Files
swift-mirror/stdlib/public/runtime/HeapObject.cpp
Erik Eckstein 3bfebf10f7 runtime lib: a mechanism to set an "immutable" flag on an object for COW buffer runtime checking.
In an assert built of the library, store an extra boolean flag (isImmutable) in the object side-buffer table.
This flag can be set and get by the Array implementation to sanity check the immutability status of the buffer object.
2020-06-08 15:01:29 +02:00

926 lines
33 KiB
C++

//===--- HeapObject.cpp - Swift Language ABI Allocation Support -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Allocation ABI Shims While the Language is Bootstrapped
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Once.h"
#include "swift/ABI/System.h"
#include "MetadataCache.h"
#include "Private.h"
#include "RuntimeInvocationsTracking.h"
#include "WeakReference.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/InstrumentsSupport.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <thread>
#include "../SwiftShims/GlobalObjects.h"
#include "../SwiftShims/RuntimeShims.h"
#if SWIFT_OBJC_INTEROP
# include <objc/NSObject.h>
# include <objc/runtime.h>
# include <objc/message.h>
# include <objc/objc.h>
# include "swift/Runtime/ObjCBridge.h"
# include "swift/Runtime/Once.h"
# include <dlfcn.h>
#endif
#include "Leaks.h"
using namespace swift;
// Check to make sure the runtime is being built with a compiler that
// supports the Swift calling convention.
//
// If the Swift calling convention is not in use, functions such as
// swift_allocBox and swift_makeBoxUnique that rely on their return value
// being passed in a register to be compatible with Swift may miscompile on
// some platforms and silently fail.
#if !__has_attribute(swiftcall)
#error "The runtime must be built with a compiler that supports swiftcall."
#endif
/// Returns true if the pointer passed to a native retain or release is valid.
/// If false, the operation should immediately return.
static inline bool isValidPointerForNativeRetain(const void *p) {
#if defined(__x86_64__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) || defined(__s390x__) || (defined(__powerpc64__) && defined(__LITTLE_ENDIAN__))
// On these platforms, except s390x, the upper half of address space is reserved for the
// kernel, so we can assume that pointer values in this range are invalid.
// On s390x it is theoretically possible to have high bit set but in practice
// it is unlikely.
return (intptr_t)p > 0;
#else
return p != nullptr;
#endif
}
// Call the appropriate implementation of the `name` function, passing `args`
// to the call. This checks for an override in the function pointer. If an
// override is present, it calls that override. Otherwise it directly calls
// the default implementation. This allows the compiler to inline the default
// implementation and avoid the performance penalty of indirecting through
// the function pointer in the common case.
//
// NOTE: the memcpy and asm("") naming shenanigans are to convince the compiler
// not to emit a bunch of ptrauth instructions just to perform the comparison.
// We only want to authenticate the function pointer if we actually call it. We
// can revert to a straight comparison once rdar://problem/55267009 is fixed.
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask)
asm("__swift_allocObject_");
static HeapObject *_swift_retain_(HeapObject *object) asm("__swift_retain_");
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n)
asm("__swift_retain_n_");
static void _swift_release_(HeapObject *object) asm("__swift_release_");
static void _swift_release_n_(HeapObject *object, uint32_t n)
asm("__swift_release_n_");
static HeapObject *_swift_tryRetain_(HeapObject *object)
asm("__swift_tryRetain_");
#define CALL_IMPL(name, args) do { \
void *fptr; \
memcpy(&fptr, (void *)&_ ## name, sizeof(fptr)); \
extern char _ ## name ## _as_char asm("__" #name "_"); \
fptr = __ptrauth_swift_runtime_function_entry_strip(fptr); \
if (SWIFT_UNLIKELY(fptr != &_ ## name ## _as_char)) \
return _ ## name args; \
return _ ## name ## _ args; \
} while(0)
static HeapObject *_swift_allocObject_(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
assert(isAlignmentMask(requiredAlignmentMask));
auto object = reinterpret_cast<HeapObject *>(
swift_slowAlloc(requiredSize, requiredAlignmentMask));
// NOTE: this relies on the C++17 guaranteed semantics of no null-pointer
// check on the placement new allocator which we have observed on Windows,
// Linux, and macOS.
new (object) HeapObject(metadata);
// If leak tracking is enabled, start tracking this object.
SWIFT_LEAKS_START_TRACKING_OBJECT(object);
SWIFT_RT_TRACK_INVOCATION(object, swift_allocObject);
return object;
}
HeapObject *swift::swift_allocObject(HeapMetadata const *metadata,
size_t requiredSize,
size_t requiredAlignmentMask) {
CALL_IMPL(swift_allocObject, (metadata, requiredSize, requiredAlignmentMask));
}
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_allocObject)(
HeapMetadata const *metadata, size_t requiredSize,
size_t requiredAlignmentMask) = _swift_allocObject_;
HeapObject *
swift::swift_initStackObject(HeapMetadata const *metadata,
HeapObject *object) {
object->metadata = metadata;
object->refCounts.initForNotFreeing();
SWIFT_RT_TRACK_INVOCATION(object, swift_initStackObject);
return object;
}
struct InitStaticObjectContext {
HeapObject *object;
HeapMetadata const *metadata;
};
// Callback for swift_once.
static void initStaticObjectWithContext(void *OpaqueCtx) {
InitStaticObjectContext *Ctx = (InitStaticObjectContext *)OpaqueCtx;
Ctx->object->metadata = Ctx->metadata;
Ctx->object->refCounts.initImmortal();
}
// TODO: We could generate inline code for the fast-path, i.e. the metadata
// pointer is already set. That would be a performance/codesize tradeoff.
HeapObject *
swift::swift_initStaticObject(HeapMetadata const *metadata,
HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_initStaticObject);
// The token is located at a negative offset from the object header.
swift_once_t *token = ((swift_once_t *)object) - 1;
// We have to initialize the header atomically. Otherwise we could reset the
// refcount to 1 while another thread already incremented it - and would
// decrement it to 0 afterwards.
InitStaticObjectContext Ctx = { object, metadata };
swift_once(token, initStaticObjectWithContext, &Ctx);
return object;
}
void
swift::swift_verifyEndOfLifetime(HeapObject *object) {
if (object->refCounts.getCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Stack object escaped\n");
if (object->refCounts.getUnownedCount() != 1)
swift::fatalError(/* flags = */ 0,
"Fatal error: Unowned reference to stack object\n");
if (object->refCounts.getWeakCount() != 0)
swift::fatalError(/* flags = */ 0,
"Fatal error: Weak reference to stack object\n");
}
/// Allocate a reference-counted object on the heap that
/// occupies <size> bytes of maximally-aligned storage. The object is
/// uninitialized except for its header.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
HeapObject* swift_bufferAllocate(
HeapMetadata const* bufferType, size_t size, size_t alignMask)
{
return swift::swift_allocObject(bufferType, size, alignMask);
}
namespace {
/// Heap object destructor for a generic box allocated with swift_allocBox.
static SWIFT_CC(swift) void destroyGenericBox(SWIFT_CONTEXT HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Destroy the object inside.
auto *value = metadata->project(o);
metadata->BoxedType->vw_destroy(value);
// Deallocate the box.
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
class BoxCacheEntry {
public:
FullMetadata<GenericBoxHeapMetadata> Data;
BoxCacheEntry(const Metadata *type)
: Data{HeapMetadataHeader{{destroyGenericBox}, {/*vwtable*/ nullptr}},
GenericBoxHeapMetadata{MetadataKind::HeapGenericLocalVariable,
GenericBoxHeapMetadata::getHeaderOffset(type),
type}} {
}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.BoxedType);
}
int compareWithKey(const Metadata *type) const {
return comparePointers(type, Data.BoxedType);
}
static size_t getExtraAllocationSize(const Metadata *key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
static SimpleGlobalCache<BoxCacheEntry, BoxesTag> Boxes;
BoxPair swift::swift_makeBoxUnique(OpaqueValue *buffer, const Metadata *type,
size_t alignMask) {
auto *inlineBuffer = reinterpret_cast<ValueBuffer*>(buffer);
HeapObject *box = reinterpret_cast<HeapObject *>(inlineBuffer->PrivateData[0]);
if (!swift_isUniquelyReferenced_nonNull_native(box)) {
auto refAndObjectAddr = BoxPair(swift_allocBox(type));
// Compute the address of the old object.
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *oldObjectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
// Copy the data.
type->vw_initializeWithCopy(refAndObjectAddr.buffer, oldObjectAddr);
inlineBuffer->PrivateData[0] = refAndObjectAddr.object;
// Release ownership of the old box.
swift_release(box);
return refAndObjectAddr;
} else {
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
auto *objectAddr = reinterpret_cast<OpaqueValue *>(
reinterpret_cast<char *>(box) + headerOffset);
return BoxPair{box, objectAddr};
}
}
BoxPair swift::swift_allocBox(const Metadata *type) {
// Get the heap metadata for the box.
auto metadata = &Boxes.getOrInsert(type).first->Data;
// Allocate and project the box.
auto allocation = swift_allocObject(metadata, metadata->getAllocSize(),
metadata->getAllocAlignMask());
auto projection = metadata->project(allocation);
return BoxPair{allocation, projection};
}
void swift::swift_deallocBox(HeapObject *o) {
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
// Move the object to the deallocating state (+1 -> +0).
o->refCounts.decrementFromOneNonAtomic();
swift_deallocObject(o, metadata->getAllocSize(),
metadata->getAllocAlignMask());
}
OpaqueValue *swift::swift_projectBox(HeapObject *o) {
// The compiler will use a nil reference as a way to avoid allocating memory
// for boxes of empty type. The address of an empty value is always undefined,
// so we can just return nil back in this case.
if (!o)
return nullptr;
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
return metadata->project(o);
}
namespace { // Begin anonymous namespace.
struct _SwiftEmptyBoxStorage {
HeapObject header;
};
swift::HeapLocalVariableMetadata _emptyBoxStorageMetadata;
/// The singleton empty box storage object.
_SwiftEmptyBoxStorage _EmptyBoxStorage = {
// HeapObject header;
{
&_emptyBoxStorageMetadata,
}
};
} // End anonymous namespace.
HeapObject *swift::swift_allocEmptyBox() {
auto heapObject = reinterpret_cast<HeapObject*>(&_EmptyBoxStorage);
swift_retain(heapObject);
return heapObject;
}
// Forward-declare this, but define it after swift_release.
extern "C" SWIFT_LIBRARY_VISIBILITY SWIFT_NOINLINE SWIFT_USED void
_swift_release_dealloc(HeapObject *object);
static HeapObject *_swift_retain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
if (isValidPointerForNativeRetain(object))
object->refCounts.increment(1);
return object;
}
HeapObject *swift::swift_retain(HeapObject *object) {
CALL_IMPL(swift_retain, (object));
}
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain)(HeapObject *object) =
_swift_retain_;
HeapObject *swift::swift_nonatomic_retain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(1);
return object;
}
static HeapObject *_swift_retain_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.increment(n);
return object;
}
HeapObject *swift::swift_retain_n(HeapObject *object, uint32_t n) {
CALL_IMPL(swift_retain_n, (object, n));
}
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_retain_n)(
HeapObject *object, uint32_t n) = _swift_retain_n_;
HeapObject *swift::swift_nonatomic_retain_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.incrementNonAtomic(n);
return object;
}
static void _swift_release_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(1);
}
void swift::swift_release(HeapObject *object) {
CALL_IMPL(swift_release, (object));
}
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release)(HeapObject *object) =
_swift_release_;
void swift::swift_nonatomic_release(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(1);
}
static void _swift_release_n_(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinit(n);
}
void swift::swift_release_n(HeapObject *object, uint32_t n) {
CALL_IMPL(swift_release_n, (object, n));
}
SWIFT_RUNTIME_EXPORT
void (*SWIFT_RT_DECLARE_ENTRY _swift_release_n)(HeapObject *object,
uint32_t n) = _swift_release_n_;
void swift::swift_nonatomic_release_n(HeapObject *object, uint32_t n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release_n);
if (isValidPointerForNativeRetain(object))
object->refCounts.decrementAndMaybeDeinitNonAtomic(n);
}
size_t swift::swift_retainCount(HeapObject *object) {
if (isValidPointerForNativeRetain(object))
return object->refCounts.getCount();
return 0;
}
size_t swift::swift_unownedRetainCount(HeapObject *object) {
return object->refCounts.getUnownedCount();
}
size_t swift::swift_weakRetainCount(HeapObject *object) {
return object->refCounts.getWeakCount();
}
HeapObject *swift::swift_unownedRetain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(1);
return object;
}
void swift::swift_unownedRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFree(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
void *swift::swift_nonatomic_unownedRetain(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(1);
return object;
}
void swift::swift_nonatomic_unownedRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRelease);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(1)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
HeapObject *swift::swift_unownedRetain_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnowned(n);
return object;
}
void swift::swift_unownedRelease_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFree(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
HeapObject *swift::swift_nonatomic_unownedRetain_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain_n);
if (!isValidPointerForNativeRetain(object))
return object;
object->refCounts.incrementUnownedNonAtomic(n);
return object;
}
void swift::swift_nonatomic_unownedRelease_n(HeapObject *object, int n) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
if (!isValidPointerForNativeRetain(object))
return;
// Only class objects can be unowned-retained and unowned-released.
assert(object->metadata->isClassObject());
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(n)) {
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
swift_slowDealloc(object, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
}
static HeapObject *_swift_tryRetain_(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_tryRetain);
if (!isValidPointerForNativeRetain(object))
return nullptr;
if (object->refCounts.tryIncrement()) return object;
else return nullptr;
}
HeapObject *swift::swift_tryRetain(HeapObject *object) {
CALL_IMPL(swift_tryRetain, (object));
}
SWIFT_RUNTIME_EXPORT
HeapObject *(*SWIFT_RT_DECLARE_ENTRY _swift_tryRetain)(HeapObject *object) =
_swift_tryRetain_;
bool swift::swift_isDeallocating(HeapObject *object) {
if (!isValidPointerForNativeRetain(object))
return false;
return object->refCounts.isDeiniting();
}
void swift::swift_setDeallocating(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_setDeallocating);
object->refCounts.decrementFromOneNonAtomic();
}
HeapObject *swift::swift_unownedRetainStrong(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
return object;
}
HeapObject *swift::swift_nonatomic_unownedRetainStrong(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrong);
if (!isValidPointerForNativeRetain(object))
return object;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
return object;
}
void swift::swift_unownedRetainStrongAndRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrement())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFree(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
}
void swift::swift_nonatomic_unownedRetainStrongAndRelease(HeapObject *object) {
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrongAndRelease);
if (!isValidPointerForNativeRetain(object))
return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (! object->refCounts.tryIncrementNonAtomic())
swift::swift_abortRetainUnowned(object);
// This should never cause a deallocation.
bool dealloc = object->refCounts.decrementUnownedShouldFreeNonAtomic(1);
assert(!dealloc && "retain-strong-and-release caused dealloc?");
(void) dealloc;
}
void swift::swift_unownedCheck(HeapObject *object) {
if (!isValidPointerForNativeRetain(object)) return;
assert(object->refCounts.getUnownedCount() &&
"object is not currently unowned-retained");
if (object->refCounts.isDeiniting())
swift::swift_abortRetainUnowned(object);
}
void _swift_release_dealloc(HeapObject *object) {
asFullMetadata(object->metadata)->destroy(object);
}
#if SWIFT_OBJC_INTEROP
/// Perform the root -dealloc operation for a class instance.
void swift::swift_rootObjCDealloc(HeapObject *self) {
auto metadata = self->metadata;
assert(metadata->isClassObject());
auto classMetadata = static_cast<const ClassMetadata*>(metadata);
assert(classMetadata->isTypeMetadata());
swift_deallocClassInstance(self, classMetadata->getInstanceSize(),
classMetadata->getInstanceAlignMask());
}
#endif
#if SWIFT_OBJC_INTEROP
static bool _check_fast_dealloc() {
return dlsym(RTLD_NEXT, "_objc_has_weak_formation_callout") != nullptr;
}
#endif
void swift::swift_deallocClassInstance(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
#if SWIFT_OBJC_INTEROP
// We need to let the ObjC runtime clean up any associated objects or weak
// references associated with this object.
const bool fastDeallocSupported = SWIFT_LAZY_CONSTANT(_check_fast_dealloc());
if (!fastDeallocSupported || !object->refCounts.getPureSwiftDeallocation()) {
objc_destructInstance((id)object);
}
#endif
swift_deallocObject(object, allocatedSize, allocatedAlignMask);
}
/// Variant of the above used in constructor failure paths.
void swift::swift_deallocPartialClassInstance(HeapObject *object,
HeapMetadata const *metadata,
size_t allocatedSize,
size_t allocatedAlignMask) {
if (!object)
return;
// Destroy ivars
auto *classMetadata = _swift_getClassOfAllocated(object)->getClassObject();
assert(classMetadata && "Not a class?");
while (classMetadata != metadata) {
#if SWIFT_OBJC_INTEROP
// If we have hit a pure Objective-C class, we won't see another ivar
// destroyer.
if (classMetadata->isPureObjC()) {
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
if (classMetadata->IVarDestroyer)
classMetadata->IVarDestroyer(object);
classMetadata = classMetadata->Superclass->getClassObject();
assert(classMetadata && "Given metatype not a superclass of object type?");
}
#if SWIFT_OBJC_INTEROP
// If this class doesn't use Swift-native reference counting, use
// objc_release instead.
if (!usesNativeSwiftReferenceCounting(classMetadata)) {
// Find the pure Objective-C superclass.
while (!classMetadata->isPureObjC())
classMetadata = classMetadata->Superclass->getClassObject();
// Set the class to the pure Objective-C superclass, so that when dealloc
// runs, it starts at that superclass.
object_setClass((id)object, class_const_cast(classMetadata));
// Release the object.
objc_release((id)object);
return;
}
#endif
// The strong reference count should be +1 -- tear down the object
bool shouldDeallocate = object->refCounts.decrementShouldDeinit(1);
assert(shouldDeallocate);
(void) shouldDeallocate;
swift_deallocClassInstance(object, allocatedSize, allocatedAlignMask);
}
#if !defined(__APPLE__) && defined(SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS)
static inline void memset_pattern8(void *b, const void *pattern8, size_t len) {
char *ptr = static_cast<char *>(b);
while (len >= 8) {
memcpy(ptr, pattern8, 8);
ptr += 8;
len -= 8;
}
memcpy(ptr, pattern8, len);
}
#endif
static inline void swift_deallocObjectImpl(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask,
bool isDeiniting) {
assert(isAlignmentMask(allocatedAlignMask));
if (!isDeiniting) {
assert(object->refCounts.isUniquelyReferenced());
object->refCounts.decrementFromOneNonAtomic();
}
assert(object->refCounts.isDeiniting());
SWIFT_RT_TRACK_INVOCATION(object, swift_deallocObject);
#ifdef SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
memset_pattern8((uint8_t *)object + sizeof(HeapObject),
"\xAB\xAD\x1D\xEA\xF4\xEE\xD0\bB9",
allocatedSize - sizeof(HeapObject));
#endif
// If we are tracking leaks, stop tracking this object.
SWIFT_LEAKS_STOP_TRACKING_OBJECT(object);
// Drop the initial weak retain of the object.
//
// If the outstanding weak retain count is 1 (i.e. only the initial
// weak retain), we can immediately call swift_slowDealloc. This is
// useful both as a way to eliminate an unnecessary atomic
// operation, and as a way to avoid calling swift_unownedRelease on an
// object that might be a class object, which simplifies the logic
// required in swift_unownedRelease for determining the size of the
// object.
//
// If we see that there is an outstanding weak retain of the object,
// we need to fall back on swift_release, because it's possible for
// us to race against a weak retain or a weak release. But if the
// outstanding weak retain count is 1, then anyone attempting to
// increase the weak reference count is inherently racing against
// deallocation and thus in undefined-behavior territory. And
// we can even do this with a normal load! Here's why:
//
// 1. There is an invariant that, if the strong reference count
// is > 0, then the weak reference count is > 1.
//
// 2. The above lets us say simply that, in the absence of
// races, once a reference count reaches 0, there are no points
// which happen-after where the reference count is > 0.
//
// 3. To not race, a strong retain must happen-before a point
// where the strong reference count is > 0, and a weak retain
// must happen-before a point where the weak reference count
// is > 0.
//
// 4. Changes to either the strong and weak reference counts occur
// in a total order with respect to each other. This can
// potentially be done with a weaker memory ordering than
// sequentially consistent if the architecture provides stronger
// ordering for memory guaranteed to be co-allocated on a cache
// line (which the reference count fields are).
//
// 5. This function happens-after a point where the strong
// reference count was 0.
//
// 6. Therefore, if a normal load in this function sees a weak
// reference count of 1, it cannot be racing with a weak retain
// that is not racing with deallocation:
//
// - A weak retain must happen-before a point where the weak
// reference count is > 0.
//
// - This function logically decrements the weak reference
// count. If it is possible for it to see a weak reference
// count of 1, then at the end of this function, the
// weak reference count will logically be 0.
//
// - There can be no points after that point where the
// weak reference count will be > 0.
//
// - Therefore either the weak retain must happen-before this
// function, or this function cannot see a weak reference
// count of 1, or there is a race.
//
// Note that it is okay for there to be a race involving a weak
// *release* which happens after the strong reference count drops to
// 0. However, this is harmless: if our load fails to see the
// release, we will fall back on swift_unownedRelease, which does an
// atomic decrement (and has the ability to reconstruct
// allocatedSize and allocatedAlignMask).
//
// Note: This shortcut is NOT an optimization.
// Some allocations passed to swift_deallocObject() are not compatible
// with swift_unownedRelease() because they do not have ClassMetadata.
if (object->refCounts.canBeFreedNow()) {
// object state DEINITING -> DEAD
swift_slowDealloc(object, allocatedSize, allocatedAlignMask);
} else {
// object state DEINITING -> DEINITED
swift_unownedRelease(object);
}
}
void swift::swift_deallocObject(HeapObject *object, size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, true);
}
void swift::swift_deallocUninitializedObject(HeapObject *object,
size_t allocatedSize,
size_t allocatedAlignMask) {
swift_deallocObjectImpl(object, allocatedSize, allocatedAlignMask, false);
}
WeakReference *swift::swift_weakInit(WeakReference *ref, HeapObject *value) {
ref->nativeInit(value);
return ref;
}
WeakReference *swift::swift_weakAssign(WeakReference *ref, HeapObject *value) {
ref->nativeAssign(value);
return ref;
}
HeapObject *swift::swift_weakLoadStrong(WeakReference *ref) {
return ref->nativeLoadStrong();
}
HeapObject *swift::swift_weakTakeStrong(WeakReference *ref) {
return ref->nativeTakeStrong();
}
void swift::swift_weakDestroy(WeakReference *ref) {
ref->nativeDestroy();
}
WeakReference *swift::swift_weakCopyInit(WeakReference *dest,
WeakReference *src) {
dest->nativeCopyInit(src);
return dest;
}
WeakReference *swift::swift_weakTakeInit(WeakReference *dest,
WeakReference *src) {
dest->nativeTakeInit(src);
return dest;
}
WeakReference *swift::swift_weakCopyAssign(WeakReference *dest,
WeakReference *src) {
dest->nativeCopyAssign(src);
return dest;
}
WeakReference *swift::swift_weakTakeAssign(WeakReference *dest,
WeakReference *src) {
dest->nativeTakeAssign(src);
return dest;
}
#ifndef NDEBUG
/// Returns true if the "immutable" flag is set on \p object.
///
/// Used for runtime consistency checking of COW buffers.
SWIFT_RUNTIME_EXPORT
bool _swift_isImmutableCOWBuffer(HeapObject *object) {
return object->refCounts.isImmutableCOWBuffer();
}
/// Sets the "immutable" flag on \p object to \p immutable and returns the old
/// value of the flag.
///
/// Used for runtime consistency checking of COW buffers.
SWIFT_RUNTIME_EXPORT
bool _swift_setImmutableCOWBuffer(HeapObject *object, bool immutable) {
return object->refCounts.setIsImmutableCOWBuffer(immutable);
}
void HeapObject::dump() const {
auto *Self = const_cast<HeapObject *>(this);
printf("HeapObject: %p\n", Self);
printf("HeapMetadata Pointer: %p.\n", Self->metadata);
printf("Strong Ref Count: %d.\n", Self->refCounts.getCount());
printf("Unowned Ref Count: %d.\n", Self->refCounts.getUnownedCount());
printf("Weak Ref Count: %d.\n", Self->refCounts.getWeakCount());
if (Self->metadata->getKind() == MetadataKind::Class) {
printf("Uses Native Retain: %s.\n",
(objectUsesNativeSwiftReferenceCounting(Self) ? "true" : "false"));
} else {
printf("Uses Native Retain: Not a class. N/A.\n");
}
printf("RefCount Side Table: %p.\n", Self->refCounts.getSideTable());
printf("Is Deiniting: %s.\n",
(Self->refCounts.isDeiniting() ? "true" : "false"));
}
#endif