mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
struct X : Codable {} should generate an encode(to:) which encodes an
empty keyed container, not an encode(to:) which does nothing
1023 lines
43 KiB
C++
1023 lines
43 KiB
C++
//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements explicit derivation of the Encodable and Decodable
|
|
// protocols for a struct or class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
#include "TypeChecker.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "DerivedConformances.h"
|
|
|
|
using namespace swift;
|
|
using namespace DerivedConformance;
|
|
|
|
/// Returns whether the type represented by the given ClassDecl inherits from a
|
|
/// type which conforms to the given protocol.
|
|
///
|
|
/// \param type The \c ClassDecl whose superclass to look up.
|
|
///
|
|
/// \param proto The protocol to check conformance for.
|
|
static bool inheritsConformanceTo(ClassDecl *type, ProtocolDecl *proto) {
|
|
if (!type->hasSuperclass())
|
|
return false;
|
|
|
|
auto &C = type->getASTContext();
|
|
auto *superclassDecl = type->getSuperclassDecl();
|
|
auto *superclassModule = superclassDecl->getModuleContext();
|
|
return (bool)superclassModule->lookupConformance(type->getSuperclass(),
|
|
proto,
|
|
C.getLazyResolver());
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Encodable.
|
|
///
|
|
/// \param type The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsEncodable(ClassDecl *type) {
|
|
auto &C = type->getASTContext();
|
|
return inheritsConformanceTo(type,
|
|
C.getProtocol(KnownProtocolKind::Encodable));
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Decodable.
|
|
///
|
|
/// \param type The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsDecodable(ClassDecl *type) {
|
|
auto &C = type->getASTContext();
|
|
return inheritsConformanceTo(type,
|
|
C.getProtocol(KnownProtocolKind::Decodable));
|
|
}
|
|
|
|
/// Validates that all the variables declared in the given list of declarations
|
|
/// conform to the given protocol.
|
|
///
|
|
/// Produces a diagnostic on the given typechecker for every var which does not
|
|
/// conform. Calls a success callback for every var which does conform.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param context The \c DeclContext the var declarations belong to.
|
|
///
|
|
/// \param vars The var range to validate.
|
|
///
|
|
/// \param proto The protocol to check conformance to.
|
|
///
|
|
/// \param callback A callback to call on every valid var decl.
|
|
template <typename ValidVarCallback>
|
|
static bool
|
|
validateVarsConformToProtocol(TypeChecker &tc, DeclContext *context,
|
|
NominalTypeDecl::StoredPropertyRange &vars,
|
|
ProtocolDecl *proto, ValidVarCallback &callback) {
|
|
bool allConform = true;
|
|
for (auto varDecl : vars) {
|
|
// If the decl doesn't yet have a type, we may be seeing it before the type
|
|
// checker has gotten around to evaluating its type. For example:
|
|
//
|
|
// func foo() {
|
|
// let b = Bar(from: decoder) // <- evaluates Bar conformance to Codable,
|
|
// // forcing derivation
|
|
// }
|
|
//
|
|
// struct Bar : Codable {
|
|
// var x: Int // <- we get to valuate x's var decl here, but its type
|
|
// // hasn't yet been evaluated
|
|
// }
|
|
//
|
|
// Validate the decl eagerly.
|
|
if (!varDecl->hasType())
|
|
tc.validateDecl(varDecl);
|
|
|
|
// If the var decl didn't validate, it may still not have a type; confirm it
|
|
// has a type before ensuring the type conforms to Codable.
|
|
if (!varDecl->hasType() ||
|
|
!tc.conformsToProtocol(varDecl->getType(), proto, context,
|
|
ConformanceCheckFlags::Used)) {
|
|
// TODO: We should produce a diagnostic note here explaining that we found
|
|
// a var not conforming to Codable.
|
|
allConform = false;
|
|
continue;
|
|
}
|
|
|
|
callback(varDecl);
|
|
}
|
|
|
|
return allConform;
|
|
}
|
|
|
|
/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
|
|
/// match with the stored vars of the given type.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param codingKeysDecl The \c CodingKeys enum decl to validate.
|
|
///
|
|
/// \param type The nominal type decl to validate the \c CodingKeys against.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to validate all the keys conform
|
|
/// to.
|
|
static bool validateCodingKeysEnum(TypeChecker &tc, EnumDecl *codingKeysDecl,
|
|
NominalTypeDecl *type, ProtocolDecl *proto) {
|
|
// Look through all var decls in the given type.
|
|
// * Filter out lazy/computed vars (currently already done by
|
|
// getStoredProperties).
|
|
// * Filter out ones which are present in the given decl (by name).
|
|
//
|
|
// If any of the entries in the CodingKeys decl are not present in the type
|
|
// by name, then this decl doesn't match.
|
|
// If there are any vars left in the type, then this decl doesn't match.
|
|
//
|
|
// NOTE: If we change the behavior to ignore vars with default values, then we
|
|
// can further filter out the type names to remove those which
|
|
// correspond to vars with default values.
|
|
llvm::SmallDenseSet<Identifier, 8> names;
|
|
|
|
auto storedProperties = type->getStoredProperties(/*skipInaccessible=*/true);
|
|
auto validVarCallback = [&names](VarDecl *varDecl) {
|
|
names.insert(varDecl->getName());
|
|
};
|
|
|
|
if (!validateVarsConformToProtocol(tc, type->getDeclContext(),
|
|
storedProperties, proto, validVarCallback))
|
|
return false;
|
|
|
|
for (auto elt : codingKeysDecl->getAllElements()) {
|
|
auto it = names.find(elt->getName());
|
|
if (it == names.end()) {
|
|
// TODO: Produce diagnostic here complaining that the CodingKeys enum
|
|
// contains a case which does not correspond to a var.
|
|
// TODO: Investigate typo-correction here; perhaps the case name was
|
|
// misspelled and we can provide a fix-it.
|
|
return false;
|
|
}
|
|
|
|
names.erase(it);
|
|
}
|
|
|
|
// TODO: Produce diagnostic here complaining that there are vars which are not
|
|
// listed in the CodingKeys enum.
|
|
return names.empty();
|
|
}
|
|
|
|
/// Returns whether the given type has a valid nested \c CodingKeys enum.
|
|
///
|
|
/// If the type has an invalid \c CodingKeys entity, produces diagnostics to
|
|
/// complain about the error. In this case, the error result will be true -- in
|
|
/// the case where we don't have a valid CodingKeys enum and have produced
|
|
/// diagnostics here, we don't want to then attempt to synthesize a CodingKeys
|
|
/// enum.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param type The type decl whose nested \c CodingKeys type to validate.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to ensure the properties matching
|
|
/// the keys conform to.
|
|
static std::pair</* has type? */ bool, /* error? */ bool>
|
|
hasValidCodingKeysEnum(TypeChecker &tc, NominalTypeDecl *type,
|
|
ProtocolDecl *proto) {
|
|
auto &C = tc.Context;
|
|
auto codingKeysDecls = type->lookupDirect(DeclName(C.Id_CodingKeys));
|
|
if (codingKeysDecls.empty())
|
|
return {/* has type? */ false, /* error? */ false};
|
|
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at the
|
|
// first result here.
|
|
auto result = codingKeysDecls.front();
|
|
|
|
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
|
|
if (!codingKeysTypeDecl) {
|
|
// TODO: Produce a diagnostic complaining that the "CodingKeys" entity we
|
|
// found is not a type.
|
|
return {/* has type? */ true, /* error? */ true};
|
|
}
|
|
|
|
// Ensure that the type we found conforms to the CodingKey protocol.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
|
|
if (!tc.conformsToProtocol(codingKeysType, codingKeyProto,
|
|
type->getDeclContext(),
|
|
ConformanceCheckFlags::Used)) {
|
|
// TODO: Produce a diagnostic complaining that the "CodingKeys" entity we
|
|
// found does not conform to CodingKey.
|
|
return {/* has type? */ true, /* error? */ true};
|
|
}
|
|
|
|
// CodingKeys should eventually be an enum. If it's a typealias, we'll need to
|
|
// follow it.
|
|
auto *codingKeysEnum = dyn_cast<EnumDecl>(result);
|
|
if (auto *typealias = dyn_cast<TypeAliasDecl>(result)) {
|
|
// TODO: Do we have to follow through multiple layers of typealiases
|
|
// here? Or will getCanonicalType() do that for us?
|
|
auto canType = codingKeysType->getCanonicalType();
|
|
assert(canType);
|
|
|
|
codingKeysEnum = dyn_cast<EnumDecl>(codingKeysType->getAnyNominal());
|
|
}
|
|
|
|
if (!codingKeysEnum) {
|
|
// TODO: Produce a diagnostic complaining that we cannot derive Codable
|
|
// with a non-enum CodingKeys type.
|
|
return {/* has type? */ true, /* error? */ true};
|
|
}
|
|
|
|
bool valid = validateCodingKeysEnum(tc, codingKeysEnum, type, proto);
|
|
return {/* has type? */ true, /* error? */ !valid};
|
|
}
|
|
|
|
/// Synthesizes a new \c CodingKeys enum based on the {En,De}codable members of
|
|
/// the given type (\c nullptr if unable to synthesize).
|
|
///
|
|
/// If able to synthesize the enum, adds it directly to \c type.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,De}codable conformance.
|
|
///
|
|
/// \param type The nominal type decl whose nested \c CodingKeys type to
|
|
/// synthesize.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to validate all the keys conform
|
|
/// to.
|
|
static EnumDecl *synthesizeCodingKeysEnum(TypeChecker &tc,
|
|
NominalTypeDecl *type,
|
|
ProtocolDecl *proto) {
|
|
auto &C = tc.Context;
|
|
auto *typeDC = cast<DeclContext>(type);
|
|
|
|
// We want to look through all the var declarations of this type to create
|
|
// enum cases based on those var names.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
auto *codingKeyType = codingKeyProto->getDeclaredType();
|
|
TypeLoc protoTypeLoc[1] = {TypeLoc::withoutLoc(codingKeyType)};
|
|
MutableArrayRef<TypeLoc> inherited = C.AllocateCopy(protoTypeLoc);
|
|
|
|
auto *enumDecl = new (C) EnumDecl(SourceLoc(), C.Id_CodingKeys, SourceLoc(),
|
|
inherited, nullptr, typeDC);
|
|
enumDecl->setImplicit();
|
|
enumDecl->setAccessibility(Accessibility::Private);
|
|
|
|
auto *enumDC = cast<DeclContext>(enumDecl);
|
|
auto *mutableEnumDC = cast<IterableDeclContext>(enumDecl);
|
|
|
|
// For classes which inherit from something Encodable or Decodable, we
|
|
// provide case `super` as the first key (to be used in encoding super).
|
|
auto *classDecl = dyn_cast<ClassDecl>(type);
|
|
if (classDecl &&
|
|
(superclassIsEncodable(classDecl) || superclassIsDecodable(classDecl))) {
|
|
// TODO: Ensure the class doesn't already have or inherit a variable named
|
|
// "`super`"; otherwise we will generate an invalid enum. In that case,
|
|
// diagnose and bail.
|
|
auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, TypeLoc(),
|
|
/*HasArgumentType=*/false,
|
|
SourceLoc(), nullptr, enumDC);
|
|
super->setImplicit();
|
|
mutableEnumDC->addMember(super);
|
|
}
|
|
|
|
// Each of these vars needs a case in the enum. For each var decl, if the type
|
|
// conforms to {En,De}codable, add it to the enum.
|
|
auto storedProperties = type->getStoredProperties(/*skipInaccessible=*/true);
|
|
auto validVarCallback = [&C, &enumDC, &mutableEnumDC](VarDecl *varDecl) {
|
|
auto *elt = new (C) EnumElementDecl(SourceLoc(), varDecl->getName(),
|
|
TypeLoc(), /*HasArgumentType=*/false,
|
|
SourceLoc(), nullptr, enumDC);
|
|
elt->setImplicit();
|
|
mutableEnumDC->addMember(elt);
|
|
};
|
|
|
|
if (!validateVarsConformToProtocol(tc, type->getDeclContext(),
|
|
storedProperties, proto, validVarCallback))
|
|
return nullptr;
|
|
|
|
// Forcibly derive conformance to CodingKey.
|
|
tc.checkConformancesInContext(enumDC, mutableEnumDC);
|
|
|
|
// Add to the type.
|
|
cast<IterableDeclContext>(type)->addMember(enumDecl);
|
|
return enumDecl;
|
|
}
|
|
|
|
/// Creates a new var decl representing
|
|
///
|
|
/// var/let container : containerBase<keyType>
|
|
///
|
|
/// \c containerBase is the name of the type to use as the base (either
|
|
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
|
|
///
|
|
/// \param C The AST context to create the decl in.
|
|
///
|
|
/// \param DC The \c DeclContext to create the decl in.
|
|
///
|
|
/// \param keyedContainerDecl The generic type to bind the key type in.
|
|
///
|
|
/// \param keyType The key type to bind to the container type.
|
|
///
|
|
/// \param isLet Whether to declare the variable as immutable.
|
|
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
|
|
NominalTypeDecl *keyedContainerDecl,
|
|
Type keyType, bool isLet) {
|
|
// Bind Keyed*Container to Keyed*Container<KeyType>
|
|
Type boundType[1] = {keyType};
|
|
auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
|
|
C.AllocateCopy(boundType));
|
|
|
|
// let container : Keyed*Container<KeyType>
|
|
auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, /*IsLet=*/isLet,
|
|
/*IsCaptureList=*/false, SourceLoc(),
|
|
C.Id_container, containerType, DC);
|
|
containerDecl->setImplicit();
|
|
containerDecl->setInterfaceType(containerType);
|
|
return containerDecl;
|
|
}
|
|
|
|
/// Creates a new \c CallExpr representing
|
|
///
|
|
/// base.container(keyedBy: CodingKeys.self)
|
|
///
|
|
/// \param C The AST context to create the expression in.
|
|
///
|
|
/// \param DC The \c DeclContext to create any decls in.
|
|
///
|
|
/// \param base The base expression to make the call on.
|
|
///
|
|
/// \param returnType The return type of the call.
|
|
///
|
|
/// \param param The parameter to the call.
|
|
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
|
|
Expr *base, Type returnType,
|
|
NominalTypeDecl *param) {
|
|
// (keyedBy:)
|
|
auto *keyedByDecl = new (C) ParamDecl(/*IsLet=*/true, SourceLoc(),
|
|
SourceLoc(), C.Id_keyedBy, SourceLoc(),
|
|
C.Id_keyedBy, returnType, DC);
|
|
keyedByDecl->setImplicit();
|
|
keyedByDecl->setInterfaceType(returnType);
|
|
|
|
// container(keyedBy:) method name
|
|
auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
|
|
DeclName callName(C, C.Id_container, paramList);
|
|
|
|
// base.container(keyedBy:) expr
|
|
auto *unboundCall = new (C) UnresolvedDotExpr(base, SourceLoc(), callName,
|
|
DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// CodingKeys.self expr
|
|
auto *codingKeysExpr = new (C) DeclRefExpr(ConcreteDeclRef(param),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
|
|
SourceLoc(), SourceLoc());
|
|
|
|
// Full bound base.container(keyedBy: CodingKeys.self) call
|
|
Expr *args[1] = {codingKeysMetaTypeExpr};
|
|
Identifier argLabels[1] = {C.Id_keyedBy};
|
|
return CallExpr::createImplicit(C, unboundCall, C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
}
|
|
|
|
/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
|
|
///
|
|
/// \param encodeDecl The function decl whose body to synthesize.
|
|
static void deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived func encode(to encoder: Encoder) throws {
|
|
// var container = encoder.container(keyedBy: CodingKeys.self)
|
|
// try container.encode(x, forKey: .x)
|
|
// try container.encode(y, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto *typeDecl = cast<NominalTypeDecl>(encodeDecl->getDeclContext());
|
|
|
|
auto *funcDC = cast<DeclContext>(encodeDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type.
|
|
auto *codingKeysDecl = typeDecl->lookupDirect(DeclName(C.Id_CodingKeys))[0];
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
assert(codingKeysDecl && "Missing CodingKeys decl.");
|
|
// b) The type is not an enum
|
|
auto *codingKeysEnum = cast<EnumDecl>(codingKeysDecl);
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to encode super.
|
|
|
|
// let container : KeyedEncodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedEncodingContainerDecl(),
|
|
codingKeysType, /*isLet=*/false);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
// Need to generate
|
|
// `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// This is unconditional because a type with no properties should encode as an
|
|
// empty container.
|
|
//
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// encoder
|
|
auto encoderParam = encodeDecl->getParameterList(1)->get(0);
|
|
auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound encoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// Full `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::None,
|
|
SourceLoc(),
|
|
containerPattern, callExpr,
|
|
funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `try container.encode(x, forKey: .x)` for all
|
|
// existing properties.
|
|
for (auto *elt : codingKeysEnum->getAllElements()) {
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at
|
|
// the first result here.
|
|
auto matchingVars = typeDecl->lookupDirect(DeclName(elt->getName()));
|
|
|
|
// self.x
|
|
auto *selfRef = createSelfDeclRef(encodeDecl);
|
|
auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
|
|
ConcreteDeclRef(matchingVars[0]),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// encode(_:forKey:)
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
DeclName name(C, C.Id_encode, argNames);
|
|
auto *encodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
|
|
name, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// container.encode(self.x, forKey: CodingKeys.x)
|
|
Expr *args[2] = {varExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.encode(self.x, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
// Classes which inherit from something Codable should encode super as well.
|
|
auto *classDecl = dyn_cast<ClassDecl>(typeDecl);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
// Need to generate `try super.encode(to: container.superEncoder())`
|
|
|
|
// superEncoder()
|
|
auto *method = new (C) UnresolvedDeclRefExpr(
|
|
DeclName(C.Id_superEncoder), DeclRefKind::Ordinary, DeclNameLoc());
|
|
|
|
// container.superEncoder()
|
|
auto *superEncoderRef = new (C) DotSyntaxCallExpr(containerExpr,
|
|
SourceLoc(), method);
|
|
|
|
// encode(to:) expr
|
|
auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.encode(to:)
|
|
auto *encodeCall = new (C) DotSyntaxCallExpr(superRef, SourceLoc(),
|
|
encodeDeclRef);
|
|
|
|
// super.encode(to: container.superEncoder())
|
|
Expr *args[1] = {superEncoderRef};
|
|
Identifier argLabels[1] = {C.Id_to};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.encode(to: container.superEncoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
encodeDecl->setBody(body);
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
///
|
|
/// \param tc The type checker whose AST context to synthesize the decl in.
|
|
///
|
|
/// \param parentDecl The parent declaration of the type.
|
|
///
|
|
/// \param type The nominal type to synthesize the function for.
|
|
static FuncDecl *deriveEncodable_encode(TypeChecker &tc, Decl *parentDecl,
|
|
NominalTypeDecl *type) {
|
|
auto &C = tc.Context;
|
|
auto *typeDC = cast<DeclContext>(type);
|
|
|
|
// Expected type: (Self) -> (Encoder) throws -> ()
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: ()
|
|
// Create from the inside out:
|
|
|
|
// (to: Encoder)
|
|
auto encoderType = C.getEncoderDecl()->getDeclaredInterfaceType();
|
|
auto inputTypeElt = TupleTypeElt(encoderType, C.Id_to);
|
|
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
|
|
|
|
// throws
|
|
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
|
|
/*Throws=*/true);
|
|
// ()
|
|
auto returnType = TupleType::getEmpty(C);
|
|
|
|
// (to: Encoder) throws -> ()
|
|
auto innerType = FunctionType::get(inputType, returnType, extInfo);
|
|
|
|
// Params: (self [implicit], Encoder)
|
|
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), typeDC);
|
|
auto *encoderParam = new (C) ParamDecl(/*isLet=*/true, SourceLoc(),
|
|
SourceLoc(), C.Id_to, SourceLoc(),
|
|
C.Id_encoder, encoderType, typeDC);
|
|
encoderParam->setInterfaceType(encoderType);
|
|
|
|
ParameterList *params[] = {ParameterList::createWithoutLoc(selfDecl),
|
|
ParameterList::createWithoutLoc(encoderParam)};
|
|
|
|
// Func name: encode(to: Encoder)
|
|
DeclName name(C, C.Id_encode, params[1]);
|
|
auto *encodeDecl = FuncDecl::create(C, SourceLoc(), StaticSpellingKind::None,
|
|
SourceLoc(), name, SourceLoc(),
|
|
/*Throws=*/true, SourceLoc(), SourceLoc(),
|
|
nullptr, params,
|
|
TypeLoc::withoutLoc(returnType), typeDC);
|
|
encodeDecl->setImplicit();
|
|
encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
|
|
|
|
// This method should be marked as 'override' for classes inheriting Encodable
|
|
// conformance from a parent class.
|
|
auto *classDecl = dyn_cast<ClassDecl>(type);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
auto *attr = new (C) SimpleDeclAttr<DAK_Override>(/*IsImplicit=*/true);
|
|
encodeDecl->getAttrs().add(attr);
|
|
}
|
|
|
|
// Evaluate the type of Self in (Self) -> (Encoder) throws -> ().
|
|
Type selfType = typeDC->getDeclaredInterfaceType();
|
|
Type interfaceType;
|
|
if (auto sig = typeDC->getGenericSignatureOfContext()) {
|
|
// Evaluate the below, but in a generic environment (if Self is generic).
|
|
encodeDecl->setGenericEnvironment(typeDC->getGenericEnvironmentOfContext());
|
|
interfaceType = GenericFunctionType::get(sig, selfType, innerType,
|
|
FunctionType::ExtInfo());
|
|
} else {
|
|
// (Self) -> innerType == (Encoder) throws -> ()
|
|
interfaceType = FunctionType::get(selfType, innerType);
|
|
}
|
|
|
|
encodeDecl->setInterfaceType(interfaceType);
|
|
encodeDecl->setAccessibility(std::max(type->getFormalAccess(),
|
|
Accessibility::Internal));
|
|
|
|
// If the type was not imported, the derived conformance is either from the
|
|
// type itself or an extension, in which case we will emit the declaration
|
|
// normally.
|
|
if (type->hasClangNode())
|
|
tc.Context.addExternalDecl(encodeDecl);
|
|
|
|
cast<IterableDeclContext>(type)->addMember(encodeDecl);
|
|
return encodeDecl;
|
|
}
|
|
|
|
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
|
|
///
|
|
/// \param initDecl The function decl whose body to synthesize.
|
|
static void deriveBodyDecodable_init(AbstractFunctionDecl *initDecl) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived init(from decoder: Decoder) throws {
|
|
// let container = try decoder.container(keyedBy: CodingKeys.self)
|
|
// x = try container.decode(Type.self, forKey: .x)
|
|
// y = try container.decode(Type.self, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto *typeDecl = cast<NominalTypeDecl>(initDecl->getDeclContext());
|
|
|
|
auto *funcDC = cast<DeclContext>(initDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type.
|
|
auto *codingKeysDecl = typeDecl->lookupDirect(DeclName(C.Id_CodingKeys))[0];
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
assert(codingKeysDecl && "Missing CodingKeys decl.");
|
|
// b) The type is not an enum
|
|
auto *codingKeysEnum = cast<EnumDecl>(codingKeysDecl);
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to decode super.
|
|
|
|
// let container : KeyedDecodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedDecodingContainerDecl(),
|
|
codingKeysType, /*isLet=*/true);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
auto enumElements = codingKeysEnum->getAllElements();
|
|
if (!enumElements.empty()) {
|
|
// Need to generate
|
|
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// decoder
|
|
auto decoderParam = initDecl->getParameterList(1)->get(0);
|
|
auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound decoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// try decoder.container(keyedBy: CodingKeys.self)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*implicit=*/true);
|
|
|
|
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::None,
|
|
SourceLoc(),
|
|
containerPattern, tryExpr,
|
|
funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `x = try container.encode(Type.self, forKey: .x)`
|
|
// for all existing properties.
|
|
for (auto *elt : enumElements) {
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at
|
|
// the first result here.
|
|
auto matchingVars = typeDecl->lookupDirect(DeclName(elt->getName()));
|
|
auto *varDecl = cast<VarDecl>(matchingVars[0]);
|
|
|
|
// Don't output a decode statement for a var let with a default value.
|
|
if (varDecl->isLet() && varDecl->getParentInitializer() != nullptr)
|
|
continue;
|
|
|
|
// Type.self (where Type === type(of: x)
|
|
auto varType = varDecl->getType();
|
|
auto *metaTyRef = TypeExpr::createImplicit(varType, C);
|
|
auto *typeExpr = new (C) DotSelfExpr(metaTyRef, SourceLoc(), SourceLoc(),
|
|
varType);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// container.decode(_:forKey:)
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
DeclName name(C, C.Id_decode, argNames);
|
|
auto *decodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
|
|
name, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// container.decode(Type.self, forKey: CodingKeys.x)
|
|
Expr *args[2] = {typeExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, decodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.decode(Type.self, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
|
|
auto *selfRef = createSelfDeclRef(initDecl);
|
|
auto *varExpr = new (C) UnresolvedDotExpr(
|
|
selfRef, SourceLoc(), DeclName(varDecl->getName()), DeclNameLoc(),
|
|
/*implicit=*/true);
|
|
auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
|
|
/*Implicit=*/true);
|
|
statements.push_back(assignExpr);
|
|
}
|
|
}
|
|
|
|
// Classes which inherit from something Decodable should decode super as well.
|
|
auto *classDecl = dyn_cast<ClassDecl>(typeDecl);
|
|
if (classDecl && superclassIsDecodable(classDecl)) {
|
|
// Need to generate `try super.init(from: container.superDecoder())`
|
|
|
|
// superDecoder()
|
|
auto *method = new (C) UnresolvedDeclRefExpr(
|
|
DeclName(C.Id_superDecoder), DeclRefKind::Ordinary, DeclNameLoc());
|
|
|
|
// container.superDecoder()
|
|
auto *superDecoderRef = new (C) DotSyntaxCallExpr(containerExpr,
|
|
SourceLoc(), method);
|
|
|
|
// init(from:) expr
|
|
auto *initDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(initDecl),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.init(from:)
|
|
auto *decodeCall = new (C) DotSyntaxCallExpr(superRef, SourceLoc(),
|
|
initDeclRef);
|
|
|
|
// super.decode(from: container.superDecoder())
|
|
Expr *args[1] = {superDecoderRef};
|
|
Identifier argLabels[1] = {C.Id_from};
|
|
auto *callExpr = CallExpr::createImplicit(C, decodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.init(from: container.superDecoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
initDecl->setBody(body);
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
///
|
|
/// \param tc The type checker whose AST context to synthesize the decl in.
|
|
///
|
|
/// \param parentDecl The parent declaration of the type.
|
|
///
|
|
/// \param type The nominal type to synthesize the function for.
|
|
static ValueDecl *deriveDecodable_init(TypeChecker &tc, Decl *parentDecl,
|
|
NominalTypeDecl *type) {
|
|
auto &C = tc.Context;
|
|
auto *typeDC = cast<DeclContext>(type);
|
|
|
|
// Expected type: (Self) -> (Decoder) throws -> (Self)
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: Self
|
|
// Compute from the inside out:
|
|
|
|
// (from: Decoder)
|
|
auto decoderType = C.getDecoderDecl()->getDeclaredInterfaceType();
|
|
auto inputTypeElt = TupleTypeElt(decoderType, C.Id_from);
|
|
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
|
|
|
|
// throws
|
|
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
|
|
/*Throws=*/true);
|
|
|
|
// (Self)
|
|
auto returnType = typeDC->getDeclaredInterfaceType();
|
|
|
|
// (from: Decoder) throws -> (Self)
|
|
Type innerType = FunctionType::get(inputType, returnType, extInfo);
|
|
|
|
// Params: (self [implicit], Decoder)
|
|
// self should be inout if the type is a value type; not inout otherwise.
|
|
auto inOut = !isa<ClassDecl>(type);
|
|
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), typeDC,
|
|
/*isStatic=*/false,
|
|
/*isInOut=*/inOut);
|
|
auto *decoderParamDecl = new (C) ParamDecl(/*isLet=*/true, SourceLoc(),
|
|
SourceLoc(), C.Id_from,
|
|
SourceLoc(), C.Id_decoder,
|
|
decoderType, typeDC);
|
|
decoderParamDecl->setImplicit();
|
|
decoderParamDecl->setInterfaceType(decoderType);
|
|
|
|
auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);
|
|
|
|
// Func name: init(from: Decoder)
|
|
DeclName name(C, C.Id_init, paramList);
|
|
|
|
auto *initDecl = new (C) ConstructorDecl(
|
|
name, SourceLoc(),
|
|
/*Failability=*/OTK_None,
|
|
/*FailabilityLoc=*/SourceLoc(),
|
|
/*Throws=*/true, /*ThrowsLoc=*/SourceLoc(), selfDecl, paramList,
|
|
/*GenericParams=*/nullptr, typeDC);
|
|
initDecl->setImplicit();
|
|
initDecl->setBodySynthesizer(deriveBodyDecodable_init);
|
|
|
|
// This constructor should be marked as `required` for non-final classes.
|
|
if (isa<ClassDecl>(type) && type->getAttrs().hasAttribute<FinalAttr>()) {
|
|
auto *reqAttr = new (C) SimpleDeclAttr<DAK_Required>(/*IsImplicit=*/true);
|
|
initDecl->getAttrs().add(reqAttr);
|
|
}
|
|
|
|
Type selfType = initDecl->computeInterfaceSelfType();
|
|
Type selfInitType = initDecl->computeInterfaceSelfType(/*init=*/true);
|
|
Type interfaceType;
|
|
Type initializerType;
|
|
if (auto sig = typeDC->getGenericSignatureOfContext()) {
|
|
// Evaluate the below, but in a generic environment (if Self is generic).
|
|
initDecl->setGenericEnvironment(typeDC->getGenericEnvironmentOfContext());
|
|
interfaceType = GenericFunctionType::get(sig, selfType, innerType,
|
|
FunctionType::ExtInfo());
|
|
initializerType = GenericFunctionType::get(sig, selfInitType, innerType,
|
|
FunctionType::ExtInfo());
|
|
} else {
|
|
// (Self) -> (Decoder) throws -> (Self)
|
|
interfaceType = FunctionType::get(selfType, innerType);
|
|
initializerType = FunctionType::get(selfInitType, innerType);
|
|
}
|
|
|
|
initDecl->setInterfaceType(interfaceType);
|
|
initDecl->setInitializerInterfaceType(initializerType);
|
|
initDecl->setAccessibility(
|
|
std::max(type->getFormalAccess(), Accessibility::Internal));
|
|
|
|
// If the type was not imported, the derived conformance is either from the
|
|
// type itself or an extension, in which case we will emit the declaration
|
|
// normally.
|
|
if (type->hasClangNode())
|
|
tc.Context.addExternalDecl(initDecl);
|
|
|
|
cast<IterableDeclContext>(type)->addMember(initDecl);
|
|
return initDecl;
|
|
}
|
|
|
|
/// Returns whether the given type is valid for synthesizing {En,De}codable.
|
|
///
|
|
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
|
|
/// not, attempts to synthesize one for it.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param type The type to validate.
|
|
///
|
|
/// \param proto The *codable protocol to check for validity.
|
|
static bool canSynthesize(TypeChecker &tc, NominalTypeDecl *type,
|
|
ProtocolDecl *proto) {
|
|
// First, look up if the type has a valid CodingKeys enum we can use.
|
|
bool hasType, error;
|
|
std::tie(hasType, error) = hasValidCodingKeysEnum(tc, type, proto);
|
|
|
|
// We found a type, but it wasn't valid.
|
|
if (error)
|
|
return false;
|
|
|
|
// We can try to synthesize a type here.
|
|
if (!hasType) {
|
|
auto *synthesizedEnum = synthesizeCodingKeysEnum(tc, type, proto);
|
|
if (!synthesizedEnum)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveEncodable(TypeChecker &tc,
|
|
Decl *parentDecl,
|
|
NominalTypeDecl *type,
|
|
ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(type) && !isa<ClassDecl>(type))
|
|
return nullptr;
|
|
|
|
if (requirement->getName() != tc.Context.Id_encode) {
|
|
// Unknown requirement.
|
|
tc.diagnose(requirement->getLoc(), diag::broken_encodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
auto encodableProto = tc.Context.getProtocol(KnownProtocolKind::Encodable);
|
|
if (canSynthesize(tc, type, encodableProto))
|
|
return deriveEncodable_encode(tc, parentDecl, type);
|
|
|
|
// Known protocol requirement but could not synthesize.
|
|
// FIXME: We have to output at least one error diagnostic here because we
|
|
// returned true from NominalTypeDecl::derivesProtocolConformance; if we
|
|
// don't, we expect to return a witness here later and crash on an
|
|
// assertion. Producing an error stops compilation before then.
|
|
auto encodableType = encodableProto->getDeclaredType();
|
|
tc.diagnose(type, diag::type_does_not_conform, type->getDeclaredType(),
|
|
encodableType);
|
|
tc.diagnose(requirement, diag::no_witnesses, diag::RequirementKind::Func,
|
|
requirement->getFullName(), encodableType, /*AddFixIt=*/false);
|
|
return nullptr;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveDecodable(TypeChecker &tc,
|
|
Decl *parentDecl,
|
|
NominalTypeDecl *type,
|
|
ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(type) && !isa<ClassDecl>(type))
|
|
return nullptr;
|
|
|
|
if (requirement->getName() != tc.Context.Id_init) {
|
|
// Unknown requirement.
|
|
tc.diagnose(requirement->getLoc(), diag::broken_decodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
auto decodableProto = tc.Context.getProtocol(KnownProtocolKind::Decodable);
|
|
if (canSynthesize(tc, type, decodableProto))
|
|
return deriveDecodable_init(tc, parentDecl, type);
|
|
|
|
// Known protocol requirement but could not synthesize.
|
|
// FIXME: We have to output at least one error diagnostic here because we
|
|
// returned true from NominalTypeDecl::derivesProtocolConformance; if we
|
|
// don't, we expect to return a witness here later and crash on an
|
|
// assertion. Producing an error stops compilation before then.
|
|
auto decodableType = decodableProto->getDeclaredType();
|
|
tc.diagnose(type, diag::type_does_not_conform, type->getDeclaredType(),
|
|
decodableType);
|
|
tc.diagnose(requirement, diag::no_witnesses,
|
|
diag::RequirementKind::Constructor, requirement->getFullName(),
|
|
decodableType, /*AddFixIt=*/false);
|
|
return nullptr;
|
|
}
|