
|
|
// Argument type can default to `Any`.
|
|
addConstraint(ConstraintKind::Defaultable, argumentType,
|
|
ctx.getAnyExistentialType(), locator);
|
|
|
|
auto *baseArgLoc = getConstraintLocator(
|
|
loc->getAnchor(),
|
|
{ConstraintLocator::DynamicCallable, ConstraintLocator::ApplyArgument},
|
|
/*summaryFlags=*/0);
|
|
|
|
// All dynamic call parameter types must be convertible to the argument type.
|
|
for (auto i : indices(func1->getParams())) {
|
|
auto param = func1->getParams()[i];
|
|
auto paramType = param.getPlainType();
|
|
|
|
addConstraint(
|
|
ConstraintKind::ArgumentConversion, paramType, argumentType,
|
|
getConstraintLocator(baseArgLoc, LocatorPathElt::ApplyArgToParam(
|
|
i, 0, param.getParameterFlags())));
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
static bool hasUnresolvedPackVars(Type type) {
|
|
// We can't compute a reduced shape if the input type still
|
|
// contains type variables that might bind to pack archetypes
|
|
// or pack expansions.
|
|
SmallPtrSet<TypeVariableType *, 2> typeVars;
|
|
type->getTypeVariables(typeVars);
|
|
return llvm::any_of(typeVars, [](const TypeVariableType *typeVar) {
|
|
return typeVar->getImpl().canBindToPack() ||
|
|
typeVar->getImpl().isPackExpansion();
|
|
});
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyShapeOfConstraint(
|
|
Type shapeTy, Type packTy, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Recursively replace all type variables with fixed bindings if
|
|
// possible.
|
|
packTy = simplifyType(packTy, flags);
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *shapeOf = Constraint::create(
|
|
*this, ConstraintKind::ShapeOf, shapeTy, packTy,
|
|
getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(shapeOf);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// Don't try computing the shape of a type variable.
|
|
if (packTy->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// We can't compute a reduced shape if the input type still
|
|
// contains type variables that might bind to pack archetypes
|
|
// or pack expansions.
|
|
SmallPtrSet<TypeVariableType *, 2> typeVars;
|
|
packTy->getTypeVariables(typeVars);
|
|
for (auto *typeVar : typeVars) {
|
|
if (typeVar->getImpl().canBindToPack() ||
|
|
typeVar->getImpl().isPackExpansion())
|
|
return formUnsolved();
|
|
}
|
|
|
|
if (packTy->hasPlaceholder()) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
recordTypeVariablesAsHoles(shapeTy);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (isSingleUnlabeledPackExpansionTuple(packTy)) {
|
|
auto *packVar = addMaterializePackExpansionConstraint(packTy, locator);
|
|
addConstraint(ConstraintKind::ShapeOf, shapeTy, packVar, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Map element archetypes to the pack context to check for equality.
|
|
if (packTy->hasElementArchetype()) {
|
|
auto *packEnv = DC->getGenericEnvironmentOfContext();
|
|
packTy = packEnv->mapElementTypeIntoPackContext(packTy);
|
|
}
|
|
|
|
auto shape = packTy->getReducedShape();
|
|
addConstraint(ConstraintKind::Bind, shapeTy, shape, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifySameShapeConstraint(
|
|
Type type1, Type type2, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
type1 = simplifyType(type1);
|
|
type2 = simplifyType(type2);
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *sameShape =
|
|
Constraint::create(*this, ConstraintKind::SameShape, type1, type2,
|
|
getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(sameShape);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
if (hasUnresolvedPackVars(type1) || hasUnresolvedPackVars(type2))
|
|
return formUnsolved();
|
|
|
|
auto shape1 = type1->getReducedShape();
|
|
auto shape2 = type2->getReducedShape();
|
|
|
|
if (shape1->isEqual(shape2))
|
|
return SolutionKind::Solved;
|
|
|
|
if (shouldAttemptFixes()) {
|
|
// If there are placeholders involved shape mismatches are most
|
|
// likely just a symptom of some other issue i.e. type mismatch.
|
|
if (type1->hasPlaceholder() || type2->hasPlaceholder())
|
|
return SolutionKind::Solved;
|
|
|
|
auto recordShapeFix = [&](ConstraintFix *fix,
|
|
unsigned impact) -> SolutionKind {
|
|
return recordFix(fix, impact) ? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
};
|
|
|
|
auto recordShapeMismatchFix = [&]() -> SolutionKind {
|
|
unsigned impact = 1;
|
|
if (locator.endsWith<LocatorPathElt::AnyRequirement>())
|
|
impact = assessRequirementFailureImpact(*this, shape1, locator);
|
|
|
|
return recordShapeFix(
|
|
SkipSameShapeRequirement::create(*this, type1, type2,
|
|
getConstraintLocator(locator)),
|
|
impact);
|
|
};
|
|
|
|
// Let's check whether we can produce a tailored fix for argument/parameter
|
|
// mismatches.
|
|
if (locator.endsWith<LocatorPathElt::PackShape>()) {
|
|
SmallVector<LocatorPathElt> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
// Drop `PackShape`
|
|
path.pop_back();
|
|
|
|
// Tailed diagnostics for argument/parameter mismatches - there
|
|
// are either missing or extra arguments.
|
|
if (path.size() > 0 &&
|
|
path[path.size() - 1].is<LocatorPathElt::ApplyArgToParam>()) {
|
|
auto &ctx = getASTContext();
|
|
|
|
auto *loc = getConstraintLocator(anchor, path);
|
|
auto argLoc =
|
|
loc->castLastElementTo<LocatorPathElt::ApplyArgToParam>();
|
|
|
|
if (type1->is<PackArchetypeType>() &&
|
|
type2->is<PackArchetypeType>())
|
|
return recordShapeMismatchFix();
|
|
|
|
auto numArgs = (shape1->is<PackType>()
|
|
? shape1->castTo<PackType>()->getNumElements()
|
|
: 1);
|
|
auto numParams = (shape2->is<PackType>()
|
|
? shape2->castTo<PackType>()->getNumElements()
|
|
: 1);
|
|
|
|
// Tailed diagnostic to explode tuples.
|
|
// FIXME: This is very similar to
|
|
// 'cannot_convert_single_tuple_into_multiple_arguments'; can we emit
|
|
// both of these in the same place?
|
|
if (numArgs == 1) {
|
|
if (type1->is<TupleType>() &&
|
|
numParams >= 1) {
|
|
return recordShapeFix(
|
|
DestructureTupleToMatchPackExpansionParameter::create(
|
|
*this,
|
|
(type2->is<PackType>()
|
|
? type2->castTo<PackType>()
|
|
: PackType::getSingletonPackExpansion(type2)), loc),
|
|
/*impact=*/2 * numParams);
|
|
}
|
|
}
|
|
|
|
// Drops `ApplyArgToParam` and left with `ApplyArgument`.
|
|
path.pop_back();
|
|
|
|
auto *argListLoc = getConstraintLocator(anchor, path);
|
|
|
|
// Missing arguments.
|
|
if (numParams > numArgs) {
|
|
SmallVector<SynthesizedArg> synthesizedArgs;
|
|
for (unsigned i = 0, n = numParams - numArgs; i != n; ++i) {
|
|
auto eltTy = shape2->castTo<PackType>()->getElementType(i);
|
|
synthesizedArgs.push_back(SynthesizedArg{
|
|
argLoc.getParamIdx(), AnyFunctionType::Param(eltTy)});
|
|
}
|
|
|
|
return recordShapeFix(
|
|
AddMissingArguments::create(*this, synthesizedArgs, argListLoc),
|
|
/*impact=*/2 * synthesizedArgs.size());
|
|
} else {
|
|
auto argIdx = argLoc.getArgIdx() + numParams;
|
|
SmallVector<std::pair<unsigned, AnyFunctionType::Param>, 4>
|
|
extraneousArgs;
|
|
|
|
for (unsigned i = 0, n = numArgs - numParams; i != n; ++i) {
|
|
extraneousArgs.push_back(
|
|
{argIdx + i, AnyFunctionType::Param(ctx.TheEmptyTupleType)});
|
|
}
|
|
|
|
auto overload = findSelectedOverloadFor(getCalleeLocator(argListLoc));
|
|
if (!overload)
|
|
return SolutionKind::Error;
|
|
|
|
return recordShapeFix(
|
|
RemoveExtraneousArguments::create(
|
|
*this, overload->openedType->castTo<FunctionType>(),
|
|
extraneousArgs, argListLoc),
|
|
/*impact=*/2 * extraneousArgs.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
return recordShapeMismatchFix();
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyMaterializePackExpansionConstraint(
|
|
Type type1, Type type2, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *explictGenericArgs =
|
|
Constraint::create(*this, ConstraintKind::MaterializePackExpansion,
|
|
type1, type2, getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(explictGenericArgs);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
type1 = simplifyType(type1);
|
|
if (type1->hasTypeVariable()) {
|
|
return formUnsolved();
|
|
}
|
|
if (auto patternType =
|
|
getPatternTypeOfSingleUnlabeledPackExpansionTuple(type1)) {
|
|
addConstraint(ConstraintKind::Equal, patternType, type2, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyExplicitGenericArgumentsConstraint(
|
|
Type type1, Type type2, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *explictGenericArgs =
|
|
Constraint::create(*this, ConstraintKind::ExplicitGenericArguments,
|
|
type1, type2, getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(explictGenericArgs);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
// Bail out if we haven't selected an overload yet.
|
|
auto simplifiedBoundType = simplifyType(type1, flags);
|
|
if (simplifiedBoundType->isPlaceholder())
|
|
return SolutionKind::Solved;
|
|
if (simplifiedBoundType->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
std::function<GenericParamList *(ValueDecl *)> getGenericParams =
|
|
[&](ValueDecl *decl) -> GenericParamList * {
|
|
auto genericContext = decl->getAsGenericContext();
|
|
if (!genericContext)
|
|
return nullptr;
|
|
|
|
auto genericParams = genericContext->getGenericParams();
|
|
if (!genericParams) {
|
|
// If declaration is a non-generic typealias, let's point
|
|
// to the underlying generic declaration.
|
|
if (auto *TA = dyn_cast<TypeAliasDecl>(decl)) {
|
|
if (auto *UGT = TA->getUnderlyingType()->getAs<AnyGenericType>())
|
|
return getGenericParams(UGT->getDecl());
|
|
}
|
|
}
|
|
|
|
return genericParams;
|
|
};
|
|
|
|
auto fixInvalidSpecialization = [&](ValueDecl *decl) -> SolutionKind {
|
|
if (isa<AbstractFunctionDecl>(decl)) {
|
|
return recordFix(AllowFunctionSpecialization::create(
|
|
*this, decl, getConstraintLocator(locator)))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
// Allow concrete macros to have specializations with just a warning.
|
|
return recordFix(AllowConcreteTypeSpecialization::create(
|
|
*this, type1, decl, getConstraintLocator(locator),
|
|
isa<MacroDecl>(decl) ? FixBehavior::DowngradeToWarning
|
|
: FixBehavior::Error))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
};
|
|
|
|
ValueDecl *decl;
|
|
SmallVector<OpenedType, 2> openedTypes;
|
|
if (auto *bound = dyn_cast<TypeAliasType>(type1.getPointer())) {
|
|
decl = bound->getDecl();
|
|
for (auto argType : bound->getDirectGenericArgs()) {
|
|
auto *typeVar = argType->getAs<TypeVariableType>();
|
|
if (!typeVar)
|
|
return SolutionKind::Error;
|
|
auto *genericParam = typeVar->getImpl().getGenericParameter();
|
|
openedTypes.push_back({genericParam, typeVar});
|
|
}
|
|
} else if (locator.directlyAt<TypeExpr>()) {
|
|
auto *BGT = type1->getAs<BoundGenericType>();
|
|
if (!BGT)
|
|
return SolutionKind::Error;
|
|
|
|
decl = BGT->getDecl();
|
|
|
|
auto genericParams = BGT->getDecl()->getInnermostGenericParamTypes();
|
|
if (genericParams.size() != BGT->getGenericArgs().size())
|
|
return SolutionKind::Error;
|
|
|
|
for (unsigned i = 0, n = genericParams.size(); i != n; ++i) {
|
|
auto argType = BGT->getGenericArgs()[i];
|
|
if (auto *typeVar = argType->getAs<TypeVariableType>()) {
|
|
openedTypes.push_back({genericParams[i], typeVar});
|
|
} else {
|
|
// If we have a concrete substitution then we need to create
|
|
// a new type variable to be able to add it to the list as-if
|
|
// it is opened generic parameter type.
|
|
auto *GP = genericParams[i];
|
|
|
|
unsigned options = TVO_CanBindToNoEscape;
|
|
if (GP->isParameterPack())
|
|
options |= TVO_CanBindToPack;
|
|
|
|
auto *argVar = createTypeVariable(
|
|
getConstraintLocator(locator, LocatorPathElt::GenericArgument(i)),
|
|
options);
|
|
addConstraint(ConstraintKind::Bind, argVar, argType, locator);
|
|
openedTypes.push_back({GP, argVar});
|
|
}
|
|
}
|
|
} else {
|
|
// If the overload hasn't been resolved, we can't simplify this constraint.
|
|
auto overloadLocator = getCalleeLocator(getConstraintLocator(locator));
|
|
|
|
// If there was a problem resolving specialization expression
|
|
// it would be diagnosted as invalid AST node.
|
|
if (overloadLocator->directlyAt<ErrorExpr>()) {
|
|
return shouldAttemptFixes() ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
auto selectedOverload = findSelectedOverloadFor(overloadLocator);
|
|
if (!selectedOverload)
|
|
return formUnsolved();
|
|
|
|
auto overloadChoice = selectedOverload->choice;
|
|
if (!overloadChoice.isDecl()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
decl = overloadChoice.getDecl();
|
|
|
|
auto openedOverloadTypes = getOpenedTypes(overloadLocator);
|
|
// Attempting to specialize a non-generic declaration.
|
|
if (openedOverloadTypes.empty()) {
|
|
// Note that this is unconditional because the fix is
|
|
// downgraded to a warning in swift language modes < 6.
|
|
return fixInvalidSpecialization(decl);
|
|
}
|
|
|
|
auto genericParams = getGenericParams(decl);
|
|
if (genericParams) {
|
|
for (auto gp : *genericParams) {
|
|
auto found = find_if(openedOverloadTypes, [&](auto entry) {
|
|
return entry.first->getDepth() == gp->getDepth() &&
|
|
entry.first->getIndex() == gp->getIndex();
|
|
});
|
|
assert(found != openedOverloadTypes.end());
|
|
openedTypes.push_back(*found);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto genericParams = getGenericParams(decl);
|
|
if (!decl->getAsGenericContext() || !genericParams)
|
|
return fixInvalidSpecialization(decl);
|
|
|
|
// Map the generic parameters we have over to their opened types.
|
|
bool hasParameterPack = false;
|
|
SmallVector<Type, 2> openedGenericParams;
|
|
auto genericParamDepth = genericParams->getParams()[0]->getDepth();
|
|
for (const auto &openedType : openedTypes) {
|
|
if (openedType.first->getDepth() == genericParamDepth) {
|
|
// A generic argument list containing pack references expects
|
|
// those packs to be wrapped in pack expansion types. If this
|
|
// opened type represents the generic argument for a parameter
|
|
// pack, wrap generate the appropriate shape constraints and
|
|
// add a pack expansion to the argument list.
|
|
if (openedType.first->isParameterPack()) {
|
|
auto patternType = openedType.second;
|
|
auto *shapeLoc = getConstraintLocator(
|
|
locator.withPathElement(ConstraintLocator::PackShape));
|
|
auto *shapeType = createTypeVariable(shapeLoc,
|
|
TVO_CanBindToPack |
|
|
TVO_CanBindToHole);
|
|
addConstraint(ConstraintKind::ShapeOf,
|
|
shapeType, patternType, shapeLoc);
|
|
|
|
auto *expansion = PackExpansionType::get(patternType, shapeType);
|
|
openedGenericParams.push_back(expansion);
|
|
hasParameterPack = true;
|
|
} else {
|
|
openedGenericParams.push_back(Type(openedType.second));
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: We could support explicit function specialization.
|
|
if (openedGenericParams.empty() ||
|
|
(isa<AbstractFunctionDecl>(decl) && !hasParameterPack)) {
|
|
return recordFix(AllowFunctionSpecialization::create(
|
|
*this, decl, getConstraintLocator(locator)))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
assert(openedGenericParams.size() == genericParams->size());
|
|
|
|
// Match the opened generic parameters to the specialized arguments.
|
|
auto specializedArgs = type2->castTo<PackType>()->getElementTypes();
|
|
PackMatcher matcher(openedGenericParams, specializedArgs, getASTContext(),
|
|
isPackExpansionType);
|
|
if (matcher.match()) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
auto *fix = IgnoreGenericSpecializationArityMismatch::create(
|
|
*this, decl, openedGenericParams.size(), specializedArgs.size(),
|
|
hasParameterPack, getConstraintLocator(locator));
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
// Bind the opened generic parameters to the specialization arguments.
|
|
for (const auto &pair : matcher.pairs) {
|
|
addConstraint(
|
|
ConstraintKind::Bind, pair.lhs, pair.rhs,
|
|
getConstraintLocator(
|
|
locator, LocatorPathElt::GenericArgument(pair.lhsIdx)));
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyLValueObjectConstraint(
|
|
Type type1, Type type2, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto lvalueTy = simplifyType(type1);
|
|
|
|
auto formUnsolved = [&]() {
|
|
// If we're supposed to generate constraints, do so.
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
auto *lvalueObject =
|
|
Constraint::create(*this, ConstraintKind::LValueObject,
|
|
type1, type2, getConstraintLocator(locator));
|
|
|
|
addUnsolvedConstraint(lvalueObject);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
};
|
|
|
|
auto isOrCanBeLValueType = [](Type type) {
|
|
if (auto *typeVar = type->getAs<TypeVariableType>()) {
|
|
return typeVar->getImpl().canBindToLValue();
|
|
}
|
|
return type->is<LValueType>();
|
|
};
|
|
|
|
if (lvalueTy->isPlaceholder()) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
recordAnyTypeVarAsPotentialHole(type2);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (!isOrCanBeLValueType(lvalueTy)) {
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
auto *fixLoc = getConstraintLocator(locator);
|
|
if (recordFix(TreatRValueAsLValue::create(*this, fixLoc),
|
|
TreatRValueAsLValue::assessImpact(*this, fixLoc)))
|
|
return SolutionKind::Error;
|
|
|
|
lvalueTy = LValueType::get(lvalueTy);
|
|
}
|
|
|
|
if (lvalueTy->isTypeVariableOrMember())
|
|
return formUnsolved();
|
|
|
|
// TODO: This operation deserves its own locator just like OptionalObject.
|
|
addConstraint(ConstraintKind::Equal,
|
|
lvalueTy->castTo<LValueType>()->getObjectType(), type2,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
static llvm::PointerIntPair<Type, 3, unsigned>
|
|
getBaseTypeForPointer(TypeBase *type) {
|
|
unsigned unwrapCount = 0;
|
|
while (auto objectTy = type->getOptionalObjectType()) {
|
|
type = objectTy.getPointer();
|
|
++unwrapCount;
|
|
}
|
|
|
|
auto pointeeTy = type->getAnyPointerElementType();
|
|
assert(pointeeTy);
|
|
return {pointeeTy, unwrapCount};
|
|
}
|
|
|
|
void ConstraintSystem::addRestrictedConstraint(
|
|
ConstraintKind kind,
|
|
ConversionRestrictionKind restriction,
|
|
Type first, Type second,
|
|
ConstraintLocatorBuilder locator) {
|
|
(void)simplifyRestrictedConstraint(restriction, first, second, kind,
|
|
TMF_GenerateConstraints, locator);
|
|
}
|
|
|
|
/// Given that we have a conversion constraint between two types, and
|
|
/// that the given constraint-reduction rule applies between them at
|
|
/// the top level, apply it and generate any necessary recursive
|
|
/// constraints.
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyRestrictedConstraintImpl(
|
|
ConversionRestrictionKind restriction,
|
|
Type type1, Type type2,
|
|
ConstraintKind matchKind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(!type1->isTypeVariableOrMember() && !type2->isTypeVariableOrMember());
|
|
|
|
// Add to the score based on context.
|
|
auto addContextualScore = [&] {
|
|
// Okay, we need to perform one or more conversions. If this
|
|
// conversion will cause a function conversion, score it as worse.
|
|
// This induces conversions to occur within closures instead of
|
|
// outside of them wherever possible.
|
|
if (locator.isFunctionConversion()) {
|
|
// This conversion exists only to check adjustments in the member
|
|
// type, so the fact that adjustments also cause a function conversion
|
|
// is unrelated.
|
|
if (locator.isForExistentialMemberAccessConversion())
|
|
return;
|
|
|
|
increaseScore(SK_FunctionConversion, locator);
|
|
}
|
|
};
|
|
|
|
TypeMatchOptions subflags = getDefaultDecompositionOptions(flags);
|
|
|
|
auto matchPointerBaseTypes =
|
|
[&](llvm::PointerIntPair<Type, 3, unsigned> baseType1,
|
|
llvm::PointerIntPair<Type, 3, unsigned> baseType2) -> SolutionKind {
|
|
if (restriction != ConversionRestrictionKind::PointerToPointer)
|
|
increaseScore(ScoreKind::SK_ValueToPointerConversion, locator);
|
|
|
|
auto result =
|
|
matchTypes(baseType1.getPointer(), baseType2.getPointer(),
|
|
ConstraintKind::BindToPointerType, subflags, locator);
|
|
|
|
if (!(result.isFailure() && shouldAttemptFixes()))
|
|
return result;
|
|
|
|
BoundGenericType *ptr1 = nullptr;
|
|
BoundGenericType *ptr2 = nullptr;
|
|
|
|
switch (restriction) {
|
|
case ConversionRestrictionKind::ArrayToPointer:
|
|
case ConversionRestrictionKind::InoutToPointer: {
|
|
ptr2 = type2->lookThroughAllOptionalTypes()->castTo<BoundGenericType>();
|
|
ptr1 = BoundGenericType::get(ptr2->getDecl(), ptr2->getParent(),
|
|
{baseType1.getPointer()});
|
|
break;
|
|
}
|
|
|
|
case ConversionRestrictionKind::PointerToPointer:
|
|
// Original types could be wrapped into a different number of optional.
|
|
ptr1 = type1->lookThroughAllOptionalTypes()->castTo<BoundGenericType>();
|
|
ptr2 = type2->lookThroughAllOptionalTypes()->castTo<BoundGenericType>();
|
|
break;
|
|
|
|
default:
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto *fix = GenericArgumentsMismatch::create(*this, ptr1, ptr2, {0},
|
|
getConstraintLocator(locator));
|
|
|
|
// Treat this as a contextual type mismatch.
|
|
unsigned baseImpact = 2;
|
|
// It's possible to implicitly promote pointer into an optional
|
|
// before matching base types if other side is an optional, so
|
|
// score needs to account for number of such promotions.
|
|
int optionalWraps = baseType2.getInt() - baseType1.getInt();
|
|
return recordFix(fix, baseImpact + std::abs(optionalWraps))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
};
|
|
|
|
auto fixContextualFailure = [&](Type fromType, Type toType,
|
|
ConstraintLocatorBuilder locator) -> bool {
|
|
auto *loc = getConstraintLocator(locator);
|
|
// Since this is a contextual type mismatch, let's start from higher
|
|
// impact than regular fix to avoid ambiguities.
|
|
auto impact = 2;
|
|
if (loc->isForAssignment() || loc->isForCoercion() ||
|
|
loc->isForContextualType() ||
|
|
loc->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
|
|
loc->isForOptionalTry()) {
|
|
if (restriction == ConversionRestrictionKind::Superclass) {
|
|
if (auto *fix = CoerceToCheckedCast::attempt(
|
|
*this, fromType, toType, /*useConditionalCast*/ false, loc))
|
|
return !recordFix(fix, impact);
|
|
}
|
|
|
|
// We already have a fix for this locator indicating a
|
|
// tuple mismatch.
|
|
if (hasFixFor(loc, FixKind::AllowTupleTypeMismatch))
|
|
return true;
|
|
|
|
if (restriction == ConversionRestrictionKind::ValueToOptional) {
|
|
// If this is an optional injection we can drop optional from
|
|
// "to" type since it's not significant for the diagnostic.
|
|
toType = toType->getOptionalObjectType();
|
|
}
|
|
|
|
ConstraintFix *fix = nullptr;
|
|
if (loc->isLastElement<LocatorPathElt::ApplyArgToParam>()) {
|
|
fix = AllowArgumentMismatch::create(*this, fromType, toType, loc);
|
|
} else if (loc->isForAssignment()) {
|
|
fix = IgnoreAssignmentDestinationType::create(*this, fromType, toType,
|
|
loc);
|
|
} else {
|
|
fix = ContextualMismatch::create(*this, fromType, toType, loc);
|
|
}
|
|
|
|
assert(fix);
|
|
return !recordFix(fix, impact);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
switch (restriction) {
|
|
// for $< in { <, <c, <oc }:
|
|
// T_i $< U_i ===> (T_i...) $< (U_i...)
|
|
case ConversionRestrictionKind::DeepEquality:
|
|
return matchDeepEqualityTypes(type1, type2, locator);
|
|
|
|
case ConversionRestrictionKind::Superclass: {
|
|
addContextualScore();
|
|
|
|
auto result = matchSuperclassTypes(type1, type2, subflags, locator);
|
|
|
|
if (!(shouldAttemptFixes() && result.isFailure()))
|
|
return result;
|
|
|
|
return fixContextualFailure(type1, type2, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U, U : P_i ===> T $< protocol<P_i...>
|
|
case ConversionRestrictionKind::Existential:
|
|
addContextualScore();
|
|
return matchExistentialTypes(type1, type2,
|
|
ConstraintKind::Subtype,
|
|
subflags, locator);
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// for P protocol, Q protocol,
|
|
// P : Q ===> T.Protocol $< Q.Type
|
|
// for P protocol, Q protocol,
|
|
// P $< Q ===> P.Type $< Q.Type
|
|
case ConversionRestrictionKind::MetatypeToExistentialMetatype: {
|
|
addContextualScore();
|
|
|
|
auto instanceTy1 = type1->getMetatypeInstanceType();
|
|
auto instanceTy2 = type2->getMetatypeInstanceType();
|
|
|
|
auto result = matchExistentialTypes(
|
|
instanceTy1, instanceTy2, ConstraintKind::ConformsTo, subflags,
|
|
locator.withPathElement(ConstraintLocator::InstanceType));
|
|
|
|
if (!(shouldAttemptFixes() && result.isFailure()))
|
|
return result;
|
|
|
|
return fixContextualFailure(type1, type2, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// for P protocol, C class, D class,
|
|
// (P & C) : D ===> (P & C).Type $< D.Type
|
|
case ConversionRestrictionKind::ExistentialMetatypeToMetatype: {
|
|
addContextualScore();
|
|
|
|
auto instance1 = type1->castTo<ExistentialMetatypeType>()->getInstanceType();
|
|
auto instance2 = type2->castTo<MetatypeType>()->getInstanceType();
|
|
auto superclass1 = instance1->getSuperclass();
|
|
|
|
if (!superclass1)
|
|
return SolutionKind::Error;
|
|
|
|
auto result =
|
|
matchTypes(superclass1, instance2, ConstraintKind::Subtype, subflags,
|
|
locator.withPathElement(ConstraintLocator::InstanceType));
|
|
|
|
if (!(shouldAttemptFixes() && result.isFailure()))
|
|
return result;
|
|
|
|
return fixContextualFailure(type1, type2, locator)
|
|
? getTypeMatchSuccess()
|
|
: getTypeMatchFailure(locator);
|
|
}
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U ===> T $< U?
|
|
case ConversionRestrictionKind::ValueToOptional: {
|
|
addContextualScore();
|
|
increaseScore(SK_ValueToOptional, locator);
|
|
|
|
assert(matchKind >= ConstraintKind::Subtype);
|
|
if (auto generic2 = type2->getAs<BoundGenericType>()) {
|
|
if (generic2->getDecl()->isOptionalDecl()) {
|
|
auto result = matchTypes(
|
|
type1, generic2->getGenericArgs()[0], matchKind, subflags,
|
|
locator.withPathElement(ConstraintLocator::OptionalInjection));
|
|
|
|
if (!(shouldAttemptFixes() && result.isFailure()))
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return shouldAttemptFixes() && fixContextualFailure(type1, type2, locator)
|
|
? SolutionKind::Solved
|
|
: SolutionKind::Error;
|
|
}
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U ===> T? $< U?
|
|
// T $< U ===> T! $< U!
|
|
// T $< U ===> T! $< U?
|
|
// also:
|
|
// T <c U ===> T? <c U!
|
|
case ConversionRestrictionKind::OptionalToOptional: {
|
|
addContextualScore();
|
|
|
|
assert(matchKind >= ConstraintKind::Subtype);
|
|
if (auto generic1 = type1->getAs<BoundGenericType>()) {
|
|
if (auto generic2 = type2->getAs<BoundGenericType>()) {
|
|
if (generic1->getDecl()->isOptionalDecl() &&
|
|
generic2->getDecl()->isOptionalDecl()) {
|
|
auto result = matchTypes(
|
|
generic1->getGenericArgs()[0], generic2->getGenericArgs()[0],
|
|
matchKind, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0)));
|
|
|
|
if (!(shouldAttemptFixes() && result.isFailure()))
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
return shouldAttemptFixes() && fixContextualFailure(type1, type2, locator)
|
|
? SolutionKind::Solved
|
|
: SolutionKind::Error;
|
|
}
|
|
|
|
case ConversionRestrictionKind::ClassMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ExistentialMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: {
|
|
// Nothing more to solve.
|
|
addContextualScore();
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// T <p U ===> T[] <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::ArrayToPointer: {
|
|
addContextualScore();
|
|
// Unwrap an inout type.
|
|
auto obj1 = type1->getInOutObjectType();
|
|
|
|
obj1 = getFixedTypeRecursive(obj1, false);
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
auto baseType1 = getFixedTypeRecursive(obj1->getArrayElementType(), false);
|
|
auto ptr2 = getBaseTypeForPointer(t2);
|
|
|
|
increaseScore(SK_ValueToOptional, locator, ptr2.getInt());
|
|
|
|
return matchPointerBaseTypes({baseType1, 0}, ptr2);
|
|
}
|
|
|
|
// String ===> UnsafePointer<[U]Int8>
|
|
case ConversionRestrictionKind::StringToPointer: {
|
|
addContextualScore();
|
|
|
|
auto ptr2 = getBaseTypeForPointer(type2->getDesugaredType());
|
|
|
|
increaseScore(SK_ValueToOptional, locator, ptr2.getInt());
|
|
|
|
// The pointer element type must be void or a byte-sized type.
|
|
// TODO: Handle different encodings based on pointer element type, such as
|
|
// UTF16 for [U]Int16 or UTF32 for [U]Int32. For now we only interop with
|
|
// Int8 pointers using UTF8 encoding.
|
|
auto baseType2 = getFixedTypeRecursive(ptr2.getPointer(), false);
|
|
// If we haven't resolved the element type, generate constraints.
|
|
if (baseType2->isTypeVariableOrMember()) {
|
|
if (flags.contains(TMF_GenerateConstraints)) {
|
|
increaseScore(ScoreKind::SK_ValueToPointerConversion, locator);
|
|
|
|
auto &ctx = getASTContext();
|
|
auto int8Con = Constraint::create(*this, ConstraintKind::Bind,
|
|
baseType2,
|
|
ctx.getInt8Type(),
|
|
getConstraintLocator(locator));
|
|
auto uint8Con = Constraint::create(*this, ConstraintKind::Bind,
|
|
baseType2,
|
|
ctx.getUInt8Type(),
|
|
getConstraintLocator(locator));
|
|
auto voidCon = Constraint::create(*this, ConstraintKind::Bind,
|
|
baseType2, ctx.TheEmptyTupleType,
|
|
getConstraintLocator(locator));
|
|
|
|
Constraint *disjunctionChoices[] = {int8Con, uint8Con, voidCon};
|
|
addDisjunctionConstraint(disjunctionChoices, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
if (!isStringCompatiblePointerBaseType(getASTContext(), baseType2)) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
increaseScore(ScoreKind::SK_ValueToPointerConversion, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// T <p U ===> inout T <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::InoutToPointer: {
|
|
addContextualScore();
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
auto baseType1 = type1->getInOutObjectType();
|
|
auto ptr2 = getBaseTypeForPointer(t2);
|
|
|
|
increaseScore(SK_ValueToOptional, locator, ptr2.getInt());
|
|
|
|
return matchPointerBaseTypes({baseType1, 0}, ptr2);
|
|
}
|
|
|
|
// T <p U ===> UnsafeMutablePointer<T> <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::PointerToPointer: {
|
|
auto t1 = type1->getDesugaredType();
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
auto ptr1 = getBaseTypeForPointer(t1);
|
|
auto ptr2 = getBaseTypeForPointer(t2);
|
|
|
|
return matchPointerBaseTypes(ptr1, ptr2);
|
|
}
|
|
|
|
case ConversionRestrictionKind::PointerToCPointer:
|
|
return simplifyPointerToCPointerRestriction(type1, type2, flags, locator);
|
|
|
|
case ConversionRestrictionKind::ArrayToCPointer: {
|
|
auto ptr2 = type2->getDesugaredType()->lookThroughAllOptionalTypes();
|
|
|
|
PointerTypeKind pointerKind;
|
|
auto cPtr = ptr2->getAnyPointerElementType(pointerKind);
|
|
|
|
// If the parameter is a raw pointer or its element type is not a
|
|
// supported (un-)signed integer it implies a regular ArrayToPointer
|
|
// conversion.
|
|
if (isRawPointerKind(pointerKind) ||
|
|
!(cPtr->isInt() || cPtr->isUInt() ||
|
|
cPtr->isInt8() || cPtr->isUInt8() ||
|
|
cPtr->isInt16() || cPtr->isUInt16() ||
|
|
cPtr->isInt32() || cPtr->isUInt32() ||
|
|
cPtr->isInt64() || cPtr->isUInt64())) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
increaseScore(SK_ValueToPointerConversion, locator);
|
|
|
|
type1 = getFixedTypeRecursive(type1->getInOutObjectType()->getArrayElementType(),
|
|
/*wantRValue=*/false);
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
|
|
case ConversionRestrictionKind::InoutToCPointer: {
|
|
SmallVector<Type, 2> optionals;
|
|
|
|
auto ptr2 =
|
|
type2->getDesugaredType()->lookThroughAllOptionalTypes(optionals);
|
|
|
|
increaseScore(SK_ValueToOptional, locator, optionals.size());
|
|
|
|
PointerTypeKind pointerKind;
|
|
(void)ptr2->getAnyPointerElementType(pointerKind);
|
|
|
|
auto baseType1 = type1->getInOutObjectType();
|
|
|
|
Type ptr1;
|
|
// The right-hand size is a raw pointer, so let's use `UnsafeMutablePointer`
|
|
// for the `inout` type.
|
|
if (pointerKind == PTK_UnsafeRawPointer ||
|
|
pointerKind == PTK_UnsafeMutableRawPointer) {
|
|
ptr1 = BoundGenericType::get(Context.getUnsafeMutablePointerDecl(),
|
|
/*parent=*/nullptr, {baseType1});
|
|
} else {
|
|
ptr1 = baseType1->wrapInPointer(pointerKind);
|
|
}
|
|
|
|
assert(ptr1);
|
|
|
|
return simplifyPointerToCPointerRestriction(ptr1, ptr2, flags, locator);
|
|
}
|
|
|
|
// T < U or T is bridged to V where V < U ===> Array<T> <c Array<U>
|
|
case ConversionRestrictionKind::ArrayUpcast: {
|
|
Type baseType1 = type1->getArrayElementType();
|
|
Type baseType2 = type2->getArrayElementType();
|
|
|
|
increaseScore(SK_CollectionUpcastConversion, locator);
|
|
return matchTypes(baseType1,
|
|
baseType2,
|
|
matchKind,
|
|
subflags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::GenericArgument(0)));
|
|
}
|
|
|
|
// K1 < K2 && V1 < V2 || K1 bridges to K2 && V1 bridges to V2 ===>
|
|
// Dictionary<K1, V1> <c Dictionary<K2, V2>
|
|
case ConversionRestrictionKind::DictionaryUpcast: {
|
|
auto t1 = type1->getDesugaredType();
|
|
Type key1, value1;
|
|
std::tie(key1, value1) = *isDictionaryType(t1);
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
Type key2, value2;
|
|
std::tie(key2, value2) = *isDictionaryType(t2);
|
|
|
|
auto subMatchKind = matchKind; // TODO: Restrict this?
|
|
increaseScore(SK_CollectionUpcastConversion, locator);
|
|
// The source key and value types must be subtypes of the destination
|
|
// key and value types, respectively.
|
|
auto result =
|
|
matchTypes(key1, key2, subMatchKind, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0)));
|
|
if (result.isFailure())
|
|
return result;
|
|
|
|
switch (matchTypes(
|
|
value1, value2, subMatchKind, subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(1)))) {
|
|
case SolutionKind::Solved:
|
|
return result;
|
|
|
|
case SolutionKind::Unsolved:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// T1 < T2 || T1 bridges to T2 ===> Set<T1> <c Set<T2>
|
|
case ConversionRestrictionKind::SetUpcast: {
|
|
Type baseType1 = *isSetType(type1);
|
|
Type baseType2 = *isSetType(type2);
|
|
|
|
increaseScore(SK_CollectionUpcastConversion, locator);
|
|
return matchTypes(baseType1,
|
|
baseType2,
|
|
matchKind,
|
|
subflags,
|
|
locator.withPathElement(LocatorPathElt::GenericArgument(0)));
|
|
}
|
|
|
|
// T1 <c T2 && T2 : Hashable ===> T1 <c AnyHashable
|
|
case ConversionRestrictionKind::HashableToAnyHashable: {
|
|
// We never want to do this if the LHS is already AnyHashable.
|
|
type1 = simplifyType(type1);
|
|
if (type1->getRValueType()->lookThroughAllOptionalTypes()->isAnyHashable()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
addContextualScore();
|
|
increaseScore(SK_UserConversion,
|
|
locator); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto hashableProtocol =
|
|
getASTContext().getProtocol(KnownProtocolKind::Hashable);
|
|
if (!hashableProtocol)
|
|
return SolutionKind::Error;
|
|
|
|
auto constraintLocator = getConstraintLocator(locator);
|
|
auto tv = createTypeVariable(constraintLocator,
|
|
TVO_PrefersSubtypeBinding |
|
|
TVO_CanBindToNoEscape);
|
|
|
|
addConstraint(ConstraintKind::ConformsTo, tv,
|
|
hashableProtocol->getDeclaredInterfaceType(),
|
|
constraintLocator);
|
|
|
|
return matchTypes(type1, tv, ConstraintKind::Conversion, subflags,
|
|
locator);
|
|
}
|
|
|
|
// T' < U and T a toll-free-bridged to T' ===> T' <c U
|
|
case ConversionRestrictionKind::CFTollFreeBridgeToObjC: {
|
|
increaseScore(SK_UserConversion,
|
|
locator); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto nativeClass = type1->getClassOrBoundGenericClass();
|
|
auto bridgedObjCClass
|
|
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
|
|
|
|
return matchTypes(bridgedObjCClass->getDeclaredInterfaceType(),
|
|
type2, ConstraintKind::Subtype, subflags, locator);
|
|
}
|
|
|
|
// T < U' and U a toll-free-bridged to U' ===> T <c U
|
|
case ConversionRestrictionKind::ObjCTollFreeBridgeToCF: {
|
|
increaseScore(SK_UserConversion,
|
|
locator); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto nativeClass = type2->getClassOrBoundGenericClass();
|
|
auto bridgedObjCClass
|
|
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
|
|
|
|
return matchTypes(type1,
|
|
bridgedObjCClass->getDeclaredInterfaceType(),
|
|
ConstraintKind::Subtype, subflags, locator);
|
|
}
|
|
|
|
case ConversionRestrictionKind::DoubleToCGFloat:
|
|
case ConversionRestrictionKind::CGFloatToDouble: {
|
|
// Prefer CGFloat -> Double over other way araund.
|
|
auto impact =
|
|
restriction == ConversionRestrictionKind::CGFloatToDouble ? 2 : 10;
|
|
|
|
if (restriction == ConversionRestrictionKind::DoubleToCGFloat) {
|
|
SmallVector<LocatorPathElt> originalPath;
|
|
auto anchor = locator.getLocatorParts(originalPath);
|
|
|
|
SourceRange range;
|
|
ArrayRef<LocatorPathElt> path(originalPath);
|
|
simplifyLocator(anchor, path, range);
|
|
|
|
if (path.empty() || llvm::all_of(path, [](const LocatorPathElt &elt) {
|
|
return elt.is<LocatorPathElt::OptionalInjection>();
|
|
})) {
|
|
if (auto *expr = getAsExpr(anchor))
|
|
if (auto depth = getExprDepth(expr))
|
|
impact = (*depth + 1) * impact;
|
|
}
|
|
} else if (locator.directlyAt<AssignExpr>() ||
|
|
locator.endsWith<LocatorPathElt::ContextualType>()) {
|
|
// Situations like:
|
|
//
|
|
// let _: Double = <<CGFloat>>
|
|
// <var/property of type Double> = <<CGFloat>>
|
|
//
|
|
// Used to be supported due to an incorrect fix added in
|
|
// diagnostic mode. Lower impact here means that right-hand
|
|
// side of the assignment is allowed to maintain CGFloat
|
|
// until the very end which minimizes the number of conversions
|
|
// used and keeps literals as Double when possible.
|
|
impact = 1;
|
|
}
|
|
|
|
increaseScore(SK_ImplicitValueConversion, locator, impact);
|
|
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("bad conversion restriction");
|
|
}
|
|
|
|
static void increaseScoreForGenericParamPointerConversion(
|
|
ConstraintSystem &cs, ConversionRestrictionKind kind,
|
|
ConstraintLocatorBuilder locator) {
|
|
switch (kind) {
|
|
case ConversionRestrictionKind::InoutToPointer:
|
|
case ConversionRestrictionKind::ArrayToPointer:
|
|
case ConversionRestrictionKind::StringToPointer:
|
|
case ConversionRestrictionKind::PointerToPointer:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
auto *loc = cs.getConstraintLocator(locator);
|
|
auto argInfo = loc->findLast<LocatorPathElt::ApplyArgToParam>();
|
|
if (!argInfo)
|
|
return;
|
|
|
|
auto overload = cs.findSelectedOverloadFor(cs.getCalleeLocator(loc));
|
|
if (!overload)
|
|
return;
|
|
|
|
auto *D = overload->choice.getDeclOrNull();
|
|
if (!D)
|
|
return;
|
|
|
|
auto *param = getParameterAt(D, argInfo->getParamIdx());
|
|
if (!param)
|
|
return;
|
|
|
|
// Check to see if the parameter is a generic parameter, or dependent member.
|
|
auto paramTy = param->getInterfaceType()->lookThroughAllOptionalTypes();
|
|
if (!paramTy->isTypeParameter())
|
|
return;
|
|
|
|
// Don't increase the score if the type parameter is rooted on the protocol
|
|
// 'Self' type, e.g extensions on `_Pointer` shouldn't be penalized.
|
|
if (auto *PD = D->getDeclContext()->getSelfProtocolDecl()) {
|
|
if (PD->getSelfInterfaceType()->isEqual(paramTy->getRootGenericParam()))
|
|
return;
|
|
}
|
|
cs.increaseScore(SK_GenericParamPointerConversion, locator);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyRestrictedConstraint(
|
|
ConversionRestrictionKind restriction,
|
|
Type type1, Type type2,
|
|
ConstraintKind matchKind,
|
|
TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
switch (simplifyRestrictedConstraintImpl(restriction, type1, type2,
|
|
matchKind, flags, locator)) {
|
|
case SolutionKind::Solved: {
|
|
// If we have an application of a non-ephemeral parameter, then record a
|
|
// fix if we have to treat an ephemeral conversion as non-ephemeral. It's
|
|
// important that this is solved as an independent constraint, as the
|
|
// solving of this restriction may be required in order to evaluate it. For
|
|
// example, when solving `foo(&.x)`, we need to first match types for the
|
|
// inout-to-pointer conversion, which then allows us to resolve the overload
|
|
// of `x`, which may or may not produce an ephemeral pointer.
|
|
if (locator.isNonEphemeralParameterApplication()) {
|
|
bool downgradeToWarning =
|
|
!getASTContext().LangOpts.DiagnoseInvalidEphemeralnessAsError;
|
|
|
|
auto *fix = TreatEphemeralAsNonEphemeral::create(
|
|
*this, getConstraintLocator(locator), type1, type2, restriction,
|
|
downgradeToWarning);
|
|
addFixConstraint(fix, matchKind, type1, type2, locator);
|
|
}
|
|
|
|
// Increase the score if needed for a pointer conversion to a generic
|
|
// parameter type.
|
|
// FIXME: We ought to consider outright banning pointer conversions to
|
|
// generic parameter types, in which case this logic could be adjusted to
|
|
// record a fix instead.
|
|
increaseScoreForGenericParamPointerConversion(*this, restriction, locator);
|
|
|
|
addConversionRestriction(type1, type2, restriction);
|
|
return SolutionKind::Solved;
|
|
}
|
|
case SolutionKind::Unsolved:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled SolutionKind in switch.");
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyPointerToCPointerRestriction(
|
|
Type type1, Type type2, TypeMatchOptions flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
bool inCorrectPosition = isArgumentOfImportedDecl(locator);
|
|
if (!inCorrectPosition) {
|
|
// If this is not an imported function, let's not proceed with
|
|
// the conversion, unless in diagnostic mode.
|
|
if (!shouldAttemptFixes())
|
|
return SolutionKind::Error;
|
|
|
|
// Let's attempt to convert the types and record a tailored
|
|
// fix if that succeeds.
|
|
}
|
|
|
|
auto &ctx = getASTContext();
|
|
|
|
PointerTypeKind swiftPtrKind, cPtrKind;
|
|
|
|
auto swiftPtr = type1->getAnyPointerElementType(swiftPtrKind);
|
|
auto cPtr = type2->getAnyPointerElementType(cPtrKind);
|
|
|
|
assert(swiftPtr);
|
|
assert(cPtr);
|
|
|
|
auto markSupported = [&]() -> SolutionKind {
|
|
// Make sure that solutions with implicit pointer conversions
|
|
// are always worse than the ones without them.
|
|
increaseScore(SK_ImplicitValueConversion, locator);
|
|
|
|
if (inCorrectPosition)
|
|
return SolutionKind::Solved;
|
|
|
|
// If conversion cannot be allowed on account of declaration,
|
|
// let's add a tailored fix.
|
|
auto *fix = AllowSwiftToCPointerConversion::create(
|
|
*this, getConstraintLocator(locator));
|
|
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
};
|
|
|
|
auto elementLoc = locator.withPathElement(LocatorPathElt::GenericArgument(0));
|
|
|
|
if (swiftPtr->isTypeVariableOrMember()) {
|
|
// Inference between the equivalent pointer kinds is
|
|
// handled by regular pointer conversions.
|
|
if (swiftPtrKind == cPtrKind)
|
|
return SolutionKind::Error;
|
|
|
|
addConstraint(ConstraintKind::BindToPointerType, swiftPtr, cPtr,
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
// If pointers have the same element type there is nothing to do.
|
|
if (swiftPtr->isEqual(cPtr))
|
|
return markSupported();
|
|
|
|
// Unsafe[Mutable]RawPointer -> Unsafe[Mutable]Pointer<[U]Int8>
|
|
if (swiftPtrKind == PTK_UnsafeRawPointer ||
|
|
swiftPtrKind == PTK_UnsafeMutableRawPointer) {
|
|
// Since it's a C pointer on parameter side it would always
|
|
// be fully resolved.
|
|
if (cPtr->isInt8() || cPtr->isUInt8())
|
|
return markSupported();
|
|
} else {
|
|
// Unsafe[Mutable]Pointer<T> -> Unsafe[Mutable]Pointer<[U]Int8>
|
|
if (cPtr->isInt8() || cPtr->isUInt8()) {
|
|
// <T> can default to the type of C pointer.
|
|
addConstraint(ConstraintKind::Defaultable, swiftPtr, cPtr, elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
// Unsafe[Mutable]Pointer<Int{8, 16, ...}> <->
|
|
// Unsafe[Mutable]Pointer<UInt{8, 16, ...}>
|
|
if (swiftPtr->isInt() || swiftPtr->isUInt()) {
|
|
addConstraint(ConstraintKind::Equal, cPtr,
|
|
swiftPtr->isUInt() ? ctx.getIntType() : ctx.getUIntType(),
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
if (swiftPtr->isInt8() || swiftPtr->isUInt8()) {
|
|
addConstraint(ConstraintKind::Equal, cPtr,
|
|
swiftPtr->isUInt8() ? ctx.getInt8Type()
|
|
: ctx.getUInt8Type(),
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
if (swiftPtr->isInt16() || swiftPtr->isUInt16()) {
|
|
addConstraint(ConstraintKind::Equal, cPtr,
|
|
swiftPtr->isUInt16() ? ctx.getInt16Type()
|
|
: ctx.getUInt16Type(),
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
if (swiftPtr->isInt32() || swiftPtr->isUInt32()) {
|
|
addConstraint(ConstraintKind::Equal, cPtr,
|
|
swiftPtr->isUInt32() ? ctx.getInt32Type()
|
|
: ctx.getUInt32Type(),
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
|
|
if (swiftPtr->isInt64() || swiftPtr->isUInt64()) {
|
|
addConstraint(ConstraintKind::Equal, cPtr,
|
|
swiftPtr->isUInt64() ? ctx.getInt64Type()
|
|
: ctx.getUInt64Type(),
|
|
elementLoc);
|
|
return markSupported();
|
|
}
|
|
}
|
|
|
|
// If the conversion is unsupported, let's record a generic argument mismatch.
|
|
if (shouldAttemptFixes() && !inCorrectPosition) {
|
|
auto *fix = AllowArgumentMismatch::create(*this, type1, type2,
|
|
getConstraintLocator(locator));
|
|
return recordFix(fix, /*impact=*/2) ? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
static bool isAugmentingFix(ConstraintFix *fix) {
|
|
switch (fix->getKind()) {
|
|
case FixKind::TreatRValueAsLValue:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool ConstraintSystem::recordFix(ConstraintFix *fix, unsigned impact,
|
|
PreparedOverloadBuilder *preparedOverload) {
|
|
if (preparedOverload) {
|
|
ASSERT(PreparingOverload);
|
|
preparedOverload->addedFix(fix, impact);
|
|
return true;
|
|
}
|
|
|
|
ASSERT(!PreparingOverload);
|
|
|
|
if (isDebugMode()) {
|
|
auto &log = llvm::errs();
|
|
log.indent(solverState ? solverState->getCurrentIndent() : 0)
|
|
<< "(attempting fix ";
|
|
fix->print(log);
|
|
log << ")\n";
|
|
}
|
|
|
|
if (hasArgumentsIgnoredForCodeCompletion()) {
|
|
// Avoid simplifying the locator if the constraint system didn't ignore any
|
|
// arguments.
|
|
auto argExpr = simplifyLocatorToAnchor(fix->getLocator());
|
|
if (isArgumentIgnoredForCodeCompletion(getAsExpr<Expr>(argExpr))) {
|
|
// The argument was ignored. Don't record any fixes for it.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Record the fix.
|
|
|
|
// If this should affect the solution score, do so.
|
|
if (auto impactScoreKind = fix->impact())
|
|
increaseScore(*impactScoreKind, fix->getLocator(), impact);
|
|
|
|
// If we've made the current solution worse than the best solution we've seen
|
|
// already, stop now.
|
|
if (worseThanBestSolution())
|
|
return true;
|
|
|
|
if (isAugmentingFix(fix)) {
|
|
addFix(fix);
|
|
return false;
|
|
}
|
|
|
|
auto anchor = fix->getAnchor();
|
|
assert(bool(anchor) && "non-augmenting fix without an anchor?");
|
|
|
|
// Only useful to record if no pre-existing fix is associated with
|
|
// current anchor or, in case of anchor being an expression, any of
|
|
// its sub-expressions.
|
|
llvm::SmallDenseSet<ASTNode> anchors;
|
|
for (const auto *fix : Fixes) {
|
|
// Fixes that don't affect the score shouldn't be considered because even
|
|
// if such a fix is recorded at that anchor this should not
|
|
// have any affect in the recording of any other fix.
|
|
if (!fix->impact())
|
|
continue;
|
|
|
|
anchors.insert(fix->getAnchor());
|
|
}
|
|
|
|
bool found = false;
|
|
if (auto *expr = getAsExpr(anchor)) {
|
|
forEachExpr(expr, [&](Expr *subExpr) -> Expr * {
|
|
found |= anchors.count(subExpr);
|
|
return subExpr;
|
|
});
|
|
} else {
|
|
found = anchors.count(anchor);
|
|
}
|
|
|
|
if (!found)
|
|
addFix(fix);
|
|
|
|
return false;
|
|
}
|
|
|
|
void ConstraintSystem::recordPotentialHole(TypeVariableType *typeVar) {
|
|
typeVar->getImpl().enableCanBindToHole(getTrail());
|
|
}
|
|
|
|
void ConstraintSystem::recordAnyTypeVarAsPotentialHole(Type type) {
|
|
if (!type->hasTypeVariable())
|
|
return;
|
|
|
|
type.visit([&](Type type) {
|
|
if (auto *typeVar = type->getAs<TypeVariableType>()) {
|
|
typeVar->getImpl().enableCanBindToHole(getTrail());
|
|
}
|
|
});
|
|
}
|
|
|
|
void ConstraintSystem::recordTypeVariablesAsHoles(Type type) {
|
|
type.visit([&](Type componentTy) {
|
|
if (auto *typeVar = componentTy->getAs<TypeVariableType>()) {
|
|
// Ignore bound type variables. This can happen if a type variable
|
|
// occurs in multiple positions and/or if type hasn't been fully
|
|
// simplified before this call.
|
|
if (typeVar->getImpl().hasRepresentativeOrFixed())
|
|
return;
|
|
|
|
assignFixedType(typeVar,
|
|
PlaceholderType::get(getASTContext(), typeVar));
|
|
}
|
|
});
|
|
}
|
|
|
|
void ConstraintSystem::recordMatchCallArgumentResult(
|
|
ConstraintLocator *locator, MatchCallArgumentResult result) {
|
|
assert(locator->isLastElement<LocatorPathElt::ApplyArgument>());
|
|
bool inserted = argumentMatchingChoices.insert({locator, result}).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState)
|
|
recordChange(SolverTrail::Change::RecordedMatchCallArgumentResult(locator));
|
|
}
|
|
|
|
void ConstraintSystem::recordImplicitCallAsFunctionRoot(
|
|
ConstraintLocator *locator, UnresolvedDotExpr *root) {
|
|
bool inserted = ImplicitCallAsFunctionRoots.insert({locator, root}).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState)
|
|
recordChange(SolverTrail::Change::RecordedImplicitCallAsFunctionRoot(locator));
|
|
}
|
|
|
|
void ConstraintSystem::recordKeyPath(const KeyPathExpr *keypath,
|
|
TypeVariableType *root,
|
|
TypeVariableType *value, DeclContext *dc) {
|
|
bool inserted = KeyPaths.insert(
|
|
std::make_pair(keypath, std::make_tuple(root, value, dc))).second;
|
|
ASSERT(inserted);
|
|
|
|
if (solverState) {
|
|
recordChange(SolverTrail::Change::RecordedKeyPath(
|
|
const_cast<KeyPathExpr *>(keypath)));
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::removeKeyPath(const KeyPathExpr *keypath) {
|
|
bool erased = KeyPaths.erase(keypath);
|
|
ASSERT(erased);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyFixConstraint(
|
|
ConstraintFix *fix, Type type1, Type type2, ConstraintKind matchKind,
|
|
TypeMatchOptions flags, ConstraintLocatorBuilder locator) {
|
|
|
|
// Try with the fix.
|
|
TypeMatchOptions subflags =
|
|
getDefaultDecompositionOptions(flags) | TMF_ApplyingFix;
|
|
switch (fix->getKind()) {
|
|
case FixKind::ForceOptional: {
|
|
SmallVector<Type, 4> unwraps1;
|
|
type1->lookThroughAllOptionalTypes(unwraps1);
|
|
|
|
SmallVector<Type, 4> unwraps2;
|
|
type2->lookThroughAllOptionalTypes(unwraps2);
|
|
|
|
unsigned impact = 1;
|
|
if (unwraps1.size() > unwraps2.size())
|
|
impact = unwraps1.size() - unwraps2.size();
|
|
else if (unwraps2.size() > unwraps1.size())
|
|
impact = unwraps2.size() - unwraps1.size();
|
|
|
|
return recordFix(fix, impact) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::UnwrapOptionalBase:
|
|
case FixKind::UnwrapOptionalBaseWithOptionalResult: {
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
type1 = simplifyType(type1);
|
|
type2 = simplifyType(type2);
|
|
|
|
// Explicitly preserve l-valueness of an unwrapped member type.
|
|
if (!type1->is<LValueType>() && type2->is<LValueType>())
|
|
type1 = LValueType::get(type1);
|
|
|
|
// First type already appropriately set.
|
|
return matchTypes(type1, type2, matchKind, subflags, locator);
|
|
}
|
|
|
|
case FixKind::ForceDowncast:
|
|
// These work whenever they are suggested.
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
return SolutionKind::Solved;
|
|
|
|
case FixKind::AddressOf: {
|
|
// Assume that '&' was applied to the first type, turning an lvalue into
|
|
// an inout.
|
|
auto result = matchTypes(InOutType::get(type1->getRValueType()), type2,
|
|
matchKind, subflags, locator);
|
|
if (result == SolutionKind::Solved)
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
return result;
|
|
}
|
|
|
|
case FixKind::AllowTupleTypeMismatch: {
|
|
if (fix->getAs<AllowTupleTypeMismatch>()->isElementMismatch()) {
|
|
auto *locator = fix->getLocator();
|
|
if (recordFix(fix, /*impact*/locator->isForContextualType() ? 5 : 1))
|
|
return SolutionKind::Error;
|
|
return SolutionKind::Solved;
|
|
}
|
|
auto lhs = type1->castTo<TupleType>();
|
|
auto rhs = type2->castTo<TupleType>();
|
|
// Create a new tuple type the size of the smaller tuple with elements
|
|
// from the larger tuple whenever either side contains a type variable.
|
|
// For example (A, $0, B, $2) and (X, Y, $1) produces: (X, $0, B).
|
|
// This allows us to guarantee that the types will match, and all
|
|
// type variables will get bound to something as long as we default
|
|
// excess types in the larger tuple to Any. In the prior example,
|
|
// when the tuples (X, Y, $1) and (X, $0, B) get matched, $0 is equated
|
|
// to Y, $1 is equated to B, and $2 is defaulted to Any.
|
|
auto lhsLarger = lhs->getNumElements() >= rhs->getNumElements();
|
|
auto isLabelingFailure = lhs->getNumElements() == rhs->getNumElements();
|
|
auto larger = lhsLarger ? lhs : rhs;
|
|
auto smaller = lhsLarger ? rhs : lhs;
|
|
llvm::SmallVector<TupleTypeElt, 4> newTupleTypes;
|
|
|
|
// FIXME: For now, if either side contains pack expansion types, consider
|
|
// the fix constraint solved without trying to figure out which tuple
|
|
// elements were part of the pack.
|
|
{
|
|
if (containsPackExpansionType(lhs) ||
|
|
containsPackExpansionType(rhs)) {
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < larger->getNumElements(); ++i) {
|
|
auto largerElt = larger->getElement(i);
|
|
if (i < smaller->getNumElements()) {
|
|
auto smallerElt = smaller->getElement(i);
|
|
if (isLabelingFailure)
|
|
newTupleTypes.push_back(TupleTypeElt(largerElt.getType()));
|
|
else if (largerElt.getType()->isTypeVariableOrMember() ||
|
|
smallerElt.getType()->isTypeVariableOrMember())
|
|
newTupleTypes.push_back(largerElt);
|
|
else
|
|
newTupleTypes.push_back(smallerElt);
|
|
} else {
|
|
if (largerElt.getType()->isTypeVariableOrMember())
|
|
recordAnyTypeVarAsPotentialHole(largerElt.getType());
|
|
}
|
|
}
|
|
auto matchingType =
|
|
TupleType::get(newTupleTypes, getASTContext());
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
return matchTupleTypes(matchingType, smaller, matchKind, subflags, locator);
|
|
}
|
|
|
|
case FixKind::AllowFunctionTypeMismatch: {
|
|
if (recordFix(fix, /*impact=*/5))
|
|
return SolutionKind::Error;
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::TreatEphemeralAsNonEphemeral: {
|
|
auto *theFix = static_cast<TreatEphemeralAsNonEphemeral *>(fix);
|
|
// If we have a non-ephemeral locator for an ephemeral conversion, make a
|
|
// note of the fix.
|
|
auto conversion = theFix->getConversionKind();
|
|
switch (isConversionEphemeral(conversion, locator)) {
|
|
case ConversionEphemeralness::Ephemeral:
|
|
// Record the fix with an impact of zero. This ensures that non-ephemeral
|
|
// diagnostics don't impact solver behavior.
|
|
if (recordFix(fix, /*impact*/ 0))
|
|
return SolutionKind::Error;
|
|
|
|
return SolutionKind::Solved;
|
|
case ConversionEphemeralness::Unresolved:
|
|
case ConversionEphemeralness::NonEphemeral:
|
|
// FIXME: The unresolved case should form an unsolved constraint rather
|
|
// than being treated as fully solved. This will require a way to connect
|
|
// the unsolved constraint to the type variable for the unresolved
|
|
// overload such that the fix gets re-activated when the overload is
|
|
// bound.
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
|
|
case FixKind::AllowSendingMismatch:
|
|
case FixKind::InsertCall:
|
|
case FixKind::RemoveReturn:
|
|
case FixKind::RemoveAddressOf:
|
|
case FixKind::AddMissingArguments:
|
|
case FixKind::MoveOutOfOrderArgument:
|
|
case FixKind::SkipUnhandledConstructInResultBuilder:
|
|
case FixKind::UsePropertyWrapper:
|
|
case FixKind::UseWrappedValue:
|
|
case FixKind::AllowInvalidPropertyWrapperType:
|
|
case FixKind::RemoveProjectedValueArgument:
|
|
case FixKind::ExpandArrayIntoVarargs:
|
|
case FixKind::UseRawValue:
|
|
case FixKind::SpecifyBaseTypeForContextualMember:
|
|
case FixKind::CoerceToCheckedCast:
|
|
case FixKind::SpecifyObjectLiteralTypeImport:
|
|
case FixKind::AllowKeyPathRootTypeMismatch:
|
|
case FixKind::UnwrapOptionalBaseKeyPathApplication:
|
|
case FixKind::AllowCoercionToForceCast:
|
|
case FixKind::SpecifyKeyPathRootType:
|
|
case FixKind::SpecifyLabelToAssociateTrailingClosure:
|
|
case FixKind::AllowKeyPathWithoutComponents:
|
|
case FixKind::IgnoreInvalidResultBuilderBody:
|
|
case FixKind::IgnoreResultBuilderWithReturnStmts:
|
|
case FixKind::SpecifyContextualTypeForNil:
|
|
case FixKind::AllowRefToInvalidDecl:
|
|
case FixKind::SpecifyBaseTypeForOptionalUnresolvedMember:
|
|
case FixKind::SpecifyPackElementType:
|
|
case FixKind::AllowCheckedCastCoercibleOptionalType:
|
|
case FixKind::AllowNoopCheckedCast:
|
|
case FixKind::AllowNoopExistentialToCFTypeCheckedCast:
|
|
case FixKind::AllowUnsupportedRuntimeCheckedCast:
|
|
case FixKind::AllowCheckedCastToUnrelated:
|
|
case FixKind::AllowInvalidStaticMemberRefOnProtocolMetatype:
|
|
case FixKind::AllowWrappedValueMismatch:
|
|
case FixKind::RemoveExtraneousArguments:
|
|
case FixKind::SpecifyTypeForPlaceholder:
|
|
case FixKind::AllowAutoClosurePointerConversion:
|
|
case FixKind::NotCompileTimeLiteral:
|
|
case FixKind::RenameConflictingPatternVariables:
|
|
case FixKind::AllowInvalidPackElement:
|
|
case FixKind::AllowInvalidPackReference:
|
|
case FixKind::AllowInvalidPackExpansion:
|
|
case FixKind::IgnoreWhereClauseInPackIteration:
|
|
case FixKind::MacroMissingPound:
|
|
case FixKind::AllowGlobalActorMismatch:
|
|
case FixKind::AllowAssociatedValueMismatch:
|
|
case FixKind::AllowConcreteTypeSpecialization:
|
|
case FixKind::AllowFunctionSpecialization:
|
|
case FixKind::IgnoreGenericSpecializationArityMismatch:
|
|
case FixKind::IgnoreKeyPathSubscriptIndexMismatch:
|
|
case FixKind::AllowMemberRefOnExistential:
|
|
case FixKind::AllowNonClassTypeToConvertToAnyObject: {
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::GenericArgumentsMismatch: {
|
|
unsigned impact = 1;
|
|
if (type1->isMarkerExistential() || type2->isMarkerExistential())
|
|
++impact;
|
|
|
|
// If generic arguments mismatch ends up being recorded on the result
|
|
// of the chain or a try expression it means that there is a contextual
|
|
// conversion mismatch.
|
|
//
|
|
// For optional conversions the solver currently generates a disjunction
|
|
// with two choices - bind and optional-to-optional conversion which is
|
|
// anchored on the contextual expression. If we can get a fix recorded
|
|
// there that would result in a better diagnostic. It's only possible
|
|
// for optional-to-optional choice because it doesn't bind the
|
|
// variable immediately, so we need to downgrade direct fixes to prevent
|
|
// `bind` choice from considered better.
|
|
if (fix->directlyAt<OptionalEvaluationExpr>() ||
|
|
fix->directlyAt<AnyTryExpr>())
|
|
impact += 2;
|
|
|
|
return recordFix(fix, impact) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::IgnoreThrownErrorMismatch: {
|
|
return recordFix(fix, 2) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
case FixKind::IgnoreInvalidASTNode: {
|
|
return recordFix(fix, 10) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
case FixKind::IgnoreUnresolvedPatternVar: {
|
|
return recordFix(fix, 100) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::AllowInvalidMemberReferenceInInitAccessor: {
|
|
return recordFix(fix, 5) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::ExplicitlyConstructRawRepresentable: {
|
|
// Let's increase impact of this fix for binary operators because
|
|
// it's possible to get both `.rawValue` and construction fixes for
|
|
// different overloads of a binary operator and `.rawValue` is a
|
|
// better fix because raw representable has a failable constructor.
|
|
return recordFix(fix,
|
|
/*impact=*/isExpr<BinaryExpr>(locator.getAnchor()) ? 2 : 1)
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::TreatRValueAsLValue: {
|
|
unsigned impact =
|
|
TreatRValueAsLValue::assessImpact(*this, fix->getLocator());
|
|
return recordFix(fix, impact) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::AddConformance:
|
|
case FixKind::SkipSameTypeRequirement:
|
|
case FixKind::SkipSameShapeRequirement:
|
|
case FixKind::SkipSuperclassRequirement: {
|
|
return recordFix(fix, assessRequirementFailureImpact(*this, type1,
|
|
fix->getLocator()))
|
|
? SolutionKind::Error
|
|
: SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::AllowArgumentTypeMismatch:
|
|
case FixKind::IgnoreDefaultExprTypeMismatch: {
|
|
auto impact = 2;
|
|
// If there are any other argument mismatches already detected for this
|
|
// call, we increase the score even higher so more argument fixes means
|
|
// less viable is the overload.
|
|
if (llvm::any_of(getFixes(), [&](const ConstraintFix *fix) {
|
|
auto *fixLocator = fix->getLocator();
|
|
return fixLocator->findLast<LocatorPathElt::ApplyArgToParam>()
|
|
? fixLocator->getAnchor() == locator.getAnchor()
|
|
: false;
|
|
}))
|
|
impact += 3;
|
|
|
|
// Passing a closure to a parameter that doesn't expect one should
|
|
// be scored lower because there might be an overload that expects
|
|
// a closure but has other issues e.g. wrong number of parameters.
|
|
if (!type2->lookThroughAllOptionalTypes()->is<FunctionType>()) {
|
|
auto argument = simplifyLocatorToAnchor(fix->getLocator());
|
|
if (isExpr<ClosureExpr>(argument)) {
|
|
impact += 2;
|
|
}
|
|
}
|
|
|
|
// De-prioritize `Builtin.RawPointer` and `OpaquePointer` parameters
|
|
// because they usually clash with generic parameter mismatches e.g.
|
|
//
|
|
// let ptr: UnsafePointer<String> = ...
|
|
// _ = UnsafePointer<Int>(ups)
|
|
//
|
|
// Here initializer overloads have both `Builtin.RawPointer` and
|
|
// `OpaquePointer` variants, but the actual issue is that generic argument
|
|
// `String` doesn't match `Int`.
|
|
{
|
|
if (type2->is<BuiltinRawPointerType>())
|
|
impact += 1;
|
|
|
|
if (type2->getAnyNominal() == getASTContext().getOpaquePointerDecl())
|
|
impact += 1;
|
|
}
|
|
|
|
return recordFix(fix, impact) ? SolutionKind::Error : SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::TreatArrayLiteralAsDictionary: {
|
|
ArrayExpr *AE = getAsExpr<ArrayExpr>(fix->getAnchor());
|
|
assert(AE);
|
|
|
|
// If the array was empty, there's nothing to do.
|
|
if (AE->getNumElements() == 0)
|
|
return recordFix(fix) ? SolutionKind::Error : SolutionKind::Solved;
|
|
|
|
// For arrays with a single element, match the element type to the
|
|
// dictionary's key type.
|
|
SmallVector<Type, 2> optionals;
|
|
auto dictTy = type2->lookThroughAllOptionalTypes(optionals);
|
|
|
|
// If the fix is worse than the best solution, there's no point continuing.
|
|
if (recordFix(fix, optionals.size() + 1))
|
|
return SolutionKind::Error;
|
|
|
|
// Extract the dictionary key type.
|
|
ProtocolDecl *dictionaryProto =
|
|
Context.getProtocol(KnownProtocolKind::ExpressibleByDictionaryLiteral);
|
|
auto keyAssocTy = dictionaryProto->getAssociatedType(Context.Id_Key);
|
|
auto valueBaseTy = createTypeVariable(getConstraintLocator(locator),
|
|
TVO_CanBindToLValue |
|
|
TVO_CanBindToNoEscape |
|
|
TVO_CanBindToHole);
|
|
assignFixedType(valueBaseTy, dictTy);
|
|
auto dictionaryKeyTy = DependentMemberType::get(valueBaseTy, keyAssocTy);
|
|
|
|
// Extract the array element type.
|
|
auto elemTy = type1->getArrayElementType();
|
|
|
|
ConstraintLocator *elemLoc = getConstraintLocator(AE->getElement(0));
|
|
ConstraintKind kind = isDictionaryType(dictTy)
|
|
? ConstraintKind::Conversion
|
|
: ConstraintKind::Equal;
|
|
return matchTypes(elemTy, dictionaryKeyTy, kind, subflags, elemLoc);
|
|
}
|
|
|
|
case FixKind::ContextualMismatch:
|
|
case FixKind::IgnoreContextualType:
|
|
case FixKind::IgnoreAssignmentDestinationType:
|
|
case FixKind::AllowConversionThroughInOut:
|
|
case FixKind::IgnoreCollectionElementContextualMismatch: {
|
|
auto impact = 1;
|
|
|
|
auto locator = fix->getLocator();
|
|
if (auto branchElt =
|
|
locator->getLastElementAs<LocatorPathElt::TernaryBranch>()) {
|
|
// If this is `else` branch of a ternary operator, let's
|
|
// increase its impact to eliminate the chance of ambiguity.
|
|
//
|
|
// Branches are connected through two `subtype` constraints
|
|
// to a common type variable with represents their join, which
|
|
// means that result would attempt a type from each side if
|
|
// one is available and that would result in two fixes - one for
|
|
// each mismatched branch.
|
|
if (branchElt->forElse()) {
|
|
impact = 10;
|
|
} else {
|
|
// Also increase impact for `then` branch lower than `else` to still
|
|
// eliminate ambiguity, but slightly worst than the average fix to avoid
|
|
// so the solution which record this fix wouldn't be picked over one
|
|
// that has contextual mismatch fix on the result of ternary expression.
|
|
impact = 5;
|
|
}
|
|
}
|
|
using SingleValueStmtResult = LocatorPathElt::SingleValueStmtResult;
|
|
if (auto branchElt = locator->getLastElementAs<SingleValueStmtResult>()) {
|
|
// Similar to a ternary, except we have N branches. Let's prefer the fix
|
|
// on the first branch, and discount subsequent branches by index.
|
|
if (branchElt->getIndex() > 0)
|
|
impact = 9 + branchElt->getIndex();
|
|
}
|
|
// Increase impact of invalid conversions to `Any` and `AnyHashable`
|
|
// associated with collection elements (i.e. for-in sequence element)
|
|
// because it means that other side is structurally incompatible.
|
|
if (fix->getKind() == FixKind::IgnoreCollectionElementContextualMismatch) {
|
|
if (type2->isAny() || type2->isAnyHashable())
|
|
++impact;
|
|
}
|
|
|
|
if (recordFix(fix, impact))
|
|
return SolutionKind::Error;
|
|
|
|
if (auto *fnType1 = type1->getAs<FunctionType>()) {
|
|
// If this is a contextual mismatch between two
|
|
// function types which we couldn't find a more
|
|
// specific fix for. Let's assume that such types
|
|
// are completely disjoint and adjust impact of
|
|
// the fix accordingly.
|
|
if (type2->is<FunctionType>()) {
|
|
increaseScore(SK_Fix, locator, 10);
|
|
} else {
|
|
// If type produced by expression is a function type
|
|
// with result type matching contextual, it should have
|
|
// been diagnosed as "missing explicit call", let's
|
|
// increase the score to make sure that we don't impede that.
|
|
auto result = matchTypes(fnType1->getResult(), type2, matchKind,
|
|
TMF_ApplyingFix, locator);
|
|
if (result == SolutionKind::Solved)
|
|
increaseScore(SK_Fix, locator);
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::AllowNonOptionalWeak: {
|
|
if (recordFix(fix))
|
|
return SolutionKind::Error;
|
|
|
|
// NOTE: The order here is important! Pattern matching equality is
|
|
// not symmetric (we need to fix that either by using a different
|
|
// constraint, or actually making it symmetric).
|
|
(void)matchTypes(OptionalType::get(type1), type2, ConstraintKind::Equal,
|
|
TypeMatchFlags::TMF_ApplyingFix, locator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case FixKind::UseSubscriptOperator:
|
|
case FixKind::ExplicitlyEscaping:
|
|
case FixKind::MarkGlobalActorFunction:
|
|
case FixKind::RelabelArguments:
|
|
case FixKind::RemoveCall:
|
|
case FixKind::RemoveUnwrap:
|
|
case FixKind::DefineMemberBasedOnUse:
|
|
case FixKind::AllowTypeOrInstanceMember:
|
|
case FixKind::AllowInvalidPartialApplication:
|
|
case FixKind::AllowInvalidInitRef:
|
|
case FixKind::AllowClosureParameterDestructuring:
|
|
case FixKind::AllowInaccessibleMember:
|
|
case FixKind::AllowMemberFromWrongModule:
|
|
case FixKind::AllowAnyObjectKeyPathRoot:
|
|
case FixKind::AllowMultiArgFuncKeyPathMismatch:
|
|
case FixKind::TreatKeyPathSubscriptIndexAsHashable:
|
|
case FixKind::AllowInvalidRefInKeyPath:
|
|
case FixKind::DefaultGenericArgument:
|
|
case FixKind::AllowMutatingMemberOnRValueBase:
|
|
case FixKind::AllowTupleSplatForSingleParameter:
|
|
case FixKind::SpecifyClosureParameterType:
|
|
case FixKind::SpecifyClosureReturnType:
|
|
case FixKind::AddQualifierToAccessTopLevelName:
|
|
case FixKind::AddSendableAttribute:
|
|
case FixKind::DropThrowsAttribute:
|
|
case FixKind::DropAsyncAttribute:
|
|
case FixKind::AllowSwiftToCPointerConversion:
|
|
case FixKind::AllowTupleLabelMismatch:
|
|
case FixKind::AddExplicitExistentialCoercion:
|
|
case FixKind::DestructureTupleToMatchPackExpansionParameter:
|
|
case FixKind::AllowValueExpansionWithoutPackReferences:
|
|
case FixKind::IgnoreInvalidPatternInExpr:
|
|
case FixKind::IgnoreInvalidPlaceholder:
|
|
case FixKind::IgnoreOutOfPlaceThenStmt:
|
|
case FixKind::IgnoreMissingEachKeyword:
|
|
case FixKind::AllowInlineArrayLiteralCountMismatch:
|
|
case FixKind::TooManyDynamicMemberLookups:
|
|
case FixKind::IgnoreNonMetatypeDynamicType:
|
|
case FixKind::IgnoreIsolatedConformance:
|
|
llvm_unreachable("handled elsewhere");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled FixKind in switch.");
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::addConstraintImpl(ConstraintKind kind, Type first,
|
|
Type second,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored) {
|
|
ASSERT(!PreparingOverload);
|
|
|
|
assert(first && "Missing first type");
|
|
assert(second && "Missing second type");
|
|
|
|
TypeMatchOptions subflags = TMF_GenerateConstraints;
|
|
switch (kind) {
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
return matchTypes(first, second, kind, subflags, locator);
|
|
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
return addArgumentConversionConstraintImpl(kind, first, second, locator);
|
|
|
|
case ConstraintKind::BridgingConversion:
|
|
return simplifyBridgingConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
return simplifyDynamicCallableApplicableFnConstraint(first, second,
|
|
subflags, locator);
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
return simplifyDynamicTypeOfConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
return simplifyEscapableFunctionOfConstraint(first, second,
|
|
subflags, locator);
|
|
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
return simplifyOpenedExistentialOfConstraint(first, second,
|
|
subflags, locator);
|
|
|
|
case ConstraintKind::SubclassOf:
|
|
return simplifySubclassOfConstraint(first, second, locator, subflags);
|
|
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
return simplifyConformsToConstraint(first, second, kind, locator,
|
|
subflags);
|
|
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
return simplifyTransitivelyConformsTo(first, second, locator,
|
|
subflags);
|
|
|
|
case ConstraintKind::CheckedCast:
|
|
return simplifyCheckedCastConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::OptionalObject:
|
|
return simplifyOptionalObjectConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::Defaultable:
|
|
return simplifyDefaultableConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::PropertyWrapper:
|
|
return simplifyPropertyWrapperConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::OneWayEqual:
|
|
return simplifyOneWayConstraint(kind, first, second, subflags, locator);
|
|
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
return simplifyUnresolvedMemberChainBaseConstraint(first, second, subflags,
|
|
locator);
|
|
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
return simplifyBindTupleOfFunctionParamsConstraint(first, second, subflags,
|
|
locator);
|
|
|
|
case ConstraintKind::PackElementOf:
|
|
return simplifyPackElementOfConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::ShapeOf:
|
|
return simplifyShapeOfConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::SameShape:
|
|
return simplifySameShapeConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
return simplifyExplicitGenericArgumentsConstraint(
|
|
first, second, subflags, locator);
|
|
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
return simplifyMaterializePackExpansionConstraint(first, second, subflags,
|
|
locator);
|
|
|
|
case ConstraintKind::LValueObject:
|
|
return simplifyLValueObjectConstraint(first, second, subflags, locator);
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::KeyPath:
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::FallbackType:
|
|
case ConstraintKind::SyntacticElement:
|
|
case ConstraintKind::ApplicableFunction:
|
|
llvm_unreachable("Use the correct addConstraint()");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ConstraintKind in switch.");
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::addArgumentConversionConstraintImpl(
|
|
ConstraintKind kind, Type first, Type second,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(kind == ConstraintKind::ArgumentConversion ||
|
|
kind == ConstraintKind::OperatorArgumentConversion);
|
|
|
|
// If we have an unresolved closure argument, form an unsolved argument
|
|
// conversion constraint, making sure to reference the type variables for
|
|
// a result builder if applicable. This ensures we properly connect the
|
|
// closure type variable with any type variables in the result builder, as
|
|
// such type variables will be accessible within the body of the closure when
|
|
// we open it.
|
|
first = getFixedTypeRecursive(first, /*rvalue*/ false);
|
|
if (auto *argTypeVar = first->getAs<TypeVariableType>()) {
|
|
if (argTypeVar->getImpl().isClosureType()) {
|
|
// Extract any type variables present in the parameter's result builder.
|
|
SmallPtrSet<TypeVariableType *, 4> typeVars;
|
|
if (auto builderTy = getOpenedResultBuilderTypeFor(*this, locator))
|
|
builderTy->getTypeVariables(typeVars);
|
|
|
|
SmallVector<TypeVariableType *, 4> referencedVars{typeVars.begin(),
|
|
typeVars.end()};
|
|
|
|
auto *loc = getConstraintLocator(locator);
|
|
addUnsolvedConstraint(
|
|
Constraint::create(*this, kind, first, second, loc, referencedVars));
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
return matchTypes(first, second, kind, TMF_GenerateConstraints, locator);
|
|
}
|
|
|
|
void
|
|
ConstraintSystem::addKeyPathApplicationRootConstraint(Type root, ConstraintLocatorBuilder locator) {
|
|
// If this is a subscript with a KeyPath expression, add a constraint that
|
|
// connects the subscript's root type to the root type of the KeyPath.
|
|
SmallVector<LocatorPathElt, 4> path;
|
|
auto anchor = locator.getLocatorParts(path);
|
|
|
|
auto subscript = getAsExpr<SubscriptExpr>(anchor);
|
|
if (!subscript)
|
|
return;
|
|
|
|
assert((path.size() == 1 &&
|
|
path[0].getKind() == ConstraintLocator::SubscriptMember) ||
|
|
(path.size() == 2 &&
|
|
path[1].getKind() == ConstraintLocator::KeyPathDynamicMember));
|
|
|
|
// If a keypath subscript is used without the expected `keyPath:` label,
|
|
// continue with type-checking when attempting fixes so that it gets caught
|
|
// by the argument label checking.
|
|
auto *argList = subscript->getArgs();
|
|
auto *unaryArg = argList->getUnaryExpr();
|
|
assert(unaryArg && "Expected KeyPathExpr apply to have single argument");
|
|
|
|
auto *keyPathExpr = dyn_cast<KeyPathExpr>(unaryArg);
|
|
if (!keyPathExpr)
|
|
return;
|
|
|
|
auto typeVar = getType(keyPathExpr)->getAs<TypeVariableType>();
|
|
if (!typeVar)
|
|
return;
|
|
|
|
auto constraints = CG.gatherNearbyConstraints(
|
|
typeVar,
|
|
[&keyPathExpr](Constraint *constraint) -> bool {
|
|
if (constraint->getKind() != ConstraintKind::KeyPath)
|
|
return false;
|
|
|
|
auto *locator = constraint->getLocator();
|
|
if (auto KPE = getAsExpr<KeyPathExpr>(locator->getAnchor()))
|
|
return KPE == keyPathExpr;
|
|
return false;
|
|
});
|
|
|
|
for (auto constraint : constraints) {
|
|
auto keyPathRootTy = constraint->getSecondType();
|
|
addConstraint(ConstraintKind::Subtype, root->getWithoutSpecifierType(),
|
|
keyPathRootTy, locator);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConstraintSystem::addKeyPathApplicationConstraint(Type keypath,
|
|
Type root, Type value,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored) {
|
|
addKeyPathApplicationRootConstraint(root, locator);
|
|
|
|
switch (simplifyKeyPathApplicationConstraint(keypath, root, value,
|
|
TMF_GenerateConstraints,
|
|
locator)) {
|
|
case SolutionKind::Error:
|
|
if (shouldRecordFailedConstraint()) {
|
|
auto c = Constraint::create(*this, ConstraintKind::KeyPathApplication,
|
|
keypath, root, value,
|
|
getConstraintLocator(locator));
|
|
if (isFavored) c->setFavored();
|
|
recordFailedConstraint(c);
|
|
}
|
|
return;
|
|
|
|
case SolutionKind::Solved:
|
|
return;
|
|
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
}
|
|
}
|
|
|
|
void
|
|
ConstraintSystem::addKeyPathConstraint(
|
|
Type keypath,
|
|
Type root, Type value,
|
|
ArrayRef<TypeVariableType *> componentTypeVars,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored) {
|
|
switch (simplifyKeyPathConstraint(keypath, root, value,
|
|
componentTypeVars,
|
|
TMF_GenerateConstraints,
|
|
locator)) {
|
|
case SolutionKind::Error:
|
|
if (shouldRecordFailedConstraint()) {
|
|
auto c = Constraint::create(*this, ConstraintKind::KeyPath,
|
|
keypath, root, value,
|
|
getConstraintLocator(locator),
|
|
componentTypeVars);
|
|
if (isFavored) c->setFavored();
|
|
recordFailedConstraint(c);
|
|
}
|
|
return;
|
|
|
|
case SolutionKind::Solved:
|
|
return;
|
|
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addConstraint(Requirement req,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored,
|
|
bool prohibitNonisolatedConformance,
|
|
PreparedOverloadBuilder *preparedOverload) {
|
|
bool conformsToAnyObject = false;
|
|
std::optional<ConstraintKind> kind;
|
|
switch (req.getKind()) {
|
|
case RequirementKind::SameShape: {
|
|
auto type1 = req.getFirstType();
|
|
auto type2 = req.getSecondType();
|
|
|
|
addConstraint(ConstraintKind::SameShape, type1, type2, locator,
|
|
/*isFavored=*/false, preparedOverload);
|
|
return;
|
|
}
|
|
|
|
case RequirementKind::Conformance:
|
|
kind = prohibitNonisolatedConformance
|
|
? ConstraintKind::NonisolatedConformsTo
|
|
: ConstraintKind::ConformsTo;
|
|
break;
|
|
case RequirementKind::Superclass: {
|
|
// FIXME: Should always use ConstraintKind::SubclassOf, but that breaks
|
|
// a couple of diagnostics
|
|
if (auto *typeVar = req.getFirstType()->getAs<TypeVariableType>()) {
|
|
if (typeVar->getImpl().canBindToPack()) {
|
|
kind = ConstraintKind::SubclassOf;
|
|
break;
|
|
}
|
|
}
|
|
|
|
conformsToAnyObject = true;
|
|
kind = ConstraintKind::Subtype;
|
|
break;
|
|
}
|
|
case RequirementKind::SameType:
|
|
kind = ConstraintKind::Bind;
|
|
break;
|
|
case RequirementKind::Layout:
|
|
// Only a class constraint can be modeled as a constraint, and only that can
|
|
// appear outside of a @_specialize at the moment anyway.
|
|
if (req.getLayoutConstraint()->isClass()) {
|
|
conformsToAnyObject = true;
|
|
break;
|
|
} else {
|
|
llvm_unreachable("unexpected LayoutConstraint kind");
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto firstType = req.getFirstType();
|
|
if (kind) {
|
|
addConstraint(*kind, req.getFirstType(), req.getSecondType(), locator,
|
|
isFavored, preparedOverload);
|
|
}
|
|
|
|
if (conformsToAnyObject) {
|
|
auto anyObject = getASTContext().getAnyObjectConstraint();
|
|
addConstraint(ConstraintKind::ConformsTo, firstType, anyObject, locator,
|
|
/*isFavored=*/false, preparedOverload);
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addConstraint(ConstraintKind kind, Type first,
|
|
Type second,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored,
|
|
PreparedOverloadBuilder *preparedOverload) {
|
|
if (preparedOverload) {
|
|
ASSERT(PreparingOverload);
|
|
|
|
auto *locatorPtr = getConstraintLocator(locator);
|
|
|
|
// Fast path to save on memory usage.
|
|
if (kind == ConstraintKind::Bind &&
|
|
locatorPtr == preparedOverload->Locator) {
|
|
ASSERT(!isFavored);
|
|
preparedOverload->addedBindConstraint(first, second);
|
|
return;
|
|
}
|
|
|
|
auto c = Constraint::create(*this, kind, first, second, locatorPtr);
|
|
|
|
if (isFavored)
|
|
c->setFavored();
|
|
|
|
preparedOverload->addedConstraint(c);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!PreparingOverload);
|
|
|
|
switch (addConstraintImpl(kind, first, second, locator, isFavored)) {
|
|
case SolutionKind::Error:
|
|
// Add a failing constraint, if needed.
|
|
if (shouldRecordFailedConstraint()) {
|
|
auto c = Constraint::create(*this, kind, first, second,
|
|
getConstraintLocator(locator));
|
|
if (isFavored) c->setFavored();
|
|
recordFailedConstraint(c);
|
|
}
|
|
return;
|
|
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
|
|
case SolutionKind::Solved:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addApplicationConstraint(
|
|
FunctionType *appliedFn, Type calleeType,
|
|
std::optional<TrailingClosureMatching> trailingClosureMatching,
|
|
DeclContext *useDC,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto recordFailure = [&]() {
|
|
if (shouldRecordFailedConstraint()) {
|
|
auto *c = Constraint::createApplicableFunction(
|
|
*this, appliedFn, calleeType, trailingClosureMatching, useDC,
|
|
getConstraintLocator(locator));
|
|
recordFailedConstraint(c);
|
|
}
|
|
};
|
|
|
|
// First try to simplify the overload set for the function being applied.
|
|
if (simplifyAppliedOverloads(calleeType, appliedFn, locator)) {
|
|
recordFailure();
|
|
return;
|
|
}
|
|
|
|
switch (simplifyApplicableFnConstraint(appliedFn, calleeType,
|
|
trailingClosureMatching, useDC,
|
|
TMF_GenerateConstraints, locator)) {
|
|
case SolutionKind::Error:
|
|
recordFailure();
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
|
|
case SolutionKind::Solved:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addContextualConversionConstraint(
|
|
Expr *expr, Type conversionType, ContextualTypePurpose purpose,
|
|
ConstraintLocator *locator) {
|
|
if (conversionType.isNull())
|
|
return;
|
|
|
|
// Determine the type of the constraint.
|
|
auto constraintKind = ConstraintKind::Conversion;
|
|
switch (purpose) {
|
|
case CTP_ReturnStmt:
|
|
case CTP_Initialization: {
|
|
if (conversionType->is<OpaqueTypeArchetypeType>())
|
|
constraintKind = ConstraintKind::Equal;
|
|
// Alternatively, we might have a nested opaque archetype, e.g. `(some P)?`.
|
|
// In that case, we want `ConstraintKind::Conversion`.
|
|
break;
|
|
}
|
|
case CTP_CallArgument:
|
|
constraintKind = ConstraintKind::ArgumentConversion;
|
|
break;
|
|
|
|
case CTP_YieldByReference:
|
|
// In a by-reference yield, we expect the contextual type to be an
|
|
// l-value type, so the result must be bound to that.
|
|
constraintKind = ConstraintKind::Bind;
|
|
break;
|
|
|
|
case CTP_DiscardStmt:
|
|
// For the 'discard X', we always expect the contextual type to be
|
|
// equal to the type of 'self'.
|
|
constraintKind = ConstraintKind::Equal;
|
|
break;
|
|
|
|
case CTP_ForEachSequence:
|
|
// Sequence expression associated with `for-in` loop has to conform
|
|
// to `Sequence` or `AsyncSequence` protocol depending on the context.
|
|
constraintKind = ConstraintKind::ConformsTo;
|
|
break;
|
|
|
|
case CTP_ArrayElement:
|
|
case CTP_AssignSource:
|
|
case CTP_CalleeResult:
|
|
case CTP_CannotFail:
|
|
case CTP_Condition:
|
|
case CTP_Unused:
|
|
case CTP_YieldByValue:
|
|
case CTP_CaseStmt:
|
|
case CTP_ThrowStmt:
|
|
case CTP_EnumCaseRawValue:
|
|
case CTP_DefaultParameter:
|
|
case CTP_AutoclosureDefaultParameter:
|
|
case CTP_ClosureResult:
|
|
case CTP_DictionaryKey:
|
|
case CTP_DictionaryValue:
|
|
case CTP_CoerceOperand:
|
|
case CTP_SubscriptAssignSource:
|
|
case CTP_WrappedProperty:
|
|
case CTP_ComposedPropertyWrapper:
|
|
case CTP_ExprPattern:
|
|
case CTP_SingleValueStmtBranch:
|
|
break;
|
|
}
|
|
|
|
// Add the constraint.
|
|
// FIXME: This is the wrong place to be opening the opaque type.
|
|
auto openedType = openOpaqueType(conversionType, purpose, locator,
|
|
/*ownerDecl=*/nullptr);
|
|
addConstraint(constraintKind, getType(expr), openedType, locator,
|
|
/*isFavored*/ true);
|
|
}
|
|
|
|
void ConstraintSystem::addFixConstraint(ConstraintFix *fix, ConstraintKind kind,
|
|
Type first, Type second,
|
|
ConstraintLocatorBuilder locator,
|
|
bool isFavored) {
|
|
TypeMatchOptions subflags = TMF_GenerateConstraints;
|
|
switch (simplifyFixConstraint(fix, first, second, kind, subflags, locator)) {
|
|
case SolutionKind::Error:
|
|
// Add a failing constraint, if needed.
|
|
if (shouldRecordFailedConstraint()) {
|
|
auto c = Constraint::createFixed(*this, kind, fix, first, second,
|
|
getConstraintLocator(locator));
|
|
if (isFavored) c->setFavored();
|
|
recordFailedConstraint(c);
|
|
}
|
|
return;
|
|
|
|
case SolutionKind::Unsolved:
|
|
llvm_unreachable("should have generated constraints");
|
|
|
|
case SolutionKind::Solved:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::addExplicitConversionConstraint(
|
|
Type fromType, Type toType, RememberChoice_t rememberChoice,
|
|
ConstraintLocatorBuilder locator, ConstraintFix *compatFix) {
|
|
SmallVector<Constraint *, 3> constraints;
|
|
|
|
auto locatorPtr = getConstraintLocator(locator);
|
|
|
|
// Coercion (the common case).
|
|
Constraint *coerceConstraint =
|
|
Constraint::create(*this, ConstraintKind::Conversion,
|
|
fromType, toType, locatorPtr);
|
|
coerceConstraint->setFavored();
|
|
constraints.push_back(coerceConstraint);
|
|
|
|
// The source type can be explicitly converted to the destination type.
|
|
Constraint *bridgingConstraint =
|
|
Constraint::create(*this, ConstraintKind::BridgingConversion,
|
|
fromType, toType, locatorPtr);
|
|
constraints.push_back(bridgingConstraint);
|
|
|
|
// If we're allowed to use a compatibility fix that emits a warning on
|
|
// failure, add it to the disjunction so that it's recorded on failure.
|
|
if (compatFix) {
|
|
constraints.push_back(
|
|
Constraint::createFixed(*this, ConstraintKind::BridgingConversion,
|
|
compatFix, fromType, toType, locatorPtr));
|
|
}
|
|
|
|
addDisjunctionConstraint(constraints, locator, rememberChoice);
|
|
}
|
|
|
|
TypeVariableType *ConstraintSystem::addMaterializePackExpansionConstraint(
|
|
Type tupleType, ConstraintLocatorBuilder locator) {
|
|
assert(isSingleUnlabeledPackExpansionTuple(tupleType));
|
|
TypeVariableType *packVar =
|
|
createTypeVariable(getConstraintLocator(locator), TVO_CanBindToPack);
|
|
addConstraint(ConstraintKind::MaterializePackExpansion, tupleType, packVar,
|
|
getConstraintLocator(locator, {ConstraintLocator::Member}));
|
|
return packVar;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyConstraint(const Constraint &constraint) {
|
|
auto matchKind = constraint.getKind();
|
|
switch (matchKind) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::OperatorArgumentConversion: {
|
|
// Relational constraints.
|
|
|
|
// If there is a fix associated with this constraint, apply it.
|
|
if (auto fix = constraint.getFix()) {
|
|
return simplifyFixConstraint(fix, constraint.getFirstType(),
|
|
constraint.getSecondType(), matchKind,
|
|
std::nullopt, constraint.getLocator());
|
|
}
|
|
|
|
// If there is a restriction on this constraint, apply it directly rather
|
|
// than going through the general \c matchTypes() machinery.
|
|
if (auto restriction = constraint.getRestriction()) {
|
|
return simplifyRestrictedConstraint(
|
|
*restriction, constraint.getFirstType(), constraint.getSecondType(),
|
|
matchKind, std::nullopt, constraint.getLocator());
|
|
}
|
|
|
|
return matchTypes(constraint.getFirstType(), constraint.getSecondType(),
|
|
matchKind, std::nullopt, constraint.getLocator());
|
|
}
|
|
|
|
case ConstraintKind::BridgingConversion:
|
|
// If there is a fix associated with this constraint, apply it.
|
|
if (auto fix = constraint.getFix()) {
|
|
return simplifyFixConstraint(fix, constraint.getFirstType(),
|
|
constraint.getSecondType(), matchKind,
|
|
std::nullopt, constraint.getLocator());
|
|
}
|
|
|
|
return simplifyBridgingConstraint(constraint.getFirstType(),
|
|
constraint.getSecondType(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
return simplifyApplicableFnConstraint(
|
|
constraint.getAppliedFunctionType(), constraint.getCalleeType(),
|
|
constraint.getTrailingClosureMatching(),
|
|
constraint.getDeclContext(), /*flags=*/std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
return simplifyDynamicCallableApplicableFnConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
return simplifyDynamicTypeOfConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::EscapableFunctionOf:
|
|
return simplifyEscapableFunctionOfConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
return simplifyOpenedExistentialOfConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::KeyPath:
|
|
return simplifyKeyPathConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
constraint.getThirdType(), constraint.getTypeVariables(), std::nullopt,
|
|
constraint.getLocator());
|
|
|
|
case ConstraintKind::KeyPathApplication:
|
|
return simplifyKeyPathApplicationConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
constraint.getThirdType(), std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::BindOverload: {
|
|
if (auto *fix = constraint.getFix()) {
|
|
// TODO(diagnostics): Impact should be associated with a fix unless
|
|
// it's a contextual problem, then only solver can decide what the impact
|
|
// would be in each particular situation.
|
|
auto impact =
|
|
fix->getKind() == FixKind::AddQualifierToAccessTopLevelName ? 10 : 1;
|
|
if (recordFix(fix, impact))
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// FIXME: Transitional hack.
|
|
bool enablePreparedOverloads = getASTContext().TypeCheckerOpts.SolverEnablePreparedOverloads;
|
|
bool forDiagnostics = inSalvageMode();
|
|
|
|
// Don't reuse prepared overloads from normal type checking in salvage(),
|
|
// since they will contain fixes and such.
|
|
auto *preparedOverload = constraint.getPreparedOverload();
|
|
if (preparedOverload &&
|
|
preparedOverload->wasForDiagnostics() != forDiagnostics) {
|
|
preparedOverload = nullptr;
|
|
}
|
|
|
|
if (!preparedOverload &&
|
|
enablePreparedOverloads &&
|
|
constraint.getOverloadChoice().canBePrepared()) {
|
|
preparedOverload = prepareOverload(constraint.getOverloadChoice(),
|
|
constraint.getDeclContext(),
|
|
constraint.getLocator(),
|
|
forDiagnostics);
|
|
const_cast<Constraint &>(constraint).setPreparedOverload(preparedOverload);
|
|
}
|
|
|
|
resolveOverload(constraint.getOverloadChoice(),
|
|
constraint.getDeclContext(),
|
|
constraint.getLocator(),
|
|
constraint.getFirstType(),
|
|
preparedOverload);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case ConstraintKind::SubclassOf:
|
|
return simplifySubclassOfConstraint(constraint.getFirstType(),
|
|
constraint.getSecondType(),
|
|
constraint.getLocator(),
|
|
/*flags*/ std::nullopt);
|
|
|
|
case ConstraintKind::NonisolatedConformsTo:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
return simplifyConformsToConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
constraint.getKind(), constraint.getLocator(), std::nullopt);
|
|
|
|
case ConstraintKind::TransitivelyConformsTo:
|
|
return simplifyTransitivelyConformsTo(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
constraint.getLocator(), std::nullopt);
|
|
|
|
case ConstraintKind::CheckedCast: {
|
|
auto result = simplifyCheckedCastConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
// NOTE: simplifyCheckedCastConstraint() may return Unsolved, e.g. if the
|
|
// subexpression's type is unresolved. Don't record the fix until we
|
|
// successfully simplify the constraint.
|
|
if (result == SolutionKind::Solved) {
|
|
if (auto *fix = constraint.getFix()) {
|
|
if (recordFix(fix)) {
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
case ConstraintKind::OptionalObject:
|
|
return simplifyOptionalObjectConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
return simplifyMemberConstraint(
|
|
constraint.getKind(), constraint.getFirstType(), constraint.getMember(),
|
|
constraint.getSecondType(), constraint.getDeclContext(),
|
|
constraint.getFunctionRefInfo(),
|
|
/*outerAlternatives=*/{},
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::ValueWitness:
|
|
return simplifyValueWitnessConstraint(
|
|
constraint.getKind(), constraint.getFirstType(),
|
|
constraint.getRequirement(), constraint.getSecondType(),
|
|
constraint.getDeclContext(), constraint.getFunctionRefInfo(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::Defaultable:
|
|
return simplifyDefaultableConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::FallbackType:
|
|
return simplifyFallbackTypeConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
constraint.getTypeVariables(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::PropertyWrapper:
|
|
return simplifyPropertyWrapperConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::Conjunction:
|
|
// See {Dis, Con}junctionStep class in CSStep.cpp for solving
|
|
return SolutionKind::Unsolved;
|
|
|
|
case ConstraintKind::OneWayEqual:
|
|
return simplifyOneWayConstraint(
|
|
constraint.getKind(), constraint.getFirstType(),
|
|
constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::UnresolvedMemberChainBase:
|
|
return simplifyUnresolvedMemberChainBaseConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags=*/std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::SyntacticElement:
|
|
return simplifySyntacticElementConstraint(
|
|
constraint.getSyntacticElement(), constraint.getElementContext(),
|
|
constraint.isDiscardedElement(),
|
|
/*flags=*/std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::BindTupleOfFunctionParams:
|
|
return simplifyBindTupleOfFunctionParamsConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::PackElementOf:
|
|
return simplifyPackElementOfConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::ShapeOf:
|
|
return simplifyShapeOfConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::SameShape:
|
|
return simplifySameShapeConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::ExplicitGenericArguments:
|
|
return simplifyExplicitGenericArgumentsConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::MaterializePackExpansion:
|
|
return simplifyMaterializePackExpansionConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
|
|
case ConstraintKind::LValueObject:
|
|
return simplifyLValueObjectConstraint(
|
|
constraint.getFirstType(), constraint.getSecondType(),
|
|
/*flags*/ std::nullopt, constraint.getLocator());
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ConstraintKind in switch.");
|
|
}
|
|
|
|
void ConstraintSystem::simplifyDisjunctionChoice(Constraint *choice) {
|
|
// Simplify this term in the disjunction.
|
|
switch (simplifyConstraint(*choice)) {
|
|
case ConstraintSystem::SolutionKind::Error:
|
|
recordFailedConstraint(choice);
|
|
break;
|
|
|
|
case ConstraintSystem::SolutionKind::Solved:
|
|
break;
|
|
|
|
case ConstraintSystem::SolutionKind::Unsolved:
|
|
addUnsolvedConstraint(choice);
|
|
break;
|
|
}
|
|
}
|