Files
swift-mirror/include/swift/AST/Attr.h
Chris Lattner 371a9316f4 - Introduce a new 'nonmutating' context sensitive keyword, and use it instead of @!mutating.
- Change the parser to unconditionally reject @mutating and @!mutating with a fixit and 
  specific diagnostic to rewrite them into the [non]mutating keyword.
- Update tests.

This resolves <rdar://problem/16735619> introduce nonmutating CS keyword and remove the attribute form of mutating all together



Swift SVN r16892
2014-04-26 21:00:06 +00:00

926 lines
28 KiB
C++

//===--- Attr.h - Swift Language Attribute ASTs -----------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines classes related to declaration attributes.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_ATTR_H
#define SWIFT_ATTR_H
#include "swift/Basic/Optional.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Ownership.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
namespace swift {
class ASTPrinter;
class ASTContext;
struct PrintOptions;
/// The associativity of a binary operator.
enum class Associativity {
/// Non-associative operators cannot be written next to other
/// operators with the same precedence. Relational operators are
/// typically non-associative.
None,
/// Left-associative operators associate to the left if written next
/// to other left-associative operators of the same precedence.
Left,
/// Right-associative operators associate to the right if written
/// next to other right-associative operators of the same precedence.
Right
};
class InfixData {
unsigned Precedence : 8;
/// Zero if invalid, or else an Associativity+1.
unsigned InvalidOrAssoc : 8;
public:
InfixData() : Precedence(0), InvalidOrAssoc(0) {}
InfixData(unsigned char prec, Associativity assoc)
: Precedence(prec), InvalidOrAssoc(unsigned(assoc) + 1) {}
bool isValid() const { return InvalidOrAssoc != 0; }
Associativity getAssociativity() const {
assert(isValid());
return Associativity(InvalidOrAssoc - 1);
}
bool isLeftAssociative() const {
return getAssociativity() == Associativity::Left;
}
bool isRightAssociative() const {
return getAssociativity() == Associativity::Right;
}
bool isNonAssociative() const {
return getAssociativity() == Associativity::None;
}
unsigned getPrecedence() const {
assert(isValid());
return Precedence;
}
friend bool operator==(InfixData L, InfixData R) {
return L.Precedence == R.Precedence
&& L.InvalidOrAssoc == R.InvalidOrAssoc;
}
friend bool operator!=(InfixData L, InfixData R) {
return !operator==(L, R);
}
};
/// ABI resilience. Language structures are resilient if the details
/// of their implementation may be changed without requiring
/// associated code to be reprocessed. Different structures are resilient
/// in different ways. For example:
/// - A resilient type does not have a statically fixed size or layout.
/// - A resilient variable must be accessed with getters and setters, even if
/// none are defined for it now.
/// - A resilient function may not be inlined.
///
/// In general, resilience is inherited from the lexical context. For
/// example, a variable declared in a fragile struct is implicitly fragile.
///
/// Some language structures, like tuples, are never themselves
/// resilient (although they may be defined in terms of resilient
/// types). Additionally, code distributed with the component
/// defining a resilient structure need not actually use resilience
/// boundaries.
enum class Resilience : unsigned char {
Default,
/// Inherently fragile language structures are not only resilient,
/// but they have never been exposed as resilient. This permits
/// certain kinds of optimizations that are not otherwise possible
/// because of the need for backward compatibility.
InherentlyFragile,
/// Fragile language structures are non-resilient. They may have
/// been resilient at some point in the past, however.
Fragile,
/// Everything else is resilient. Resilience means different things
/// on different kinds of objects.
Resilient
};
enum class AbstractCC : unsigned char;
// Define enumerators for each attribute, e.g. AK_weak.
enum AttrKind {
#define ATTR(X) AK_##X,
#include "swift/AST/Attr.def"
AK_Count
};
// FIXME: DeclAttrKind and AttrKind should eventually be merged, but
// there is currently a representational difference as one set of
// attributes is migrated from one implementation to another.
enum DeclAttrKind : unsigned {
#define DECL_ATTR(NAME, ...) DAK_##NAME,
#include "swift/AST/Attr.def"
DAK_Count
};
// Define enumerators for each type attribute, e.g. TAK_weak.
enum TypeAttrKind {
#define TYPE_ATTR(X) TAK_##X,
#include "swift/AST/Attr.def"
TAK_Count
};
/// TypeAttributes - These are attributes that may be applied to types.
class TypeAttributes {
// Get a SourceLoc for every possible attribute that can be parsed in source.
// the presence of the attribute is indicated by its location being set.
SourceLoc AttrLocs[TAK_Count];
public:
/// AtLoc - This is the location of the first '@' in the attribute specifier.
/// If this is an empty attribute specifier, then this will be an invalid loc.
SourceLoc AtLoc;
Optional<AbstractCC> cc = Nothing;
// For an opened existential type, the known ID.
Optional<unsigned> OpenedID;
TypeAttributes() {}
bool isValid() const { return AtLoc.isValid(); }
void clearAttribute(TypeAttrKind A) {
AttrLocs[A] = SourceLoc();
}
bool has(TypeAttrKind A) const {
return getLoc(A).isValid();
}
SourceLoc getLoc(TypeAttrKind A) const {
return AttrLocs[A];
}
void setAttr(TypeAttrKind A, SourceLoc L) {
assert(!L.isInvalid() && "Cannot clear attribute with this method");
AttrLocs[A] = L;
}
void getAttrRanges(SmallVectorImpl<SourceRange> &Ranges) const {
for (auto Loc : AttrLocs) {
if (Loc.isValid())
Ranges.push_back(Loc);
}
}
// This attribute list is empty if no attributes are specified. Note that
// the presence of the leading @ is not enough to tell, because we want
// clients to be able to remove attributes they process until they get to
// an empty list.
bool empty() const {
for (SourceLoc elt : AttrLocs)
if (elt.isValid()) return false;
return true;
}
bool hasCC() const { return cc.hasValue(); }
AbstractCC getAbstractCC() const { return *cc; }
bool hasOwnership() const { return getOwnership() != Ownership::Strong; }
Ownership getOwnership() const {
if (has(TAK_sil_weak)) return Ownership::Weak;
if (has(TAK_sil_unowned)) return Ownership::Unowned;
if (has(TAK_sil_unmanaged)) return Ownership::Unmanaged;
return Ownership::Strong;
}
void clearOwnership() {
clearAttribute(TAK_sil_weak);
clearAttribute(TAK_sil_unowned);
}
bool hasOpenedID() const { return OpenedID.hasValue(); }
unsigned getOpenedID() const { return *OpenedID; }
};
class AttributeBase {
public:
/// The location of the '@'.
const SourceLoc AtLoc;
/// The source range of the attribute.
const SourceRange Range;
/// The location of the attribute.
SourceLoc getLocation() const { return Range.Start; }
/// Return the source range of the attribute.
SourceRange getRange() const { return Range; }
SourceRange getRangeWithAt() const {
if (AtLoc.isValid())
return {AtLoc, Range.End};
return Range;
}
// Only allow allocation of attributes using the allocator in ASTContext
// or by doing a placement new.
void *operator new(size_t Bytes, ASTContext &C,
unsigned Alignment = alignof(AttributeBase));
void operator delete(void *Data) throw() { }
void *operator new(size_t Bytes, void *Mem) throw() { return Mem; }
// Make vanilla new/delete illegal for attributes.
void *operator new(size_t Bytes) throw() = delete;
AttributeBase(const AttributeBase &) = delete;
protected:
AttributeBase(SourceLoc AtLoc, SourceRange Range)
: AtLoc(AtLoc), Range(Range) {}
};
class DeclAttributes;
/// Represents one declaration attribute.
class DeclAttribute : public AttributeBase {
friend class DeclAttributes;
protected:
class DeclAttrBitFields {
friend class DeclAttribute;
// The kind.
unsigned Kind : 8;
// Whether this attribute was implicitly added.
unsigned Implicit : 1;
unsigned Invalid : 1;
};
enum { NumDeclAttrBits = 10 };
static_assert(NumDeclAttrBits <= 32, "fits in an unsigned");
class ObjCAttrBitFields {
friend class ObjCAttr;
unsigned : NumDeclAttrBits;
/// Whether this attribute has location information that trails the main
/// record, which contains the locations of the parentheses and any names.
unsigned HasTrailingLocationInfo : 1;
};
enum { NumObjCAttrBits = NumDeclAttrBits + 1 };
static_assert(NumObjCAttrBits <= 32, "fits in an unsigned");
union {
DeclAttrBitFields DeclAttrBits;
ObjCAttrBitFields ObjCAttrBits;
};
DeclAttribute *Next = nullptr;
DeclAttribute(DeclAttrKind DK, SourceLoc AtLoc, SourceRange Range,
bool Implicit) :
AttributeBase(AtLoc, Range)
{
DeclAttrBits.Kind = static_cast<unsigned>(DK);
DeclAttrBits.Implicit = Implicit;
DeclAttrBits.Invalid = 0;
}
enum DeclAttrOptions {
OnFunc = 0x1,
OnExtension = 1 << 2,
OnPatternBinding = 1 << 3,
OnOperator = 1 << 4,
OnTypeAlias = 1 << 5,
OnType = 1 << 6,
OnStruct = 1 << 7,
OnEnum = 1 << 8,
OnClass = 1 << 9,
OnProtocol = 1 << 10,
OnVar = 1 << 11,
OnSubscript = 1 << 12,
OnConstructor = 1 << 13,
OnDestructor = 1 << 14,
OnImport = 1 << 15,
OnAnyDecl = OnFunc | OnExtension | OnPatternBinding | OnOperator |
OnTypeAlias | OnType | OnStruct | OnEnum | OnClass |
OnProtocol | OnVar | OnSubscript | OnConstructor |
OnDestructor | OnImport,
AllowMultipleAttributes = 1 << 16
};
static unsigned getOptions(DeclAttrKind DK);
unsigned getOptions() const {
return getOptions(getKind());
}
public:
DeclAttrKind getKind() const {
return static_cast<DeclAttrKind>(DeclAttrBits.Kind);
}
/// Whether this attribute was implicitly added.
bool isImplicit() const { return DeclAttrBits.Implicit; }
/// Set whether this attribute was implicitly added.
void setImplicit(bool Implicit) {
DeclAttrBits.Implicit = Implicit;
}
/// Returns true if this attribute was find to be invalid in some way by
/// semantic analysis. In that case, the attribute should not be considered,
/// the attribute node should be only used to retrieve source information.
bool isInvalid() const { return DeclAttrBits.Invalid; }
void setInvalid() { DeclAttrBits.Invalid = true; }
bool isValid() const { return !isInvalid(); }
/// Returns the address of the next pointer field.
/// Used for object deserialization.
DeclAttribute **getMutableNext() {
return &Next;
}
/// Print the attribute to the provided ASTPrinter.
void print(ASTPrinter &Printer) const;
/// Print the attribute to the provided stream.
void print(llvm::raw_ostream &OS) const;
/// Returns true if this attribute can appear on a function.
bool canAppearOnFunc() const {
return getOptions() & OnFunc;
}
/// Returns true if this attribute can appear on an extension.
bool canAppearOnExtension() const {
return getOptions() & OnExtension;
}
/// Returns true if this attribute can appear on an pattern binding.
bool canAppearOnPatternBinding() const {
return getOptions() & OnPatternBinding;
}
/// Returns true if this attribute can appear on an operator.
bool canAppearOnOperator() const {
return getOptions() & OnOperator;
}
/// Returns true if this attribute can appear on a typealias.
bool canAppearOnTypeAlias() const {
return getOptions() & OnTypeAlias;
}
/// Returns true if this attribute can appear on a type declaration.
bool canAppearOnType() const {
return getOptions() & OnType;
}
/// Returns true if this attribute can appear on a struct.
bool canAppearOnStruct() const {
return getOptions() & OnStruct;
}
/// Returns true if this attribute can appear on an enum.
bool canAppearOnEnum() const {
return getOptions() & OnEnum;
}
/// Returns true if this attribute can appear on a class.
bool canAppearOnClass() const {
return getOptions() & OnClass;
}
/// Returns true if this attribute can appear on a protocol.
bool canAppearOnProtocol() const {
return getOptions() & OnProtocol;
}
/// Returns true if this attribute can appear on a var declaration.
bool canAppearOnVar() const {
return getOptions() & OnVar;
}
/// Returns true if this attribute can appear on a subscript declaration.
bool canAppearOnSubscript() const {
return getOptions() & OnSubscript;
}
/// Returns true if this attribute can appear on a constructor/initializer
/// declaration.
bool canAppearOnConstructor() const {
return getOptions() & OnConstructor;
}
/// Returns true if this attribute can appear on a deinitializer
/// declaration.
bool canAppearOnDestructor() const {
return getOptions() & OnDestructor;
}
/// Returns true if multiple instances of an attribute kind
/// can appear on a delcaration.
static bool allowMultipleAttributes(DeclAttrKind DK) {
return getOptions(DK) & AllowMultipleAttributes;
}
/// Returns the name of the given attribute kind.
static StringRef getAttrName(DeclAttrKind DK);
};
/// Describes a "simple" declaration attribute that carries no data.
template<DeclAttrKind Kind>
class SimpleDeclAttr : public DeclAttribute {
public:
SimpleDeclAttr(bool IsImplicit)
: DeclAttribute(Kind, SourceLoc(), SourceLoc(), IsImplicit) {}
SimpleDeclAttr(SourceLoc AtLoc, SourceLoc NameLoc)
: DeclAttribute(Kind, AtLoc, SourceRange(AtLoc, NameLoc),
/*Implicit=*/false) { }
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == Kind;
}
};
// Declare typedefs for all of the simple declaration attributes.
#define SIMPLE_DECL_ATTR(NAME, CLASS, ...) \
typedef SimpleDeclAttr<DAK_##NAME> CLASS##Attr;
#include "swift/AST/Attr.def"
/// Defines the @asmname attribute.
class AsmnameAttr : public DeclAttribute {
public:
AsmnameAttr(StringRef Name, SourceLoc AtLoc, SourceRange Range, bool Implicit)
: DeclAttribute(DAK_asmname, AtLoc, Range, Implicit),
Name(Name) {}
AsmnameAttr(StringRef Name, bool Implicit)
: AsmnameAttr(Name, SourceLoc(), SourceRange(), /*Implicit=*/true) {}
/// The symbol name.
const StringRef Name;
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == DAK_asmname;
}
};
/// Defines the @availability attribute.
class AvailabilityAttr : public DeclAttribute {
public:
AvailabilityAttr(SourceLoc AtLoc, SourceRange Range,
StringRef Platform,
StringRef Message,
bool IsUnavailable,
bool Implicit)
: DeclAttribute(DAK_availability, AtLoc, Range, Implicit),
Platform(Platform),
Message(Message),
IsUnvailable(IsUnavailable) {}
/// The platform of the availability.
const StringRef Platform;
/// The optional message.
const StringRef Message;
/// Indicates if the declaration is unconditionally unavailable.
const bool IsUnvailable;
/// Returns true if the availability applies to a specific
/// platform.
bool hasPlatform() const {
return !Platform.empty();
}
/// Create an AvailabilityAttr that indicates 'unavailable' for all platforms.
/// This attribute is considered "implicit".
static AvailabilityAttr *createImplicitUnavailableAttr(ASTContext &C,
StringRef Message);
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == DAK_availability;
}
};
/// Indicates that the given declaration is visible to Objective-C.
class ObjCAttr : public DeclAttribute {
/// The Objective-C name associated with this entity, stored in its opaque
/// representation so that we can use null as an indicator for "no name".
void *NameData;
/// Create an implicit @objc attribute with the given (optional) name.
explicit ObjCAttr(Optional<ObjCSelector> name)
: DeclAttribute(DAK_objc, SourceLoc(), SourceRange(), /*Implicit=*/true),
NameData(nullptr)
{
ObjCAttrBits.HasTrailingLocationInfo = false;
if (name) {
NameData = name->getOpaqueValue();
}
}
/// Create an @objc attribute written in the source.
ObjCAttr(SourceLoc atLoc, SourceRange baseRange, Optional<ObjCSelector> name,
SourceRange parenRange, ArrayRef<SourceLoc> nameLocs);
/// Determine whether this attribute has trailing location information.
bool hasTrailingLocationInfo() const {
return ObjCAttrBits.HasTrailingLocationInfo;
}
/// Retrieve the trailing location information.
MutableArrayRef<SourceLoc> getTrailingLocations() {
assert(hasTrailingLocationInfo() && "No trailing location information");
unsigned length = 2;
if (auto name = getName())
length += name->getNumSelectorPieces();
return { reinterpret_cast<SourceLoc *>(this + 1), length };
}
/// Retrieve the trailing location information.
ArrayRef<SourceLoc> getTrailingLocations() const {
assert(hasTrailingLocationInfo() && "No trailing location information");
unsigned length = 2;
if (auto name = getName())
length += name->getNumSelectorPieces();
return { reinterpret_cast<const SourceLoc *>(this + 1), length };
}
public:
/// Create implicit ObjC attribute with a given (optional) name.
static ObjCAttr *create(ASTContext &Ctx, Optional<ObjCSelector> name);
/// Create an unnamed Objective-C attribute, i.e., @objc.
static ObjCAttr *createUnnamed(ASTContext &Ctx, SourceLoc AtLoc,
SourceLoc ObjCLoc);
static ObjCAttr *createUnnamedImplicit(ASTContext &Ctx);
/// Create a nullary Objective-C attribute, which has a single name
/// with no colon following it.
///
/// Note that a nullary Objective-C attribute may represent either a
/// selector for a zero-parameter function or some other Objective-C
/// entity, such as a class or protocol.
static ObjCAttr *createNullary(ASTContext &Ctx, SourceLoc AtLoc,
SourceLoc ObjCLoc, SourceLoc LParenLoc,
SourceLoc NameLoc, Identifier Name,
SourceLoc RParenLoc);
/// Create an implicit nullary Objective-C attribute, which has a
/// single name with no colon following it.
///
/// Note that a nullary Objective-C attribute may represent either a
/// selector for a zero-parameter function or some other Objective-C
/// entity, such as a class or protocol.
static ObjCAttr *createNullary(ASTContext &Ctx, Identifier Name);
/// Create a "selector" Objective-C attribute, which has some number
/// of identifiers followed by colons.
static ObjCAttr *createSelector(ASTContext &Ctx, SourceLoc AtLoc,
SourceLoc ObjCLoc, SourceLoc LParenLoc,
ArrayRef<SourceLoc> NameLocs,
ArrayRef<Identifier> Names,
SourceLoc RParenLoc);
/// Create an implicit "selector" Objective-C attribute, which has
/// some number of identifiers followed by colons.
static ObjCAttr *createSelector(ASTContext &Ctx, ArrayRef<Identifier> Names);
/// Determine whether this attribute has a name associated with it.
bool hasName() const { return NameData != nullptr; }
/// Retrieve the name of this entity, if specified.
Optional<ObjCSelector> getName() const {
if (!hasName())
return Nothing;
return ObjCSelector::getFromOpaqueValue(NameData);
}
/// Set the name of this entity.
void setName(ObjCSelector name) {
// If we already have a name and we have location information, make sure
// drop the location information rather than allowing it to corrupt our
// state
if (hasTrailingLocationInfo() &&
(!hasName() ||
getName()->getNumSelectorPieces() < name.getNumSelectorPieces())) {
ObjCAttrBits.HasTrailingLocationInfo = false;
}
NameData = name.getOpaqueValue();
}
/// Clear the name of this entity.
void clearName() {
NameData = nullptr;
}
/// Retrieve the source locations for the names in a non-implicit
/// nullary or selector attribute.
ArrayRef<SourceLoc> getNameLocs() const;
/// Retrieve the location of the opening parentheses, if there is one.
SourceLoc getLParenLoc() const;
/// Retrieve the location of the closing parentheses, if there is one.
SourceLoc getRParenLoc() const;
/// Clone the given attribute, producing an implicit copy of the
/// original without source location information.
ObjCAttr *clone(ASTContext &context) const;
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == DAK_objc;
}
};
/// Defines the attribute that we use to model the 'override' keyword.
class OverrideAttr : public DeclAttribute {
public:
OverrideAttr(SourceLoc OverrideLoc)
: DeclAttribute(DAK_override, SourceLoc(), OverrideLoc,
/*Implicit=*/false) {}
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == DAK_override;
}
};
/// Defines the attribute that we use to model documentation comments.
class RawDocCommentAttr : public DeclAttribute {
/// Source range of the attached comment. This comment is located before
/// the declaration.
CharSourceRange CommentRange;
public:
RawDocCommentAttr(CharSourceRange CommentRange)
: DeclAttribute(DAK_raw_doc_comment, SourceLoc(), SourceRange(),
/*Implicit=*/false),
CommentRange(CommentRange) {}
CharSourceRange getCommentRange() const { return CommentRange; }
static bool classof(const DeclAttribute *DA) {
return DA->getKind() == DAK_raw_doc_comment;
}
};
/// \brief Attributes that may be applied to declarations.
class DeclAttributes {
/// Source locations for every possible attribute that can be parsed in
/// source.
SourceLoc AttrLocs[AK_Count];
bool HasAttr[AK_Count] = { false };
unsigned NumAttrsSet : 8;
/// Linked list of declaration attributes.
DeclAttribute *DeclAttrs;
public:
/// The location of the first '@' in the attribute specifier.
///
/// This is an invalid location if the declaration does not have any or has
/// only virtual attributes.
///
/// This could be a valid location even if none of the attributes are set.
/// This can happen when the attributes were parsed, but then cleared because
/// they are not allowed in that context.
SourceLoc AtLoc;
/// When the mutating attribute is present (i.e., we have a location for it),
/// indicating whether it was inverted ("nonmutating") or not ("mutating").
/// Clients should generally use the getMutating() accessor.
bool MutatingInverted = false;
DeclAttributes() : NumAttrsSet(0), DeclAttrs(nullptr) {}
bool shouldSaveInAST() const {
return AtLoc.isValid() || NumAttrsSet != 0 || DeclAttrs;
}
bool containsTraditionalAttributes() const {
return NumAttrsSet != 0;
}
bool hasNonVirtualAttributes() const {
return NumAttrsSet != 0;
}
void clearAttribute(AttrKind A) {
if (!has(A))
return;
AttrLocs[A] = SourceLoc();
HasAttr[A] = false;
NumAttrsSet--;
}
bool has(AttrKind A) const {
return HasAttr[A];
}
bool has(DeclAttrKind DK) const {
for (auto Attr : *this)
if (Attr->getKind() == DK)
return true;
return false;
}
SourceLoc getLoc(AttrKind A) const {
return AttrLocs[A];
}
void setAttr(AttrKind A, SourceLoc L) {
bool HadAttribute = has(A);
AttrLocs[A] = L;
HasAttr[A] = true;
if (HadAttribute)
return;
NumAttrsSet++;
}
void getAttrRanges(SmallVectorImpl<SourceRange> &Ranges) const {
for (auto Loc : AttrLocs) {
if (Loc.isValid())
Ranges.push_back(Loc);
}
for (auto Attr : *this) {
auto R = Attr->getRangeWithAt();
if (R.isValid())
Ranges.push_back(R);
}
}
bool isConversion() const { return has(AK_conversion); }
bool isTransparent() const {return has(AK_transparent);}
bool isPrefix() const { return has(AK_prefix); }
bool isPostfix() const { return has(AK_postfix); }
bool isInfix() const { return has(AK_infix); }
bool isWeak() const { return has(AK_weak); }
bool isUnowned() const { return has(AK_unowned); }
bool isUnmanaged() const { return has(AK_unowned_unsafe); }
bool isOptional() const { return has(AK_optional); }
// FIXME: eventually take a platform argument.
bool isUnavailable() const { return getUnavailable() != nullptr; }
/// Returns the first @availability attribute that indicates
/// a declaration is unavailable, or null otherwise.
//
// FIXME: eventually take a platform argument.
const AvailabilityAttr *getUnavailable() const;
bool requiresStoredPropertyInits() const {
return has(AK_requires_stored_property_inits);
}
bool hasMutating() const { return has(AK_mutating); }
Optional<bool> getMutating() const {
if (hasMutating())
return !MutatingInverted;
return Nothing;
}
bool hasOwnership() const { return isWeak() || isUnowned() || isUnmanaged(); }
Ownership getOwnership() const {
if (isWeak()) return Ownership::Weak;
if (isUnowned()) return Ownership::Unowned;
if (isUnmanaged()) return Ownership::Unmanaged;
return Ownership::Strong;
}
void clearOwnership() {
clearAttribute(AK_weak);
clearAttribute(AK_unowned);
clearAttribute(AK_unowned_unsafe);
}
void print(llvm::raw_ostream &OS) const;
void print(ASTPrinter &Printer, const PrintOptions &Options) const;
template <typename T, typename DERIVED> class iterator_base {
T *Impl;
public:
explicit iterator_base(T *Impl) : Impl(Impl) {}
DERIVED &operator++() { Impl = Impl->Next; return (DERIVED&)*this; }
bool operator==(const iterator_base &X) const { return X.Impl == Impl; }
bool operator!=(const iterator_base &X) const { return X.Impl != Impl; }
T *operator*() const { return Impl; }
T &operator->() const { return *Impl; }
};
/// Add a constructed DeclAttribute to this list.
void add(DeclAttribute *Attr) {
Attr->Next = DeclAttrs;
DeclAttrs = Attr;
}
// Iterator interface over DeclAttribute objects.
class iterator : public iterator_base<DeclAttribute, iterator> {
public:
explicit iterator(DeclAttribute *Impl) : iterator_base(Impl) {}
};
class const_iterator : public iterator_base<const DeclAttribute,
const_iterator> {
public:
explicit const_iterator(const DeclAttribute *Impl)
: iterator_base(Impl) {}
};
iterator begin() { return iterator(DeclAttrs); }
iterator end() { return iterator(nullptr); }
const_iterator begin() const { return const_iterator(DeclAttrs); }
const_iterator end() const { return const_iterator(nullptr); }
/// Retrieve the first attribute of the given attribute class.
template <typename ATTR>
const ATTR *getAttribute(bool AllowInvalid = false) const {
return const_cast<DeclAttributes *>(this)->getAttribute<ATTR>();
}
template <typename ATTR>
ATTR *getAttribute(bool AllowInvalid = false) {
for (auto Attr : *this)
if (ATTR *SpecificAttr = dyn_cast<ATTR>(Attr))
if (SpecificAttr->isValid() || AllowInvalid)
return SpecificAttr;
return nullptr;
}
/// Determine whether there is an attribute with the given attribute class.
template <typename ATTR>
bool hasAttribute(bool AllowInvalid = false) const {
return getAttribute<ATTR>(AllowInvalid) != nullptr;
}
/// Retrieve the first attribute with the given kind.
const DeclAttribute *getAttribute(DeclAttrKind DK,
bool AllowInvalid = false) const {
for (auto Attr : *this)
if (Attr->getKind() == DK && (Attr->isValid() || AllowInvalid))
return Attr;
return nullptr;
}
// Remove the given attribute from the list of attributes. Used when
// the attribute was semantically invalid.
void removeAttribute(const DeclAttribute *attr) {
// If it's the first attribute, remove it.
if (DeclAttrs == attr) {
DeclAttrs = attr->Next;
return;
}
// Otherwise, find it in the list. This is inefficient, but rare.
for (auto **prev = &DeclAttrs; *prev; prev = &(*prev)->Next) {
if ((*prev)->Next == attr) {
(*prev)->Next = attr->Next;
return;
}
}
llvm_unreachable("Attribute not found for removal");
}
/// Set the raw chain of attributes. Used for deserialization.
void setRawAttributeChain(DeclAttribute *Chain) {
DeclAttrs = Chain;
}
};
} // end namespace swift
#endif