mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
We were accidentally forcing all members of a class to be instantiated in two places: - by trying to look up an existing destructor decl in the class, and - by adding the implicit destructor to the class, because addMember needlessly called loadAllMembers. Fix the former problem by adding a 'has destructor' bit to ClassDecl so we can track whether the implicit destructor needs to be added without querying its members. Fix the latter by making IterableDeclContext::addMember not call loadAllMembers, and making loadAllMembers not barf when it sees existing members in the context. Together with Jordan and JoeP's changes, this makes many interpreter tests now compile 3-20x faster. Swift SVN r17562
1224 lines
40 KiB
C++
1224 lines
40 KiB
C++
//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements interfaces for performing name lookup.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ModuleNameLookup.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/DebuggerClient.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/Basic/STLExtras.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
|
|
using namespace swift;
|
|
|
|
void DebuggerClient::anchor() {}
|
|
|
|
template <typename Fn>
|
|
static void forAllVisibleModules(const DeclContext *DC, const Fn &fn) {
|
|
DeclContext *moduleScope = DC->getModuleScopeContext();
|
|
if (auto file = dyn_cast<FileUnit>(moduleScope))
|
|
file->forAllVisibleModules(fn);
|
|
else
|
|
cast<Module>(moduleScope)->forAllVisibleModules(Module::AccessPathTy(), fn);
|
|
}
|
|
|
|
|
|
void swift::removeShadowedDecls(SmallVectorImpl<ValueDecl*> &decls,
|
|
const Module *curModule,
|
|
LazyResolver *typeResolver) {
|
|
// Category declarations by their signatures.
|
|
llvm::SmallDenseMap<std::pair<CanType, Identifier>,
|
|
llvm::TinyPtrVector<ValueDecl *>>
|
|
CollidingDeclGroups;
|
|
|
|
/// Objective-C initializers are tracked by their context type and
|
|
/// full name.
|
|
llvm::SmallDenseMap<std::pair<CanType, DeclName>,
|
|
llvm::TinyPtrVector<ConstructorDecl *>>
|
|
ObjCCollidingConstructors;
|
|
bool anyCollisions = false;
|
|
for (auto decl : decls) {
|
|
// Determine the signature of this declaration.
|
|
// FIXME: the canonical type makes a poor signature, because we don't
|
|
// canonicalize away default arguments and don't canonicalize polymorphic
|
|
// types well.
|
|
CanType signature;
|
|
|
|
// FIXME: Egregious hack to avoid failing when there are no declared types.
|
|
if (!decl->hasType() || isa<TypeAliasDecl>(decl) || isa<AbstractTypeParamDecl>(decl)) {
|
|
// FIXME: Pass this down instead of getting it from the ASTContext.
|
|
if (typeResolver)
|
|
typeResolver->resolveDeclSignature(decl);
|
|
if (!decl->hasType())
|
|
continue;
|
|
}
|
|
|
|
signature = decl->getType()->getCanonicalType();
|
|
|
|
// If we've seen a declaration with this signature before, note it.
|
|
auto &knownDecls =
|
|
CollidingDeclGroups[std::make_pair(signature, decl->getName())];
|
|
if (!knownDecls.empty())
|
|
anyCollisions = true;
|
|
|
|
knownDecls.push_back(decl);
|
|
|
|
// Specifically keep track of Objective-C initializers, which can come from
|
|
// either init methods or factory methods.
|
|
if (decl->hasClangNode()) {
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
auto ctorSignature
|
|
= std::make_pair(ctor->getExtensionType()->getCanonicalType(),
|
|
decl->getFullName());
|
|
auto &knownCtors = ObjCCollidingConstructors[ctorSignature];
|
|
if (!knownCtors.empty())
|
|
anyCollisions = true;
|
|
knownCtors.push_back(ctor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were no signature collisions, there is nothing to do.
|
|
if (!anyCollisions)
|
|
return;
|
|
|
|
// Determine the set of declarations that are shadowed by other declarations.
|
|
llvm::SmallPtrSet<ValueDecl *, 4> shadowed;
|
|
for (auto &collidingDecls : CollidingDeclGroups) {
|
|
// If only one declaration has this signature, it isn't shadowed by
|
|
// anything.
|
|
if (collidingDecls.second.size() == 1)
|
|
continue;
|
|
|
|
// Compare each declaration to every other declaration. This is
|
|
// unavoidably O(n^2) in the number of declarations, but because they
|
|
// all have the same signature, we expect n to remain small.
|
|
for (unsigned firstIdx = 0, n = collidingDecls.second.size();
|
|
firstIdx != n; ++firstIdx) {
|
|
auto firstDecl = collidingDecls.second[firstIdx];
|
|
auto firstDC = firstDecl->getDeclContext();
|
|
auto firstModule = firstDecl->getModuleContext();
|
|
for (unsigned secondIdx = firstIdx + 1; secondIdx != n; ++secondIdx) {
|
|
// Determine whether one module takes precedence over another.
|
|
auto secondDecl = collidingDecls.second[secondIdx];
|
|
auto secondModule = secondDecl->getModuleContext();
|
|
|
|
// If one declaration is available and the other is not, prefer the
|
|
// available one.
|
|
if (firstDecl->getAttrs().isUnavailable() !=
|
|
secondDecl->getAttrs().isUnavailable()) {
|
|
if (firstDecl->getAttrs().isUnavailable()) {
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
} else {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If the first and second declarations are in the same module,
|
|
// prefer one in the type itself vs. one in an extension.
|
|
// FIXME: Should redeclaration checking prevent this from happening?
|
|
if (firstModule == secondModule) {
|
|
auto secondDC = secondDecl->getDeclContext();
|
|
|
|
// If both declarations are in extensions, or both are in the
|
|
// type definition itself, there's nothing we can do.
|
|
if (isa<ExtensionDecl>(firstDC) == isa<ExtensionDecl>(secondDC))
|
|
continue;
|
|
|
|
// If the second declaration is in an extension, it is shadowed
|
|
// by the first declaration.
|
|
if (isa<ExtensionDecl>(secondDC)) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
// If the first declaration is in an extension, it is shadowed by
|
|
// the second declaration. There is no point in continuing to compare
|
|
// the first declaration to others.
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
|
|
// Prefer declarations in the current module over those in another
|
|
// module.
|
|
// FIXME: This is a hack. We should query a (lazily-built, cached)
|
|
// module graph to determine shadowing.
|
|
if ((firstModule == curModule) == (secondModule == curModule))
|
|
continue;
|
|
|
|
// If the first module is the current module, the second declaration
|
|
// is shadowed by the first.
|
|
if (firstModule == curModule) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, the first declaration is shadowed by the second. There is
|
|
// no point in continuing to compare the first declaration to others.
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for collisions among Objective-C initializers. When such collisions
|
|
// exist, we pick the
|
|
for (const auto &colliding : ObjCCollidingConstructors) {
|
|
if (colliding.second.size() == 1)
|
|
continue;
|
|
|
|
// Find the "best" constructor kind with this signature.
|
|
CtorInitializerKind bestKind = colliding.second[0]->getInitKind();
|
|
for (auto ctor : colliding.second) {
|
|
auto kind = ctor->getInitKind();
|
|
if (static_cast<unsigned>(kind) < static_cast<unsigned>(bestKind))
|
|
bestKind = kind;
|
|
}
|
|
|
|
// Shadow any initializers with a worse kind.
|
|
for (auto ctor : colliding.second) {
|
|
auto kind = ctor->getInitKind();
|
|
if (static_cast<unsigned>(kind) > static_cast<unsigned>(bestKind))
|
|
shadowed.insert(ctor);
|
|
}
|
|
}
|
|
|
|
// If none of the declarations were shadowed, we're done.
|
|
if (shadowed.empty())
|
|
return;
|
|
|
|
// Remove shadowed declarations from the list of declarations.
|
|
decls.erase(std::remove_if(decls.begin(), decls.end(),
|
|
[&](ValueDecl *vd) {
|
|
return shadowed.count(vd) > 0;
|
|
}),
|
|
decls.end());
|
|
}
|
|
|
|
struct FindLocalVal : public StmtVisitor<FindLocalVal> {
|
|
const SourceManager &SM;
|
|
SourceLoc Loc;
|
|
DeclName Name;
|
|
ValueDecl *MatchingValue;
|
|
|
|
FindLocalVal(const SourceManager &SM, SourceLoc Loc, DeclName Name)
|
|
: SM(SM), Loc(Loc), Name(Name), MatchingValue(nullptr) {}
|
|
|
|
bool IntersectsRange(SourceRange R) {
|
|
return SM.rangeContainsTokenLoc(R, Loc);
|
|
}
|
|
|
|
void checkValueDecl(ValueDecl *D) {
|
|
if (D->getFullName().matchesRef(Name)) {
|
|
assert(!MatchingValue);
|
|
MatchingValue = D;
|
|
}
|
|
}
|
|
|
|
void checkPattern(const Pattern *Pat) {
|
|
switch (Pat->getKind()) {
|
|
case PatternKind::Tuple:
|
|
for (auto &field : cast<TuplePattern>(Pat)->getFields())
|
|
checkPattern(field.getPattern());
|
|
return;
|
|
case PatternKind::Paren:
|
|
case PatternKind::Typed:
|
|
case PatternKind::Var:
|
|
return checkPattern(Pat->getSemanticsProvidingPattern());
|
|
|
|
case PatternKind::Named:
|
|
return checkValueDecl(cast<NamedPattern>(Pat)->getDecl());
|
|
case PatternKind::NominalType: {
|
|
for (const auto &elt : cast<NominalTypePattern>(Pat)->getElements())
|
|
checkPattern(elt.getSubPattern());
|
|
return;
|
|
}
|
|
case PatternKind::EnumElement: {
|
|
auto *OP = cast<EnumElementPattern>(Pat);
|
|
if (OP->hasSubPattern())
|
|
checkPattern(OP->getSubPattern());
|
|
return;
|
|
}
|
|
// Handle non-vars.
|
|
case PatternKind::Isa:
|
|
case PatternKind::Expr:
|
|
case PatternKind::Any:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void checkGenericParams(GenericParamList *Params) {
|
|
if (!Params)
|
|
return;
|
|
|
|
for (auto P : *Params) {
|
|
checkValueDecl(P.getDecl());
|
|
}
|
|
}
|
|
|
|
void checkSourceFile(const SourceFile &SF) {
|
|
for (Decl *D : SF.Decls) {
|
|
if (TopLevelCodeDecl *TLCD = dyn_cast<TopLevelCodeDecl>(D))
|
|
visit(TLCD->getBody());
|
|
}
|
|
}
|
|
|
|
void visitBreakStmt(BreakStmt *) {}
|
|
void visitContinueStmt(ContinueStmt *) {}
|
|
void visitFallthroughStmt(FallthroughStmt *) {}
|
|
void visitReturnStmt(ReturnStmt *) {}
|
|
void visitIfStmt(IfStmt * S) {
|
|
visit(S->getThenStmt());
|
|
if (S->getElseStmt())
|
|
visit(S->getElseStmt());
|
|
}
|
|
void visitIfConfigStmt(IfConfigStmt * S) {
|
|
// Active members are attached to the enclosing declaration, so there's no
|
|
// need to walk anything within.
|
|
}
|
|
void visitWhileStmt(WhileStmt *S) {
|
|
visit(S->getBody());
|
|
}
|
|
void visitDoWhileStmt(DoWhileStmt *S) {
|
|
visit(S->getBody());
|
|
}
|
|
|
|
void visitForStmt(ForStmt *S) {
|
|
if (!IntersectsRange(S->getSourceRange()))
|
|
return;
|
|
visit(S->getBody());
|
|
if (MatchingValue)
|
|
return;
|
|
for (Decl *D : S->getInitializerVarDecls()) {
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
|
|
checkValueDecl(VD);
|
|
}
|
|
}
|
|
void visitForEachStmt(ForEachStmt *S) {
|
|
if (!IntersectsRange(S->getSourceRange()))
|
|
return;
|
|
visit(S->getBody());
|
|
if (MatchingValue)
|
|
return;
|
|
checkPattern(S->getPattern());
|
|
}
|
|
void visitBraceStmt(BraceStmt *S) {
|
|
// We'll want to look inside any active config blocks, even if the ranges
|
|
// do not intersect. (This is to accurately model how an active config
|
|
// block "shares" its enclosing scope.)
|
|
if (!IntersectsRange(S->getSourceRange()) &&
|
|
(!S->isConfigBlock() || S->isInactiveConfigBlock()))
|
|
return;
|
|
for (auto elem : S->getElements()) {
|
|
if (Stmt *S = elem.dyn_cast<Stmt*>())
|
|
visit(S);
|
|
}
|
|
if (MatchingValue)
|
|
return;
|
|
for (auto elem : S->getElements()) {
|
|
if (Decl *D = elem.dyn_cast<Decl*>()) {
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
|
|
checkValueDecl(VD);
|
|
}
|
|
}
|
|
}
|
|
void visitSwitchStmt(SwitchStmt *S) {
|
|
if (!IntersectsRange(S->getSourceRange()))
|
|
return;
|
|
for (CaseStmt *C : S->getCases()) {
|
|
visit(C);
|
|
}
|
|
}
|
|
|
|
void visitCaseStmt(CaseStmt *S) {
|
|
if (!IntersectsRange(S->getSourceRange()))
|
|
return;
|
|
for (const auto &CLI : S->getCaseLabelItems()) {
|
|
auto *P = CLI.getPattern();
|
|
if (!IntersectsRange(P->getSourceRange()))
|
|
checkPattern(P);
|
|
}
|
|
visit(S->getBody());
|
|
}
|
|
};
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
UnqualifiedLookup::UnqualifiedLookup(DeclName Name, DeclContext *DC,
|
|
LazyResolver *TypeResolver,
|
|
SourceLoc Loc, bool IsTypeLookup) {
|
|
//llvm::errs() << "unqualified lookup for: " << Name << '\n';
|
|
|
|
typedef UnqualifiedLookupResult Result;
|
|
|
|
Module &M = *DC->getParentModule();
|
|
ASTContext &Ctx = M.getASTContext();
|
|
const SourceManager &SM = Ctx.SourceMgr;
|
|
|
|
// Never perform local lookup for operators.
|
|
if (Name.isOperator())
|
|
DC = DC->getModuleScopeContext();
|
|
|
|
// If we are inside of a method, check to see if there are any ivars in scope,
|
|
// and if so, whether this is a reference to one of them.
|
|
while (!DC->isModuleScopeContext()) {
|
|
ValueDecl *BaseDecl = 0;
|
|
ValueDecl *MetaBaseDecl = 0;
|
|
GenericParamList *GenericParams = nullptr;
|
|
Type ExtendedType;
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
|
|
// Look for local variables; normally, the parser resolves these
|
|
// for us, but it can't do the right thing inside local types.
|
|
// FIXME: when we can parse and typecheck the function body partially for
|
|
// code completion, AFD->getBody() check can be removed.
|
|
if (Loc.isValid() && AFD->getBody()) {
|
|
FindLocalVal localVal(SM, Loc, Name);
|
|
localVal.visit(AFD->getBody());
|
|
if (!localVal.MatchingValue) {
|
|
for (Pattern *P : AFD->getBodyParamPatterns())
|
|
localVal.checkPattern(P);
|
|
}
|
|
if (localVal.MatchingValue) {
|
|
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (AFD->getExtensionType()) {
|
|
ExtendedType = AFD->getExtensionType();
|
|
BaseDecl = AFD->getImplicitSelfDecl();
|
|
MetaBaseDecl = ExtendedType->getAnyNominal();
|
|
DC = DC->getParent();
|
|
|
|
if (auto *FD = dyn_cast<FuncDecl>(AFD))
|
|
if (FD->isStatic())
|
|
ExtendedType = MetatypeType::get(ExtendedType);
|
|
|
|
// If we're not in the body of the function, the base declaration
|
|
// is the nominal type, not 'self'.
|
|
if (Loc.isValid() &&
|
|
AFD->getBodySourceRange().isValid() &&
|
|
!SM.rangeContainsTokenLoc(AFD->getBodySourceRange(), Loc)) {
|
|
BaseDecl = MetaBaseDecl;
|
|
}
|
|
}
|
|
|
|
// Look in the generic parameters after checking our local declaration.
|
|
GenericParams = AFD->getGenericParams();
|
|
} else if (auto *ACE = dyn_cast<AbstractClosureExpr>(DC)) {
|
|
// Look for local variables; normally, the parser resolves these
|
|
// for us, but it can't do the right thing inside local types.
|
|
if (Loc.isValid()) {
|
|
if (auto *CE = dyn_cast<ClosureExpr>(ACE)) {
|
|
FindLocalVal localVal(SM, Loc, Name);
|
|
localVal.visit(CE->getBody());
|
|
if (!localVal.MatchingValue) {
|
|
localVal.checkPattern(CE->getParams());
|
|
}
|
|
if (localVal.MatchingValue) {
|
|
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(DC)) {
|
|
ExtendedType = ED->getExtendedType();
|
|
BaseDecl = ExtendedType->getNominalOrBoundGenericNominal();
|
|
MetaBaseDecl = BaseDecl;
|
|
} else if (NominalTypeDecl *ND = dyn_cast<NominalTypeDecl>(DC)) {
|
|
ExtendedType = ND->getDeclaredType();
|
|
BaseDecl = ND;
|
|
MetaBaseDecl = BaseDecl;
|
|
} else if (auto I = dyn_cast<DefaultArgumentInitializer>(DC)) {
|
|
// In a default argument, skip immediately out of both the
|
|
// initializer and the function.
|
|
DC = I->getParent()->getParent();
|
|
continue;
|
|
}
|
|
|
|
// Check the generic parameters for something with the given name.
|
|
if (GenericParams) {
|
|
FindLocalVal localVal(SM, Loc, Name);
|
|
localVal.checkGenericParams(GenericParams);
|
|
|
|
if (localVal.MatchingValue) {
|
|
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (BaseDecl) {
|
|
if (TypeResolver)
|
|
TypeResolver->resolveDeclSignature(BaseDecl);
|
|
|
|
SmallVector<ValueDecl *, 4> Lookup;
|
|
DC->lookupQualified(ExtendedType, Name, NL_UnqualifiedDefault,
|
|
TypeResolver, Lookup);
|
|
bool isMetatypeType = ExtendedType->is<AnyMetatypeType>();
|
|
bool FoundAny = false;
|
|
for (auto Result : Lookup) {
|
|
// If we're looking into an instance, skip static functions.
|
|
if (!isMetatypeType &&
|
|
isa<FuncDecl>(Result) &&
|
|
cast<FuncDecl>(Result)->isStatic())
|
|
continue;
|
|
|
|
// Classify this declaration.
|
|
FoundAny = true;
|
|
|
|
// Types are local or metatype members.
|
|
if (auto TD = dyn_cast<TypeDecl>(Result)) {
|
|
if (isa<GenericTypeParamDecl>(TD))
|
|
Results.push_back(Result::getLocalDecl(Result));
|
|
else
|
|
Results.push_back(Result::getMetatypeMember(MetaBaseDecl, Result));
|
|
continue;
|
|
}
|
|
|
|
// Functions are either metatype members or member functions.
|
|
if (auto FD = dyn_cast<FuncDecl>(Result)) {
|
|
if (FD->isStatic()) {
|
|
if (isMetatypeType)
|
|
Results.push_back(Result::getMetatypeMember(BaseDecl, Result));
|
|
} else {
|
|
Results.push_back(Result::getMemberFunction(BaseDecl, Result));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (isa<EnumElementDecl>(Result)) {
|
|
Results.push_back(Result::getMetatypeMember(MetaBaseDecl, Result));
|
|
continue;
|
|
}
|
|
|
|
// Archetype members
|
|
if (ExtendedType->is<ArchetypeType>()) {
|
|
Results.push_back(Result::getArchetypeMember(BaseDecl, Result));
|
|
continue;
|
|
}
|
|
|
|
// Existential members.
|
|
if (ExtendedType->isExistentialType()) {
|
|
Results.push_back(Result::getExistentialMember(BaseDecl, Result));
|
|
continue;
|
|
}
|
|
|
|
// Everything else is a member property.
|
|
Results.push_back(Result::getMemberProperty(BaseDecl, Result));
|
|
}
|
|
|
|
if (FoundAny)
|
|
return;
|
|
|
|
// Check the generic parameters for something with the given name.
|
|
auto nominal = isMetatypeType
|
|
? ExtendedType->castTo<AnyMetatypeType>()
|
|
->getInstanceType()->getAnyNominal()
|
|
: ExtendedType->getAnyNominal();
|
|
if (nominal && nominal->getGenericParams()) {
|
|
FindLocalVal localVal(SM, Loc, Name);
|
|
localVal.checkGenericParams(nominal->getGenericParams());
|
|
|
|
if (localVal.MatchingValue) {
|
|
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
if (auto SF = dyn_cast<SourceFile>(DC)) {
|
|
if (Loc.isValid()) {
|
|
// Look for local variables in top-level code; normally, the parser
|
|
// resolves these for us, but it can't do the right thing for
|
|
// local types.
|
|
FindLocalVal localVal(SM, Loc, Name);
|
|
localVal.checkSourceFile(*SF);
|
|
if (localVal.MatchingValue) {
|
|
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add private imports to the extra search list.
|
|
SmallVector<Module::ImportedModule, 8> extraImports;
|
|
if (auto FU = dyn_cast<FileUnit>(DC))
|
|
FU->getImportedModules(extraImports, Module::ImportFilter::Private);
|
|
|
|
DebuggerClient *DebugClient = M.getDebugClient();
|
|
// TODO: Does the debugger client care about compound names?
|
|
if (Name.isSimpleName()
|
|
&& DebugClient && DebugClient->lookupOverrides(Name.getBaseName(), DC,
|
|
Loc, IsTypeLookup, Results))
|
|
return;
|
|
|
|
using namespace namelookup;
|
|
SmallVector<ValueDecl *, 8> CurModuleResults;
|
|
auto resolutionKind =
|
|
IsTypeLookup ? ResolutionKind::TypesOnly : ResolutionKind::Overloadable;
|
|
lookupInModule(&M, {}, Name, CurModuleResults, NLKind::UnqualifiedLookup,
|
|
resolutionKind, TypeResolver, extraImports);
|
|
|
|
for (auto VD : CurModuleResults)
|
|
Results.push_back(Result::getModuleMember(VD));
|
|
|
|
// If we've found something, we're done.
|
|
if (!Results.empty())
|
|
return;
|
|
|
|
// Look for a module with the given name.
|
|
if (Name.isSimpleName(M.Name)) {
|
|
Results.push_back(Result::getModuleName(&M));
|
|
return;
|
|
}
|
|
|
|
forAllVisibleModules(DC, [&](const Module::ImportedModule &import) -> bool {
|
|
if (Name.isSimpleName(import.second->Name)) {
|
|
Results.push_back(Result::getModuleName(import.second));
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
|
|
if (Name.isSimpleName() && DebugClient && !Results.size())
|
|
DebugClient->lookupFallbacks(Name.getBaseName(), DC, Loc, IsTypeLookup,
|
|
Results);
|
|
}
|
|
|
|
Optional<UnqualifiedLookup>
|
|
UnqualifiedLookup::forModuleAndName(ASTContext &C,
|
|
StringRef Mod, StringRef Name) {
|
|
auto foundModule = C.LoadedModules.find(Mod);
|
|
if (foundModule == C.LoadedModules.end())
|
|
return Nothing;
|
|
|
|
Module *m = foundModule->second;
|
|
return UnqualifiedLookup(C.getIdentifier(Name), m, nullptr);
|
|
}
|
|
|
|
TypeDecl* UnqualifiedLookup::getSingleTypeResult() {
|
|
if (Results.size() != 1 || !Results.back().hasValueDecl() ||
|
|
!isa<TypeDecl>(Results.back().getValueDecl()))
|
|
return nullptr;
|
|
return cast<TypeDecl>(Results.back().getValueDecl());
|
|
}
|
|
|
|
#pragma mark Member lookup table
|
|
|
|
void LazyMemberLoader::anchor() {}
|
|
|
|
/// Lookup table used to store members of a nominal type (and its extensions)
|
|
/// for fast retrieval.
|
|
class swift::MemberLookupTable {
|
|
/// The last extension that was included within the member lookup table's
|
|
/// results.
|
|
ExtensionDecl *LastExtensionIncluded = nullptr;
|
|
|
|
/// The type of the internal lookup table.
|
|
typedef llvm::DenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
|
|
LookupTable;
|
|
|
|
/// Lookup table mapping names to the set of declarations with that name.
|
|
LookupTable Lookup;
|
|
|
|
public:
|
|
/// Create a new member lookup table.
|
|
explicit MemberLookupTable(ASTContext &ctx);
|
|
|
|
/// Destroy the lookup table.
|
|
void destroy();
|
|
|
|
/// Update a lookup table with members from newly-added extensions.
|
|
void updateLookupTable(NominalTypeDecl *nominal);
|
|
|
|
/// \brief Add the given member to the lookup tabke.
|
|
void addMember(Decl *members);
|
|
|
|
/// \brief Add the given members to the lookup table.
|
|
void addMembers(DeclRange members);
|
|
|
|
/// \brief The given extension has been extended with new members; add them
|
|
/// if appropriate.
|
|
void addExtensionMembers(NominalTypeDecl *nominal,
|
|
ExtensionDecl *ext,
|
|
DeclRange members);
|
|
|
|
/// Iterator into the lookup table.
|
|
typedef LookupTable::iterator iterator;
|
|
|
|
iterator begin() { return Lookup.begin(); }
|
|
iterator end() { return Lookup.end(); }
|
|
|
|
iterator find(DeclName name) {
|
|
return Lookup.find(name);
|
|
}
|
|
|
|
// Only allow allocation of member lookup tables using the allocator in
|
|
// ASTContext or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(MemberLookupTable)) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
/// Class member lookup table, which is a member lookup table with a second
|
|
/// table for lookup based on Objective-C selector.
|
|
class swift::ObjCMemberLookupTable
|
|
: public llvm::DenseMap<ObjCSelector, llvm::TinyPtrVector<ValueDecl *>>
|
|
{
|
|
public:
|
|
void destroy() {
|
|
this->~ObjCMemberLookupTable();
|
|
}
|
|
|
|
// Only allow allocation of member lookup tables using the allocator in
|
|
// ASTContext or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(MemberLookupTable)) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
MemberLookupTable::MemberLookupTable(ASTContext &ctx) {
|
|
// Register a cleanup with the ASTContext to call the lookup table
|
|
// destructor.
|
|
ctx.addCleanup([this]() {
|
|
this->destroy();
|
|
});
|
|
}
|
|
|
|
void MemberLookupTable::addMember(Decl *member) {
|
|
// Only value declarations matter.
|
|
auto vd = dyn_cast<ValueDecl>(member);
|
|
if (!vd)
|
|
return;
|
|
|
|
// Unnamed entities cannot be found by name lookup.
|
|
if (!vd->hasName())
|
|
return;
|
|
|
|
// If this declaration is already in the lookup table, don't add it
|
|
// again.
|
|
if (vd->ValueDeclBits.AlreadyInLookupTable) {
|
|
return;
|
|
}
|
|
vd->ValueDeclBits.AlreadyInLookupTable = true;
|
|
|
|
// Add this declaration to the lookup set under its compound name and simple
|
|
// name.
|
|
vd->getFullName().addToLookupTable(Lookup, vd);
|
|
}
|
|
|
|
void MemberLookupTable::addMembers(DeclRange members) {
|
|
for (auto member : members) {
|
|
addMember(member);
|
|
}
|
|
}
|
|
|
|
void MemberLookupTable::addExtensionMembers(NominalTypeDecl *nominal,
|
|
ExtensionDecl *ext,
|
|
DeclRange members) {
|
|
// We have not processed any extensions yet, so there's nothing to do.
|
|
if (!LastExtensionIncluded)
|
|
return;
|
|
|
|
// If this extension shows up in the list of extensions not yet included
|
|
// in the lookup table, there's nothing to do.
|
|
for (auto notIncluded = LastExtensionIncluded->NextExtension.getPointer();
|
|
notIncluded;
|
|
notIncluded = notIncluded->NextExtension.getPointer()) {
|
|
if (notIncluded == ext)
|
|
return;
|
|
}
|
|
|
|
// Add the new members to the lookup table.
|
|
addMembers(members);
|
|
}
|
|
|
|
void MemberLookupTable::updateLookupTable(NominalTypeDecl *nominal) {
|
|
// If the last extension we included is the same as the last known extension,
|
|
// we're already up-to-date.
|
|
if (LastExtensionIncluded == nominal->LastExtension)
|
|
return;
|
|
|
|
// Add members from each of the extensions that we have not yet visited.
|
|
for (auto next = LastExtensionIncluded
|
|
? LastExtensionIncluded->NextExtension.getPointer()
|
|
: nominal->FirstExtension;
|
|
next;
|
|
(LastExtensionIncluded = next,next = next->NextExtension.getPointer())) {
|
|
addMembers(next->getMembers());
|
|
}
|
|
}
|
|
|
|
void MemberLookupTable::destroy() {
|
|
this->~MemberLookupTable();
|
|
}
|
|
|
|
void NominalTypeDecl::forceDelayedMemberDecls() {
|
|
if (!hasDelayedMemberDecls())
|
|
return;
|
|
|
|
// Grab the delayed members and then empty the list so we don't recurse.
|
|
auto delayedMembers = DelayedMembers;
|
|
DelayedMembers = {};
|
|
|
|
for (auto delayedDeclCreator : delayedMembers) {
|
|
addMember(delayedDeclCreator());
|
|
}
|
|
}
|
|
|
|
void NominalTypeDecl::forceDelayedProtocolDecls() {
|
|
if (!hasDelayedProtocolDecls())
|
|
return;
|
|
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
|
|
// Copy over any non-delayed protocols.
|
|
if (Protocols.size()) {
|
|
protocols.append(Protocols.begin(), Protocols.end());
|
|
Protocols = {};
|
|
}
|
|
|
|
for (auto delayedProtocolCreator : DelayedProtocols) {
|
|
protocols.push_back(delayedProtocolCreator());
|
|
}
|
|
|
|
setProtocols((getASTContext()).AllocateCopy(
|
|
llvm::makeArrayRef(protocols)));
|
|
|
|
// Set the delayed protocol list to empty so we don't attempt to re-force it
|
|
// later.
|
|
DelayedProtocols = {};
|
|
}
|
|
|
|
ArrayRef<ProtocolDecl *>
|
|
NominalTypeDecl::getProtocols(bool forceDelayedMembers) const {
|
|
if (forceDelayedMembers)
|
|
const_cast<NominalTypeDecl*>(this)->forceDelayedProtocolDecls();
|
|
|
|
return Protocols;
|
|
}
|
|
|
|
void NominalTypeDecl::addedMember(Decl *member) {
|
|
// If we have a lookup table, add the new member to it.
|
|
if (LookupTable.getPointer()) {
|
|
LookupTable.getPointer()->addMember(member);
|
|
}
|
|
}
|
|
|
|
void ExtensionDecl::addedMember(Decl *member) {
|
|
if (NextExtension.getInt()) {
|
|
auto nominal = getExtendedType()->getAnyNominal();
|
|
if (nominal->LookupTable.getPointer()) {
|
|
// Make sure we have the complete list of extensions.
|
|
// FIXME: This is completely unnecessary. We want to determine whether
|
|
// our own extension has already been included in the lookup table.
|
|
(void)nominal->getExtensions();
|
|
|
|
nominal->LookupTable.getPointer()->addMember(member);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NominalTypeDecl::prepareLookupTable() {
|
|
// If we haven't allocated the lookup table yet, do so now.
|
|
if (!LookupTable.getPointer()) {
|
|
auto &ctx = getASTContext();
|
|
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
|
|
}
|
|
|
|
// If we haven't walked the member list yet to update the lookup
|
|
// table, do so now.
|
|
if (!LookupTable.getInt()) {
|
|
// Note that we'll have walked the members now.
|
|
LookupTable.setInt(true);
|
|
|
|
// Add the members of the nominal declaration to the table.
|
|
LookupTable.getPointer()->addMembers(getMembers());
|
|
}
|
|
|
|
// Update the lookup table to introduce members from extensions.
|
|
LookupTable.getPointer()->updateLookupTable(this);
|
|
}
|
|
|
|
void NominalTypeDecl::makeMemberVisible(ValueDecl *member) {
|
|
if (!LookupTable.getPointer()) {
|
|
auto &ctx = getASTContext();
|
|
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
|
|
}
|
|
|
|
LookupTable.getPointer()->addMember(member);
|
|
}
|
|
|
|
ArrayRef<ValueDecl *> NominalTypeDecl::lookupDirect(DeclName name) {
|
|
// Make sure we have the complete list of members (in this nominal and in all
|
|
// extensions).
|
|
for (auto E : getExtensions())
|
|
(void)E->getMembers();
|
|
(void)getMembers();
|
|
|
|
prepareLookupTable();
|
|
|
|
// Look for the declarations with this name.
|
|
auto known = LookupTable.getPointer()->find(name);
|
|
if (known == LookupTable.getPointer()->end())
|
|
return { };
|
|
|
|
// We found something; return it.
|
|
return { known->second.begin(), known->second.size() };
|
|
}
|
|
|
|
void ClassDecl::createObjCMemberLookup() {
|
|
assert(!ObjCMemberLookup && "Already have an Objective-C member table");
|
|
auto &ctx = getASTContext();
|
|
ObjCMemberLookup = new (ctx) ObjCMemberLookupTable();
|
|
|
|
// Register a cleanup with the ASTContext to call the lookup table
|
|
// destructor.
|
|
ctx.addCleanup([this]() {
|
|
this->ObjCMemberLookup->destroy();
|
|
});
|
|
}
|
|
|
|
ArrayRef<ValueDecl *> ClassDecl::lookupDirect(ObjCSelector selector) {
|
|
if (!ObjCMemberLookup) {
|
|
createObjCMemberLookup();
|
|
}
|
|
|
|
auto known = ObjCMemberLookup->find(selector);
|
|
if (known != ObjCMemberLookup->end())
|
|
return { known->second.begin(), known->second.end() };
|
|
|
|
// FIXME: Callback to perform lazy lookup of selectors.
|
|
return { };
|
|
}
|
|
|
|
void ClassDecl::recordObjCMember(ValueDecl *vd) {
|
|
if (!ObjCMemberLookup) {
|
|
createObjCMemberLookup();
|
|
}
|
|
|
|
assert(vd->isObjC() && "Not an Objective-C member");
|
|
|
|
// For variables and subscripts, record the getter and setter separately.
|
|
if (auto storageDecl = dyn_cast<AbstractStorageDecl>(vd)) {
|
|
auto getter = storageDecl->getGetter();
|
|
(*ObjCMemberLookup)[getter->getObjCSelector()].push_back(getter);
|
|
|
|
if (auto setter = storageDecl->getSetter())
|
|
(*ObjCMemberLookup)[setter->getObjCSelector()].push_back(setter);
|
|
return;
|
|
}
|
|
|
|
// For methods and initializers, record just the method or initializer.
|
|
auto afd = cast<AbstractFunctionDecl>(vd);
|
|
(*ObjCMemberLookup)[afd->getObjCSelector()].push_back(afd);
|
|
}
|
|
|
|
bool DeclContext::lookupQualified(Type type,
|
|
DeclName name,
|
|
unsigned options,
|
|
LazyResolver *typeResolver,
|
|
SmallVectorImpl<ValueDecl *> &decls) const {
|
|
if (type->is<ErrorType>())
|
|
return false;
|
|
|
|
// Look through lvalue and inout types.
|
|
type = type->getLValueOrInOutObjectType();
|
|
|
|
// Look through metatypes.
|
|
if (auto metaTy = type->getAs<AnyMetatypeType>())
|
|
type = metaTy->getInstanceType();
|
|
|
|
// Look through DynamicSelf.
|
|
if (auto dynamicSelf = type->getAs<DynamicSelfType>())
|
|
type = dynamicSelf->getSelfType();
|
|
|
|
// Look for module references.
|
|
if (auto moduleTy = type->getAs<ModuleType>()) {
|
|
Module *module = moduleTy->getModule();
|
|
// Perform the lookup in all imports of this module.
|
|
forAllVisibleModules(this,
|
|
[&](const Module::ImportedModule &import) -> bool {
|
|
using namespace namelookup;
|
|
if (import.second != module)
|
|
return true;
|
|
lookupInModule(import.second, import.first, name, decls,
|
|
NLKind::QualifiedLookup, ResolutionKind::Overloadable,
|
|
typeResolver);
|
|
// If we're able to do an unscoped lookup, we see everything. No need
|
|
// to keep going.
|
|
return !import.first.empty();
|
|
});
|
|
|
|
std::sort(decls.begin(), decls.end());
|
|
auto afterUnique = std::unique(decls.begin(), decls.end());
|
|
decls.erase(afterUnique, decls.end());
|
|
return !decls.empty();
|
|
}
|
|
|
|
// The set of nominal type declarations we should (and have) visited.
|
|
SmallVector<NominalTypeDecl *, 4> stack;
|
|
llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;
|
|
|
|
// Handle nominal types.
|
|
bool wantProtocolMembers = false;
|
|
bool wantLookupInAllClasses = false;
|
|
if (auto nominal = type->getAnyNominal()) {
|
|
visited.insert(nominal);
|
|
stack.push_back(nominal);
|
|
|
|
wantProtocolMembers = (options & NL_ProtocolMembers) &&
|
|
!isa<ProtocolDecl>(nominal);
|
|
|
|
// If we want dynamic lookup and we're searching in the
|
|
// AnyObject protocol, note this for later.
|
|
if (options & NL_DynamicLookup) {
|
|
if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
|
|
if (proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
|
|
wantLookupInAllClasses = true;
|
|
}
|
|
}
|
|
}
|
|
// Handle archetypes
|
|
else if (auto archetypeTy = type->getAs<ArchetypeType>()) {
|
|
// Look in the protocols to which the archetype conforms (always).
|
|
for (auto proto : archetypeTy->getConformsTo())
|
|
if (visited.insert(proto))
|
|
stack.push_back(proto);
|
|
|
|
// If requested, look into the superclasses of this archetype.
|
|
if (options & NL_VisitSupertypes) {
|
|
if (auto superclassTy = archetypeTy->getSuperclass()) {
|
|
if (auto superclassDecl = superclassTy->getAnyNominal()) {
|
|
if (visited.insert(superclassDecl)) {
|
|
stack.push_back(superclassDecl);
|
|
|
|
wantProtocolMembers = (options & NL_ProtocolMembers) &&
|
|
!isa<ProtocolDecl>(superclassDecl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Handle protocol compositions.
|
|
else if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
if (compositionTy->isExistentialType(protocols)) {
|
|
for (auto proto : protocols) {
|
|
if (visited.insert(proto)) {
|
|
stack.push_back(proto);
|
|
|
|
// If we want dynamic lookup and this is the AnyObject
|
|
// protocol, note this for later.
|
|
if ((options & NL_DynamicLookup) &&
|
|
proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
|
|
wantLookupInAllClasses = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allow filtering of the visible declarations based on various
|
|
// criteria.
|
|
bool onlyCompleteObjectInits = false;
|
|
auto isAcceptableDecl = [&](NominalTypeDecl *current, Decl *decl) -> bool {
|
|
// Filter out designated initializers, if requested.
|
|
if (onlyCompleteObjectInits) {
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (!ctor->isInheritable())
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Ignore stub implementations.
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (ctor->hasStubImplementation())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// Visit all of the nominal types we know about, discovering any others
|
|
// we need along the way.
|
|
auto &ctx = getASTContext();
|
|
llvm::DenseMap<ProtocolDecl *, ProtocolConformance *> knownConformances;
|
|
while (!stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
// Make sure we've resolved implicit constructors, if we need them.
|
|
if (name.getBaseName() == ctx.Id_init && typeResolver)
|
|
typeResolver->resolveImplicitConstructors(current);
|
|
|
|
// Look for results within the current nominal type and its extensions.
|
|
bool currentIsProtocol = isa<ProtocolDecl>(current);
|
|
for (auto decl : current->lookupDirect(name)) {
|
|
// Resolve the declaration signature when we find the
|
|
// declaration.
|
|
if (typeResolver && !decl->hasType()) {
|
|
typeResolver->resolveDeclSignature(decl);
|
|
|
|
if (!decl->hasType())
|
|
continue;
|
|
}
|
|
|
|
if (isAcceptableDecl(current, decl))
|
|
decls.push_back(decl);
|
|
}
|
|
|
|
// If we're not supposed to visit our supertypes, we're done.
|
|
if ((options & NL_VisitSupertypes) == 0)
|
|
continue;
|
|
|
|
// Visit superclass.
|
|
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
|
|
// If we're looking for initializers, only look at the superclass if the
|
|
// current class permits inheritance. Even then, only find complete
|
|
// object initializers.
|
|
if (name.getBaseName() == ctx.Id_init) {
|
|
if (classDecl->inheritsSuperclassInitializers(typeResolver) &&
|
|
!classDecl->hasClangNode())
|
|
onlyCompleteObjectInits = true;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (auto superclassType = classDecl->getSuperclass())
|
|
if (auto superclassDecl = superclassType->getClassOrBoundGenericClass())
|
|
if (visited.insert(superclassDecl))
|
|
stack.push_back(superclassDecl);
|
|
}
|
|
|
|
// If we're not looking at a protocol and we don't we're not supposed to
|
|
// visit the protocols that this type conforms to, skip the next step.
|
|
if (!wantProtocolMembers && !currentIsProtocol)
|
|
continue;
|
|
|
|
// Local function object used to add protocols to the stack.
|
|
auto addProtocols = [&](ArrayRef<ProtocolDecl *> protocols) {
|
|
for (auto proto : protocols) {
|
|
if (visited.insert(proto)) {
|
|
stack.push_back(proto);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Add protocols from the current type.
|
|
addProtocols(current->getProtocols());
|
|
|
|
// Add protocols from the extensions of the current type.
|
|
for (auto ext : current->getExtensions()) {
|
|
addProtocols(ext->getProtocols());
|
|
}
|
|
}
|
|
|
|
// If we want to perform lookup into all classes, do so now.
|
|
if (wantLookupInAllClasses) {
|
|
// Collect all of the visible declarations.
|
|
SmallVector<ValueDecl *, 4> allDecls;
|
|
forAllVisibleModules(this, [&](Module::ImportedModule import) {
|
|
import.second->lookupClassMember(import.first, name, allDecls);
|
|
});
|
|
|
|
// For each declaration whose context is not something we've
|
|
// already visited above, add it to the list of declarations.
|
|
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
|
|
for (auto decl : allDecls) {
|
|
// If the declaration has an override, name lookup will also have
|
|
// found the overridden method. Skip this declaration, because we
|
|
// prefer the overridden method.
|
|
if (decl->getOverriddenDecl())
|
|
continue;
|
|
|
|
auto dc = decl->getDeclContext();
|
|
auto nominal = dyn_cast<NominalTypeDecl>(dc);
|
|
if (!nominal) {
|
|
auto ext = cast<ExtensionDecl>(dc);
|
|
nominal = ext->getExtendedType()->getAnyNominal();
|
|
assert(nominal && "Couldn't find nominal type?");
|
|
}
|
|
|
|
// If we didn't visit this nominal type above, add this
|
|
// declaration to the list.
|
|
if (!visited.count(nominal) && knownDecls.insert(decl))
|
|
decls.push_back(decl);
|
|
}
|
|
}
|
|
|
|
// If we're supposed to remove overridden declarations, do so now.
|
|
if (options & NL_RemoveOverridden) {
|
|
// Find all of the overridden declarations.
|
|
llvm::SmallPtrSet<ValueDecl*, 8> overridden;
|
|
for (auto decl : decls) {
|
|
while (auto overrides = decl->getOverriddenDecl()) {
|
|
overridden.insert(overrides);
|
|
|
|
// Because initializers from Objective-C base classes have greater
|
|
// visibility than initializers written in Swift classes, we can
|
|
// have a "break" in the set of declarations we found, where
|
|
// C.init overrides B.init overrides A.init, but only C.init and
|
|
// A.init are in the chain. Make sure we still remove A.init from the
|
|
// set in this case.
|
|
if (name.getBaseName() == ctx.Id_init) {
|
|
decl = overrides;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If any methods were overridden, remove them from the results.
|
|
if (!overridden.empty()) {
|
|
decls.erase(std::remove_if(decls.begin(), decls.end(),
|
|
[&](ValueDecl *decl) -> bool {
|
|
return overridden.count(decl);
|
|
}),
|
|
decls.end());
|
|
}
|
|
}
|
|
|
|
// If we're supposed to remove shadowed/hidden declarations, do so now.
|
|
if (options & NL_RemoveNonVisible) {
|
|
removeShadowedDecls(decls, getParentModule(), typeResolver);
|
|
}
|
|
|
|
// We're done. Report success/failure.
|
|
return !decls.empty();
|
|
}
|