Files
swift-mirror/stdlib/public/SwiftRemoteMirror/SwiftRemoteMirror.cpp
tbkka 3c8fde7885 Implement MultiPayloadEnum support for projectEnumValue (#30635)
This code rearchitects and simplifies the projectEnumValue support by
introducing a new `TypeInfo` subclass for each kind of enum, including trivial,
no-payload, single-payload, and three different classes for multi-payload enums:

* "UnsupportedEnum" that we don't understand.  This returns "don't know" answers for all requests in cases where the runtime lacks enough information to accurately handle a particular enum.

* MP Enums that only use a separate tag value.  This includes generic enums and other dynamic layouts, as well as enums whose payloads have no spare bits.

* MP Enums that use spare bits, possibly in addition to a separate tag.  This logic can only be used, of course, if we can in fact compute a spare bit mask that agrees with the compiler.

The final challenge is to choose one of the above three handlings for every MPE.  Currently, we do not have an accurate source of information for the spare bit mask, so we never choose the third option above.  We use the second option for dynamic MPE layouts (including generics) and the first for everything else.

TODO: Once we can arrange for the compiler to expose spare bit mask data, we'll be able to use that to drive more MPE cases.
2020-03-31 15:12:44 -07:00

575 lines
19 KiB
C++

//===--- SwiftRemoteMirror.cpp - C wrapper for Reflection API -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SwiftRemoteMirror/Platform.h"
#include "swift/SwiftRemoteMirror/SwiftRemoteMirror.h"
#define SWIFT_CLASS_IS_SWIFT_MASK swift_reflection_classIsSwiftMask
extern "C" {
SWIFT_REMOTE_MIRROR_LINKAGE
unsigned long long swift_reflection_classIsSwiftMask = 2;
}
#include "swift/Demangling/Demangler.h"
#include "swift/Reflection/ReflectionContext.h"
#include "swift/Reflection/TypeLowering.h"
#include "swift/Remote/CMemoryReader.h"
#include "swift/Runtime/Unreachable.h"
#if defined(__APPLE__) && defined(__MACH__)
#include <TargetConditionals.h>
#endif
using namespace swift;
using namespace swift::reflection;
using namespace swift::remote;
using NativeReflectionContext = swift::reflection::ReflectionContext<
External<RuntimeTarget<sizeof(uintptr_t)>>>;
struct SwiftReflectionContext {
NativeReflectionContext *nativeContext;
std::vector<std::function<void()>> freeFuncs;
std::vector<std::tuple<swift_addr_t, swift_addr_t>> dataSegments;
SwiftReflectionContext(MemoryReaderImpl impl) {
auto Reader = std::make_shared<CMemoryReader>(impl);
nativeContext = new NativeReflectionContext(Reader);
}
~SwiftReflectionContext() {
delete nativeContext;
for (auto f : freeFuncs)
f();
}
};
uint16_t
swift_reflection_getSupportedMetadataVersion() {
return SWIFT_REFLECTION_METADATA_VERSION;
}
template <uint8_t WordSize>
static int minimalDataLayoutQueryFunction(void *ReaderContext,
DataLayoutQueryType type,
void *inBuffer, void *outBuffer) {
// TODO: The following should be set based on the target.
// This code sets it to match the platform this code was compiled for.
#if defined(__APPLE__) && __APPLE__
auto applePlatform = true;
#else
auto applePlatform = false;
#endif
#if defined(__APPLE__) && __APPLE__ && ((defined(TARGET_OS_IOS) && TARGET_OS_IOS) || (defined(TARGET_OS_IOS) && TARGET_OS_WATCH) || (defined(TARGET_OS_TV) && TARGET_OS_TV))
auto iosDerivedPlatform = true;
#else
auto iosDerivedPlatform = false;
#endif
if (type == DLQ_GetPointerSize || type == DLQ_GetSizeSize) {
auto result = static_cast<uint8_t *>(outBuffer);
*result = WordSize;
return 1;
}
if (type == DLQ_GetObjCReservedLowBits) {
auto result = static_cast<uint8_t *>(outBuffer);
if (applePlatform && !iosDerivedPlatform && WordSize == 8) {
// Obj-C reserves low bit on 64-bit macOS only.
// Other Apple platforms don't reserve this bit (even when
// running on x86_64-based simulators).
*result = 1;
} else {
*result = 0;
}
return 1;
}
if (type == DLQ_GetLeastValidPointerValue) {
auto result = static_cast<uint64_t *>(outBuffer);
if (applePlatform && WordSize == 8) {
// Swift reserves the first 4GiB on all 64-bit Apple platforms
*result = 0x100000000;
} else {
// Swift reserves the first 4KiB everywhere else
*result = 0x1000;
}
return 1;
}
return 0;
}
// Caveat: This basically only works correctly if running on the same
// host as the target. Otherwise, you'll need to use
// swift_reflection_createReflectionContextWithDataLayout() below
// with an appropriate data layout query function that understands
// the target environment.
SwiftReflectionContextRef
swift_reflection_createReflectionContext(void *ReaderContext,
uint8_t PointerSize,
FreeBytesFunction Free,
ReadBytesFunction ReadBytes,
GetStringLengthFunction GetStringLength,
GetSymbolAddressFunction GetSymbolAddress) {
assert((PointerSize == 4 || PointerSize == 8) && "We only support 32-bit and 64-bit.");
assert(PointerSize == sizeof(uintptr_t) &&
"We currently only support the pointer size this file was compiled with.");
auto *DataLayout = PointerSize == 4 ? minimalDataLayoutQueryFunction<4>
: minimalDataLayoutQueryFunction<8>;
MemoryReaderImpl ReaderImpl {
ReaderContext,
DataLayout,
Free,
ReadBytes,
GetStringLength,
GetSymbolAddress
};
return new SwiftReflectionContext(ReaderImpl);
}
SwiftReflectionContextRef
swift_reflection_createReflectionContextWithDataLayout(void *ReaderContext,
QueryDataLayoutFunction DataLayout,
FreeBytesFunction Free,
ReadBytesFunction ReadBytes,
GetStringLengthFunction GetStringLength,
GetSymbolAddressFunction GetSymbolAddress) {
MemoryReaderImpl ReaderImpl {
ReaderContext,
DataLayout,
Free,
ReadBytes,
GetStringLength,
GetSymbolAddress
};
return new SwiftReflectionContext(ReaderImpl);
}
void swift_reflection_destroyReflectionContext(SwiftReflectionContextRef ContextRef) {
delete ContextRef;
}
template<typename Iterator>
ReflectionSection<Iterator> sectionFromInfo(const swift_reflection_info_t &Info,
const swift_reflection_section_pair_t &Section) {
auto RemoteSectionStart = (uint64_t)(uintptr_t)Section.section.Begin
- Info.LocalStartAddress
+ Info.RemoteStartAddress;
auto Start = RemoteRef<void>(RemoteSectionStart, Section.section.Begin);
return ReflectionSection<Iterator>(Start,
(uintptr_t)Section.section.End - (uintptr_t)Section.section.Begin);
}
void
swift_reflection_addReflectionInfo(SwiftReflectionContextRef ContextRef,
swift_reflection_info_t Info) {
auto Context = ContextRef->nativeContext;
// The `offset` fields must be zero.
if (Info.field.offset != 0
|| Info.associated_types.offset != 0
|| Info.builtin_types.offset != 0
|| Info.capture.offset != 0
|| Info.type_references.offset != 0
|| Info.reflection_strings.offset != 0) {
fprintf(stderr, "reserved field in swift_reflection_info_t is not zero\n");
abort();
}
ReflectionInfo ContextInfo{
sectionFromInfo<FieldDescriptorIterator>(Info, Info.field),
sectionFromInfo<AssociatedTypeIterator>(Info, Info.associated_types),
sectionFromInfo<BuiltinTypeDescriptorIterator>(Info, Info.builtin_types),
sectionFromInfo<CaptureDescriptorIterator>(Info, Info.capture),
sectionFromInfo<const void *>(Info, Info.type_references),
sectionFromInfo<const void *>(Info, Info.reflection_strings)};
Context->addReflectionInfo(ContextInfo);
}
int
swift_reflection_addImage(SwiftReflectionContextRef ContextRef,
swift_addr_t imageStart) {
auto Context = ContextRef->nativeContext;
return Context->addImage(RemoteAddress(imageStart));
}
int
swift_reflection_readIsaMask(SwiftReflectionContextRef ContextRef,
uintptr_t *outIsaMask) {
auto Context = ContextRef->nativeContext;
auto isaMask = Context->readIsaMask();
if (isaMask) {
*outIsaMask = *isaMask;
return true;
}
*outIsaMask = 0;
return false;
}
swift_typeref_t
swift_reflection_typeRefForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
auto Context = ContextRef->nativeContext;
auto TR = Context->readTypeFromMetadata(Metadata);
return reinterpret_cast<swift_typeref_t>(TR);
}
int
swift_reflection_ownsObject(SwiftReflectionContextRef ContextRef, uintptr_t Object) {
auto Context = ContextRef->nativeContext;
return Context->ownsObject(RemoteAddress(Object));
}
int
swift_reflection_ownsAddress(SwiftReflectionContextRef ContextRef, uintptr_t Address) {
auto Context = ContextRef->nativeContext;
return Context->ownsAddress(RemoteAddress(Address));
}
uintptr_t
swift_reflection_metadataForObject(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
auto Context = ContextRef->nativeContext;
auto MetadataAddress = Context->readMetadataFromInstance(Object);
if (!MetadataAddress)
return 0;
return *MetadataAddress;
}
swift_typeref_t
swift_reflection_typeRefForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
auto Context = ContextRef->nativeContext;
auto MetadataAddress = Context->readMetadataFromInstance(Object);
if (!MetadataAddress)
return 0;
auto TR = Context->readTypeFromMetadata(*MetadataAddress);
return reinterpret_cast<swift_typeref_t>(TR);
}
swift_typeref_t
swift_reflection_typeRefForMangledTypeName(SwiftReflectionContextRef ContextRef,
const char *MangledTypeName,
uint64_t Length) {
auto Context = ContextRef->nativeContext;
auto TR = Context->readTypeFromMangledName(MangledTypeName, Length);
return reinterpret_cast<swift_typeref_t>(TR);
}
char *
swift_reflection_copyDemangledNameForTypeRef(
SwiftReflectionContextRef ContextRef, swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
Demangle::Demangler Dem;
auto Name = nodeToString(TR->getDemangling(Dem));
return strdup(Name.c_str());
}
swift_typeref_t
swift_reflection_genericArgumentOfTypeRef(swift_typeref_t OpaqueTypeRef,
unsigned Index) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (auto BG = dyn_cast<BoundGenericTypeRef>(TR)) {
auto &Params = BG->getGenericParams();
assert(Index < Params.size());
return reinterpret_cast<swift_typeref_t>(Params[Index]);
}
return 0;
}
unsigned
swift_reflection_genericArgumentCountOfTypeRef(swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (auto BG = dyn_cast<BoundGenericTypeRef>(TR)) {
auto &Params = BG->getGenericParams();
return Params.size();
}
return 0;
}
swift_layout_kind_t getTypeInfoKind(const TypeInfo &TI) {
switch (TI.getKind()) {
case TypeInfoKind::Invalid: {
return SWIFT_UNKNOWN;
}
case TypeInfoKind::Builtin: {
auto &BuiltinTI = cast<BuiltinTypeInfo>(TI);
if (BuiltinTI.getMangledTypeName() == "Bp")
return SWIFT_RAW_POINTER;
return SWIFT_BUILTIN;
}
case TypeInfoKind::Record: {
auto &RecordTI = cast<RecordTypeInfo>(TI);
switch (RecordTI.getRecordKind()) {
case RecordKind::Invalid:
return SWIFT_UNKNOWN;
case RecordKind::Tuple:
return SWIFT_TUPLE;
case RecordKind::Struct:
return SWIFT_STRUCT;
case RecordKind::ThickFunction:
return SWIFT_THICK_FUNCTION;
case RecordKind::OpaqueExistential:
return SWIFT_OPAQUE_EXISTENTIAL;
case RecordKind::ClassExistential:
return SWIFT_CLASS_EXISTENTIAL;
case RecordKind::ErrorExistential:
return SWIFT_ERROR_EXISTENTIAL;
case RecordKind::ExistentialMetatype:
return SWIFT_EXISTENTIAL_METATYPE;
case RecordKind::ClassInstance:
return SWIFT_CLASS_INSTANCE;
case RecordKind::ClosureContext:
return SWIFT_CLOSURE_CONTEXT;
}
}
case TypeInfoKind::Enum: {
auto &EnumTI = cast<EnumTypeInfo>(TI);
switch (EnumTI.getEnumKind()) {
case EnumKind::NoPayloadEnum:
return SWIFT_NO_PAYLOAD_ENUM;
case EnumKind::SinglePayloadEnum:
return SWIFT_SINGLE_PAYLOAD_ENUM;
case EnumKind::MultiPayloadEnum:
return SWIFT_MULTI_PAYLOAD_ENUM;
}
}
case TypeInfoKind::Reference: {
auto &ReferenceTI = cast<ReferenceTypeInfo>(TI);
switch (ReferenceTI.getReferenceKind()) {
case ReferenceKind::Strong: return SWIFT_STRONG_REFERENCE;
#define REF_STORAGE(Name, name, NAME) \
case ReferenceKind::Name: return SWIFT_##NAME##_REFERENCE;
#include "swift/AST/ReferenceStorage.def"
}
}
}
swift_runtime_unreachable("Unhandled TypeInfoKind in switch");
}
static swift_typeinfo_t convertTypeInfo(const TypeInfo *TI) {
if (TI == nullptr) {
return {
SWIFT_UNKNOWN,
0,
0,
0,
0
};
}
unsigned NumFields = 0;
if (auto *RecordTI = dyn_cast<EnumTypeInfo>(TI)) {
NumFields = RecordTI->getNumCases();
} else if (auto *RecordTI = dyn_cast<RecordTypeInfo>(TI)) {
NumFields = RecordTI->getNumFields();
}
return {
getTypeInfoKind(*TI),
TI->getSize(),
TI->getAlignment(),
TI->getStride(),
NumFields
};
}
static swift_childinfo_t convertChild(const TypeInfo *TI, unsigned Index) {
const FieldInfo *FieldInfo;
if (auto *EnumTI = dyn_cast<EnumTypeInfo>(TI)) {
FieldInfo = &(EnumTI->getCases()[Index]);
} else if (auto *RecordTI = dyn_cast<RecordTypeInfo>(TI)) {
FieldInfo = &(RecordTI->getFields()[Index]);
} else {
assert(false && "convertChild(TI): TI must be record or enum typeinfo");
}
return {
FieldInfo->Name.c_str(),
FieldInfo->Offset,
getTypeInfoKind(FieldInfo->TI),
reinterpret_cast<swift_typeref_t>(FieldInfo->TR),
};
}
swift_typeinfo_t
swift_reflection_infoForTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef) {
auto Context = ContextRef->nativeContext;
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto TI = Context->getTypeInfo(TR);
return convertTypeInfo(TI);
}
swift_childinfo_t
swift_reflection_childOfTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef,
unsigned Index) {
auto Context = ContextRef->nativeContext;
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto *TI = Context->getTypeInfo(TR);
return convertChild(TI, Index);
}
swift_typeinfo_t
swift_reflection_infoForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
auto Context = ContextRef->nativeContext;
auto *TI = Context->getMetadataTypeInfo(Metadata);
return convertTypeInfo(TI);
}
swift_childinfo_t
swift_reflection_childOfMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata,
unsigned Index) {
auto Context = ContextRef->nativeContext;
auto *TI = Context->getMetadataTypeInfo(Metadata);
return convertChild(TI, Index);
}
swift_typeinfo_t
swift_reflection_infoForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
auto Context = ContextRef->nativeContext;
auto *TI = Context->getInstanceTypeInfo(Object);
return convertTypeInfo(TI);
}
swift_childinfo_t
swift_reflection_childOfInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object,
unsigned Index) {
auto Context = ContextRef->nativeContext;
auto *TI = Context->getInstanceTypeInfo(Object);
return convertChild(TI, Index);
}
int swift_reflection_projectExistential(SwiftReflectionContextRef ContextRef,
swift_addr_t ExistentialAddress,
swift_typeref_t ExistentialTypeRef,
swift_typeref_t *InstanceTypeRef,
swift_addr_t *StartOfInstanceData) {
auto Context = ContextRef->nativeContext;
auto ExistentialTR = reinterpret_cast<const TypeRef *>(ExistentialTypeRef);
auto RemoteExistentialAddress = RemoteAddress(ExistentialAddress);
const TypeRef *InstanceTR = nullptr;
RemoteAddress RemoteStartOfInstanceData(nullptr);
auto Success = Context->projectExistential(RemoteExistentialAddress,
ExistentialTR,
&InstanceTR,
&RemoteStartOfInstanceData);
if (Success) {
*InstanceTypeRef = reinterpret_cast<swift_typeref_t>(InstanceTR);
*StartOfInstanceData = RemoteStartOfInstanceData.getAddressData();
}
return Success;
}
int swift_reflection_projectEnumValue(SwiftReflectionContextRef ContextRef,
swift_addr_t EnumAddress,
swift_typeref_t EnumTypeRef,
int *CaseIndex) {
auto Context = ContextRef->nativeContext;
auto EnumTR = reinterpret_cast<const TypeRef *>(EnumTypeRef);
auto RemoteEnumAddress = RemoteAddress(EnumAddress);
if (!Context->projectEnumValue(RemoteEnumAddress, EnumTR, CaseIndex)) {
return false;
}
auto TI = Context->getTypeInfo(EnumTR);
auto *RecordTI = dyn_cast<EnumTypeInfo>(TI);
assert(RecordTI != nullptr);
if (static_cast<size_t>(*CaseIndex) >= RecordTI->getNumCases()) {
return false;
}
return true;
}
void swift_reflection_dumpTypeRef(swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (TR == nullptr) {
fprintf(stdout, "<null type reference>\n");
} else {
TR->dump(stdout);
}
}
void swift_reflection_dumpInfoForTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef) {
auto Context = ContextRef->nativeContext;
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto TI = Context->getTypeInfo(TR);
if (TI == nullptr) {
fprintf(stdout, "<null type info>\n");
} else {
TI->dump(stdout);
Demangle::Demangler Dem;
std::string MangledName = mangleNode(TR->getDemangling(Dem));
fprintf(stdout, "Mangled name: %s%s\n", MANGLING_PREFIX_STR,
MangledName.c_str());
char *DemangledName =
swift_reflection_copyDemangledNameForTypeRef(ContextRef, OpaqueTypeRef);
fprintf(stdout, "Demangled name: %s\n", DemangledName);
free(DemangledName);
#ifndef NDEBUG
assert(mangleNode(TR->getDemangling(Dem)) == MangledName &&
"round-trip diff");
#endif
}
}
void swift_reflection_dumpInfoForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
auto Context = ContextRef->nativeContext;
auto TI = Context->getMetadataTypeInfo(Metadata);
if (TI == nullptr) {
fprintf(stdout, "<null type info>\n");
} else {
TI->dump(stdout);
}
}
void swift_reflection_dumpInfoForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
auto Context = ContextRef->nativeContext;
auto TI = Context->getInstanceTypeInfo(Object);
if (TI == nullptr) {
fprintf(stdout, "%s", "<null type info>\n");
} else {
TI->dump(stdout);
}
}
size_t swift_reflection_demangle(const char *MangledName, size_t Length,
char *OutDemangledName, size_t MaxLength) {
if (MangledName == nullptr || Length == 0)
return 0;
std::string Mangled(MangledName, Length);
auto Demangled = Demangle::demangleTypeAsString(Mangled);
strncpy(OutDemangledName, Demangled.c_str(), MaxLength);
return Demangled.size();
}