Files
swift-mirror/tools/SourceKit/lib/SwiftLang/SwiftASTManager.cpp
Alex Hoppen a8dd6819b5 [IDE] Implement completion-like cursor info for ValueDecls
This brings up the ability to compute cursor info results using the completion-like type checking paradigm, which an reuse ASTContexts and doesn’t need to type check the entire file.

For now, the new implementation only supports cursor info on `ValueDecl`s (not on references) because they were easiest to implement. More cursor info kinds are coming soon.

At the moment, we only run the new implementation in a verification mode: It is only invoked in assert toolchains and when run, we check that the results are equivalent to the old implementation. Once more cursor info kinds are implemented and if the SourceKit stress tester doesn’t find any verification issues, we can enable the new implementation, falling back to the old implementation if the new one didn’t produce any results.
2022-12-08 14:39:14 +01:00

1293 lines
48 KiB
C++

//===--- SwiftASTManager.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SwiftASTManager.h"
#include "SwiftEditorDiagConsumer.h"
#include "SwiftInvocation.h"
#include "SwiftLangSupport.h"
#include "SourceKit/Core/Context.h"
#include "SourceKit/Support/Concurrency.h"
#include "SourceKit/Support/ImmutableTextBuffer.h"
#include "SourceKit/Support/Logging.h"
#include "SourceKit/Support/Tracing.h"
#include "swift/Basic/Cache.h"
#include "swift/Driver/FrontendUtil.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/IDETool/CompilerInvocation.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
// This is included only for createLazyResolver(). Move to different header ?
#include "swift/Sema/IDETypeChecking.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace SourceKit;
using namespace swift;
using namespace swift::sys;
void SwiftASTConsumer::failed(StringRef Error) { }
//===----------------------------------------------------------------------===//
// SwiftInvocation
//===----------------------------------------------------------------------===//
namespace {
struct InvocationOptions {
const std::vector<std::string> Args;
const std::string PrimaryFile;
const CompilerInvocation Invok;
InvocationOptions(ArrayRef<const char *> CArgs, StringRef PrimaryFile,
CompilerInvocation Invok)
: Args(_convertArgs(CArgs)),
PrimaryFile(PrimaryFile),
Invok(std::move(Invok)) {
// Assert invocation with a primary file. We want to avoid full typechecking
// for all files.
assert(!this->PrimaryFile.empty());
assert(this->Invok.getFrontendOptions()
.InputsAndOutputs.hasUniquePrimaryInput() &&
"Must have exactly one primary input for code completion, etc.");
}
void applyTo(CompilerInvocation &CompInvok) const;
void
applyToSubstitutingInputs(CompilerInvocation &CompInvok,
FrontendInputsAndOutputs &&InputsAndOutputs) const;
void profile(llvm::FoldingSetNodeID &ID) const;
void raw(std::vector<std::string> &Args, std::string &PrimaryFile) const;
private:
static std::vector<std::string> _convertArgs(ArrayRef<const char *> CArgs) {
std::vector<std::string> Args;
Args.reserve(CArgs.size());
for (auto Arg : CArgs)
Args.push_back(Arg);
return Args;
}
};
struct ASTKey {
llvm::FoldingSetNodeID FSID;
};
template <typename T>
size_t getVectorMemoryCost(const std::vector<T> &Vec) {
return Vec.capacity() * sizeof(T);
}
} // end anonymous namespace
struct SwiftInvocation::Implementation {
InvocationOptions Opts;
ASTKey Key;
explicit Implementation(InvocationOptions opts) : Opts(std::move(opts)) {
Opts.profile(Key.FSID);
}
};
SwiftInvocation::~SwiftInvocation() {
delete &Impl;
}
void SwiftInvocation::applyTo(swift::CompilerInvocation &CompInvok) const {
return Impl.Opts.applyTo(CompInvok);
}
void SwiftInvocation::raw(std::vector<std::string> &Args,
std::string &PrimaryFile) const {
return Impl.Opts.raw(Args, PrimaryFile);
}
void InvocationOptions::applyTo(CompilerInvocation &CompInvok) const {
CompInvok = this->Invok;
}
void InvocationOptions::applyToSubstitutingInputs(
CompilerInvocation &CompInvok,
FrontendInputsAndOutputs &&inputsAndOutputs) const {
CompInvok = this->Invok;
CompInvok.getFrontendOptions().InputsAndOutputs = inputsAndOutputs;
}
void InvocationOptions::raw(std::vector<std::string> &Args,
std::string &PrimaryFile) const {
Args.assign(this->Args.begin(), this->Args.end());
PrimaryFile = this->PrimaryFile;
}
void InvocationOptions::profile(llvm::FoldingSetNodeID &ID) const {
// FIXME: This ties ASTs to every argument and the exact order that they were
// provided, preventing much sharing of ASTs.
// Note though that previously we tried targeting specific options considered
// semantically relevant but it proved too fragile (very easy to miss some new
// compiler invocation option).
// Possibly have all compiler invocation options auto-generated from a
// tablegen definition file, thus forcing a decision for each option if it is
// ok to share ASTs with the option differing.
for (auto &Arg : Args)
ID.AddString(Arg);
ID.AddString(PrimaryFile);
}
//===----------------------------------------------------------------------===//
// SwiftASTManager
//===----------------------------------------------------------------------===//
namespace SourceKit {
struct ASTUnit::Implementation {
const uint64_t Generation;
std::shared_ptr<SwiftStatistics> Stats;
SmallVector<ImmutableTextSnapshotRef, 4> Snapshots;
EditorDiagConsumer CollectDiagConsumer;
CompilerInstance CompInst;
WorkQueue Queue{ WorkQueue::Dequeuing::Serial, "sourcekit.swift.ConsumeAST" };
Implementation(uint64_t Generation, std::shared_ptr<SwiftStatistics> Stats)
: Generation(Generation), Stats(Stats) {}
void consumeAsync(SwiftASTConsumerRef ASTConsumer, ASTUnitRef ASTRef);
};
void ASTUnit::Implementation::consumeAsync(SwiftASTConsumerRef ConsumerRef,
ASTUnitRef ASTRef) {
#if defined(_WIN32)
// Windows uses more up for stack space (why?) than macOS/Linux which
// causes stack overflows in a dispatch thread with 64k stack. Passing
// useDeepStack=true means it's given a _beginthreadex thread with an 8MB
// stack.
bool useDeepStack = true;
#else
bool useDeepStack = false;
#endif
Queue.dispatch([ASTRef, ConsumerRef]{
SwiftASTConsumer &ASTConsumer = *ConsumerRef;
CompilerInstance &CI = ASTRef->getCompilerInstance();
if (CI.getPrimarySourceFile()) {
ASTConsumer.handlePrimaryAST(ASTRef);
} else {
LOG_WARN_FUNC("did not find primary SourceFile");
ConsumerRef->failed("did not find primary SourceFile");
}
}, useDeepStack);
}
ASTUnit::ASTUnit(uint64_t Generation, std::shared_ptr<SwiftStatistics> Stats)
: Impl(*new Implementation(Generation, Stats)) {
auto numASTs = ++Stats->numASTsInMem;
Stats->maxASTsInMem.updateMax(numASTs);
}
ASTUnit::~ASTUnit() {
--Impl.Stats->numASTsInMem;
delete &Impl;
}
swift::CompilerInstance &ASTUnit::getCompilerInstance() const {
return Impl.CompInst;
}
uint64_t ASTUnit::getGeneration() const {
return Impl.Generation;
}
ArrayRef<ImmutableTextSnapshotRef> ASTUnit::getSnapshots() const {
return Impl.Snapshots;
}
SourceFile &ASTUnit::getPrimarySourceFile() const {
return *Impl.CompInst.getPrimarySourceFile();
}
EditorDiagConsumer &ASTUnit::getEditorDiagConsumer() const {
return Impl.CollectDiagConsumer;
}
void ASTUnit::performAsync(std::function<void()> Fn) {
Impl.Queue.dispatch(std::move(Fn));
}
} // namespace SourceKit
namespace {
typedef uint64_t BufferStamp;
struct FileContent {
ImmutableTextSnapshotRef Snapshot;
std::string Filename;
std::unique_ptr<llvm::MemoryBuffer> Buffer;
bool IsPrimary;
BufferStamp Stamp;
FileContent(ImmutableTextSnapshotRef Snapshot, std::string Filename,
std::unique_ptr<llvm::MemoryBuffer> Buffer, bool IsPrimary,
BufferStamp Stamp)
: Snapshot(std::move(Snapshot)), Filename(Filename),
Buffer(std::move(Buffer)), IsPrimary(IsPrimary), Stamp(Stamp) {}
explicit operator InputFile() const {
return InputFile(Filename, IsPrimary, Buffer.get());
}
size_t getMemoryCost() const {
return sizeof(*this) + Filename.size() + Buffer->getBufferSize();
}
};
/// An \c ASTBuildOperations builds an AST. Once the AST is built, it informs
/// a list of \c SwiftASTConsumers about the built AST.
/// It also supports cancellation with the following paradigm: If an \c
/// SwiftASTConsumer is no longer needed, it can be cancelled, which will remove
/// it from the \c ASTBuildOperation. If the \c ASTBuildOperation has no more
/// consumers attached to it, it will cancel the AST build at the next
/// opportunity.
class ASTBuildOperation
: public std::enable_shared_from_this<ASTBuildOperation> {
/// After the AST has been built, the corresponding result.
struct ASTBuildResult {
/// The AST that was created by the build operation.
ASTUnitRef AST;
/// An error message emitted by the creation of the AST. There might still
/// be an AST if an error occurred, but it's usefulness depends on the
/// severity of the error.
std::string Error;
/// Whether the build operation was cancelled. There might be an AST and
/// error but their usefulness depends on when the operation was cancelled.
bool Cancelled;
/// Whether the result contains any values, i.e. whether the operation has
/// produced a result yet.
bool HasValue;
ASTBuildResult() : HasValue(false) {}
void emplace(ASTUnitRef AST, std::string Error, bool Cancelled) {
assert(!HasValue && "Should only emplace a result once");
this->HasValue = true;
this->AST = AST;
this->Error = Error;
this->Cancelled = Cancelled;
}
operator bool() const { return HasValue; }
size_t getMemoryCost() {
size_t Cost = sizeof(*this) + Error.size();
if (AST) {
Cost += sizeof(*AST);
if (AST->getCompilerInstance().hasASTContext()) {
Cost += AST->Impl.CompInst.getASTContext().getTotalMemory();
}
}
return Cost;
}
};
/// Parameters necessary to build the AST.
const SwiftInvocationRef InvokRef;
const IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem;
/// The contents of all explicit input files of the compiler innovation, which
/// can be determined at construction time of the \c ASTBuildOperation.
const std::vector<FileContent> FileContents;
/// Guards \c DependencyStamps. This prevents reading from \c DependencyStamps
/// while it is being modified. It does not provide any ordering gurantees
/// that \c DependencyStamps have been computed in \c buildASTUnit before they
/// are accessed in \c matchesSourceState but that's fine (see comment on
/// \c DependencyStamps).
llvm::sys::Mutex DependencyStampsMtx;
/// \c DependencyStamps contains the stamps of all module dependencies needed
/// for the AST build. These stamps are only known after the AST is built.
/// Before the AST has been built, we thus assume that all dependency stamps
/// match. This seems to be a reasonable assumption since the dependencies
/// shouldn't change (much) in the time between an \c ASTBuildOperation is
/// created and until it produced an AST.
/// Must only be accessed if \c DependencyStampsMtx has been claimed.
SmallVector<std::pair<std::string, BufferStamp>, 8> DependencyStamps = {};
/// The ASTManager from which this operation got scheduled. Used to update
/// global stats and access the file system.
SwiftASTManagerRef ASTManager;
/// A flag to cancel the AST build. If this flag is set to \c true, the type
/// checker will cancel type checking at the next possible opportunity.
const std::shared_ptr<std::atomic<bool>> CancellationFlag =
std::make_shared<std::atomic<bool>>(false);
/// A callback that's called when the operation finishes. Used to remove it
/// from the \c ASTProducer that scheduled it.
const std::function<void(void)> DidFinishCallback;
/// The consumers and result are guarded by the same mutex to avoid
/// simultaneously adding a consumer and setting the result, which might cause
/// the consumer's callback to neither be called when it gets added to this
/// operation, nor when the operation finishes.
llvm::sys::Mutex ConsumersAndResultMtx;
/// The consumers that should be informed about this AST once it finishes
/// building. When this vector is empty, the AST build can be cancelled.
SmallVector<SwiftASTConsumerRef, 4> Consumers = {};
/// Once the build operation has finished, its result, which can be an AST, an
/// error or the fact that it has been cancelled.
ASTBuildResult Result;
enum class State { Created, Queued, Running, Finished };
/// The state the operation is in. Only used in assertions to verify no state
/// is skipped or executed twice.
State OperationState = State::Created;
/// Inform a consumer that the AST has been built or that the build failed
/// with an error.
void informConsumer(SwiftASTConsumerRef Consumer);
/// Actually build the AST unit, synchronously on the current thread. If an
/// error occurred during the build, \p Error will contain the message. In
/// case of an error, a non-null AST may still be returned. Its usefulness
/// depends on the severity of the error.
ASTUnitRef buildASTUnit(std::string &Error);
/// Transition the build operation to \p NewState, asserting that the current
/// state is \p ExpectedOldState.
void transitionToState(State NewState, State ExpectedOldState) {
assert(OperationState == ExpectedOldState);
OperationState = NewState;
}
/// Create a vector of \c FileContents containing all files explicitly
/// referenced by the compiler invocation.
std::vector<FileContent> fileContentsForFilesInCompilerInvocation();
public:
ASTBuildOperation(IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
SwiftInvocationRef InvokRef, SwiftASTManagerRef ASTManager,
std::function<void(void)> DidFinishCallback)
: InvokRef(InvokRef), FileSystem(FileSystem), ASTManager(ASTManager),
DidFinishCallback(DidFinishCallback) {
// const_cast is fine here. We just want to guard against modifying these
// fields later on. It's fine to set them in the constructor.
const_cast<std::vector<FileContent> &>(this->FileContents) =
fileContentsForFilesInCompilerInvocation();
}
~ASTBuildOperation() {
assert(OperationState == State::Finished &&
"ASTBuildOperations should only be destructed once they have "
"produced an AST or are finished. Otherwise, some consumers might "
"not receive their callback.");
}
ArrayRef<FileContent> getFileContents() const { return FileContents; }
/// Returns true if the build operation has finished.
bool isFinished() {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
return Result.HasValue;
}
bool isCancelled() {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
return (Result.HasValue && Result.Cancelled) ||
CancellationFlag->load(std::memory_order_relaxed);
}
size_t getMemoryCost() {
size_t Cost = sizeof(*this) + getVectorMemoryCost(FileContents) +
Result.getMemoryCost();
for (const FileContent &File : FileContents) {
Cost += File.getMemoryCost();
}
return Cost;
}
/// Schedule building this AST on the given \p Queue.
void schedule(WorkQueue Queue);
/// Inform the given \p Consumer when the AST has been built. If the build
/// operation has already built the AST, the consumer is directly informed.
/// Returns \c true if the \p Consumer was added. Returns \c false if the
/// operation has already been cancelled, in which case the consumer should be
/// scheduled on a different build operation. This ensures that we don't hit
/// a race condition when a build operation gets cancelled in between when it
/// gets selected as a viable candidate but before the consumer gets added to
/// it.
bool addConsumer(SwiftASTConsumerRef Consumer);
/// Determines whether the AST built from this build operation can be used for
/// the given source state. Note that before the AST is built, this does not
/// consider dependencies needed for the AST build that are not explicitly
/// listed in the input files. As such, this might be \c true before the AST
/// build and \c false after the AST has been built. See documentation on \c
/// DependencyStamps for more info.
bool matchesSourceState(IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem);
/// Called when a consumer is cancelled. This calls \c cancelled on the
/// consumer, removes it from the \c Consumers severed by this build operation
/// and, if no consumers are left, cancels the AST build of this operation.
void requestConsumerCancellation(SwiftASTConsumerRef Consumer);
};
using ASTBuildOperationRef = std::shared_ptr<ASTBuildOperation>;
/// An \c ASTProducer produces ASTs for a given compiler invocation through
/// multiple \c ASTBuildOperations.
/// While \c ASTBuildOperations only build ASTs for a single snapshot, \c
/// ASTProducer also keeps track of ASTs built from different (older) snapshots.
/// It is thus able to serve an \c SwiftASTConsumer with an AST from an older
/// snapshot, should it accept it by returning \c true in \c
/// canUseASTWithSnapshots.
class ASTProducer : public std::enable_shared_from_this<ASTProducer> {
SwiftInvocationRef InvokRef;
/// The build operations that have been scheduled by this producer. Some of
/// these operations might already have finished, effectively caching an old
/// AST, one might currently be building an AST and some might be waiting to
/// execute. Operations are guaranteed to be in FIFO order, that is the first
/// one in the vector is the oldest build operation.
SmallVector<ASTBuildOperationRef, 4> BuildOperations = {};
WorkQueue BuildOperationsQueue = WorkQueue(
WorkQueue::Dequeuing::Serial, "ASTProducer.BuildOperationsQueue");
/// Erase all finished build operations with a result except for the latest
/// one which contains a successful results.
/// This cleans up all stale build operations (probably containing old ASTs),
/// but keeps the latest AST around, so that new consumers can be served from
/// it, if possible.
///
/// Must be executed on \c BuildOperationsQueue.
void cleanBuildOperations() {
auto ReverseOperations = llvm::reverse(BuildOperations);
auto LastOperationWithResultIt =
llvm::find_if(ReverseOperations, [](ASTBuildOperationRef BuildOp) {
return BuildOp->isFinished() && !BuildOp->isCancelled();
});
ASTBuildOperationRef LastOperationWithResult = nullptr;
if (LastOperationWithResultIt != ReverseOperations.end()) {
LastOperationWithResult = *LastOperationWithResultIt;
}
llvm::erase_if(BuildOperations, [LastOperationWithResult](
ASTBuildOperationRef BuildOp) {
return BuildOp->isFinished() && BuildOp != LastOperationWithResult;
});
}
/// Returns the latest build operation which can serve the \p Consumer or
/// \c nullptr if no such build operation exists.
///
/// Must be executed on \c BuildOperationsQueue.
ASTBuildOperationRef getBuildOperationForConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
SwiftASTManagerRef Mgr);
public:
explicit ASTProducer(SwiftInvocationRef InvokRef)
: InvokRef(std::move(InvokRef)) {}
/// Schedules the given \p Consumer to the latest suitable build operation.
/// Independently of what happens, the consumer will receive either a \c
/// cancelled, \c failed or \c handlePrimaryAST callback.
void enqueueConsumer(SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
SwiftASTManagerRef Mgr);
size_t getMemoryCost() const {
size_t Cost = sizeof(*this);
for (auto &BuildOp : BuildOperations) {
Cost += BuildOp->getMemoryCost();
}
return Cost;
}
};
typedef std::shared_ptr<ASTProducer> ASTProducerRef;
} // end anonymous namespace
namespace swift {
namespace sys {
template <>
struct CacheValueCostInfo<ASTProducer> {
static size_t getCost(const ASTProducer &Unit) {
return Unit.getMemoryCost();
}
};
template <>
struct CacheKeyHashInfo<ASTKey> {
static uintptr_t getHashValue(const ASTKey &Key) {
return Key.FSID.ComputeHash();
}
static bool isEqual(void *LHS, void *RHS) {
return static_cast<ASTKey*>(LHS)->FSID == static_cast<ASTKey*>(RHS)->FSID;
}
};
} // namespace sys
} // namespace swift
struct SwiftASTManager::Implementation {
explicit Implementation(
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs,
std::shared_ptr<GlobalConfig> Config,
std::shared_ptr<SwiftStatistics> Stats,
std::shared_ptr<RequestTracker> ReqTracker, StringRef SwiftExecutablePath,
StringRef RuntimeResourcePath, StringRef DiagnosticDocumentationPath)
: EditorDocs(EditorDocs), Config(Config), Stats(Stats),
ReqTracker(ReqTracker), SwiftExecutablePath(SwiftExecutablePath),
RuntimeResourcePath(RuntimeResourcePath),
DiagnosticDocumentationPath(DiagnosticDocumentationPath),
SessionTimestamp(llvm::sys::toTimeT(std::chrono::system_clock::now())) {
}
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs;
std::shared_ptr<GlobalConfig> Config;
std::shared_ptr<SwiftStatistics> Stats;
std::shared_ptr<RequestTracker> ReqTracker;
/// The path of the swift-frontend executable.
/// Used to find clang relative to it.
std::string SwiftExecutablePath;
std::string RuntimeResourcePath;
std::string DiagnosticDocumentationPath;
SourceManager SourceMgr;
Cache<ASTKey, ASTProducerRef> ASTCache{ "sourcekit.swift.ASTCache" };
llvm::sys::Mutex CacheMtx;
std::time_t SessionTimestamp;
/// A consumer that has been scheduled using \c processASTAsync.
/// The \c OncePerASTToken allows us to cancel previously scheduled consumers
/// if a new request/consumer with the same \c OncePerASTToken comes in.
/// Since we only keep a reference to the consumers to cancel them, the
/// reference to the consumer itself is weak - if it's already deallocated,
/// there is no need to cancel it anymore.
/// The \c CancellationToken that allows cancellation of this consumer.
/// Multiple consumers might share the same \c CancellationToken if they were
/// created from the same SourceKit request. E.g. a \c CursorInfoConsumer
/// might schedule a second \c CursorInfoConsumer if it discovers that the AST
/// that was used to serve the first request is not up-to-date enough.
/// If \c CancellationToken is \c nullptr, the consumer can't be cancelled
/// using a cancellation token.
struct ScheduledConsumer {
SwiftASTConsumerWeakRef Consumer;
const void *OncePerASTToken;
};
/// FIXME: Once we no longer support implicit cancellation using
/// OncePerASTToken, we can stop keeping track of ScheduledConsumers and
/// completely rely on RequestTracker for cancellation.
llvm::sys::Mutex ScheduledConsumersMtx;
std::vector<ScheduledConsumer> ScheduledConsumers;
/// Queue guaranteeing that only one \c ASTBuildOperation builds an AST at a
/// time.
WorkQueue ASTBuildQueue{ WorkQueue::Dequeuing::Serial,
"sourcekit.swift.ASTBuilding" };
/// Remove all scheduled consumers that don't exist anymore. This is just a
/// garbage-collection operation to make sure the \c ScheduledConsumers vector
/// doesn't explode. One should never make assumptions that all consumers in
/// \c ScheduledConsumers are alive.
void cleanDeletedConsumers() {
llvm::sys::ScopedLock L(ScheduledConsumersMtx);
llvm::erase_if(ScheduledConsumers, [](ScheduledConsumer Consumer) {
return Consumer.Consumer.expired();
});
}
ASTProducerRef getASTProducer(SwiftInvocationRef InvokRef);
FileContent
getFileContent(StringRef FilePath, bool IsPrimary,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const;
BufferStamp
getBufferStamp(StringRef FilePath,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
bool CheckEditorDocs = true) const;
std::unique_ptr<llvm::MemoryBuffer>
getMemoryBuffer(StringRef Filename,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const;
};
SwiftASTManager::SwiftASTManager(
std::shared_ptr<SwiftEditorDocumentFileMap> EditorDocs,
std::shared_ptr<GlobalConfig> Config,
std::shared_ptr<SwiftStatistics> Stats,
std::shared_ptr<RequestTracker> ReqTracker, StringRef SwiftExecutablePath,
StringRef RuntimeResourcePath, StringRef DiagnosticDocumentationPath)
: Impl(*new Implementation(EditorDocs, Config, Stats, ReqTracker,
SwiftExecutablePath, RuntimeResourcePath,
DiagnosticDocumentationPath)) {}
SwiftASTManager::~SwiftASTManager() {
delete &Impl;
}
std::unique_ptr<llvm::MemoryBuffer> SwiftASTManager::getMemoryBuffer(
StringRef Filename,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) {
return Impl.getFileContent(Filename, /*IsPrimary=*/false, FileSystem, Error)
.Buffer;
}
static FrontendInputsAndOutputs
convertFileContentsToInputs(ArrayRef<FileContent> contents) {
FrontendInputsAndOutputs inputsAndOutputs;
for (const FileContent &content : contents)
inputsAndOutputs.addInput(InputFile(content));
return inputsAndOutputs;
}
bool SwiftASTManager::initCompilerInvocation(
CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
swift::FrontendOptions::ActionType Action, DiagnosticEngine &Diags,
StringRef UnresolvedPrimaryFile, std::string &Error) {
return initCompilerInvocation(Invocation, OrigArgs, Action, Diags,
UnresolvedPrimaryFile,
llvm::vfs::getRealFileSystem(), Error);
}
bool SwiftASTManager::initCompilerInvocation(
CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
FrontendOptions::ActionType Action, DiagnosticEngine &Diags,
StringRef UnresolvedPrimaryFile,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) {
return ide::initCompilerInvocation(
Invocation, OrigArgs, Action, Diags, UnresolvedPrimaryFile, FileSystem,
Impl.SwiftExecutablePath, Impl.RuntimeResourcePath,
Impl.DiagnosticDocumentationPath, Impl.SessionTimestamp, Error);
}
bool SwiftASTManager::initCompilerInvocation(
CompilerInvocation &CompInvok, ArrayRef<const char *> OrigArgs,
swift::FrontendOptions::ActionType Action, StringRef PrimaryFile,
std::string &Error) {
DiagnosticEngine Diagnostics(Impl.SourceMgr);
return initCompilerInvocation(CompInvok, OrigArgs, Action, Diagnostics,
PrimaryFile, Error);
}
bool SwiftASTManager::initCompilerInvocationNoInputs(
swift::CompilerInvocation &Invocation, ArrayRef<const char *> OrigArgs,
swift::FrontendOptions::ActionType Action, swift::DiagnosticEngine &Diags,
std::string &Error, bool AllowInputs) {
SmallVector<const char *, 16> Args(OrigArgs.begin(), OrigArgs.end());
// Use stdin as a .swift input to satisfy the driver.
Args.push_back("-");
if (initCompilerInvocation(Invocation, Args, Action, Diags, "", Error))
return true;
if (!AllowInputs &&
Invocation.getFrontendOptions().InputsAndOutputs.inputCount() > 1) {
Error = "unexpected input in compiler arguments";
return true;
}
// Clear the inputs.
Invocation.getFrontendOptions().InputsAndOutputs.clearInputs();
return false;
}
SwiftInvocationRef
SwiftASTManager::getTypecheckInvocation(ArrayRef<const char *> OrigArgs,
StringRef PrimaryFile,
std::string &Error) {
return getTypecheckInvocation(OrigArgs, PrimaryFile,
llvm::vfs::getRealFileSystem(), Error);
}
SwiftInvocationRef SwiftASTManager::getTypecheckInvocation(
ArrayRef<const char *> OrigArgs, StringRef PrimaryFile,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) {
assert(FileSystem);
DiagnosticEngine Diags(Impl.SourceMgr);
EditorDiagConsumer CollectDiagConsumer;
Diags.addConsumer(CollectDiagConsumer);
CompilerInvocation CompInvok;
if (initCompilerInvocation(CompInvok, OrigArgs,
FrontendOptions::ActionType::Typecheck, Diags,
PrimaryFile, FileSystem, Error)) {
// We create a traced operation here to represent the failure to parse
// arguments since we cannot reach `createAST` where that would normally
// happen.
trace::TracedOperation TracedOp(trace::OperationKind::PerformSema);
if (TracedOp.enabled()) {
trace::SwiftInvocation TraceInfo;
trace::initTraceInfo(TraceInfo, PrimaryFile, OrigArgs);
TracedOp.setDiagnosticProvider(
[&CollectDiagConsumer](SmallVectorImpl<DiagnosticEntryInfo> &diags) {
CollectDiagConsumer.getAllDiagnostics(diags);
});
TracedOp.start(TraceInfo);
}
return nullptr;
}
InvocationOptions Opts(OrigArgs, PrimaryFile, CompInvok);
return new SwiftInvocation(
*new SwiftInvocation::Implementation(std::move(Opts)));
}
void SwiftASTManager::processASTAsync(
SwiftInvocationRef InvokRef, SwiftASTConsumerRef ASTConsumer,
const void *OncePerASTToken, SourceKitCancellationToken CancellationToken,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> fileSystem) {
assert(fileSystem);
ASTProducerRef Producer = Impl.getASTProducer(InvokRef);
Impl.cleanDeletedConsumers();
{
llvm::sys::ScopedLock L(Impl.ScheduledConsumersMtx);
if (OncePerASTToken) {
// Cancel any consumers with the same OncePerASTToken.
for (auto ScheduledConsumer : Impl.ScheduledConsumers) {
if (ScheduledConsumer.OncePerASTToken == OncePerASTToken) {
if (auto Consumer = ScheduledConsumer.Consumer.lock()) {
Consumer->requestCancellation();
}
}
}
}
Impl.ScheduledConsumers.push_back({ASTConsumer, OncePerASTToken});
}
Producer->enqueueConsumer(ASTConsumer, fileSystem, shared_from_this());
auto WeakConsumer = SwiftASTConsumerWeakRef(ASTConsumer);
Impl.ReqTracker->setCancellationHandler(CancellationToken, [WeakConsumer] {
if (auto Consumer = WeakConsumer.lock()) {
Consumer->requestCancellation();
}
});
}
void SwiftASTManager::removeCachedAST(SwiftInvocationRef Invok) {
Impl.ASTCache.remove(Invok->Impl.Key);
}
ASTProducerRef
SwiftASTManager::Implementation::getASTProducer(SwiftInvocationRef InvokRef) {
llvm::sys::ScopedLock L(CacheMtx);
llvm::Optional<ASTProducerRef> OptProducer = ASTCache.get(InvokRef->Impl.Key);
if (OptProducer.has_value())
return OptProducer.value();
ASTProducerRef Producer = std::make_shared<ASTProducer>(InvokRef);
ASTCache.set(InvokRef->Impl.Key, Producer);
return Producer;
}
static FileContent getFileContentFromSnap(ImmutableTextSnapshotRef Snap,
bool IsPrimary, StringRef FilePath) {
auto Buf = llvm::MemoryBuffer::getMemBufferCopy(
Snap->getBuffer()->getText(), FilePath);
return FileContent(Snap, FilePath.str(), std::move(Buf), IsPrimary,
Snap->getStamp());
}
FileContent SwiftASTManager::Implementation::getFileContent(
StringRef UnresolvedPath, bool IsPrimary,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const {
std::string FilePath = SwiftLangSupport::resolvePathSymlinks(UnresolvedPath);
if (auto EditorDoc = EditorDocs->findByPath(FilePath, /*IsRealpath=*/true))
return getFileContentFromSnap(EditorDoc->getLatestSnapshot(), IsPrimary,
FilePath);
// FIXME: Is there a way to get timestamp and buffer for a file atomically ?
// No need to check EditorDocs again. We did so above.
auto Stamp = getBufferStamp(FilePath, FileSystem, /*CheckEditorDocs=*/false);
auto Buffer = getMemoryBuffer(FilePath, FileSystem, Error);
return FileContent(nullptr, UnresolvedPath.str(), std::move(Buffer),
IsPrimary, Stamp);
}
BufferStamp SwiftASTManager::Implementation::getBufferStamp(
StringRef FilePath,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
bool CheckEditorDocs) const {
assert(FileSystem);
if (CheckEditorDocs) {
if (auto EditorDoc = EditorDocs->findByPath(FilePath)) {
return EditorDoc->getLatestSnapshot()->getStamp();
}
}
auto StatusOrErr = FileSystem->status(FilePath);
if (std::error_code Err = StatusOrErr.getError()) {
// Failure to read the file.
LOG_WARN_FUNC("failed to stat file: " << FilePath << " (" << Err.message()
<< ')');
return -1;
}
return StatusOrErr.get().getLastModificationTime().time_since_epoch().count();
}
std::unique_ptr<llvm::MemoryBuffer>
SwiftASTManager::Implementation::getMemoryBuffer(
StringRef Filename,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
std::string &Error) const {
assert(FileSystem);
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
FileSystem->getBufferForFile(Filename);
if (FileBufOrErr)
return std::move(FileBufOrErr.get());
llvm::raw_string_ostream OSErr(Error);
OSErr << "error opening input file '" << Filename << "' ("
<< FileBufOrErr.getError().message() << ')';
return nullptr;
}
std::vector<FileContent>
ASTBuildOperation::fileContentsForFilesInCompilerInvocation() {
const InvocationOptions &Opts = InvokRef->Impl.Opts;
std::string Error; // is ignored
std::vector<FileContent> FileContents;
FileContents.reserve(
Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
// IMPORTANT: The computation of stamps must match the one in
// matchesSourceState.
for (const auto &input :
Opts.Invok.getFrontendOptions().InputsAndOutputs.getAllInputs()) {
const std::string &Filename = input.getFileName();
bool IsPrimary = input.isPrimary();
auto Content =
ASTManager->Impl.getFileContent(Filename, IsPrimary, FileSystem, Error);
if (!Content.Buffer) {
LOG_WARN_FUNC("failed getting file contents for " << Filename << ": "
<< Error);
// File may not exist, continue and recover as if it was empty.
Content.Buffer = llvm::WritableMemoryBuffer::getNewMemBuffer(0, Filename);
}
FileContents.push_back(std::move(Content));
}
assert(FileContents.size() ==
Opts.Invok.getFrontendOptions().InputsAndOutputs.inputCount());
return FileContents;
}
bool ASTBuildOperation::matchesSourceState(
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> OtherFileSystem) {
const InvocationOptions &Opts = InvokRef->Impl.Opts;
auto Inputs = Opts.Invok.getFrontendOptions().InputsAndOutputs.getAllInputs();
for (size_t I = 0; I < Inputs.size(); I++) {
if (getFileContents()[I].Stamp !=
ASTManager->Impl.getBufferStamp(Inputs[I].getFileName(),
OtherFileSystem)) {
return false;
}
}
llvm::sys::ScopedLock L(DependencyStampsMtx);
for (auto &Dependency : DependencyStamps) {
if (Dependency.second !=
ASTManager->Impl.getBufferStamp(Dependency.first, OtherFileSystem))
return false;
}
return true;
}
void ASTBuildOperation::requestConsumerCancellation(
SwiftASTConsumerRef Consumer) {
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
// No need to check if we have already called the consumer here, because it
// is removed from `Consumers` if it's informed about a result from
// `schedule()`.
auto ConsumerIndex = llvm::find_if(
Consumers, [&Consumer](SwiftASTConsumerRef ConsumerInQueue) {
return ConsumerInQueue == Consumer;
});
if (ConsumerIndex == Consumers.end()) {
// Consumer no longer tracked by this build operation. Did it finish
// already?
return;
}
Consumers.erase(ConsumerIndex);
Consumer->cancelled();
if (Consumers.empty()) {
// If there are no more consumers waiting for this result, cancel the AST
// build.
CancellationFlag->store(true, std::memory_order_relaxed);
}
}
static void collectModuleDependencies(ModuleDecl *TopMod,
llvm::SmallPtrSetImpl<ModuleDecl *> &Visited,
SmallVectorImpl<std::string> &Filenames) {
if (!TopMod)
return;
auto ClangModuleLoader = TopMod->getASTContext().getClangModuleLoader();
ModuleDecl::ImportFilter ImportFilter = {
ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default};
if (Visited.empty()) {
// Only collect implementation-only dependencies from the main module.
ImportFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
}
// FIXME: ImportFilterKind::ShadowedByCrossImportOverlay?
SmallVector<ImportedModule, 8> Imports;
TopMod->getImportedModules(Imports, ImportFilter);
for (auto Import : Imports) {
ModuleDecl *Mod = Import.importedModule;
if (Mod->isSystemModule())
continue;
// FIXME: Setup dependencies on the included headers.
if (ClangModuleLoader &&
Mod == ClangModuleLoader->getImportedHeaderModule())
continue;
bool NewVisit = Visited.insert(Mod).second;
if (!NewVisit)
continue;
// FIXME: Handle modules with multiple source files; these will fail on
// getModuleFilename() (by returning an empty path). Note that such modules
// may be heterogeneous.
{
std::string Path = Mod->getModuleFilename().str();
if (Path.empty() || Path == TopMod->getModuleFilename())
continue; // this is a submodule.
Filenames.push_back(std::move(Path));
}
bool IsClangModule = false;
for (auto File : Mod->getFiles()) {
if (File->getKind() == FileUnitKind::ClangModule) {
IsClangModule = true;
break;
}
}
if (IsClangModule) {
// No need to keep track of the clang module dependencies.
continue;
}
collectModuleDependencies(Mod, Visited, Filenames);
}
}
static std::atomic<uint64_t> ASTUnitGeneration{ 0 };
void ASTBuildOperation::informConsumer(SwiftASTConsumerRef Consumer) {
assert(Result &&
"Can't inform consumer about result if we don't have a result yet");
Consumer->removeCancellationRequestCallback();
if (Result.Cancelled) {
assert(false && "We should only cancel the build operation if there are no "
"more consumers attached to it and should not accept any "
"new consumers if the build operation was cancelled. Thus "
"this case should never happen.");
Consumer->cancelled();
} else if (Result.AST) {
Result.AST->Impl.consumeAsync(Consumer, Result.AST);
} else {
Consumer->failed(Result.Error);
}
}
ASTUnitRef ASTBuildOperation::buildASTUnit(std::string &Error) {
++ASTManager->Impl.Stats->numASTBuilds;
const InvocationOptions &Opts = InvokRef->Impl.Opts;
LOG_FUNC_SECTION(InfoHighPrio) {
Log->getOS() << "AST build: ";
Log->getOS() << Opts.Invok.getModuleName() << '/' << Opts.PrimaryFile;
}
ASTUnitRef ASTRef = new ASTUnit(++ASTUnitGeneration, ASTManager->Impl.Stats);
for (auto &Content : getFileContents()) {
if (Content.Snapshot)
ASTRef->Impl.Snapshots.push_back(Content.Snapshot);
}
auto &CompIns = ASTRef->Impl.CompInst;
auto &Consumer = ASTRef->Impl.CollectDiagConsumer;
// Display diagnostics to stderr.
CompIns.addDiagnosticConsumer(&Consumer);
trace::TracedOperation TracedOp(trace::OperationKind::PerformSema);
trace::SwiftInvocation TraceInfo;
if (TracedOp.enabled()) {
trace::initTraceInfo(TraceInfo, InvokRef->Impl.Opts.PrimaryFile,
InvokRef->Impl.Opts.Args);
TracedOp.setDiagnosticProvider(
[&Consumer](SmallVectorImpl<DiagnosticEntryInfo> &diags) {
Consumer.getAllDiagnostics(diags);
});
}
CompilerInvocation Invocation;
InvokRef->Impl.Opts.applyToSubstitutingInputs(
Invocation, convertFileContentsToInputs(getFileContents()));
Invocation.getLangOptions().CollectParsedToken = true;
if (FileSystem != llvm::vfs::getRealFileSystem()) {
CompIns.getSourceMgr().setFileSystem(FileSystem);
}
if (CompIns.setup(Invocation, Error)) {
LOG_WARN_FUNC("Compilation setup failed!!!");
if (Error.empty()) {
Error = "compilation setup failed";
}
return nullptr;
}
CompIns.getASTContext().CancellationFlag = CancellationFlag;
registerIDERequestFunctions(CompIns.getASTContext().evaluator);
if (TracedOp.enabled()) {
TracedOp.start(TraceInfo);
}
CloseClangModuleFiles scopedCloseFiles(
*CompIns.getASTContext().getClangModuleLoader());
Consumer.setInputBufferIDs(ASTRef->getCompilerInstance().getInputBufferIDs());
CompIns.performSema();
llvm::SmallPtrSet<ModuleDecl *, 16> Visited;
SmallVector<std::string, 8> Filenames;
collectModuleDependencies(CompIns.getMainModule(), Visited, Filenames);
// FIXME: There exists a small window where the module file may have been
// modified after compilation finished and before we get its stamp.
{
llvm::sys::ScopedLock L(DependencyStampsMtx);
for (auto &Filename : Filenames) {
DependencyStamps.push_back(std::make_pair(
Filename, ASTManager->Impl.getBufferStamp(Filename, FileSystem)));
}
}
// Since we only typecheck the primary file (plus referenced constructs
// from other files), any error is likely to break SIL generation.
if (!Consumer.hadAnyError()) {
// FIXME: Any error anywhere in the SourceFile will switch off SIL
// diagnostics. This means that this can happen:
// - The user sees a SIL diagnostic in one function
// - The user edits another function in the same file and introduces a
// typechecking error.
// - The SIL diagnostic in the first function will be gone.
//
// Could we maybe selectively SILGen functions from the SourceFile, so
// that we avoid SILGen'ing the second function with the typecheck error
// but still allow SILGen'ing the first function ?
// Or try to keep track of SIL diagnostics emitted previously ?
// FIXME: We should run SIL diagnostics asynchronously after typechecking
// so that they don't delay reporting of typechecking diagnostics and they
// don't block any other AST processing for the same SwiftInvocation.
if (auto SF = CompIns.getPrimarySourceFile()) {
if (CancellationFlag->load(std::memory_order_relaxed)) {
return nullptr;
}
// Disable cancellation while performing SILGen. If the cancellation flag
// is set, type checking performed during SILGen checks the cancellation
// flag and might thus fail, which SILGen cannot handle.
llvm::SaveAndRestore<std::shared_ptr<std::atomic<bool>>> DisableCancellationDuringSILGen(CompIns.getASTContext().CancellationFlag, nullptr);
SILOptions SILOpts = Invocation.getSILOptions();
auto &TC = CompIns.getSILTypes();
std::unique_ptr<SILModule> SILMod = performASTLowering(*SF, TC, SILOpts);
if (CancellationFlag->load(std::memory_order_relaxed)) {
return nullptr;
}
runSILDiagnosticPasses(*SILMod);
}
}
return ASTRef;
}
void ASTBuildOperation::schedule(WorkQueue Queue) {
transitionToState(State::Queued, /*ExpectedOldState=*/State::Created);
auto SharedThis = shared_from_this();
// Capture `SharedThis` in the dispatched lambda to keep `this` alive.
// Capture `this` for a more convenient access of members.
Queue.dispatch(
[this, SharedThis] {
transitionToState(State::Running, /*ExpectedOldState=*/State::Queued);
SWIFT_DEFER {
transitionToState(State::Finished,
/*ExpectedOldState=*/State::Running);
};
{
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
if (Consumers.empty()) {
// There are no consumers - no point creating the AST anymore.
Result.emplace(/*AST=*/nullptr, /*Error=*/"", /*Cancelled=*/true);
return;
}
if (CancellationFlag->load(std::memory_order_relaxed)) {
assert(false && "We should only set the cancellation flag if there "
"are no more consumers");
for (auto &Consumer : Consumers) {
Consumer->cancelled();
}
}
}
std::string Error;
assert(!Result && "We should only be producing a result once");
ASTUnitRef AST = buildASTUnit(Error);
SmallVector<SwiftASTConsumerRef, 4> LocalConsumers;
{
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
bool WasCancelled = CancellationFlag->load(std::memory_order_relaxed);
Result.emplace(AST, Error, WasCancelled);
LocalConsumers = Consumers;
Consumers = {};
}
for (auto &Consumer : LocalConsumers) {
informConsumer(Consumer);
}
DidFinishCallback();
},
/*isStackDeep=*/true);
}
bool ASTBuildOperation::addConsumer(SwiftASTConsumerRef Consumer) {
{
llvm::sys::ScopedLock L(ConsumersAndResultMtx);
if (isCancelled()) {
return false;
}
if (Result) {
informConsumer(Consumer);
return true;
}
assert(OperationState != State::Finished);
Consumers.push_back(Consumer);
}
auto WeakThis = std::weak_ptr<ASTBuildOperation>(shared_from_this());
Consumer->setCancellationRequestCallback(
[WeakThis](SwiftASTConsumerRef Consumer) {
if (auto This = WeakThis.lock()) {
This->requestConsumerCancellation(Consumer);
}
});
return true;
}
ASTBuildOperationRef ASTProducer::getBuildOperationForConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
SwiftASTManagerRef Mgr) {
for (auto &BuildOp : llvm::reverse(BuildOperations)) {
if (BuildOp->isCancelled()) {
continue;
}
std::vector<ImmutableTextSnapshotRef> Snapshots;
Snapshots.reserve(BuildOp->getFileContents().size());
for (auto &FileContent : BuildOp->getFileContents()) {
if (FileContent.Snapshot) {
Snapshots.push_back(FileContent.Snapshot);
}
}
if (BuildOp->matchesSourceState(FileSystem)) {
++Mgr->Impl.Stats->numASTCacheHits;
return BuildOp;
} else if (Consumer->canUseASTWithSnapshots(Snapshots)) {
++Mgr->Impl.Stats->numASTsUsedWithSnapshots;
return BuildOp;
}
}
return nullptr;
}
void ASTProducer::enqueueConsumer(
SwiftASTConsumerRef Consumer,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FileSystem,
SwiftASTManagerRef Mgr) {
// Enqueue the consumer in the background because getBuildOperationForConsumer
// consults the file system and might be slow. Also, there's no need to do
// this synchronously since all results will be delivered async anyway.
auto This = shared_from_this();
BuildOperationsQueue.dispatch([Consumer, FileSystem, Mgr, This]() {
// The passed in filesystem does not have overlays resolved. Make sure to
// do so before performing any file operations.
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS = FileSystem;
const InvocationOptions &InvocOpts = This->InvokRef->Impl.Opts;
const CompilerInvocation &ActualInvoc = InvocOpts.Invok;
auto ExpectedOverlay =
ActualInvoc.getSearchPathOptions().makeOverlayFileSystem(FileSystem);
if (ExpectedOverlay) {
FS = std::move(ExpectedOverlay.get());
} else {
llvm::consumeError(ExpectedOverlay.takeError());
}
if (auto BuildOp =
This->getBuildOperationForConsumer(Consumer, FS, Mgr)) {
bool WasAdded = BuildOp->addConsumer(Consumer);
if (!WasAdded) {
// The build operation was cancelled after the call to
// getBuildOperationForConsumer but before the consumer could be
// added. This should be an absolute edge case. Let's just try
// again.
This->enqueueConsumer(Consumer, FS, Mgr);
}
} else {
auto WeakThis = std::weak_ptr<ASTProducer>(This);
auto DidFinishCallback = [WeakThis, Mgr]() {
if (auto This = WeakThis.lock()) {
This->BuildOperationsQueue.dispatchSync(
[This]() { This->cleanBuildOperations(); });
// Re-register the object with the cache to update its memory
// cost.
Mgr->Impl.ASTCache.set(This->InvokRef->Impl.Key, This);
}
};
ASTBuildOperationRef NewBuildOp = std::make_shared<ASTBuildOperation>(
FS, This->InvokRef, Mgr, DidFinishCallback);
This->BuildOperations.push_back(NewBuildOp);
bool WasAdded = NewBuildOp->addConsumer(Consumer);
assert(WasAdded && "Consumer wasn't added to a new build operation "
"that can't have been cancelled yet?");
(void)WasAdded;
NewBuildOp->schedule(Mgr->Impl.ASTBuildQueue);
}
});
}