Files
swift-mirror/lib/Sema/NameBinding.cpp
2013-09-20 15:15:19 +00:00

418 lines
14 KiB
C++

//===--- NameBinding.cpp - Name Binding -----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements name binding for Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/Subsystems.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTMutationListener.h"
#include "swift/AST/Component.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/Path.h"
#include <algorithm>
using namespace swift;
//===----------------------------------------------------------------------===//
// NameBinder
//===----------------------------------------------------------------------===//
typedef TranslationUnit::ImportedModule ImportedModule;
typedef llvm::PointerUnion<const ImportedModule*, EnumType*> BoundScope;
namespace {
class NameBinder {
public:
TranslationUnit *TU;
ASTContext &Context;
NameBinder(TranslationUnit *TU) : TU(TU), Context(TU->Ctx) {
for (auto importPair : TU->getImports()) {
Module *M = importPair.first.second;
// Don't add the builtin module to the LoadedModules list.
if (isa<BuiltinModule>(M))
continue;
Module *&ref = Context.LoadedModules[M->Name.str()];
if (ref)
assert(ref == M || isa<ClangModule>(M));
else
ref = M;
}
}
~NameBinder() {
}
template<typename ...ArgTypes>
InFlightDiagnostic diagnose(ArgTypes... Args) {
return Context.Diags.diagnose(Args...);
}
Optional<std::pair<ImportedModule, bool>> addImport(ImportDecl *ID);
/// Load a module referenced by an import statement.
///
/// Returns null if no module can be loaded.
Module *getModule(ArrayRef<std::pair<Identifier,SourceLoc>> ModuleID);
};
}
Module *
NameBinder::getModule(ArrayRef<std::pair<Identifier, SourceLoc>> modulePath) {
assert(!modulePath.empty());
auto moduleID = modulePath[0];
// TODO: We currently just recursively parse referenced modules. This works
// fine for now since they are each a single file. Ultimately we'll want a
// compiled form of AST's like clang's that support lazy deserialization.
// The Builtin module cannot be explicitly imported unless we're a .sil file
// or in the REPL.
if ((TU->Kind == TranslationUnit::SIL || TU->Kind == TranslationUnit::REPL) &&
moduleID.first.str() == "Builtin")
return TU->Ctx.TheBuiltinModule;
// If the imported module name is the same as the current translation unit,
// skip the Swift module loader and use the Clang module loader instead.
// This allows a Swift module to extend a Clang module of the same name.
if (moduleID.first == TU->Name && modulePath.size() == 1) {
if (auto importer = Context.getClangModuleLoader())
return importer->loadModule(moduleID.second, modulePath);
return nullptr;
}
return Context.getModule(modulePath);
}
/// Gets the import kind that is most appropriate for \p VD.
///
/// Note that this will never return \c Type; an imported typealias will use
/// the more specific kind from its underlying type.
static ImportKind getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::TypeAlias: {
Type underlyingTy = cast<TypeAliasDecl>(VD)->getUnderlyingType();
return getBestImportKind(underlyingTy->getAnyNominal());
}
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
}
}
/// Returns the most appropriate import kind for the given list of decls.
///
/// If the list is non-homogenous, or if there is more than one decl that cannot
/// be overloaded, returns Nothing.
Optional<ImportKind> findBestImportKind(ArrayRef<ValueDecl *> decls) {
assert(!decls.empty());
ImportKind firstKind = getBestImportKind(decls.front());
// Only functions can be overloaded.
if (decls.size() == 1)
return firstKind;
if (firstKind != ImportKind::Func)
return Nothing;
for (auto next : decls.slice(1)) {
if (getBestImportKind(next) != firstKind)
return Nothing;
}
return firstKind;
}
/// Returns true if a decl with the given \p actual kind can legally be
/// imported via the given \p expected kind.
static bool isCompatibleImportKind(ImportKind expected, ImportKind actual) {
if (expected == actual)
return true;
if (expected != ImportKind::Type)
return false;
switch (actual) {
case ImportKind::Module:
llvm_unreachable("module imports do not bring in decls");
case ImportKind::Type:
llvm_unreachable("individual decls cannot have abstract import kind");
case ImportKind::Struct:
case ImportKind::Class:
case ImportKind::Enum:
return true;
case ImportKind::Protocol:
case ImportKind::Var:
case ImportKind::Func:
return false;
}
}
static const char *getImportKindString(ImportKind kind) {
switch (kind) {
case ImportKind::Module:
llvm_unreachable("module imports do not bring in decls");
case ImportKind::Type:
return "typealias";
case ImportKind::Struct:
return "struct";
case ImportKind::Class:
return "class";
case ImportKind::Enum:
return "enum";
case ImportKind::Protocol:
return "protocol";
case ImportKind::Var:
return "var";
case ImportKind::Func:
return "func";
}
}
Optional<std::pair<ImportedModule, bool>> NameBinder::addImport(ImportDecl *ID) {
Module *M = getModule(ID->getModulePath());
if (M == 0) {
// FIXME: print entire path regardless.
if (ID->getModulePath().size() == 1) {
diagnose(ID->getLoc(), diag::sema_no_import,
ID->getModulePath().front().first.str());
} else {
diagnose(ID->getLoc(), diag::sema_no_import_submodule);
}
return Nothing;
}
auto result = std::make_pair(ImportedModule(ID->getDeclPath(), M),
ID->isExported());
// If we're importing a specific decl, validate the import kind.
if (ID->getImportKind() != ImportKind::Module) {
auto declPath = ID->getDeclPath();
assert(declPath.size() == 1 && "can't handle sub-decl imports");
SmallVector<ValueDecl *, 8> decls;
M->lookupQualified(ModuleType::get(M), declPath.front().first,
NL_QualifiedDefault, decls);
if (decls.empty()) {
diagnose(ID, diag::no_decl_in_module)
.highlight(SourceRange(declPath.front().second,
declPath.back().second));
return result;
}
Optional<ImportKind> actualKind = findBestImportKind(decls);
if (!actualKind.hasValue()) {
// FIXME: print entire module name?
diagnose(ID, diag::ambiguous_decl_in_module,
declPath.front().first, M->Name);
for (auto next : decls)
diagnose(next, diag::found_candidate);
} else if (!isCompatibleImportKind(ID->getImportKind(), *actualKind)) {
diagnose(ID, diag::imported_decl_is_wrong_kind,
declPath.front().first,
getImportKindString(ID->getImportKind()),
static_cast<unsigned>(*actualKind))
.fixItReplace(SourceRange(ID->getKindLoc()),
getImportKindString(*actualKind));
if (decls.size() == 1)
diagnose(decls.front(), diag::decl_declared_here,
decls.front()->getName());
}
}
return result;
}
/// performAutoImport - When a translation unit is first set up, this handles
/// setting up any auto imports of the standard library.
void swift::performAutoImport(TranslationUnit *TU) {
// If we're building the standard library, import the magic Builtin module,
// otherwise, import the standard library.
Module *M;
if (TU->HasBuiltinModuleAccess)
M = TU->Ctx.TheBuiltinModule;
else
M = TU->Ctx.getModule(std::make_pair(TU->Ctx.getIdentifier("swift"),
SourceLoc()));
auto Import = std::make_pair(ImportedModule({}, M), false);
TU->setImports(TU->Ctx.AllocateCopy(llvm::makeArrayRef(Import)));
}
//===----------------------------------------------------------------------===//
// performNameBinding
//===----------------------------------------------------------------------===//
template<typename OP_DECL>
static void insertOperatorDecl(NameBinder &Binder,
llvm::StringMap<OP_DECL*> &Operators,
OP_DECL *OpDecl) {
auto previousDecl = Operators.find(OpDecl->getName().get());
if (previousDecl != Operators.end()) {
Binder.diagnose(OpDecl->getLoc(), diag::operator_redeclared);
Binder.diagnose(previousDecl->getValue(), diag::previous_operator_decl);
return;
}
Operators[OpDecl->getName().get()] = OpDecl;
}
namespace {
/// \brief AST mutation listener that captures any added declarations and
/// types, then adds them to the translation unit.
class CaptureExternalsListener : public ASTMutationListener {
TranslationUnit *TU;
CaptureExternalsListener(const CaptureExternalsListener &) = delete;
CaptureExternalsListener &
operator=(const CaptureExternalsListener &) = delete;
public:
explicit CaptureExternalsListener(TranslationUnit *TU) : TU(TU) {
TU->getASTContext().addMutationListener(*this);
}
~CaptureExternalsListener() {
TU->getASTContext().removeMutationListener(*this);
}
/// \brief A new declaration was added to the AST.
virtual void addedExternalDecl(Decl *decl) {
TU->getASTContext().ExternalDefinitions.insert(decl);
}
};
}
/// performNameBinding - Once parsing is complete, this walks the AST to
/// resolve names and do other top-level validation.
///
/// At this parsing has been performed, but we still have UnresolvedDeclRefExpr
/// nodes for unresolved value names, and we may have unresolved type names as
/// well. This handles import directives and forward references.
void swift::performNameBinding(TranslationUnit *TU, unsigned StartElem) {
// Make sure we skip adding the standard library imports if the
// translation unit is empty.
if (TU->Decls.empty()) {
TU->ASTStage = TranslationUnit::NameBound;
return;
}
CaptureExternalsListener Capture(TU);
// Reset the name lookup cache so we find new decls.
// FIXME: This is inefficient.
TU->clearLookupCache();
NameBinder Binder(TU);
SmallVector<std::pair<ImportedModule, bool>, 8> ImportedModules;
ImportedModules.append(TU->getImports().begin(),
TU->getImports().end());
// Do a prepass over the declarations to find and load the imported modules
// and map operator decls.
for (unsigned i = StartElem, e = TU->Decls.size(); i != e; ++i) {
if (ImportDecl *ID = dyn_cast<ImportDecl>(TU->Decls[i])) {
if (auto import = Binder.addImport(ID))
ImportedModules.push_back(*import);
} else if (auto *OD = dyn_cast<PrefixOperatorDecl>(TU->Decls[i]))
insertOperatorDecl(Binder, TU->PrefixOperators, OD);
else if (auto *OD = dyn_cast<PostfixOperatorDecl>(TU->Decls[i]))
insertOperatorDecl(Binder, TU->PostfixOperators, OD);
else if (auto *OD = dyn_cast<InfixOperatorDecl>(TU->Decls[i]))
insertOperatorDecl(Binder, TU->InfixOperators, OD);
}
if (ImportedModules.size() > TU->getImports().size())
TU->setImports(TU->Ctx.AllocateCopy(ImportedModules));
// FIXME: This algorithm has quadratic memory usage. (In practice,
// import statements after the first "chunk" should be rare, though.)
// FIXME: Can we make this more efficient?
llvm::DenseMap<Identifier, ValueDecl*> CheckTypes;
for (unsigned i = 0, e = TU->Decls.size(); i != e; ++i) {
Decl *D = TU->Decls[i];
if (D->isInvalid())
// No need to diagnose redeclarations of invalid declarations, we have
// already complained about them in some other way.
continue;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
// Check for declarations with the same name which aren't overloaded
// vars/funcs.
// FIXME: We don't have enough information to do this properly here,
// because we need resolved types to find duplicates.
if (VD->getName().empty())
continue;
ValueDecl *&LookupD = CheckTypes[VD->getName()];
ValueDecl *PrevD = LookupD;
LookupD = VD;
if (i >= StartElem) {
if (PrevD && !((isa<VarDecl>(VD) || isa<FuncDecl>(VD)) &&
(isa<VarDecl>(PrevD) || isa<FuncDecl>(PrevD)))) {
Binder.diagnose(VD->getStartLoc(), diag::invalid_redecl);
Binder.diagnose(PrevD, diag::invalid_redecl_prev,
VD->getName());
}
}
}
}
TU->ASTStage = TranslationUnit::NameBound;
verify(TU);
}