Files
swift-mirror/include/swift/SIL/PatternMatch.h
Michael Gottesman fd0a78b301 [sil-combine] Canonicalize index_raw_addr byte indexing operations => index_addr object size indexing operations.
This should eliminate pointless operations that get added to our inline
cost itinerary.

rdar://15567647
rdar://16762768
rdar://16832529

Swift SVN r17644
2014-05-07 22:01:30 +00:00

498 lines
13 KiB
C++

//===--- PatternMatch.h - SIL Pattern Matching Infrastructure ---*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides a simple and efficient mechanism for performing general
// tree-based pattern matches on SIL. The power of these routines is that it
// allows you to write concise patterns that are expressive and easy to
// understand. The other major advantage of this is that it allows you to
// trivially capture/bind elements in the pattern to variables.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_PATTERNMATCH_H
#define SWIFT_SIL_PATTERNMATCH_H
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/SILInstruction.h"
namespace swift {
namespace PatternMatch {
//===----------------------------------------------------------------------===//
// Basic Matching Infrastructure
//===----------------------------------------------------------------------===//
/// Applies the given pattern to V.
template<typename Val, typename Pattern>
bool match(Val *V, const Pattern &P) {
return const_cast<Pattern &>(P).match(V);
}
/// Explicit template instantiation for SILValue so we can access the value
/// inside.
template<typename Pattern>
bool match(SILValue V, const Pattern &P) {
return const_cast<Pattern &>(P).match(&*V);
}
template<typename SubPatternTy>
struct OneUse_match {
SubPatternTy SubPattern;
OneUse_match(const SubPatternTy &SP) : SubPattern(SP) {}
template<typename OpTy>
bool match(OpTy *V) {
return V->hasOneUse() && SubPattern.match(V);
}
};
/// Match if the input has one use and satisfies the given subpattern.
template<typename SubPatternTy>
inline OneUse_match<SubPatternTy> m_OneUse(const SubPatternTy &SubPattern) {
return SubPattern;
}
template<typename Class>
struct class_match {
template<typename ITy>
bool match(ITy *V) { return isa<Class>(V); }
};
template<typename Class>
struct bind_ty {
Class *&VR;
bind_ty(Class *&V) : VR(V) {}
template<typename ITy>
bool match(ITy *V) {
if (Class *CV = dyn_cast<Class>(V)) {
VR = CV;
return true;
}
return false;
}
};
//===----------------------------------------------------------------------===//
// Matching Combinators
//===----------------------------------------------------------------------===//
template<typename LTy, typename RTy>
struct match_combine_or {
LTy L;
RTy R;
match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
template<typename ITy>
bool match(ITy *V) {
if (L.match(V))
return true;
if (R.match(V))
return true;
return false;
}
};
template<typename LTy, typename RTy>
struct match_combine_and {
LTy L;
RTy R;
match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
template<typename ITy>
bool match(ITy *V) {
if (L.match(V))
if (R.match(V))
return true;
return false;
}
};
/// Combine two pattern matchers matching L || R
template<typename LTy, typename RTy>
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
return match_combine_or<LTy, RTy>(L, R);
}
/// Combine two pattern matchers matching L && R
template<typename LTy, typename RTy>
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
return match_combine_and<LTy, RTy>(L, R);
}
//===----------------------------------------------------------------------===//
// Base Matchers
//===----------------------------------------------------------------------===//
/// Match an arbitrary ValueBase, and if the match was successful do not
/// capture.
inline class_match<ValueBase> m_ValueBase() {
return class_match<ValueBase>();
}
/// Match an arbitrary ValueBase, capturing the ValueBase if the match succeeds.
inline bind_ty<ValueBase> m_ValueBase(ValueBase *&V) {
return V;
}
struct silvalue_bind {
SILValue &Value;
silvalue_bind(SILValue &V) : Value(V) { }
template <typename ITy>
bool match(ITy V) {
return false;
}
bool match(SILValue V) {
Value = V;
return true;
}
};
/// Match an arbitrary SILValue, capturing the SILValue if the match succeeds.
inline silvalue_bind m_SILValue(SILValue &V) {
return V;
}
struct specificval_ty {
const ValueBase *Val;
specificval_ty(const ValueBase *V) : Val(V) {}
template<typename ITy>
bool match(ITy *V) {
return V == Val;
}
};
/// Return a matcher which only matches on inputs that satisfy pointer equality
/// with V.
inline specificval_ty m_Specific(const ValueBase *V) { return V; }
/// Define class_match and bind_ty matchers for all VALUE SILNodes.
///
/// class_match matchers match arbitrary Class * and do not capture on success.
/// bind_ty matchers match arbitrary Class * and do capture on success.
#define VALUE(Class, Parent) \
inline class_match<Class> m_##Class() { return class_match<Class>(); } \
inline bind_ty<Class> m_##Class(Class *&V) { return V; }
#include "swift/SIL/SILNodes.def"
static inline APInt extendAPInt(const APInt &A, unsigned bitWidth,
bool isSigned) {
if (isSigned)
return A.sext(bitWidth);
return A.zext(bitWidth);
}
static inline bool isSameAPIntValue(const APInt &I1, const APInt &I2,
bool isSigned) {
if (I1.getBitWidth() == I2.getBitWidth())
return I1 == I2;
if (I1.getBitWidth() > I2.getBitWidth())
return I1 == extendAPInt(I2, I1.getBitWidth(), isSigned);
return extendAPInt(I1, I2.getBitWidth(), isSigned) == I2;
}
// Builtin Integer Matcher
struct integerliteral_ty {
APInt Value;
bool isSigned;
integerliteral_ty(APInt V, bool S) : Value(V), isSigned(S) { }
template<typename ITy>
bool match(ITy *V) {
auto *Literal = dyn_cast<IntegerLiteralInst>(V);
if (!Literal)
return false;
// This should eventually be refactored into APInt::isSameValue by giving it
// a signed flag.
return isSameAPIntValue(Value, Literal->getValue(), isSigned);
}
};
static inline integerliteral_ty m_IntegerLiteralInst(APInt V, bool isSigned) {
return {V, isSigned};
}
//===----------------------------------------------------------------------===//
// Unary Instructions
//===----------------------------------------------------------------------===//
template<typename OpMatchTy, ValueKind Kind>
struct UnaryOp_match {
OpMatchTy OpMatch;
UnaryOp_match(const OpMatchTy &Op) : OpMatch(Op) { }
template<typename OpTy>
bool match(OpTy *V) {
if (V->getKind() != Kind)
return false;
auto *I = dyn_cast<SILInstruction>(V);
if (!I || I->getNumOperands() != 1)
return false;
return OpMatch.match(I->getOperand(0));
}
};
template <typename Ty>
UnaryOp_match<Ty, ValueKind::PointerToAddressInst>
m_PointerToAddressInst(const Ty &T) {
return T;
}
//===----------------------------------------------------------------------===//
// Binary Instructions
//===----------------------------------------------------------------------===//
template<typename LHSTy, typename RHSTy, ValueKind Kind>
struct BinaryOp_match {
LHSTy L;
RHSTy R;
BinaryOp_match(const LHSTy &LHS, const RHSTy &RHS) : L(LHS), R(RHS) {}
template<typename OpTy>
bool match(OpTy *V) {
if (V->getKind() != Kind)
return false;
auto *I = dyn_cast<SILInstruction>(V);
if (!I || I->getNumOperands() != 2)
return false;
return L.match(I->getOperand(0).getDef()) &&
R.match(I->getOperand(1).getDef());
}
};
template <typename LTy, typename RTy>
BinaryOp_match<LTy, RTy, ValueKind::IndexRawPointerInst>
m_IndexRawPointerInst(const LTy &Left, const RTy &Right) {
return {Left, Right};
}
//===----------------------------------------------------------------------===//
// Address/Struct Projections
//===----------------------------------------------------------------------===//
template <typename LTy>
struct tupleextract_ty {
LTy L;
unsigned index;
tupleextract_ty(const LTy &Left, unsigned i) : L(Left), index(i) { }
template <typename ITy>
bool match(ITy *V) {
auto *TEI = dyn_cast<TupleExtractInst>(V);
if (!TEI)
return false;
return TEI->getFieldNo() == index && L.match(TEI->getOperand().getDef());
}
};
template <typename LTy>
tupleextract_ty<LTy> m_TupleExtractInst(const LTy &Left, unsigned Index) {
return tupleextract_ty<LTy>(Left, Index);
}
//===----------------------------------------------------------------------===//
// Function/Builtin/Intrinsic Application Matchers
//===----------------------------------------------------------------------===//
//===
// Callee matcher.
//
template <typename CalleeTy>
struct Callee_match;
template<>
struct Callee_match<SILFunction &> {
const SILFunction &Fun;
Callee_match(const SILFunction &F) : Fun(F) {}
template <typename ITy>
bool match(ITy *V) {
auto *AI = dyn_cast<ApplyInst>(V);
if (!AI)
return false;
auto *FunctionRef = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FunctionRef)
return false;
return FunctionRef->getReferencedFunction() == &Fun;
}
};
template<>
struct Callee_match<BuiltinValueKind> {
BuiltinValueKind Kind;
Callee_match(BuiltinValueKind K) : Kind(K) { }
template <typename ITy>
bool match(ITy *V) {
auto *AI = dyn_cast<ApplyInst>(V);
if (!AI)
return false;
auto *BuiltinRef = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
if (!BuiltinRef)
return false;
return BuiltinRef->getBuiltinInfo().ID == Kind;
}
};
template<>
struct Callee_match<llvm::Intrinsic::ID> {
llvm::Intrinsic::ID IntrinsicID;
Callee_match(const llvm::Intrinsic::ID ID) : IntrinsicID(ID) { }
template <typename ITy>
bool match(ITy *V) {
auto *AI = dyn_cast<ApplyInst>(V);
if (!AI)
return false;
auto *BuiltinRef = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
if (!BuiltinRef)
return false;
return BuiltinRef->getIntrinsicInfo().ID == IntrinsicID;
}
};
/// Match a callee argument.
///
/// We use explicit specialization of Callee_match to handle SILFunctions,
/// Builtins, and Intrinsics all with this one function.
template<typename CalleeTy>
inline Callee_match<CalleeTy> m_Callee(CalleeTy Callee) {
return Callee;
}
//===
// Argument matcher
//
template <typename SubPatternTy>
struct Argument_match {
unsigned OpI;
SubPatternTy Val;
Argument_match(unsigned OpIdx, const SubPatternTy &V) : OpI(OpIdx), Val(V) { }
template <typename ITy>
bool match(ITy *V) {
auto *Apply = dyn_cast<ApplyInst>(V);
if (!Apply)
return false;
return Val.match(Apply->getArgument(OpI).getDef());
}
};
// Explicit specialization for silvalue.
template <>
struct Argument_match<silvalue_bind> {
unsigned OpI;
silvalue_bind Val;
Argument_match(unsigned OpIdx, const silvalue_bind &V) : OpI(OpIdx), Val(V) { }
template <typename ITy>
bool match(ITy *V) {
auto *Apply = dyn_cast<ApplyInst>(V);
if (!Apply)
return false;
return Val.match(Apply->getOperand(OpI));
}
};
/// Match the Ith argument with SubPatternTy.
template<unsigned OpI, typename SubPatternTy>
inline Argument_match<SubPatternTy> m_Argument(const SubPatternTy &Op) {
return Argument_match<SubPatternTy>(OpI, Op);
}
//===
// ApplyInst
//
// ApplyInst matchers are a boolean and of a Callee_matcher and a list of
// argument matchers.
template <typename CalleeTy, typename ...Arguments>
struct Apply_match;
template <typename CalleeTy>
struct Apply_match<CalleeTy> {
typedef Callee_match<CalleeTy> Ty;
};
template <typename CalleeTy, typename T0>
struct Apply_match<CalleeTy, T0> {
typedef match_combine_and<Callee_match<CalleeTy>, Argument_match<T0>> Ty;
};
template <typename CalleeTy, typename T0, typename ...Arguments>
struct Apply_match<CalleeTy, T0, Arguments ...> {
typedef match_combine_and<typename Apply_match<CalleeTy, Arguments ...>::Ty,
Argument_match<T0> > Ty;
};
/// Match only an ApplyInst's Callee.
template <typename CalleeTy>
inline typename Apply_match<CalleeTy>::Ty
m_ApplyInst(CalleeTy Callee) {
return Callee;
}
/// Match an ApplyInst's Callee and first argument.
template <unsigned Index=0, typename CalleeTy, typename T0>
inline typename Apply_match<CalleeTy, T0>::Ty
m_ApplyInst(CalleeTy Callee, const T0 &Op0) {
return m_CombineAnd(m_Callee(Callee), m_Argument<Index>(Op0));
}
/// Match an ApplyInst's Callee and up to the ApplyInsts Nth argument, where N
/// is sizeof...(Arguments) + 1.
template <unsigned Index=0, typename CalleeTy, typename T0,
typename ...Arguments>
inline typename Apply_match<CalleeTy, T0, Arguments ...>::Ty
m_ApplyInst(CalleeTy Callee, const T0 &Op0, const Arguments &...Args) {
return m_CombineAnd(m_ApplyInst<Index+1>(Callee, Args...),
m_Argument<Index>(Op0));
}
} // end namespace PatternMatch
} // end namespace swift
#endif