mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
3498 lines
130 KiB
C++
3498 lines
130 KiB
C++
//===--- GenMeta.cpp - IR generation for metadata constructs --------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for metadata constructs like
|
|
// metatypes and modules. These is presently always trivial, but in
|
|
// the future we will likely have some sort of physical
|
|
// representation for at least some metatypes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ArchetypeBuilder.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/CanTypeVisitor.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/AST/Substitution.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
|
|
#include "Address.h"
|
|
#include "Callee.h"
|
|
#include "ClassMetadataLayout.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "GenClass.h"
|
|
#include "GenPoly.h"
|
|
#include "GenProto.h"
|
|
#include "GenStruct.h"
|
|
#include "HeapTypeInfo.h"
|
|
#include "IRGenModule.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "Linking.h"
|
|
#include "ScalarTypeInfo.h"
|
|
#include "StructMetadataLayout.h"
|
|
#include "StructLayout.h"
|
|
#include "EnumMetadataLayout.h"
|
|
|
|
#include "GenMeta.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
/// Produce a constant to place in a metatype's isa field
|
|
/// corresponding to the given metadata kind.
|
|
static llvm::ConstantInt *getMetadataKind(IRGenModule &IGM,
|
|
MetadataKind kind) {
|
|
return llvm::ConstantInt::get(IGM.MetadataKindTy, uint8_t(kind));
|
|
}
|
|
|
|
static Size::int_type getOffsetInWords(IRGenModule &IGM, Size offset) {
|
|
assert(offset.isMultipleOf(IGM.getPointerSize()));
|
|
return offset / IGM.getPointerSize();
|
|
}
|
|
static Address createPointerSizedGEP(IRGenFunction &IGF,
|
|
Address base,
|
|
Size offset) {
|
|
return IGF.Builder.CreateConstArrayGEP(base,
|
|
getOffsetInWords(IGF.IGM, offset),
|
|
offset);
|
|
}
|
|
|
|
static llvm::Constant *getMangledTypeName(IRGenModule &IGM, CanType type) {
|
|
auto name = LinkEntity::forTypeMangling(type);
|
|
llvm::SmallString<32> mangling;
|
|
name.mangle(mangling);
|
|
return IGM.getAddrOfGlobalString(mangling);
|
|
}
|
|
|
|
/// Emit a reference to the Swift metadata for an Objective-C class.
|
|
static llvm::Value *emitObjCMetadataRef(IRGenFunction &IGF,
|
|
ClassDecl *theClass) {
|
|
// Derive a pointer to the Objective-C class.
|
|
auto classPtr = IGF.IGM.getAddrOfObjCClass(theClass, NotForDefinition);
|
|
|
|
// Fetch the metadata for that class.
|
|
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetObjCClassMetadataFn(),
|
|
classPtr);
|
|
call->setDoesNotThrow();
|
|
call->setDoesNotAccessMemory();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
return call;
|
|
}
|
|
|
|
namespace {
|
|
/// A structure for collecting generic arguments for emitting a
|
|
/// nominal metadata reference. The structure produced here is
|
|
/// consumed by swift_getGenericMetadata() and must correspond to
|
|
/// the fill operations that the compiler emits for the bound decl.
|
|
struct GenericArguments {
|
|
/// The values to use to initialize the arguments structure.
|
|
SmallVector<llvm::Value *, 8> Values;
|
|
SmallVector<llvm::Type *, 8> Types;
|
|
|
|
void collect(IRGenFunction &IGF, BoundGenericType *type) {
|
|
// Add all the argument archetypes.
|
|
// TODO: only the *primary* archetypes
|
|
// TODO: not archetypes from outer contexts
|
|
// TODO: but we are partially determined by the outer context!
|
|
for (auto &sub : type->getSubstitutions(/*FIXME:*/nullptr, nullptr)) {
|
|
CanType subbed = sub.Replacement->getCanonicalType();
|
|
Values.push_back(IGF.emitTypeMetadataRef(subbed));
|
|
}
|
|
|
|
// All of those values are metadata pointers.
|
|
Types.append(Values.size(), IGF.IGM.TypeMetadataPtrTy);
|
|
|
|
// Add protocol witness tables for all those archetypes.
|
|
for (auto &sub : type->getSubstitutions(/*FIXME:*/nullptr, nullptr))
|
|
emitWitnessTableRefs(IGF, sub, Values);
|
|
|
|
// All of those values are witness table pointers.
|
|
Types.append(Values.size() - Types.size(), IGF.IGM.WitnessTablePtrTy);
|
|
}
|
|
};
|
|
}
|
|
|
|
static bool isMetadataIndirect(IRGenModule &IGM, NominalTypeDecl *theDecl) {
|
|
// FIXME
|
|
return false;
|
|
}
|
|
|
|
/// Attempts to return a constant heap metadata reference for a
|
|
/// nominal type.
|
|
llvm::Constant *irgen::tryEmitConstantHeapMetadataRef(IRGenModule &IGM,
|
|
CanType type) {
|
|
assert(isa<NominalType>(type) || isa<BoundGenericType>(type));
|
|
|
|
// We can't do this for any types with generic parameters, either
|
|
// directly or inherited from the context.
|
|
// FIXME: Should be an isSpecialized check here.
|
|
if (isa<BoundGenericType>(type))
|
|
return nullptr;
|
|
auto theDecl = cast<NominalType>(type)->getDecl();
|
|
if (theDecl->getGenericParamsOfContext())
|
|
return nullptr;
|
|
|
|
if (auto theClass = dyn_cast<ClassDecl>(theDecl))
|
|
if (!hasKnownSwiftMetadata(IGM, theClass))
|
|
return IGM.getAddrOfObjCClass(theClass, NotForDefinition);
|
|
|
|
if (isMetadataIndirect(IGM, theDecl))
|
|
return nullptr;
|
|
|
|
return IGM.getAddrOfTypeMetadata(type, false, false);
|
|
}
|
|
|
|
/// Emit a reference to the type metadata for a foreign type.
|
|
static llvm::Value *emitForeignTypeMetadataRef(IRGenFunction &IGF,
|
|
CanType type) {
|
|
llvm::Value *candidate = IGF.IGM.getAddrOfForeignTypeMetadataCandidate(type);
|
|
return IGF.Builder.CreateCall(IGF.IGM.getGetForeignTypeMetadataFn(),
|
|
candidate);
|
|
}
|
|
|
|
/// Returns a metadata reference for a class type.
|
|
static llvm::Value *emitNominalMetadataRef(IRGenFunction &IGF,
|
|
NominalTypeDecl *theDecl,
|
|
CanType theType) {
|
|
// Non-native Swift classes need to be handled differently.
|
|
if (auto theClass = dyn_cast<ClassDecl>(theDecl)) {
|
|
// We emit a completely different pattern for foreign classes.
|
|
if (theClass->isForeign()) {
|
|
return emitForeignTypeMetadataRef(IGF, theType);
|
|
}
|
|
|
|
// Classes that might not have Swift metadata use a different
|
|
// symbol name.
|
|
if (!hasKnownSwiftMetadata(IGF.IGM, theClass)) {
|
|
assert(!theDecl->getGenericParamsOfContext() &&
|
|
"ObjC class cannot be generic");
|
|
return emitObjCMetadataRef(IGF, theClass);
|
|
}
|
|
}
|
|
|
|
auto generics = isa<ProtocolDecl>(theDecl)
|
|
? nullptr
|
|
: theDecl->getGenericParamsOfContext();
|
|
|
|
bool isPattern = (generics != nullptr);
|
|
assert(!isPattern || isa<BoundGenericType>(theType));
|
|
assert(isPattern || isa<NominalType>(theType));
|
|
|
|
// If this is generic, check to see if we've maybe got a local
|
|
// reference already.
|
|
if (isPattern) {
|
|
if (auto cache = IGF.tryGetLocalTypeData(theType, LocalTypeData::Metatype))
|
|
return cache;
|
|
}
|
|
|
|
bool isIndirect = isMetadataIndirect(IGF.IGM, theDecl);
|
|
|
|
// Grab a reference to the metadata or metadata template.
|
|
CanType declaredType = theDecl->getDeclaredType()->getCanonicalType();
|
|
llvm::Value *metadata = IGF.IGM.getAddrOfTypeMetadata(declaredType,
|
|
isIndirect, isPattern);
|
|
|
|
// If it's indirected, go ahead and load the true value to use.
|
|
// TODO: startup performance might force this to be some sort of
|
|
// lazy check.
|
|
if (isIndirect) {
|
|
auto addr = Address(metadata, IGF.IGM.getPointerAlignment());
|
|
metadata = IGF.Builder.CreateLoad(addr, "metadata.direct");
|
|
}
|
|
|
|
// If we don't have generic parameters, that's all we need.
|
|
if (!generics) {
|
|
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
|
|
return metadata;
|
|
}
|
|
|
|
// Okay, we need to call swift_getGenericMetadata.
|
|
assert(metadata->getType() == IGF.IGM.TypeMetadataPatternPtrTy);
|
|
|
|
// Grab the substitutions.
|
|
auto boundGeneric = cast<BoundGenericType>(theType);
|
|
assert(boundGeneric->getDecl() == theDecl);
|
|
|
|
GenericArguments genericArgs;
|
|
genericArgs.collect(IGF, boundGeneric);
|
|
|
|
// If we have less than four arguments, use a fast entry point.
|
|
assert(genericArgs.Values.size() > 0 && "no generic args?!");
|
|
if (genericArgs.Values.size() <= 4) {
|
|
llvm::Constant *fastMetadataGetters[] = {
|
|
nullptr,
|
|
IGF.IGM.getGetGenericMetadata1Fn(),
|
|
IGF.IGM.getGetGenericMetadata2Fn(),
|
|
IGF.IGM.getGetGenericMetadata3Fn(),
|
|
IGF.IGM.getGetGenericMetadata4Fn(),
|
|
};
|
|
auto fastGetter = fastMetadataGetters[genericArgs.Values.size()];
|
|
|
|
SmallVector<llvm::Value *, 5> args;
|
|
args.push_back(metadata);
|
|
for (auto value : genericArgs.Values)
|
|
args.push_back(IGF.Builder.CreateBitCast(value, IGF.IGM.Int8PtrTy));
|
|
auto result = IGF.Builder.CreateCall(fastGetter, args);
|
|
result->setDoesNotThrow();
|
|
result->addAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::ReadNone);
|
|
// FIXME: Save scope type metadata.
|
|
return result;
|
|
}
|
|
|
|
// Slam that information directly into the generic arguments buffer.
|
|
auto argsBufferTy =
|
|
llvm::StructType::get(IGF.IGM.LLVMContext, genericArgs.Types);
|
|
Address argsBuffer = IGF.createAlloca(argsBufferTy,
|
|
IGF.IGM.getPointerAlignment(),
|
|
"generic.arguments");
|
|
for (unsigned i = 0, e = genericArgs.Values.size(); i != e; ++i) {
|
|
Address elt = IGF.Builder.CreateStructGEP(argsBuffer, i,
|
|
IGF.IGM.getPointerSize() * i);
|
|
IGF.Builder.CreateStore(genericArgs.Values[i], elt);
|
|
}
|
|
|
|
// Cast to void*.
|
|
llvm::Value *arguments =
|
|
IGF.Builder.CreateBitCast(argsBuffer.getAddress(), IGF.IGM.Int8PtrTy);
|
|
|
|
// Make the call.
|
|
auto result = IGF.Builder.CreateCall2(IGF.IGM.getGetGenericMetadataFn(),
|
|
metadata, arguments);
|
|
result->setDoesNotThrow();
|
|
result->addAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::ReadOnly);
|
|
|
|
// FIXME: Save scope type metadata.
|
|
return result;
|
|
}
|
|
|
|
|
|
bool irgen::hasKnownSwiftMetadata(IRGenModule &IGM, CanType type) {
|
|
if (ClassDecl *theClass = type.getClassOrBoundGenericClass()) {
|
|
return hasKnownSwiftMetadata(IGM, theClass);
|
|
}
|
|
|
|
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
|
|
if (auto superclass = archetype->getSuperclass()) {
|
|
return hasKnownSwiftMetadata(IGM, superclass->getCanonicalType());
|
|
}
|
|
}
|
|
|
|
// Class existentials, etc.
|
|
return false;
|
|
}
|
|
|
|
/// Is the given class known to have Swift-compatible metadata?
|
|
bool irgen::hasKnownSwiftMetadata(IRGenModule &IGM, ClassDecl *theClass) {
|
|
// For now, the fact that a declaration was not implemented in Swift
|
|
// is enough to conclusively force us into a slower path.
|
|
// Eventually we might have an attribute here or something based on
|
|
// the deployment target.
|
|
return hasKnownSwiftImplementation(IGM, theClass);
|
|
}
|
|
|
|
/// Is the given class known to have an implementation in Swift?
|
|
bool irgen::hasKnownSwiftImplementation(IRGenModule &IGM, ClassDecl *theClass) {
|
|
return !theClass->hasClangNode();
|
|
}
|
|
|
|
/// Is the given method known to be callable by vtable lookup?
|
|
bool irgen::hasKnownVTableEntry(IRGenModule &IGM,
|
|
AbstractFunctionDecl *theMethod) {
|
|
auto theClass = dyn_cast<ClassDecl>(theMethod->getDeclContext());
|
|
if (!theClass) {
|
|
assert(theMethod->hasClangNode() && "overriding a non-imported method");
|
|
return false;
|
|
}
|
|
return hasKnownSwiftImplementation(IGM, theClass);
|
|
}
|
|
|
|
/// Emit a string encoding the labels in the given tuple type.
|
|
static llvm::Constant *getTupleLabelsString(IRGenModule &IGM,
|
|
CanTupleType type) {
|
|
bool hasLabels = false;
|
|
llvm::SmallString<128> buffer;
|
|
for (auto &elt : type->getFields()) {
|
|
if (elt.hasName()) {
|
|
hasLabels = true;
|
|
buffer.append(elt.getName().str());
|
|
}
|
|
|
|
// Each label is space-terminated.
|
|
buffer += ' ';
|
|
}
|
|
|
|
// If there are no labels, use a null pointer.
|
|
if (!hasLabels) {
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
// Otherwise, create a new string literal.
|
|
// This method implicitly adds a null terminator.
|
|
return IGM.getAddrOfGlobalString(buffer);
|
|
}
|
|
|
|
namespace {
|
|
/// A visitor class for emitting a reference to a metatype object.
|
|
class EmitTypeMetadataRef
|
|
: public CanTypeVisitor<EmitTypeMetadataRef, llvm::Value *> {
|
|
private:
|
|
IRGenFunction &IGF;
|
|
public:
|
|
EmitTypeMetadataRef(IRGenFunction &IGF) : IGF(IGF) {}
|
|
|
|
#define TREAT_AS_OPAQUE(KIND) \
|
|
llvm::Value *visit##KIND##Type(KIND##Type *type) { \
|
|
return visitOpaqueType(CanType(type)); \
|
|
}
|
|
TREAT_AS_OPAQUE(BuiltinInteger)
|
|
TREAT_AS_OPAQUE(BuiltinFloat)
|
|
TREAT_AS_OPAQUE(BuiltinRawPointer)
|
|
#undef TREAT_AS_OPAQUE
|
|
|
|
llvm::Value *emitDirectMetadataRef(CanType type) {
|
|
return IGF.IGM.getAddrOfTypeMetadata(type,
|
|
/*indirect*/ false,
|
|
/*pattern*/ false);
|
|
}
|
|
|
|
/// The given type should use opaque type info. We assume that
|
|
/// the runtime always provides an entry for such a type; right
|
|
/// now, that mapping is as one of the integer types.
|
|
llvm::Value *visitOpaqueType(CanType type) {
|
|
auto &opaqueTI = cast<FixedTypeInfo>(IGF.IGM.getTypeInfoForLowered(type));
|
|
assert(opaqueTI.getFixedSize() ==
|
|
Size(opaqueTI.getFixedAlignment().getValue()));
|
|
assert(opaqueTI.getFixedSize().isPowerOf2());
|
|
auto numBits = 8 * opaqueTI.getFixedSize().getValue();
|
|
auto intTy = BuiltinIntegerType::get(numBits, IGF.IGM.Context);
|
|
return emitDirectMetadataRef(CanType(intTy));
|
|
}
|
|
|
|
llvm::Value *visitBuiltinNativeObjectType(CanBuiltinNativeObjectType type) {
|
|
return emitDirectMetadataRef(type);
|
|
}
|
|
|
|
llvm::Value *visitBuiltinUnknownObjectType(CanBuiltinUnknownObjectType type) {
|
|
return emitDirectMetadataRef(type);
|
|
}
|
|
|
|
llvm::Value *visitBuiltinVectorType(CanBuiltinVectorType type) {
|
|
return emitDirectMetadataRef(type);
|
|
}
|
|
|
|
llvm::Value *visitNominalType(CanNominalType type) {
|
|
assert(!type->isExistentialType());
|
|
return emitNominalMetadataRef(IGF, type->getDecl(), type);
|
|
}
|
|
|
|
llvm::Value *visitBoundGenericType(CanBoundGenericType type) {
|
|
assert(!type->isExistentialType());
|
|
return emitNominalMetadataRef(IGF, type->getDecl(), type);
|
|
}
|
|
|
|
llvm::Value *visitTupleType(CanTupleType type) {
|
|
if (auto cached = tryGetLocal(type))
|
|
return cached;
|
|
|
|
// I think the sanest thing to do here is drop labels, but maybe
|
|
// that's not correct. If so, that's really unfortunate in a
|
|
// lot of ways.
|
|
|
|
// Er, varargs bit? Should that go in?
|
|
|
|
|
|
switch (type->getNumElements()) {
|
|
case 0: {// Special case the empty tuple, just use the global descriptor.
|
|
llvm::Constant *fullMetadata = IGF.IGM.getEmptyTupleMetadata();
|
|
llvm::Constant *indices[] = {
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0),
|
|
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1)
|
|
};
|
|
return llvm::ConstantExpr::getInBoundsGetElementPtr(fullMetadata,
|
|
indices);
|
|
}
|
|
|
|
case 1:
|
|
// For metadata purposes, we consider a singleton tuple to be
|
|
// isomorphic to its element type.
|
|
return visit(type.getElementType(0));
|
|
|
|
case 2: {
|
|
// Find the metadata pointer for this element.
|
|
llvm::Value *elt0Metadata = visit(type.getElementType(0));
|
|
llvm::Value *elt1Metadata = visit(type.getElementType(1));
|
|
|
|
llvm::Value *args[] = {
|
|
elt0Metadata, elt1Metadata,
|
|
getTupleLabelsString(IGF.IGM, type),
|
|
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
|
|
};
|
|
|
|
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadata2Fn(),
|
|
args);
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
return setLocal(CanType(type), call);
|
|
}
|
|
|
|
case 3: {
|
|
// Find the metadata pointer for this element.
|
|
llvm::Value *elt0Metadata = visit(type.getElementType(0));
|
|
llvm::Value *elt1Metadata = visit(type.getElementType(1));
|
|
llvm::Value *elt2Metadata = visit(type.getElementType(2));
|
|
|
|
llvm::Value *args[] = {
|
|
elt0Metadata, elt1Metadata, elt2Metadata,
|
|
getTupleLabelsString(IGF.IGM, type),
|
|
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
|
|
};
|
|
|
|
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadata3Fn(),
|
|
args);
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
return setLocal(CanType(type), call);
|
|
}
|
|
default:
|
|
// TODO: use a caching entrypoint (with all information
|
|
// out-of-line) for non-dependent tuples.
|
|
|
|
llvm::Value *pointerToFirst = nullptr; // appease -Wuninitialized
|
|
|
|
auto elements = type.getElementTypes();
|
|
auto arrayTy = llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy,
|
|
elements.size());
|
|
Address buffer = IGF.createAlloca(arrayTy,IGF.IGM.getPointerAlignment(),
|
|
"tuple-elements");
|
|
for (unsigned i = 0, e = elements.size(); i != e; ++i) {
|
|
// Find the metadata pointer for this element.
|
|
llvm::Value *eltMetadata = visit(elements[i]);
|
|
|
|
// GEP to the appropriate element and store.
|
|
Address eltPtr = IGF.Builder.CreateStructGEP(buffer, i,
|
|
IGF.IGM.getPointerSize());
|
|
IGF.Builder.CreateStore(eltMetadata, eltPtr);
|
|
|
|
// Remember the GEP to the first element.
|
|
if (i == 0) pointerToFirst = eltPtr.getAddress();
|
|
}
|
|
|
|
llvm::Value *args[] = {
|
|
llvm::ConstantInt::get(IGF.IGM.SizeTy, elements.size()),
|
|
pointerToFirst,
|
|
getTupleLabelsString(IGF.IGM, type),
|
|
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
|
|
};
|
|
|
|
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadataFn(),
|
|
args);
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
|
|
return setLocal(type, call);
|
|
}
|
|
}
|
|
|
|
llvm::Value *visitPolymorphicFunctionType(CanPolymorphicFunctionType type) {
|
|
IGF.unimplemented(SourceLoc(),
|
|
"metadata ref for polymorphic function type");
|
|
return llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
llvm::Value *visitGenericFunctionType(CanGenericFunctionType type) {
|
|
IGF.unimplemented(SourceLoc(),
|
|
"metadata ref for generic function type");
|
|
return llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
llvm::Value *visitFunctionType(CanFunctionType type) {
|
|
if (auto metatype = tryGetLocal(type))
|
|
return metatype;
|
|
|
|
// TODO: use a caching entrypoint (with all information
|
|
// out-of-line) for non-dependent functions.
|
|
|
|
auto argMetadata = visit(type.getInput());
|
|
auto resultMetadata = visit(type.getResult());
|
|
|
|
auto call = IGF.Builder.CreateCall2(IGF.IGM.getGetFunctionMetadataFn(),
|
|
argMetadata, resultMetadata);
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
|
|
return setLocal(CanType(type), call);
|
|
}
|
|
|
|
llvm::Value *visitAnyMetatypeType(CanAnyMetatypeType type) {
|
|
if (auto metatype = tryGetLocal(type))
|
|
return metatype;
|
|
|
|
auto instMetadata = visit(type.getInstanceType());
|
|
auto fn = isa<MetatypeType>(type)
|
|
? IGF.IGM.getGetMetatypeMetadataFn()
|
|
: IGF.IGM.getGetExistentialMetatypeMetadataFn();
|
|
auto call = IGF.Builder.CreateCall(fn, instMetadata);
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
|
|
return setLocal(type, call);
|
|
}
|
|
|
|
llvm::Value *visitModuleType(CanModuleType type) {
|
|
IGF.unimplemented(SourceLoc(), "metadata ref for module type");
|
|
return llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
llvm::Value *visitDynamicSelfType(CanDynamicSelfType type) {
|
|
IGF.unimplemented(SourceLoc(), "metadata ref for DynamicSelf type");
|
|
return llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
llvm::Value *emitExistentialTypeMetadata(CanType type) {
|
|
SmallVector<ProtocolDecl*, 2> protocols;
|
|
type.getAnyExistentialTypeProtocols(protocols);
|
|
|
|
// Collect references to the protocol descriptors.
|
|
auto descriptorArrayTy
|
|
= llvm::ArrayType::get(IGF.IGM.ProtocolDescriptorPtrTy,
|
|
protocols.size());
|
|
Address descriptorArray = IGF.createAlloca(descriptorArrayTy,
|
|
IGF.IGM.getPointerAlignment(),
|
|
"protocols");
|
|
descriptorArray = IGF.Builder.CreateBitCast(descriptorArray,
|
|
IGF.IGM.ProtocolDescriptorPtrTy->getPointerTo());
|
|
|
|
unsigned index = 0;
|
|
for (auto *p : protocols) {
|
|
llvm::Value *ref = emitProtocolDescriptorRef(IGF, p);
|
|
Address slot = IGF.Builder.CreateConstArrayGEP(descriptorArray,
|
|
index, IGF.IGM.getPointerSize());
|
|
IGF.Builder.CreateStore(ref, slot);
|
|
++index;
|
|
}
|
|
|
|
auto call = IGF.Builder.CreateCall2(IGF.IGM.getGetExistentialMetadataFn(),
|
|
IGF.IGM.getSize(Size(protocols.size())),
|
|
descriptorArray.getAddress());
|
|
call->setDoesNotThrow();
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
return setLocal(type, call);
|
|
}
|
|
|
|
llvm::Value *visitProtocolType(CanProtocolType type) {
|
|
return emitExistentialTypeMetadata(type);
|
|
}
|
|
|
|
llvm::Value *visitProtocolCompositionType(CanProtocolCompositionType type) {
|
|
return emitExistentialTypeMetadata(type);
|
|
}
|
|
|
|
llvm::Value *visitReferenceStorageType(CanReferenceStorageType type) {
|
|
llvm_unreachable("reference storage type should have been converted by "
|
|
"SILGen");
|
|
}
|
|
llvm::Value *visitSILFunctionType(CanSILFunctionType type) {
|
|
llvm_unreachable("should not be asking for metadata of a lowered SIL "
|
|
"function type--SILGen should have used the AST type");
|
|
}
|
|
|
|
llvm::Value *visitArchetypeType(CanArchetypeType type) {
|
|
return IGF.getLocalTypeData(type, LocalTypeData::Metatype);
|
|
}
|
|
|
|
llvm::Value *visitGenericTypeParamType(CanGenericTypeParamType type) {
|
|
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
|
|
}
|
|
|
|
llvm::Value *visitDependentMemberType(CanDependentMemberType type) {
|
|
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
|
|
}
|
|
|
|
llvm::Value *visitLValueType(CanLValueType type) {
|
|
llvm_unreachable("lvalue type should have been lowered by SILGen");
|
|
}
|
|
llvm::Value *visitInOutType(CanInOutType type) {
|
|
llvm_unreachable("inout type should have been lowered by SILGen");
|
|
}
|
|
|
|
llvm::Value *visitSILBlockStorageType(CanSILBlockStorageType type) {
|
|
llvm_unreachable("cannot ask for metadata of block storage");
|
|
}
|
|
|
|
/// Try to find the metatype in local data.
|
|
llvm::Value *tryGetLocal(CanType type) {
|
|
return IGF.tryGetLocalTypeData(type, LocalTypeData::Metatype);
|
|
}
|
|
|
|
/// Set the metatype in local data.
|
|
llvm::Value *setLocal(CanType type, llvm::Value *metatype) {
|
|
// FIXME: Save scope type metadata.
|
|
return metatype;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Produce the type metadata pointer for the given type.
|
|
llvm::Value *IRGenFunction::emitTypeMetadataRef(CanType type) {
|
|
return EmitTypeMetadataRef(*this).visit(type);
|
|
}
|
|
|
|
llvm::Value *IRGenFunction::emitTypeMetadataRef(SILType type) {
|
|
return emitTypeMetadataRef(type.getSwiftRValueType());
|
|
}
|
|
|
|
/// Produce the heap metadata pointer for the given class type. For
|
|
/// Swift-defined types, this is equivalent to the metatype for the
|
|
/// class, but for Objective-C-defined types, this is the class
|
|
/// object.
|
|
llvm::Value *irgen::emitClassHeapMetadataRef(IRGenFunction &IGF, CanType type) {
|
|
assert(isa<ClassType>(type) || isa<BoundGenericClassType>(type));
|
|
|
|
// ObjC-defined classes will always be top-level non-generic classes.
|
|
|
|
if (auto classType = dyn_cast<ClassType>(type)) {
|
|
auto theClass = classType->getDecl();
|
|
if (hasKnownSwiftMetadata(IGF.IGM, theClass))
|
|
return EmitTypeMetadataRef(IGF).visitClassType(classType);
|
|
return IGF.IGM.getAddrOfObjCClass(theClass, NotForDefinition);
|
|
}
|
|
|
|
auto classType = cast<BoundGenericClassType>(type);
|
|
assert(hasKnownSwiftMetadata(IGF.IGM, classType->getDecl()));
|
|
return EmitTypeMetadataRef(IGF).visitBoundGenericClassType(classType);
|
|
}
|
|
|
|
llvm::Value *irgen::emitClassHeapMetadataRef(IRGenFunction &IGF, SILType type) {
|
|
return emitClassHeapMetadataRef(IGF, type.getSwiftRValueType());
|
|
}
|
|
|
|
namespace {
|
|
/// A CRTP type visitor for deciding whether the metatype for a type
|
|
/// has trivial representation.
|
|
struct HasTrivialMetatype : CanTypeVisitor<HasTrivialMetatype, bool> {
|
|
/// Class metatypes have non-trivial representation due to the
|
|
/// possibility of subclassing.
|
|
bool visitClassType(CanClassType type) {
|
|
return false;
|
|
}
|
|
bool visitBoundGenericClassType(CanBoundGenericClassType type) {
|
|
return false;
|
|
}
|
|
|
|
/// Archetype metatypes have non-trivial representation in case
|
|
/// they instantiate to a class metatype.
|
|
bool visitArchetypeType(CanArchetypeType type) {
|
|
return false;
|
|
}
|
|
|
|
/// All levels of class metatypes support subtyping.
|
|
bool visitMetatypeType(CanMetatypeType type) {
|
|
return visit(type.getInstanceType());
|
|
}
|
|
|
|
/// Everything else is trivial.
|
|
bool visitType(CanType type) {
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Does the metatype for the given type have a trivial representation?
|
|
bool IRGenModule::isTrivialMetatype(CanMetatypeType metaTy) {
|
|
// FIXME: We still need to handle unlowered metatypes from the AST for
|
|
// IRGen protocol witnesses. This can go away (with the HasTrivialMetatype
|
|
// visitor) when we enable SIL witnesses.
|
|
if (!metaTy->hasRepresentation())
|
|
return HasTrivialMetatype().visit(metaTy.getInstanceType());
|
|
return metaTy->getRepresentation() == MetatypeRepresentation::Thin;
|
|
}
|
|
|
|
/// Emit a metatype value for a known type.
|
|
void irgen::emitMetatypeRef(IRGenFunction &IGF, CanMetatypeType type,
|
|
Explosion &explosion) {
|
|
switch (type->getRepresentation()) {
|
|
case MetatypeRepresentation::Thin:
|
|
// Thin types have a trivial representation.
|
|
break;
|
|
|
|
case MetatypeRepresentation::Thick:
|
|
explosion.add(IGF.emitTypeMetadataRef(type.getInstanceType()));
|
|
break;
|
|
|
|
case MetatypeRepresentation::ObjC:
|
|
explosion.add(emitClassHeapMetadataRef(IGF, type.getInstanceType()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/** Nominal Type Descriptor Emission *****************************************/
|
|
/*****************************************************************************/
|
|
|
|
namespace {
|
|
class ConstantBuilderBase {
|
|
protected:
|
|
IRGenModule &IGM;
|
|
ConstantBuilderBase(IRGenModule &IGM) : IGM(IGM) {}
|
|
};
|
|
|
|
template <class Base = ConstantBuilderBase>
|
|
class ConstantBuilder : public Base {
|
|
protected:
|
|
template <class... T>
|
|
ConstantBuilder(T &&...args) : Base(std::forward<T>(args)...) {}
|
|
|
|
using Base::IGM;
|
|
|
|
private:
|
|
llvm::SmallVector<llvm::Constant*, 16> Fields;
|
|
Size NextOffset = Size(0);
|
|
|
|
protected:
|
|
Size getNextOffset() const { return NextOffset; }
|
|
|
|
/// Add a uintptr_t value that represents the given offset, but
|
|
/// scaled to a number of words.
|
|
void addConstantWordInWords(Size value) {
|
|
addConstantWord(getOffsetInWords(IGM, value));
|
|
}
|
|
|
|
/// Add a constant word-sized value.
|
|
void addConstantWord(int64_t value) {
|
|
addWord(llvm::ConstantInt::get(IGM.SizeTy, value));
|
|
}
|
|
|
|
/// Add a word-sized value.
|
|
void addWord(llvm::Constant *value) {
|
|
assert(value->getType() == IGM.IntPtrTy ||
|
|
value->getType()->isPointerTy());
|
|
assert(NextOffset.isMultipleOf(IGM.getPointerSize()));
|
|
Fields.push_back(value);
|
|
NextOffset += IGM.getPointerSize();
|
|
}
|
|
|
|
/// Add a uint32_t value that represents the given offset, but
|
|
/// scaled to a number of words.
|
|
void addConstantInt32InWords(Size value) {
|
|
addConstantInt32(getOffsetInWords(IGM, value));
|
|
}
|
|
|
|
/// Add a constant 32-bit value.
|
|
void addConstantInt32(int32_t value) {
|
|
addInt32(llvm::ConstantInt::get(IGM.Int32Ty, value));
|
|
}
|
|
|
|
/// Add a 32-bit value.
|
|
void addInt32(llvm::Constant *value) {
|
|
assert(value->getType() == IGM.Int32Ty);
|
|
assert(NextOffset.isMultipleOf(Size(4)));
|
|
Fields.push_back(value);
|
|
NextOffset += Size(4);
|
|
}
|
|
|
|
class ReservationToken {
|
|
size_t Index;
|
|
ReservationToken(size_t index) : Index(index) {}
|
|
friend ConstantBuilder<Base>;
|
|
};
|
|
ReservationToken reserveFields(unsigned numFields, Size size) {
|
|
unsigned index = Fields.size();
|
|
Fields.append(numFields, nullptr);
|
|
NextOffset += size;
|
|
return ReservationToken(index);
|
|
}
|
|
MutableArrayRef<llvm::Constant*> claimReservation(ReservationToken token,
|
|
unsigned numFields) {
|
|
return MutableArrayRef<llvm::Constant*>(&Fields[0] + token.Index,
|
|
numFields);
|
|
}
|
|
|
|
public:
|
|
llvm::Constant *getInit() const {
|
|
return llvm::ConstantStruct::getAnon(Fields);
|
|
}
|
|
|
|
/// An optimization of getInit for when we have a known type we
|
|
/// can use when there aren't any extra fields.
|
|
llvm::Constant *getInitWithSuggestedType(unsigned numFields,
|
|
llvm::StructType *type) {
|
|
if (Fields.size() == numFields) {
|
|
return llvm::ConstantStruct::get(type, Fields);
|
|
} else {
|
|
return getInit();
|
|
}
|
|
}
|
|
};
|
|
|
|
template<class Impl>
|
|
class NominalTypeDescriptorBuilderBase : public ConstantBuilder<> {
|
|
Impl &asImpl() { return *static_cast<Impl*>(this); }
|
|
|
|
public:
|
|
NominalTypeDescriptorBuilderBase(IRGenModule &IGM) : ConstantBuilder(IGM) {}
|
|
|
|
void layout() {
|
|
asImpl().addKind();
|
|
asImpl().addName();
|
|
asImpl().addKindDependentFields();
|
|
asImpl().addGenericParams();
|
|
}
|
|
|
|
void addKind() {
|
|
addConstantWord(asImpl().getKind());
|
|
}
|
|
|
|
void addName() {
|
|
NominalTypeDecl *ntd = asImpl().getTarget();
|
|
addWord(getMangledTypeName(IGM,
|
|
ntd->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
|
|
void addGenericParams() {
|
|
NominalTypeDecl *ntd = asImpl().getTarget();
|
|
if (!ntd->getGenericParams()) {
|
|
// If there are no generic parameters, there is no generic parameter
|
|
// vector.
|
|
addConstantInt32(0);
|
|
addConstantInt32(0);
|
|
return;
|
|
}
|
|
|
|
// uint32_t GenericParameterVectorOffset;
|
|
addConstantInt32InWords(asImpl().getGenericParamsOffset());
|
|
|
|
// The archetype order here needs to be consistent with
|
|
// MetadataLayout::addGenericFields.
|
|
|
|
// Note that we intentionally don't forward the generic arguments.
|
|
|
|
// Add all the primary archetypes.
|
|
// TODO: only the *primary* archetypes.
|
|
// TODO: not archetypes from outer contexts.
|
|
auto allArchetypes = ntd->getGenericParams()->getAllArchetypes();
|
|
|
|
// uint32_t NumGenericParameters;
|
|
addConstantInt32(allArchetypes.size());
|
|
|
|
// GenericParameter Parameters[NumGenericParameters];
|
|
// struct GenericParameter {
|
|
for (auto archetype : allArchetypes) {
|
|
// uint32_t NumWitnessTables;
|
|
// Count the protocol conformances that require witness tables.
|
|
unsigned count = std::count_if(archetype->getConformsTo().begin(),
|
|
archetype->getConformsTo().end(),
|
|
[](ProtocolDecl *p) { return requiresProtocolWitnessTable(p); });
|
|
addConstantInt32(count);
|
|
}
|
|
// };
|
|
}
|
|
|
|
llvm::Constant *emit() {
|
|
asImpl().layout();
|
|
auto init = getInit();
|
|
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
IGM.getAddrOfNominalTypeDescriptor(asImpl().getTarget(),
|
|
init->getType()));
|
|
var->setConstant(true);
|
|
var->setInitializer(init);
|
|
return var;
|
|
}
|
|
|
|
// Derived class must provide:
|
|
// NominalTypeDecl *getTarget();
|
|
// unsigned getKind();
|
|
// unsigned getGenericParamsOffset();
|
|
// void addKindDependentFields();
|
|
};
|
|
|
|
/// A CRTP helper for classes which are simply searching for a
|
|
/// specific index within the metadata.
|
|
///
|
|
/// The pattern is that subclasses should override an 'add' method
|
|
/// from the appropriate layout class and ensure that they call
|
|
/// setTargetOffset() when the appropriate location is reached. The
|
|
/// subclass user then just calls getTargetOffset(), which performs
|
|
/// the layout and returns the found index.
|
|
///
|
|
/// \tparam Base the base class, which should generally be a CRTP
|
|
/// class template applied to the most-derived class
|
|
template <class Base> class MetadataSearcher : public Base {
|
|
Size TargetOffset = Size::invalid();
|
|
Size AddressPoint = Size::invalid();
|
|
|
|
protected:
|
|
void setTargetOffset() {
|
|
assert(TargetOffset.isInvalid() && "setting twice");
|
|
TargetOffset = this->NextOffset;
|
|
}
|
|
|
|
public:
|
|
template <class... T> MetadataSearcher(T &&...args)
|
|
: Base(std::forward<T>(args)...) {}
|
|
|
|
void noteAddressPoint() { AddressPoint = this->NextOffset; }
|
|
|
|
Size getTargetOffset() {
|
|
assert(TargetOffset.isInvalid() && "computing twice");
|
|
this->layout();
|
|
assert(!TargetOffset.isInvalid() && "target not found!");
|
|
assert(!AddressPoint.isInvalid() && "address point not set");
|
|
return TargetOffset - AddressPoint;
|
|
}
|
|
|
|
Size::int_type getTargetIndex() {
|
|
return getOffsetInWords(this->IGM, getTargetOffset());
|
|
}
|
|
};
|
|
|
|
// A bunch of ugly macros to make it easy to declare certain
|
|
// common kinds of searcher.
|
|
#define BEGIN_METADATA_SEARCHER_0(SEARCHER, DECLKIND) \
|
|
struct SEARCHER \
|
|
: MetadataSearcher<DECLKIND##MetadataScanner<SEARCHER>> { \
|
|
using super = MetadataSearcher; \
|
|
SEARCHER(IRGenModule &IGM, DECLKIND##Decl *target) \
|
|
: MetadataSearcher(IGM, target) {}
|
|
#define BEGIN_METADATA_SEARCHER_1(SEARCHER, DECLKIND, TYPE_1, NAME_1) \
|
|
struct SEARCHER \
|
|
: MetadataSearcher<DECLKIND##MetadataScanner<SEARCHER>> { \
|
|
using super = MetadataSearcher; \
|
|
TYPE_1 NAME_1; \
|
|
SEARCHER(IRGenModule &IGM, DECLKIND##Decl *target, TYPE_1 NAME_1) \
|
|
: super(IGM, target), NAME_1(NAME_1) {}
|
|
#define BEGIN_METADATA_SEARCHER_2(SEARCHER, DECLKIND, TYPE_1, NAME_1, \
|
|
TYPE_2, NAME_2) \
|
|
struct SEARCHER \
|
|
: MetadataSearcher<DECLKIND##MetadataScanner<SEARCHER>> { \
|
|
using super = MetadataSearcher; \
|
|
TYPE_1 NAME_1; \
|
|
TYPE_2 NAME_2; \
|
|
SEARCHER(IRGenModule &IGM, DECLKIND##Decl *target, TYPE_1 NAME_1, \
|
|
TYPE_2 NAME_2) \
|
|
: super(IGM, target), NAME_1(NAME_1), NAME_2(NAME_2) {}
|
|
#define END_METADATA_SEARCHER() \
|
|
};
|
|
|
|
#define BEGIN_GENERIC_METADATA_SEARCHER_0(SEARCHER) \
|
|
template <template <class Impl> class Scanner> \
|
|
struct SEARCHER : MetadataSearcher<Scanner<SEARCHER<Scanner>>> { \
|
|
using super = MetadataSearcher<Scanner<SEARCHER<Scanner>>>; \
|
|
using super::Target; \
|
|
using TargetType = decltype(Target); \
|
|
SEARCHER(IRGenModule &IGM, TargetType target) \
|
|
: super(IGM, target) {}
|
|
#define BEGIN_GENERIC_METADATA_SEARCHER_1(SEARCHER, TYPE_1, NAME_1) \
|
|
template <template <class Impl> class Scanner> \
|
|
struct SEARCHER : MetadataSearcher<Scanner<SEARCHER<Scanner>>> { \
|
|
using super = MetadataSearcher<Scanner<SEARCHER<Scanner>>>; \
|
|
using super::Target; \
|
|
using TargetType = decltype(Target); \
|
|
TYPE_1 NAME_1; \
|
|
SEARCHER(IRGenModule &IGM, TargetType target, TYPE_1 NAME_1) \
|
|
: super(IGM, target), NAME_1(NAME_1) {}
|
|
#define BEGIN_GENERIC_METADATA_SEARCHER_2(SEARCHER, TYPE_1, NAME_1, \
|
|
TYPE_2, NAME_2) \
|
|
template <template <class Impl> class Scanner> \
|
|
struct SEARCHER : MetadataSearcher<Scanner<SEARCHER<Scanner>>> { \
|
|
using super = MetadataSearcher<Scanner<SEARCHER<Scanner>>>; \
|
|
using super::Target; \
|
|
using TargetType = decltype(Target); \
|
|
TYPE_1 NAME_1; \
|
|
TYPE_2 NAME_2; \
|
|
SEARCHER(IRGenModule &IGM, TargetType target, \
|
|
TYPE_1 NAME_1, TYPE_2 NAME_2) \
|
|
: super(IGM, target), NAME_1(NAME_1), NAME_2(NAME_2) {}
|
|
#define END_GENERIC_METADATA_SEARCHER(SOUGHT) \
|
|
}; \
|
|
using FindClass##SOUGHT = FindType##SOUGHT<ClassMetadataScanner>; \
|
|
using FindStruct##SOUGHT = FindType##SOUGHT<StructMetadataScanner>; \
|
|
using FindEnum##SOUGHT = FindType##SOUGHT<EnumMetadataScanner>;
|
|
|
|
/// The total size and address point of a metadata object.
|
|
struct MetadataSize {
|
|
Size FullSize;
|
|
Size AddressPoint;
|
|
|
|
/// Return the offset from the address point to the end of the
|
|
/// metadata object.
|
|
Size getOffsetToEnd() const {
|
|
return FullSize - AddressPoint;
|
|
}
|
|
};
|
|
|
|
/// A template for computing the size of a metadata record.
|
|
template <template <class T> class Scanner>
|
|
class MetadataSizer : public Scanner<MetadataSizer<Scanner>> {
|
|
typedef Scanner<MetadataSizer<Scanner>> super;
|
|
using super::Target;
|
|
using TargetType = decltype(Target);
|
|
|
|
Size AddressPoint = Size::invalid();
|
|
public:
|
|
MetadataSizer(IRGenModule &IGM, TargetType target)
|
|
: super(IGM, target) {}
|
|
|
|
void noteAddressPoint() {
|
|
AddressPoint = super::NextOffset;
|
|
super::noteAddressPoint();
|
|
}
|
|
|
|
static MetadataSize compute(IRGenModule &IGM, TargetType target) {
|
|
MetadataSizer sizer(IGM, target);
|
|
sizer.layout();
|
|
|
|
assert(!sizer.AddressPoint.isInvalid()
|
|
&& "did not find address point?!");
|
|
assert(sizer.AddressPoint < sizer.NextOffset
|
|
&& "address point is after end?!");
|
|
return { sizer.NextOffset, sizer.AddressPoint };
|
|
}
|
|
};
|
|
|
|
static MetadataSize getSizeOfMetadata(IRGenModule &IGM, StructDecl *decl) {
|
|
return MetadataSizer<StructMetadataScanner>::compute(IGM, decl);
|
|
}
|
|
|
|
static MetadataSize getSizeOfMetadata(IRGenModule &IGM, ClassDecl *decl) {
|
|
return MetadataSizer<ClassMetadataScanner>::compute(IGM, decl);
|
|
}
|
|
|
|
static MetadataSize getSizeOfMetadata(IRGenModule &IGM, EnumDecl *decl) {
|
|
return MetadataSizer<EnumMetadataScanner>::compute(IGM, decl);
|
|
}
|
|
|
|
/// Return the total size and address point of a metadata record.
|
|
static MetadataSize getSizeOfMetadata(IRGenModule &IGM,
|
|
NominalTypeDecl *decl) {
|
|
if (auto theStruct = dyn_cast<StructDecl>(decl)) {
|
|
return getSizeOfMetadata(IGM, theStruct);
|
|
} else if (auto theClass = dyn_cast<ClassDecl>(decl)) {
|
|
return getSizeOfMetadata(IGM, theClass);
|
|
} else if (auto theEnum = dyn_cast<EnumDecl>(decl)) {
|
|
return getSizeOfMetadata(IGM, theEnum);
|
|
} else {
|
|
llvm_unreachable("not implemented for other nominal types");
|
|
}
|
|
}
|
|
|
|
/// Build the field type vector accessor for a nominal type. This is a
|
|
/// function that lazily instantiates the type metadata for all of the
|
|
/// types of the stored properties of an instance of a nominal type.
|
|
static llvm::Function *
|
|
buildFieldTypeAccessorFn(IRGenModule &IGM,
|
|
NominalTypeDecl *type,
|
|
NominalTypeDecl::StoredPropertyRange storedProperties){
|
|
// The accessor function has the following signature:
|
|
// const Metadata * const *getFieldTypes(const Metadata *T);
|
|
auto metadataArrayPtrTy = IGM.TypeMetadataPtrTy->getPointerTo();
|
|
auto fnTy = llvm::FunctionType::get(metadataArrayPtrTy,
|
|
IGM.TypeMetadataPtrTy,
|
|
/*vararg*/ false);
|
|
auto fn = llvm::Function::Create(fnTy, llvm::GlobalValue::InternalLinkage,
|
|
llvm::Twine("get_field_types_")
|
|
+ type->getName().str(),
|
|
IGM.getModule());
|
|
IRGenFunction IGF(IGM, fn);
|
|
|
|
llvm::Value *metadata = IGF.collectParameters(ResilienceExpansion::Minimal)
|
|
.claimNext();
|
|
|
|
// Get the address at which the field type vector reference should be
|
|
// cached.
|
|
llvm::Value *vectorPtr;
|
|
auto nullVector = llvm::ConstantPointerNull::get(metadataArrayPtrTy);
|
|
|
|
// If the type is not generic, we can use a global variable to cache the
|
|
// address of the field type vector for the single instance.
|
|
if (!type->getGenericParamsOfContext()) {
|
|
vectorPtr = new llvm::GlobalVariable(*IGM.getModule(),
|
|
metadataArrayPtrTy,
|
|
/*constant*/ false,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
nullVector,
|
|
llvm::Twine("field_type_vector_")
|
|
+ type->getName().str());
|
|
// For a generic type, use a slot we saved in the generic metadata pattern
|
|
// immediately after the metadata object itself, which should be
|
|
// instantiated with every generic metadata instance.
|
|
} else {
|
|
Size offset = getSizeOfMetadata(IGM, type).getOffsetToEnd();
|
|
vectorPtr = IGF.Builder.CreateBitCast(metadata,
|
|
metadataArrayPtrTy->getPointerTo());
|
|
vectorPtr = IGF.Builder.CreateConstInBoundsGEP1_32(vectorPtr,
|
|
getOffsetInWords(IGM, offset));
|
|
}
|
|
|
|
// First, see if the field type vector has already been populated. This
|
|
// load can be nonatomic; if we race to build the field offset vector, we
|
|
// will detect so when we try to commit our pointer and simply discard the
|
|
// redundant work.
|
|
llvm::Value *initialVector
|
|
= IGF.Builder.CreateLoad(vectorPtr, IGM.getPointerAlignment());
|
|
|
|
auto entryBB = IGF.Builder.GetInsertBlock();
|
|
auto buildBB = IGF.createBasicBlock("build_field_types");
|
|
auto raceLostBB = IGF.createBasicBlock("race_lost");
|
|
auto doneBB = IGF.createBasicBlock("done");
|
|
|
|
llvm::Value *isNull
|
|
= IGF.Builder.CreateICmpEQ(initialVector, nullVector);
|
|
IGF.Builder.CreateCondBr(isNull, buildBB, doneBB);
|
|
|
|
// Build the field type vector if we didn't already.
|
|
IGF.Builder.emitBlock(buildBB);
|
|
|
|
// Bind the metadata instance to our local type data so we
|
|
// use it to provide metadata for generic parameters in field types.
|
|
emitPolymorphicParametersForGenericValueWitness(IGF, type, metadata);
|
|
|
|
// Allocate storage for the field vector.
|
|
SmallVector<VarDecl*, 4> fields(storedProperties.begin(),
|
|
storedProperties.end());
|
|
unsigned allocSize = fields.size() * IGM.getPointerSize().getValue();
|
|
auto allocSizeVal = llvm::ConstantInt::get(IGM.IntPtrTy, allocSize);
|
|
auto allocAlignVal = llvm::ConstantInt::get(IGM.IntPtrTy,
|
|
IGM.getPointerAlignment().getValue());
|
|
llvm::Value *builtVectorAlloc
|
|
= IGF.emitAllocRawCall(allocSizeVal, allocAlignVal);
|
|
|
|
llvm::Value *builtVector
|
|
= IGF.Builder.CreateBitCast(builtVectorAlloc, metadataArrayPtrTy);
|
|
|
|
// Emit type metadata for the fields into the vector.
|
|
for (unsigned i : indices(fields)) {
|
|
auto field = fields[i];
|
|
auto slot = IGF.Builder.CreateInBoundsGEP(builtVector,
|
|
llvm::ConstantInt::get(IGM.Int32Ty, i));
|
|
auto fieldTy = field->getType()->getCanonicalType();
|
|
|
|
// Strip reference storage qualifiers like @unowned and @weak.
|
|
// FIXME: Some clients probably care about them.
|
|
if (auto refStorTy = dyn_cast<ReferenceStorageType>(fieldTy))
|
|
fieldTy = refStorTy.getReferentType();
|
|
|
|
auto metadata = IGF.emitTypeMetadataRef(fieldTy);
|
|
IGF.Builder.CreateStore(metadata, slot, IGM.getPointerAlignment());
|
|
}
|
|
|
|
// Atomically compare-exchange a pointer to our vector into the slot.
|
|
auto vectorIntPtr = IGF.Builder.CreateBitCast(vectorPtr,
|
|
IGM.IntPtrTy->getPointerTo());
|
|
auto builtVectorInt = IGF.Builder.CreatePtrToInt(builtVector,
|
|
IGM.IntPtrTy);
|
|
auto zero = llvm::ConstantInt::get(IGM.IntPtrTy, 0);
|
|
|
|
auto raceVectorInt = IGF.Builder.CreateAtomicCmpXchg(vectorIntPtr,
|
|
zero, builtVectorInt,
|
|
llvm::AtomicOrdering::SequentiallyConsistent,
|
|
llvm::AtomicOrdering::SequentiallyConsistent);
|
|
|
|
// The pointer in the slot should still have been null.
|
|
auto didStore = IGF.Builder.CreateICmpEQ(raceVectorInt, zero);
|
|
IGF.Builder.CreateCondBr(didStore, doneBB, raceLostBB);
|
|
|
|
// If the cmpxchg failed, someone beat us to landing their field type
|
|
// vector. Deallocate ours and return the winner.
|
|
IGF.Builder.emitBlock(raceLostBB);
|
|
IGF.emitDeallocRawCall(builtVectorAlloc, allocSizeVal);
|
|
auto raceVector = IGF.Builder.CreateIntToPtr(raceVectorInt,
|
|
metadataArrayPtrTy);
|
|
IGF.Builder.CreateBr(doneBB);
|
|
|
|
// Return the result.
|
|
IGF.Builder.emitBlock(doneBB);
|
|
auto phi = IGF.Builder.CreatePHI(metadataArrayPtrTy, 3);
|
|
phi->addIncoming(initialVector, entryBB);
|
|
phi->addIncoming(builtVector, buildBB);
|
|
phi->addIncoming(raceVector, raceLostBB);
|
|
|
|
IGF.Builder.CreateRet(phi);
|
|
|
|
return fn;
|
|
}
|
|
|
|
class StructNominalTypeDescriptorBuilder
|
|
: public NominalTypeDescriptorBuilderBase<StructNominalTypeDescriptorBuilder>
|
|
{
|
|
using super
|
|
= NominalTypeDescriptorBuilderBase<StructNominalTypeDescriptorBuilder>;
|
|
|
|
// Offsets of key fields in the metadata records.
|
|
Size FieldVectorOffset, GenericParamsOffset;
|
|
|
|
StructDecl *Target;
|
|
|
|
public:
|
|
StructNominalTypeDescriptorBuilder(IRGenModule &IGM,
|
|
StructDecl *s)
|
|
: super(IGM), Target(s)
|
|
{
|
|
struct ScanForDescriptorOffsets
|
|
: StructMetadataScanner<ScanForDescriptorOffsets>
|
|
{
|
|
ScanForDescriptorOffsets(IRGenModule &IGM, StructDecl *Target)
|
|
: StructMetadataScanner(IGM, Target) {}
|
|
|
|
Size AddressPoint = Size::invalid();
|
|
Size FieldVectorOffset = Size::invalid();
|
|
Size GenericParamsOffset = Size::invalid();
|
|
|
|
void noteAddressPoint() { AddressPoint = NextOffset; }
|
|
void noteStartOfFieldOffsets() { FieldVectorOffset = NextOffset; }
|
|
void addGenericFields(const GenericParamList &g) {
|
|
GenericParamsOffset = NextOffset;
|
|
StructMetadataScanner::addGenericFields(g);
|
|
}
|
|
};
|
|
|
|
ScanForDescriptorOffsets scanner(IGM, Target);
|
|
scanner.layout();
|
|
assert(!scanner.AddressPoint.isInvalid()
|
|
&& !scanner.FieldVectorOffset.isInvalid()
|
|
&& "did not find required fields in struct metadata?!");
|
|
assert(scanner.FieldVectorOffset >= scanner.AddressPoint
|
|
&& "found field offset vector after address point?!");
|
|
assert(scanner.GenericParamsOffset >= scanner.AddressPoint
|
|
&& "found generic param vector after address point?!");
|
|
FieldVectorOffset = scanner.FieldVectorOffset - scanner.AddressPoint;
|
|
GenericParamsOffset = scanner.GenericParamsOffset.isInvalid()
|
|
? Size(0) : scanner.GenericParamsOffset - scanner.AddressPoint;
|
|
}
|
|
|
|
StructDecl *getTarget() { return Target; }
|
|
|
|
unsigned getKind() {
|
|
return unsigned(NominalTypeKind::Struct);
|
|
}
|
|
|
|
Size getGenericParamsOffset() {
|
|
return GenericParamsOffset;
|
|
}
|
|
|
|
void addKindDependentFields() {
|
|
// Build the field name list.
|
|
llvm::SmallString<64> fieldNames;
|
|
unsigned numFields = 0;
|
|
|
|
for (auto prop : Target->getStoredProperties()) {
|
|
fieldNames.append(prop->getName().str());
|
|
fieldNames.push_back('\0');
|
|
++numFields;
|
|
}
|
|
// The final null terminator is provided by getAddrOfGlobalString.
|
|
|
|
addConstantInt32(numFields);
|
|
addConstantInt32InWords(FieldVectorOffset);
|
|
addWord(IGM.getAddrOfGlobalString(fieldNames));
|
|
|
|
// Build the field type accessor function.
|
|
llvm::Function *fieldTypeVectorAccessor
|
|
= buildFieldTypeAccessorFn(IGM, Target,
|
|
Target->getStoredProperties());
|
|
|
|
addWord(fieldTypeVectorAccessor);
|
|
}
|
|
};
|
|
|
|
class ClassNominalTypeDescriptorBuilder
|
|
: public NominalTypeDescriptorBuilderBase<ClassNominalTypeDescriptorBuilder>
|
|
{
|
|
using super
|
|
= NominalTypeDescriptorBuilderBase<ClassNominalTypeDescriptorBuilder>;
|
|
|
|
// Offsets of key fields in the metadata records.
|
|
Size FieldVectorOffset, GenericParamsOffset;
|
|
|
|
ClassDecl *Target;
|
|
|
|
public:
|
|
ClassNominalTypeDescriptorBuilder(IRGenModule &IGM,
|
|
ClassDecl *c)
|
|
: super(IGM), Target(c)
|
|
{
|
|
// Scan the metadata layout for the class to find the key offsets to
|
|
// put in our descriptor.
|
|
struct ScanForDescriptorOffsets
|
|
: ClassMetadataScanner<ScanForDescriptorOffsets>
|
|
{
|
|
ScanForDescriptorOffsets(IRGenModule &IGM, ClassDecl *Target)
|
|
: ClassMetadataScanner(IGM, Target) {}
|
|
|
|
Size AddressPoint = Size::invalid();
|
|
Size FieldVectorOffset = Size::invalid();
|
|
Size GenericParamsOffset = Size::invalid();
|
|
|
|
void noteAddressPoint() { AddressPoint = NextOffset; }
|
|
void noteStartOfFieldOffsets(ClassDecl *c) {
|
|
if (c == Target) {
|
|
FieldVectorOffset = NextOffset;
|
|
}
|
|
}
|
|
void addGenericFields(const GenericParamList &g, ClassDecl *c) {
|
|
if (c == Target) {
|
|
GenericParamsOffset = NextOffset;
|
|
}
|
|
ClassMetadataScanner::addGenericFields(g, c);
|
|
}
|
|
};
|
|
|
|
ScanForDescriptorOffsets scanner(IGM, Target);
|
|
scanner.layout();
|
|
assert(!scanner.AddressPoint.isInvalid()
|
|
&& !scanner.FieldVectorOffset.isInvalid()
|
|
&& "did not find required fields in struct metadata?!");
|
|
assert(scanner.FieldVectorOffset >= scanner.AddressPoint
|
|
&& "found field offset vector after address point?!");
|
|
assert(scanner.GenericParamsOffset >= scanner.AddressPoint
|
|
&& "found generic param vector after address point?!");
|
|
FieldVectorOffset = scanner.FieldVectorOffset - scanner.AddressPoint;
|
|
GenericParamsOffset = scanner.GenericParamsOffset - scanner.AddressPoint;
|
|
}
|
|
|
|
ClassDecl *getTarget() { return Target; }
|
|
|
|
unsigned getKind() {
|
|
return unsigned(NominalTypeKind::Class);
|
|
}
|
|
|
|
Size getGenericParamsOffset() {
|
|
return GenericParamsOffset;
|
|
}
|
|
|
|
void addKindDependentFields() {
|
|
// Build the field name list.
|
|
llvm::SmallString<64> fieldNames;
|
|
unsigned numFields = 0;
|
|
|
|
for (auto prop : Target->getStoredProperties()) {
|
|
fieldNames.append(prop->getName().str());
|
|
fieldNames.push_back('\0');
|
|
++numFields;
|
|
}
|
|
// The final null terminator is provided by getAddrOfGlobalString.
|
|
|
|
addConstantInt32(numFields);
|
|
addConstantInt32InWords(FieldVectorOffset);
|
|
addWord(IGM.getAddrOfGlobalString(fieldNames));
|
|
|
|
// Build the field type accessor function.
|
|
llvm::Function *fieldTypeVectorAccessor
|
|
= buildFieldTypeAccessorFn(IGM, Target,
|
|
Target->getStoredProperties());
|
|
|
|
addWord(fieldTypeVectorAccessor);
|
|
}
|
|
};
|
|
|
|
class EnumNominalTypeDescriptorBuilder
|
|
: public NominalTypeDescriptorBuilderBase<EnumNominalTypeDescriptorBuilder>
|
|
{
|
|
using super
|
|
= NominalTypeDescriptorBuilderBase<EnumNominalTypeDescriptorBuilder>;
|
|
|
|
// Offsets of key fields in the metadata records.
|
|
Size GenericParamsOffset;
|
|
|
|
EnumDecl *Target;
|
|
|
|
public:
|
|
EnumNominalTypeDescriptorBuilder(IRGenModule &IGM, EnumDecl *c)
|
|
: super(IGM), Target(c)
|
|
{
|
|
// Scan the metadata layout for the class to find the key offsets to
|
|
// put in our descriptor.
|
|
struct ScanForDescriptorOffsets
|
|
: EnumMetadataScanner<ScanForDescriptorOffsets>
|
|
{
|
|
ScanForDescriptorOffsets(IRGenModule &IGM, EnumDecl *Target)
|
|
: EnumMetadataScanner(IGM, Target) {}
|
|
|
|
Size AddressPoint = Size::invalid();
|
|
Size GenericParamsOffset = Size::invalid();
|
|
|
|
void noteAddressPoint() { AddressPoint = NextOffset; }
|
|
void addGenericFields(const GenericParamList &g) {
|
|
GenericParamsOffset = NextOffset;
|
|
}
|
|
};
|
|
|
|
ScanForDescriptorOffsets scanner(IGM, Target);
|
|
scanner.layout();
|
|
assert(!scanner.AddressPoint.isInvalid()
|
|
&& "did not find fields in Enum metadata?!");
|
|
assert(scanner.GenericParamsOffset >= scanner.AddressPoint
|
|
&& "found generic param vector after address point?!");
|
|
GenericParamsOffset = scanner.GenericParamsOffset.isInvalid()
|
|
? Size(0) : scanner.GenericParamsOffset - scanner.AddressPoint;
|
|
}
|
|
|
|
EnumDecl *getTarget() { return Target; }
|
|
|
|
unsigned getKind() {
|
|
return unsigned(NominalTypeKind::Enum);
|
|
}
|
|
|
|
Size getGenericParamsOffset() {
|
|
return GenericParamsOffset;
|
|
}
|
|
|
|
void addKindDependentFields() {
|
|
// FIXME: Populate.
|
|
addConstantInt32(0);
|
|
addConstantInt32(0);
|
|
addConstantWord(0);
|
|
addConstantWord(0);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/** Metadata Emission ********************************************************/
|
|
/*****************************************************************************/
|
|
|
|
namespace {
|
|
/// An adapter class which turns a metadata layout class into a
|
|
/// generic metadata layout class.
|
|
template <class Impl, class Base>
|
|
class GenericMetadataBuilderBase : public Base {
|
|
typedef Base super;
|
|
|
|
/// The generics clause for the type we're emitting.
|
|
const GenericParamList &ClassGenerics;
|
|
|
|
/// The number of generic witnesses in the type we're emitting.
|
|
/// This is not really something we need to track.
|
|
unsigned NumGenericWitnesses = 0;
|
|
|
|
struct FillOp {
|
|
Size FromOffset;
|
|
Size ToOffset;
|
|
|
|
FillOp() = default;
|
|
FillOp(Size from, Size to) : FromOffset(from), ToOffset(to) {}
|
|
};
|
|
|
|
SmallVector<FillOp, 8> FillOps;
|
|
|
|
enum { TemplateHeaderFieldCount = 5 };
|
|
enum { NumPrivateDataWords = 8 };
|
|
Size TemplateHeaderSize;
|
|
|
|
protected:
|
|
/// The offset of the address point in the type we're emitting.
|
|
Size AddressPoint = Size::invalid();
|
|
|
|
IRGenModule &IGM = super::IGM;
|
|
using super::asImpl;
|
|
|
|
/// Set to true if the metadata record for the generic type has fields
|
|
/// outside of the generic parameter vector.
|
|
bool HasDependentMetadata = false;
|
|
|
|
/// Set to true if the value witness table for the generic type is dependent
|
|
/// on its generic parameters. If true, the value witness will be
|
|
/// tail-emplaced inside the metadata pattern and initialized by the fill
|
|
/// function. Implies HasDependentMetadata.
|
|
bool HasDependentVWT = false;
|
|
|
|
/// The offset of the tail-allocated dependent VWT, if any.
|
|
Size DependentVWTPoint = Size::invalid();
|
|
|
|
template <class... T>
|
|
GenericMetadataBuilderBase(IRGenModule &IGM,
|
|
const GenericParamList &generics,
|
|
T &&...args)
|
|
: super(IGM, std::forward<T>(args)...), ClassGenerics(generics) {}
|
|
|
|
/// Emit the fill function for the template.
|
|
llvm::Function *emitFillFunction() {
|
|
// void (*FillFunction)(void*, const void*)
|
|
llvm::Type *argTys[] = {IGM.Int8PtrTy, IGM.Int8PtrTy};
|
|
auto ty = llvm::FunctionType::get(IGM.VoidTy, argTys, /*isVarArg*/ false);
|
|
llvm::Function *f = llvm::Function::Create(ty,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
"fill_generic_metadata",
|
|
&IGM.Module);
|
|
|
|
IRGenFunction IGF(IGM, f);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, f);
|
|
|
|
// Execute the fill ops. Cast the parameters to word pointers because the
|
|
// fill indexes are word-indexed.
|
|
Explosion params = IGF.collectParameters(ResilienceExpansion::Minimal);
|
|
llvm::Value *fullMeta = params.claimNext();
|
|
llvm::Value *args = params.claimNext();
|
|
|
|
Address fullMetaWords(IGF.Builder.CreateBitCast(fullMeta,
|
|
IGM.SizeTy->getPointerTo()),
|
|
Alignment(IGM.getPointerAlignment()));
|
|
Address argWords(IGF.Builder.CreateBitCast(args,
|
|
IGM.SizeTy->getPointerTo()),
|
|
Alignment(IGM.getPointerAlignment()));
|
|
|
|
for (auto &fillOp : FillOps) {
|
|
auto dest = createPointerSizedGEP(IGF, fullMetaWords, fillOp.ToOffset);
|
|
auto src = createPointerSizedGEP(IGF, argWords, fillOp.FromOffset);
|
|
IGF.Builder.CreateStore(IGF.Builder.CreateLoad(src), dest);
|
|
}
|
|
|
|
// Derive the metadata value.
|
|
auto addressPointAddr =
|
|
createPointerSizedGEP(IGF, fullMetaWords, AddressPoint);
|
|
|
|
llvm::Value *metadataValue
|
|
= IGF.Builder.CreateBitCast(addressPointAddr.getAddress(),
|
|
IGF.IGM.TypeMetadataPtrTy);
|
|
|
|
// Initialize the instantiated dependent value witness table, if we have
|
|
// one.
|
|
llvm::Value *vwtableValue = nullptr;
|
|
if (HasDependentVWT) {
|
|
assert(!AddressPoint.isInvalid() && "did not set valid address point!");
|
|
assert(!DependentVWTPoint.isInvalid() && "did not set dependent VWT point!");
|
|
|
|
// Fill in the pointer from the metadata to the VWT. The VWT pointer
|
|
// always immediately precedes the address point.
|
|
auto vwtAddr = createPointerSizedGEP(IGF, fullMetaWords,
|
|
DependentVWTPoint);
|
|
auto vwtAddrVal = IGF.Builder.CreatePtrToInt(vwtAddr.getAddress(),
|
|
IGM.SizeTy);
|
|
auto vwtRefAddr = createPointerSizedGEP(IGF, fullMetaWords,
|
|
AddressPoint - IGM.getPointerSize());
|
|
IGF.Builder.CreateStore(vwtAddrVal, vwtRefAddr);
|
|
|
|
vwtableValue = IGF.Builder.CreateBitCast(vwtAddr.getAddress(),
|
|
IGF.IGM.WitnessTablePtrTy);
|
|
|
|
HasDependentMetadata = true;
|
|
}
|
|
|
|
if (HasDependentMetadata) {
|
|
asImpl().emitInitializeMetadata(IGF, metadataValue, vwtableValue);
|
|
}
|
|
|
|
// The metadata is now complete.
|
|
IGF.Builder.CreateRetVoid();
|
|
|
|
return f;
|
|
}
|
|
|
|
public:
|
|
void layout() {
|
|
TemplateHeaderSize =
|
|
((NumPrivateDataWords + 1) * IGM.getPointerSize()) + Size(8);
|
|
|
|
// Leave room for the header.
|
|
auto header = this->reserveFields(TemplateHeaderFieldCount,
|
|
TemplateHeaderSize);
|
|
|
|
// Lay out the template data.
|
|
super::layout();
|
|
|
|
// Save a slot for the field type vector address to be instantiated into.
|
|
asImpl().addFieldTypeVectorReferenceSlot();
|
|
|
|
// If we have a dependent value witness table, emit its template.
|
|
if (HasDependentVWT) {
|
|
// Note the dependent VWT offset.
|
|
DependentVWTPoint = getNextOffset();
|
|
asImpl().addDependentValueWitnessTablePattern();
|
|
}
|
|
|
|
// Fill in the header:
|
|
unsigned Field = 0;
|
|
auto headerFields =
|
|
this->claimReservation(header, TemplateHeaderFieldCount);
|
|
|
|
// void (*FillFunction)(void *, const void*);
|
|
headerFields[Field++] = emitFillFunction();
|
|
|
|
// uint32_t MetadataSize;
|
|
// We compute this assuming that every entry in the metadata table
|
|
// is a pointer in size.
|
|
Size size = getNextOffset();
|
|
headerFields[Field++] =
|
|
llvm::ConstantInt::get(IGM.Int32Ty, size.getValue());
|
|
|
|
// uint16_t NumArguments;
|
|
// TODO: ultimately, this should be the number of actual template
|
|
// arguments, not the number of witness tables required.
|
|
headerFields[Field++]
|
|
= llvm::ConstantInt::get(IGM.Int16Ty, NumGenericWitnesses);
|
|
|
|
// uint16_t AddressPoint;
|
|
assert(!AddressPoint.isInvalid() && "address point not noted!");
|
|
headerFields[Field++]
|
|
= llvm::ConstantInt::get(IGM.Int16Ty, AddressPoint.getValue());
|
|
|
|
// void *PrivateData[NumPrivateDataWords];
|
|
headerFields[Field++] = getPrivateDataInit();
|
|
|
|
assert(TemplateHeaderFieldCount == Field);
|
|
}
|
|
|
|
/// Write down the index of the address point.
|
|
void noteAddressPoint() {
|
|
AddressPoint = getNextOffset();
|
|
super::noteAddressPoint();
|
|
}
|
|
|
|
/// Ignore the preallocated header.
|
|
Size getNextOffset() const {
|
|
// Note that the header fields are all pointer-sized.
|
|
return super::getNextOffset() - TemplateHeaderSize;
|
|
}
|
|
|
|
template <class... T>
|
|
void addGenericArgument(ArchetypeType *type, T &&...args) {
|
|
FillOps.push_back(FillOp(NumGenericWitnesses++ * IGM.getPointerSize(),
|
|
getNextOffset()));
|
|
super::addGenericArgument(type, std::forward<T>(args)...);
|
|
}
|
|
|
|
template <class... T>
|
|
void addGenericWitnessTable(ArchetypeType *type, ProtocolDecl *protocol,
|
|
T &&...args) {
|
|
FillOps.push_back(FillOp(NumGenericWitnesses++ * IGM.getPointerSize(),
|
|
getNextOffset()));
|
|
super::addGenericWitnessTable(type, protocol, std::forward<T>(args)...);
|
|
}
|
|
|
|
void addFieldTypeVectorReferenceSlot() {
|
|
this->addWord(
|
|
llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy->getPointerTo()));
|
|
}
|
|
|
|
private:
|
|
static llvm::Constant *makeArray(llvm::Type *eltTy,
|
|
ArrayRef<llvm::Constant*> elts) {
|
|
auto arrayTy = llvm::ArrayType::get(eltTy, elts.size());
|
|
return llvm::ConstantArray::get(arrayTy, elts);
|
|
}
|
|
|
|
/// Produce the initializer for the private-data field of the
|
|
/// template header.
|
|
llvm::Constant *getPrivateDataInit() {
|
|
// Spec'ed to be 8 pointers wide. An arbitrary choice; should
|
|
// work out an ideal size with the runtime folks.
|
|
auto null = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
|
|
llvm::Constant *privateData[NumPrivateDataWords] = {
|
|
null, null, null, null, null, null, null, null
|
|
};
|
|
return makeArray(IGM.Int8PtrTy, privateData);
|
|
}
|
|
};
|
|
}
|
|
|
|
// Classes
|
|
|
|
namespace {
|
|
/// An adapter for laying out class metadata.
|
|
template <class Impl>
|
|
class ClassMetadataBuilderBase
|
|
: public ConstantBuilder<ClassMetadataLayout<Impl>> {
|
|
using super = ConstantBuilder<ClassMetadataLayout<Impl>>;
|
|
|
|
/// A mapping from functions to their final overriders.
|
|
llvm::DenseMap<AbstractFunctionDecl*,AbstractFunctionDecl*> FinalOverriders;
|
|
|
|
Optional<MetadataSize> ClassObjectExtents;
|
|
|
|
protected:
|
|
using super::IGM;
|
|
using super::Target;
|
|
using super::addWord;
|
|
using super::addConstantWord;
|
|
using super::addInt32;
|
|
using super::addConstantInt32;
|
|
using super::getNextOffset;
|
|
const StructLayout &Layout;
|
|
|
|
ClassMetadataBuilderBase(IRGenModule &IGM, ClassDecl *theClass,
|
|
const StructLayout &layout)
|
|
: super(IGM, theClass), Layout(layout) {
|
|
|
|
computeFinalOverriders();
|
|
}
|
|
|
|
/// Compute a map of all the final overriders for the class.
|
|
void computeFinalOverriders() {
|
|
// Walk up the whole class hierarchy.
|
|
ClassDecl *cls = Target;
|
|
do {
|
|
// Make sure that each function has its final overrider set.
|
|
for (auto member : cls->getMembers()) {
|
|
auto fn = dyn_cast<AbstractFunctionDecl>(member);
|
|
if (!fn) continue;
|
|
|
|
// Check whether we already have an entry for this function.
|
|
auto &finalOverrider = FinalOverriders[fn];
|
|
|
|
// If not, the function is its own final overrider.
|
|
if (!finalOverrider) finalOverrider = fn;
|
|
|
|
// If the function directly overrides something, update the
|
|
// overridden function's entry.
|
|
if (auto overridden = fn->getOverriddenDecl())
|
|
FinalOverriders.insert(std::make_pair(overridden, finalOverrider));
|
|
|
|
}
|
|
|
|
|
|
} while (cls->hasSuperclass() &&
|
|
(cls = cls->getSuperclass()->getClassOrBoundGenericClass()));
|
|
}
|
|
|
|
void computeClassObjectExtents() {
|
|
if (ClassObjectExtents.hasValue()) return;
|
|
ClassObjectExtents = getSizeOfMetadata(IGM, Target);
|
|
}
|
|
|
|
public:
|
|
/// The 'metadata flags' field in a class is actually a pointer to
|
|
/// the metaclass object for the class.
|
|
///
|
|
/// NONAPPLE: This is only really required for ObjC interop; maybe
|
|
/// suppress this for classes that don't need to be exposed to
|
|
/// ObjC, e.g. for non-Apple platforms?
|
|
void addMetadataFlags() {
|
|
static_assert(unsigned(MetadataKind::Class) == 0,
|
|
"class metadata kind is non-zero?");
|
|
|
|
// Get the metaclass pointer as an intptr_t.
|
|
auto metaclass = IGM.getAddrOfMetaclassObject(Target,
|
|
NotForDefinition);
|
|
auto flags = llvm::ConstantExpr::getPtrToInt(metaclass, IGM.IntPtrTy);
|
|
addWord(flags);
|
|
}
|
|
|
|
/// The runtime provides a value witness table for Builtin.NativeObject.
|
|
void addValueWitnessTable() {
|
|
ClassDecl *cls = Target;
|
|
|
|
auto type = cls->isObjC()
|
|
? CanType(this->IGM.Context.TheUnknownObjectType)
|
|
: CanType(this->IGM.Context.TheNativeObjectType);
|
|
auto wtable = this->IGM.getAddrOfValueWitnessTable(type);
|
|
addWord(wtable);
|
|
}
|
|
|
|
void addDestructorFunction() {
|
|
auto expansion = ResilienceExpansion::Minimal;
|
|
auto dtorRef = SILDeclRef(Target->getDestructor(),
|
|
SILDeclRef::Kind::Deallocator,
|
|
expansion);
|
|
addWord(IGM.getAddrOfSILFunction(dtorRef, NotForDefinition));
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
addWord(ClassNominalTypeDescriptorBuilder(IGM, Target).emit());
|
|
}
|
|
|
|
void addParentMetadataRef(ClassDecl *forClass) {
|
|
// FIXME: this is wrong for multiple levels of generics; we need
|
|
// to apply substitutions through.
|
|
Type parentType =
|
|
forClass->getDeclContext()->getDeclaredTypeInContext();
|
|
addReferenceToType(parentType->getCanonicalType());
|
|
}
|
|
|
|
void addSuperClass() {
|
|
// If this is a root class, use SwiftObject as our formal parent.
|
|
if (!Target->hasSuperclass()) {
|
|
// This is only required for ObjC interoperation.
|
|
if (!IGM.ObjCInterop) {
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
return;
|
|
}
|
|
|
|
// We have to do getAddrOfObjCClass ourselves here because
|
|
// getSwiftRootClass needs to be ObjC-mangled but isn't
|
|
// actually imported from a clang module.
|
|
addWord(IGM.getAddrOfObjCClass(IGM.getSwiftRootClass(),
|
|
NotForDefinition));
|
|
return;
|
|
}
|
|
|
|
Type superclassTy
|
|
= ArchetypeBuilder::mapTypeIntoContext(Target,
|
|
Target->getSuperclass());
|
|
addReferenceToType(superclassTy->getCanonicalType());
|
|
}
|
|
|
|
void addReferenceToType(CanType type) {
|
|
if (llvm::Constant *metadata
|
|
= tryEmitConstantHeapMetadataRef(IGM, type)) {
|
|
addWord(metadata);
|
|
} else {
|
|
// Leave a null pointer placeholder to be filled at runtime
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
}
|
|
}
|
|
|
|
void addInstanceSize() {
|
|
if (llvm::Constant *size
|
|
= tryEmitClassConstantFragileInstanceSize(IGM, Target)) {
|
|
// We only support a maximum 32-bit instance size.
|
|
if (IGM.SizeTy != IGM.Int32Ty)
|
|
size = llvm::ConstantExpr::getTrunc(size, IGM.Int32Ty);
|
|
addInt32(size);
|
|
} else {
|
|
// Leave a zero placeholder to be filled at runtime
|
|
addConstantInt32(0);
|
|
}
|
|
}
|
|
|
|
void addInstanceAlignMask() {
|
|
if (llvm::Constant *align
|
|
= tryEmitClassConstantFragileInstanceAlignMask(IGM, Target)) {
|
|
if (IGM.SizeTy != IGM.Int32Ty)
|
|
align = llvm::ConstantExpr::getTrunc(align, IGM.Int32Ty);
|
|
addInt32(align);
|
|
} else {
|
|
// Leave a zero placeholder to be filled at runtime
|
|
addConstantInt32(0);
|
|
}
|
|
}
|
|
|
|
void addClassSize() {
|
|
computeClassObjectExtents();
|
|
addConstantInt32(ClassObjectExtents->FullSize.getValue());
|
|
}
|
|
|
|
void addClassAddressPoint() {
|
|
computeClassObjectExtents();
|
|
addConstantInt32(ClassObjectExtents->AddressPoint.getValue());
|
|
}
|
|
|
|
void addClassCacheData() {
|
|
// We initially fill in these fields with addresses taken from
|
|
// the ObjC runtime.
|
|
addWord(IGM.getObjCEmptyCachePtr());
|
|
addWord(IGM.getObjCEmptyVTablePtr());
|
|
}
|
|
|
|
void addClassDataPointer() {
|
|
// Derive the RO-data.
|
|
llvm::Constant *data = emitClassPrivateData(IGM, Target);
|
|
|
|
// We always set the low bit to indicate this is a Swift class.
|
|
data = llvm::ConstantExpr::getPtrToInt(data, IGM.IntPtrTy);
|
|
data = llvm::ConstantExpr::getAdd(data,
|
|
llvm::ConstantInt::get(IGM.IntPtrTy, 1));
|
|
|
|
addWord(data);
|
|
}
|
|
|
|
void addFieldOffset(VarDecl *var) {
|
|
// Use a fixed offset if we have one.
|
|
if (auto offset = tryEmitClassConstantFragileFieldOffset(IGM, Target,
|
|
var))
|
|
addWord(offset);
|
|
// Otherwise, leave a placeholder for the runtime to populate at runtime.
|
|
else
|
|
addWord(llvm::ConstantInt::get(IGM.IntPtrTy, 0));
|
|
}
|
|
|
|
void addMethod(SILDeclRef fn) {
|
|
// If this function is associated with the target class, go
|
|
// ahead and emit the witness offset variable.
|
|
if (fn.getDecl()->getDeclContext() == Target) {
|
|
Address offsetVar = IGM.getAddrOfWitnessTableOffset(fn, ForDefinition);
|
|
auto global = cast<llvm::GlobalVariable>(offsetVar.getAddress());
|
|
|
|
auto offset = getNextOffset();
|
|
auto offsetV = llvm::ConstantInt::get(IGM.SizeTy, offset.getValue());
|
|
global->setInitializer(offsetV);
|
|
}
|
|
|
|
// Find the final overrider, which we should already have computed.
|
|
auto it = FinalOverriders.find(cast<AbstractFunctionDecl>(fn.getDecl()));
|
|
assert(it != FinalOverriders.end());
|
|
AbstractFunctionDecl *finalOverrider = it->second;
|
|
|
|
fn = SILDeclRef(finalOverrider, fn.kind, fn.getResilienceExpansion(),
|
|
fn.uncurryLevel);
|
|
|
|
// Add the appropriate method to the module.
|
|
addWord(IGM.getAddrOfSILFunction(fn, NotForDefinition));
|
|
}
|
|
|
|
void addGenericArgument(ArchetypeType *archetype, ClassDecl *forClass) {
|
|
addWord(llvm::Constant::getNullValue(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addGenericWitnessTable(ArchetypeType *archetype,
|
|
ProtocolDecl *protocol, ClassDecl *forClass) {
|
|
addWord(llvm::Constant::getNullValue(IGM.WitnessTablePtrTy));
|
|
}
|
|
};
|
|
|
|
class ClassMetadataBuilder :
|
|
public ClassMetadataBuilderBase<ClassMetadataBuilder> {
|
|
public:
|
|
ClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
const StructLayout &layout)
|
|
: ClassMetadataBuilderBase(IGM, theClass, layout) {}
|
|
|
|
llvm::Constant *getInit() {
|
|
return getInitWithSuggestedType(NumHeapMetadataFields,
|
|
IGM.FullHeapMetadataStructTy);
|
|
}
|
|
};
|
|
|
|
Address emitAddressOfSuperclassRefInClassMetadata(IRGenFunction &IGF,
|
|
ClassDecl *theClass,
|
|
llvm::Value *metadata) {
|
|
// The superclass field in a class type is the first field past the isa.
|
|
unsigned index = 1;
|
|
|
|
Address addr(metadata, IGF.IGM.getPointerAlignment());
|
|
addr = IGF.Builder.CreateBitCast(addr,
|
|
IGF.IGM.TypeMetadataPtrTy->getPointerTo());
|
|
return IGF.Builder.CreateConstArrayGEP(addr, index, IGF.IGM.getPointerSize());
|
|
}
|
|
|
|
Address emitAddressOfFieldOffsetVectorInClassMetadata(IRGenFunction &IGF,
|
|
ClassDecl *theClass,
|
|
llvm::Value *metadata) {
|
|
BEGIN_METADATA_SEARCHER_0(GetOffsetToFieldOffsetVector, Class)
|
|
void noteStartOfFieldOffsets(ClassDecl *whichClass) {
|
|
if (whichClass == Target)
|
|
setTargetOffset();
|
|
}
|
|
END_METADATA_SEARCHER()
|
|
|
|
auto offset =
|
|
GetOffsetToFieldOffsetVector(IGF.IGM, theClass).getTargetOffset();
|
|
|
|
Address addr(metadata, IGF.IGM.getPointerAlignment());
|
|
addr = IGF.Builder.CreateBitCast(addr,
|
|
IGF.IGM.SizeTy->getPointerTo());
|
|
return createPointerSizedGEP(IGF, addr, offset);
|
|
}
|
|
|
|
/// A builder for metadata templates.
|
|
class GenericClassMetadataBuilder :
|
|
public GenericMetadataBuilderBase<GenericClassMetadataBuilder,
|
|
ClassMetadataBuilderBase<GenericClassMetadataBuilder>>
|
|
{
|
|
typedef GenericMetadataBuilderBase super;
|
|
|
|
bool HasDependentSuperclass = false;
|
|
bool HasDependentFieldOffsetVector = false;
|
|
|
|
std::vector<std::tuple<ClassDecl*, Size, Size>>
|
|
AncestorFieldOffsetVectors;
|
|
|
|
std::vector<Size> AncestorFillOps;
|
|
public:
|
|
GenericClassMetadataBuilder(IRGenModule &IGM, ClassDecl *theClass,
|
|
const StructLayout &layout,
|
|
const GenericParamList &classGenerics)
|
|
: super(IGM, classGenerics, theClass, layout)
|
|
{
|
|
// We need special initialization of metadata objects to trick the ObjC
|
|
// runtime into initializing them.
|
|
HasDependentMetadata = true;
|
|
|
|
// If the superclass is generic, we'll need to initialize the superclass
|
|
// reference at runtime.
|
|
if (theClass->hasSuperclass() &&
|
|
theClass->getSuperclass()->is<BoundGenericClassType>()) {
|
|
HasDependentSuperclass = true;
|
|
}
|
|
}
|
|
|
|
void addDependentValueWitnessTablePattern() {
|
|
llvm_unreachable("classes should never have dependent vwtables");
|
|
}
|
|
|
|
void noteStartOfFieldOffsets(ClassDecl *whichClass) {
|
|
HasDependentMetadata = true;
|
|
|
|
if (whichClass == Target) {
|
|
// If the metadata contains a field offset vector for the class itself,
|
|
// then we need to initialize it at runtime.
|
|
HasDependentFieldOffsetVector = true;
|
|
return;
|
|
}
|
|
|
|
// If we have a field offset vector for an ancestor class, we will copy
|
|
// it from our superclass metadata at instantiation time.
|
|
AncestorFieldOffsetVectors.emplace_back(whichClass,
|
|
asImpl().getNextOffset(),
|
|
Size::invalid());
|
|
}
|
|
|
|
void noteEndOfFieldOffsets(ClassDecl *whichClass) {
|
|
if (whichClass == Target)
|
|
return;
|
|
|
|
// Mark the end of the ancestor field offset vector.
|
|
assert(!AncestorFieldOffsetVectors.empty()
|
|
&& "no start of ancestor field offsets?!");
|
|
assert(std::get<0>(AncestorFieldOffsetVectors.back()) == whichClass
|
|
&& "mismatched start of ancestor field offsets?!");
|
|
std::get<2>(AncestorFieldOffsetVectors.back()) = asImpl().getNextOffset();
|
|
}
|
|
|
|
// Suppress GenericMetadataBuilderBase's default behavior of introducing
|
|
// fill ops for generic arguments unless they belong directly to the target
|
|
// class and not its ancestors.
|
|
|
|
void addGenericArgument(ArchetypeType *type, ClassDecl *forClass) {
|
|
if (forClass == Target) {
|
|
// Introduce the fill op.
|
|
GenericMetadataBuilderBase::addGenericArgument(type, forClass);
|
|
} else {
|
|
// Lay out the field, but don't provide the fill op, which we'll get
|
|
// from the superclass.
|
|
HasDependentMetadata = true;
|
|
AncestorFillOps.push_back(getNextOffset());
|
|
ClassMetadataBuilderBase::addGenericArgument(type, forClass);
|
|
}
|
|
}
|
|
|
|
void addGenericWitnessTable(ArchetypeType *type, ProtocolDecl *protocol,
|
|
ClassDecl *forClass) {
|
|
if (forClass == Target) {
|
|
// Introduce the fill op.
|
|
GenericMetadataBuilderBase::addGenericWitnessTable(type, protocol,
|
|
forClass);
|
|
} else {
|
|
// Lay out the field, but don't provide the fill op, which we'll get
|
|
// from the superclass.
|
|
|
|
HasDependentMetadata = true;
|
|
AncestorFillOps.push_back(getNextOffset());
|
|
ClassMetadataBuilderBase::addGenericWitnessTable(type, protocol,
|
|
forClass);
|
|
}
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable) {
|
|
emitPolymorphicParametersForGenericValueWitness(IGF,
|
|
Target,
|
|
metadata);
|
|
|
|
assert(!HasDependentVWT && "class should never have dependent VWT");
|
|
|
|
// Get the superclass metadata.
|
|
llvm::Value *superMetadata;
|
|
if (Target->hasSuperclass()) {
|
|
Type superclassTy
|
|
= ArchetypeBuilder::mapTypeIntoContext(Target,
|
|
Target->getSuperclass());
|
|
|
|
superMetadata = IGF.emitTypeMetadataRef(
|
|
superclassTy->getCanonicalType());
|
|
} else {
|
|
assert(!HasDependentSuperclass
|
|
&& "dependent superclass without superclass?!");
|
|
superMetadata
|
|
= llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
// If the superclass is generic, populate the superclass field.
|
|
if (HasDependentSuperclass) {
|
|
Address superField
|
|
= emitAddressOfSuperclassRefInClassMetadata(IGF,Target,metadata);
|
|
IGF.Builder.CreateStore(superMetadata, superField);
|
|
}
|
|
|
|
// If we have any ancestor generic parameters or field offset vectors,
|
|
// copy them from the superclass metadata.
|
|
if (!AncestorFieldOffsetVectors.empty() || !AncestorFillOps.empty()) {
|
|
Address superBase(superMetadata, IGF.IGM.getPointerAlignment());
|
|
Address selfBase(metadata, IGF.IGM.getPointerAlignment());
|
|
superBase = IGF.Builder.CreateBitCast(superBase,
|
|
IGF.IGM.SizeTy->getPointerTo());
|
|
selfBase = IGF.Builder.CreateBitCast(selfBase,
|
|
IGF.IGM.SizeTy->getPointerTo());
|
|
|
|
for (Size ancestorOp : AncestorFillOps) {
|
|
ancestorOp -= AddressPoint;
|
|
Address superOp = createPointerSizedGEP(IGF, superBase, ancestorOp);
|
|
Address selfOp = createPointerSizedGEP(IGF, selfBase, ancestorOp);
|
|
IGF.Builder.CreateStore(IGF.Builder.CreateLoad(superOp), selfOp);
|
|
}
|
|
|
|
for (auto &ancestorFields : AncestorFieldOffsetVectors) {
|
|
ClassDecl *ancestor;
|
|
Size startIndex, endIndex;
|
|
std::tie(ancestor, startIndex, endIndex) = ancestorFields;
|
|
assert(startIndex <= endIndex);
|
|
if (startIndex == endIndex)
|
|
continue;
|
|
Size size = endIndex - startIndex;
|
|
startIndex -= AddressPoint;
|
|
|
|
Address superVec = createPointerSizedGEP(IGF, superBase, startIndex);
|
|
Address selfVec = createPointerSizedGEP(IGF, selfBase, startIndex);
|
|
|
|
IGF.Builder.CreateMemCpy(selfVec, superVec, size);
|
|
}
|
|
}
|
|
|
|
// If the field layout is dependent, ask the runtime to populate the
|
|
// offset vector.
|
|
if (HasDependentFieldOffsetVector) {
|
|
llvm::Value *fieldVector
|
|
= emitAddressOfFieldOffsetVectorInClassMetadata(IGF,
|
|
Target, metadata)
|
|
.getAddress();
|
|
|
|
// Collect the stored properties of the type.
|
|
llvm::SmallVector<VarDecl*, 4> storedProperties;
|
|
for (auto prop : Target->getStoredProperties()) {
|
|
storedProperties.push_back(prop);
|
|
}
|
|
// Fill out an array with the field type metadata records.
|
|
Address fields = IGF.createAlloca(
|
|
llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy,
|
|
storedProperties.size()),
|
|
IGF.IGM.getPointerAlignment(), "classFields");
|
|
fields = IGF.Builder.CreateBitCast(fields,
|
|
IGF.IGM.TypeMetadataPtrTy->getPointerTo());
|
|
unsigned index = 0;
|
|
for (auto prop : storedProperties) {
|
|
llvm::Value *metadata = IGF.emitTypeMetadataRef(
|
|
prop->getType()->getCanonicalType());
|
|
Address field = IGF.Builder.CreateConstArrayGEP(fields, index,
|
|
IGF.IGM.getPointerSize());
|
|
IGF.Builder.CreateStore(metadata, field);
|
|
++index;
|
|
}
|
|
|
|
// Ask the runtime to lay out the class.
|
|
auto numFields = llvm::ConstantInt::get(IGF.IGM.SizeTy,
|
|
storedProperties.size());
|
|
IGF.Builder.CreateCall5(IGF.IGM.getInitClassMetadataUniversalFn(),
|
|
metadata, superMetadata, numFields,
|
|
fields.getAddress(), fieldVector);
|
|
}
|
|
|
|
// FIXME: Crudely invoke a runtime function on the class to force the
|
|
// ObjC runtime to do minimal initialization of the class.
|
|
// We should really register the class pair with the runtime through an
|
|
// approved channel.
|
|
llvm::Value *forceInit = IGF.IGM.getForceInitializeObjCClassFn();
|
|
IGF.Builder.CreateCall(forceInit, metadata);
|
|
}
|
|
|
|
};
|
|
}
|
|
|
|
/// Emit the ObjC-compatible class symbol for a class.
|
|
/// Since LLVM and many system linkers do not have a notion of relative symbol
|
|
/// references, we emit the symbol as a global asm block.
|
|
static void emitObjCClassSymbol(IRGenModule &IGM,
|
|
ClassDecl *classDecl,
|
|
llvm::GlobalVariable *fullMetadata) {
|
|
llvm::SmallString<128> asmString;
|
|
llvm::raw_svector_ostream os(asmString);
|
|
|
|
llvm::SmallString<32> classSymbol;
|
|
LinkEntity::forObjCClass(classDecl).mangle(classSymbol);
|
|
|
|
// Get the address point offset into the full metadata.
|
|
auto addrPointOffset
|
|
= llvm::ConstantInt::get(IGM.Int32Ty, MetadataAdjustmentIndex::Class);
|
|
llvm::Constant *gepIndexes[] = {
|
|
llvm::ConstantInt::get(IGM.Int32Ty, 0),
|
|
addrPointOffset,
|
|
};
|
|
auto addressPoint
|
|
= llvm::ConstantExpr::getGetElementPtr(fullMetadata, gepIndexes);
|
|
|
|
// Create the alias.
|
|
new llvm::GlobalAlias(addressPoint->getType(),
|
|
fullMetadata->getLinkage(),
|
|
classSymbol.str(), addressPoint,
|
|
IGM.getModule());
|
|
}
|
|
|
|
/// Emit the type metadata or metadata template for a class.
|
|
void irgen::emitClassMetadata(IRGenModule &IGM, ClassDecl *classDecl,
|
|
const StructLayout &layout) {
|
|
assert(!classDecl->isForeign());
|
|
|
|
// TODO: classes nested within generic types
|
|
llvm::Constant *init;
|
|
bool isPattern;
|
|
if (auto *generics = classDecl->getGenericParamsOfContext()) {
|
|
GenericClassMetadataBuilder builder(IGM, classDecl, layout, *generics);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = true;
|
|
} else {
|
|
ClassMetadataBuilder builder(IGM, classDecl, layout);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = false;
|
|
}
|
|
|
|
// For now, all type metadata is directly stored.
|
|
bool isIndirect = false;
|
|
|
|
CanType declaredType = classDecl->getDeclaredType()->getCanonicalType();
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
IGM.getAddrOfTypeMetadata(declaredType,
|
|
isIndirect, isPattern,
|
|
init->getType()));
|
|
var->setInitializer(init);
|
|
|
|
// TODO: the metadata global can actually be constant in a very
|
|
// special case: it's not a pattern, ObjC interoperation isn't
|
|
// required, there are no class fields, and there is nothing that
|
|
// needs to be runtime-adjusted.
|
|
var->setConstant(false);
|
|
|
|
// Add non-generic classes to the ObjC class list.
|
|
if (IGM.ObjCInterop && !isPattern && !isIndirect) {
|
|
|
|
// We can't just use 'var' here because it's unadjusted. Instead
|
|
// of re-implementing the adjustment logic, just pull the metadata
|
|
// pointer again.
|
|
auto metadata =
|
|
IGM.getAddrOfTypeMetadata(declaredType, isIndirect, isPattern);
|
|
|
|
// Emit the ObjC class symbol to make the class visible to ObjC.
|
|
if (classDecl->isObjC()) {
|
|
// FIXME: Put the variable in a no_dead_strip section, as a workaround to
|
|
// avoid linker transformations that may break up the symbol.
|
|
var->setSection("__DATA,__objc_data, regular, no_dead_strip");
|
|
|
|
emitObjCClassSymbol(IGM, classDecl, var);
|
|
}
|
|
|
|
IGM.addObjCClass(metadata);
|
|
}
|
|
}
|
|
|
|
/// Does the given method require an override entry in the class v-table?
|
|
bool irgen::doesMethodRequireOverrideEntry(IRGenModule &IGM,
|
|
AbstractFunctionDecl *fn,
|
|
ResilienceExpansion explosionLevel,
|
|
unsigned uncurryLevel) {
|
|
// Check each of the overridden declarations in turn.
|
|
AbstractFunctionDecl *overridden = fn->getOverriddenDecl();
|
|
do {
|
|
assert(overridden);
|
|
|
|
// ObjC methods never get vtable entries, so overrides always need a new
|
|
// entry.
|
|
if (!hasKnownVTableEntry(IGM, overridden))
|
|
continue;
|
|
|
|
// TODO: eventually we'll need to handle stuff like abstraction
|
|
// differences due to overrides of methods of polymorphic classes, e.g.
|
|
// class A<T> { func foo() -> T { ... } }
|
|
// class B : A<Int> { func foo() -> Int { ... } }
|
|
// But that really ought to be handled by SIL-gen.
|
|
return false;
|
|
|
|
} while ((overridden = overridden->getOverriddenDecl()));
|
|
|
|
// Otherwise, we need a new entry.
|
|
return true;
|
|
}
|
|
|
|
/// Emit a load from the given metadata at a constant index.
|
|
static llvm::Value *emitLoadFromMetadataAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
int index,
|
|
llvm::PointerType *objectTy) {
|
|
// Require the metadata to be some type that we recognize as a
|
|
// metadata pointer.
|
|
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
|
|
|
|
// We require objectType to be a pointer type so that the GEP will
|
|
// scale by the right amount. We could load an arbitrary type using
|
|
// some extra bitcasting.
|
|
|
|
// Cast to T*.
|
|
auto objectPtrTy = objectTy->getPointerTo();
|
|
metadata = IGF.Builder.CreateBitCast(metadata, objectPtrTy);
|
|
|
|
auto indexV = llvm::ConstantInt::getSigned(IGF.IGM.SizeTy, index);
|
|
|
|
// GEP to the slot.
|
|
Address slot(IGF.Builder.CreateInBoundsGEP(metadata, indexV),
|
|
IGF.IGM.getPointerAlignment());
|
|
|
|
// Load.
|
|
auto result = IGF.Builder.CreateLoad(slot);
|
|
return result;
|
|
}
|
|
|
|
/// Given a type metadata pointer, load its value witness table.
|
|
llvm::Value *
|
|
IRGenFunction::emitValueWitnessTableRefForMetadata(llvm::Value *metadata) {
|
|
return emitLoadFromMetadataAtIndex(*this, metadata, -1,
|
|
IGM.WitnessTablePtrTy);
|
|
}
|
|
|
|
/// Load the metadata reference at the given index.
|
|
static llvm::Value *emitLoadOfMetadataRefAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
int index) {
|
|
return emitLoadFromMetadataAtIndex(IGF, metadata, index,
|
|
IGF.IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
/// Load the protocol witness table reference at the given index.
|
|
static llvm::Value *emitLoadOfWitnessTableRefAtIndex(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
int index) {
|
|
return emitLoadFromMetadataAtIndex(IGF, metadata, index,
|
|
IGF.IGM.WitnessTablePtrTy);
|
|
}
|
|
|
|
namespace {
|
|
/// A class for finding the 'parent' index in a class metadata object.
|
|
BEGIN_METADATA_SEARCHER_0(FindClassParentIndex, Class)
|
|
void addParentMetadataRef(ClassDecl *forClass) {
|
|
if (forClass == Target) setTargetOffset();
|
|
addParentMetadataRef(forClass);
|
|
}
|
|
END_METADATA_SEARCHER()
|
|
}
|
|
|
|
/// Given a reference to some metadata, derive a reference to the
|
|
/// type's parent type.
|
|
llvm::Value *irgen::emitParentMetadataRef(IRGenFunction &IGF,
|
|
NominalTypeDecl *decl,
|
|
llvm::Value *metadata) {
|
|
assert(decl->getDeclContext()->isTypeContext());
|
|
|
|
switch (decl->getKind()) {
|
|
#define NOMINAL_TYPE_DECL(id, parent)
|
|
#define DECL(id, parent) \
|
|
case DeclKind::id:
|
|
#include "swift/AST/DeclNodes.def"
|
|
llvm_unreachable("not a nominal type");
|
|
|
|
case DeclKind::Protocol:
|
|
llvm_unreachable("protocols never have parent types!");
|
|
|
|
case DeclKind::Class: {
|
|
int index =
|
|
FindClassParentIndex(IGF.IGM, cast<ClassDecl>(decl)).getTargetIndex();
|
|
return emitLoadOfMetadataRefAtIndex(IGF, metadata, index);
|
|
}
|
|
|
|
case DeclKind::Enum:
|
|
case DeclKind::Struct:
|
|
// In both of these cases, 'Parent' is always the third field.
|
|
return emitLoadOfMetadataRefAtIndex(IGF, metadata, 2);
|
|
}
|
|
llvm_unreachable("bad decl kind!");
|
|
}
|
|
|
|
namespace {
|
|
/// A class for finding a type argument in a type metadata object.
|
|
BEGIN_GENERIC_METADATA_SEARCHER_1(FindTypeArgumentIndex,
|
|
ArchetypeType *, TargetArchetype)
|
|
template <class... T>
|
|
void addGenericArgument(ArchetypeType *argument, T &&...args) {
|
|
if (argument == TargetArchetype)
|
|
this->setTargetOffset();
|
|
super::addGenericArgument(argument, std::forward<T>(args)...);
|
|
}
|
|
END_GENERIC_METADATA_SEARCHER(ArgumentIndex)
|
|
}
|
|
|
|
/// Given a reference to nominal type metadata of the given type,
|
|
/// derive a reference to the nth argument metadata. The type must
|
|
/// have generic arguments.
|
|
llvm::Value *irgen::emitArgumentMetadataRef(IRGenFunction &IGF,
|
|
NominalTypeDecl *decl,
|
|
unsigned argumentIndex,
|
|
llvm::Value *metadata) {
|
|
assert(decl->getGenericParams() != nullptr);
|
|
auto targetArchetype =
|
|
decl->getGenericParams()->getAllArchetypes()[argumentIndex];
|
|
|
|
switch (decl->getKind()) {
|
|
#define NOMINAL_TYPE_DECL(id, parent)
|
|
#define DECL(id, parent) \
|
|
case DeclKind::id:
|
|
#include "swift/AST/DeclNodes.def"
|
|
llvm_unreachable("not a nominal type");
|
|
|
|
case DeclKind::Protocol:
|
|
llvm_unreachable("protocols are never generic!");
|
|
|
|
case DeclKind::Class: {
|
|
int index =
|
|
FindClassArgumentIndex(IGF.IGM, cast<ClassDecl>(decl), targetArchetype)
|
|
.getTargetIndex();
|
|
return emitLoadOfMetadataRefAtIndex(IGF, metadata, index);
|
|
}
|
|
|
|
case DeclKind::Struct: {
|
|
int index =
|
|
FindStructArgumentIndex(IGF.IGM, cast<StructDecl>(decl), targetArchetype)
|
|
.getTargetIndex();
|
|
return emitLoadOfMetadataRefAtIndex(IGF, metadata, index);
|
|
}
|
|
|
|
case DeclKind::Enum: {
|
|
int index =
|
|
FindEnumArgumentIndex(IGF.IGM, cast<EnumDecl>(decl), targetArchetype)
|
|
.getTargetIndex();
|
|
return emitLoadOfMetadataRefAtIndex(IGF, metadata, index);
|
|
}
|
|
}
|
|
llvm_unreachable("bad decl kind!");
|
|
}
|
|
|
|
namespace {
|
|
/// A class for finding a protocol witness table for a type argument
|
|
/// in a value type metadata object.
|
|
BEGIN_GENERIC_METADATA_SEARCHER_2(FindTypeWitnessTableIndex,
|
|
ArchetypeType *, TargetArchetype,
|
|
ProtocolDecl *, TargetProtocol)
|
|
template <class... T>
|
|
void addGenericWitnessTable(ArchetypeType *argument,
|
|
ProtocolDecl *protocol,
|
|
T &&...args) {
|
|
if (argument == TargetArchetype && protocol == TargetProtocol)
|
|
this->setTargetOffset();
|
|
super::addGenericWitnessTable(argument, protocol,
|
|
std::forward<T>(args)...);
|
|
}
|
|
END_GENERIC_METADATA_SEARCHER(WitnessTableIndex)
|
|
}
|
|
|
|
/// Given a reference to nominal type metadata of the given type,
|
|
/// derive a reference to a protocol witness table for the nth
|
|
/// argument metadata. The type must have generic arguments.
|
|
llvm::Value *irgen::emitArgumentWitnessTableRef(IRGenFunction &IGF,
|
|
NominalTypeDecl *decl,
|
|
unsigned argumentIndex,
|
|
ProtocolDecl *targetProtocol,
|
|
llvm::Value *metadata) {
|
|
assert(decl->getGenericParams() != nullptr);
|
|
auto targetArchetype =
|
|
decl->getGenericParams()->getAllArchetypes()[argumentIndex];
|
|
|
|
switch (decl->getKind()) {
|
|
#define NOMINAL_TYPE_DECL(id, parent)
|
|
#define DECL(id, parent) \
|
|
case DeclKind::id:
|
|
#include "swift/AST/DeclNodes.def"
|
|
llvm_unreachable("not a nominal type");
|
|
|
|
case DeclKind::Protocol:
|
|
llvm_unreachable("protocols are never generic!");
|
|
|
|
case DeclKind::Class: {
|
|
int index =
|
|
FindClassWitnessTableIndex(IGF.IGM, cast<ClassDecl>(decl),
|
|
targetArchetype, targetProtocol)
|
|
.getTargetIndex();
|
|
return emitLoadOfWitnessTableRefAtIndex(IGF, metadata, index);
|
|
}
|
|
|
|
case DeclKind::Enum: {
|
|
int index =
|
|
FindEnumWitnessTableIndex(IGF.IGM, cast<EnumDecl>(decl),
|
|
targetArchetype, targetProtocol)
|
|
.getTargetIndex();
|
|
return emitLoadOfWitnessTableRefAtIndex(IGF, metadata, index);
|
|
}
|
|
|
|
case DeclKind::Struct: {
|
|
int index =
|
|
FindStructWitnessTableIndex(IGF.IGM, cast<StructDecl>(decl),
|
|
targetArchetype, targetProtocol)
|
|
.getTargetIndex();
|
|
return emitLoadOfWitnessTableRefAtIndex(IGF, metadata, index);
|
|
}
|
|
}
|
|
llvm_unreachable("bad decl kind!");
|
|
}
|
|
|
|
/// Given a reference to class metadata of the given type,
|
|
/// derive a reference to the field offset for a stored property.
|
|
/// The type must have dependent generic layout.
|
|
llvm::Value *irgen::emitClassFieldOffset(IRGenFunction &IGF,
|
|
ClassDecl *theClass,
|
|
VarDecl *field,
|
|
llvm::Value *metadata) {
|
|
/// A class for finding a field offset in a class metadata object.
|
|
BEGIN_METADATA_SEARCHER_1(FindClassFieldOffset, Class,
|
|
VarDecl *, TargetField)
|
|
void addFieldOffset(VarDecl *field) {
|
|
if (field == TargetField)
|
|
setTargetOffset();
|
|
super::addFieldOffset(field);
|
|
}
|
|
END_METADATA_SEARCHER()
|
|
|
|
int index = FindClassFieldOffset(IGF.IGM, theClass, field).getTargetIndex();
|
|
llvm::Value *val = emitLoadOfWitnessTableRefAtIndex(IGF, metadata, index);
|
|
return IGF.Builder.CreatePtrToInt(val, IGF.IGM.SizeTy);
|
|
}
|
|
|
|
/// Given a reference to class metadata of the given type,
|
|
/// load the fragile instance size and alignment of the class.
|
|
std::pair<llvm::Value *, llvm::Value *>
|
|
irgen::emitClassFragileInstanceSizeAndAlignMask(IRGenFunction &IGF,
|
|
ClassDecl *theClass,
|
|
llvm::Value *metadata) {
|
|
// If the class has fragile fixed layout, return the constant size and
|
|
// alignment.
|
|
if (llvm::Constant *size
|
|
= tryEmitClassConstantFragileInstanceSize(IGF.IGM, theClass)) {
|
|
llvm::Constant *alignMask
|
|
= tryEmitClassConstantFragileInstanceAlignMask(IGF.IGM, theClass);
|
|
assert(alignMask && "static size without static align");
|
|
return {size, alignMask};
|
|
}
|
|
|
|
// Otherwise, load it from the metadata.
|
|
return emitClassResilientInstanceSizeAndAlignMask(IGF, theClass, metadata);
|
|
}
|
|
|
|
std::pair<llvm::Value *, llvm::Value *>
|
|
irgen::emitClassResilientInstanceSizeAndAlignMask(IRGenFunction &IGF,
|
|
ClassDecl *theClass,
|
|
llvm::Value *metadata) {
|
|
class FindClassSize
|
|
: public ClassMetadataScanner<FindClassSize> {
|
|
using super = ClassMetadataScanner<FindClassSize>;
|
|
public:
|
|
FindClassSize(IRGenModule &IGM, ClassDecl *theClass)
|
|
: ClassMetadataScanner(IGM, theClass) {}
|
|
|
|
Size InstanceSize = Size::invalid();
|
|
Size InstanceAlignMask = Size::invalid();
|
|
|
|
void noteAddressPoint() {
|
|
assert(InstanceSize.isInvalid() && InstanceAlignMask.isInvalid()
|
|
&& "found size or alignment before address point?!");
|
|
NextOffset = Size(0);
|
|
}
|
|
|
|
void addInstanceSize() {
|
|
InstanceSize = NextOffset;
|
|
super::addInstanceSize();
|
|
}
|
|
|
|
void addInstanceAlignMask() {
|
|
InstanceAlignMask = NextOffset;
|
|
super::addInstanceAlignMask();
|
|
}
|
|
};
|
|
|
|
FindClassSize scanner(IGF.IGM, theClass);
|
|
scanner.layout();
|
|
assert(!scanner.InstanceSize.isInvalid()
|
|
&& !scanner.InstanceAlignMask.isInvalid()
|
|
&& "didn't find size or alignment in metadata?!");
|
|
Address metadataAsBytes(IGF.Builder.CreateBitCast(metadata, IGF.IGM.Int8PtrTy),
|
|
IGF.IGM.getPointerAlignment());
|
|
auto loadZExtInt32AtOffset = [&](Size offset) {
|
|
Address slot = IGF.Builder.CreateConstByteArrayGEP(metadataAsBytes, offset);
|
|
slot = IGF.Builder.CreateBitCast(slot, IGF.IGM.Int32Ty->getPointerTo());
|
|
llvm::Value *result = IGF.Builder.CreateLoad(slot);
|
|
if (IGF.IGM.SizeTy != IGF.IGM.Int32Ty)
|
|
result = IGF.Builder.CreateZExt(result, IGF.IGM.SizeTy);
|
|
return result;
|
|
};
|
|
llvm::Value *size = loadZExtInt32AtOffset(scanner.InstanceSize);
|
|
llvm::Value *alignMask = loadZExtInt32AtOffset(scanner.InstanceAlignMask);
|
|
return {size, alignMask};
|
|
}
|
|
|
|
/// Given a pointer to a heap object, load its heap metadata pointer using the
|
|
/// ObjC runtime.
|
|
static llvm::Value *emitLoadOfObjCHeapMetadataRef(IRGenFunction &IGF,
|
|
llvm::Value *object) {
|
|
object = IGF.Builder.CreateBitCast(object, IGF.IGM.ObjCPtrTy);
|
|
auto metadata = IGF.Builder.CreateCall(IGF.IGM.getGetObjectClassFn(),
|
|
object,
|
|
object->getName() + ".class");
|
|
metadata->setCallingConv(IGF.IGM.RuntimeCC);
|
|
metadata->setDoesNotThrow();
|
|
metadata->setDoesNotAccessMemory();
|
|
return metadata;
|
|
}
|
|
|
|
/// Given a pointer to a heap object (i.e. definitely not a tagged
|
|
/// pointer), load its heap metadata pointer.
|
|
static llvm::Value *emitLoadOfHeapMetadataRef(IRGenFunction &IGF,
|
|
llvm::Value *object,
|
|
IsaEncoding isaEncoding,
|
|
bool suppressCast) {
|
|
switch (isaEncoding) {
|
|
case IsaEncoding::Pointer: {
|
|
// Drill into the object pointer. Rather than bitcasting, we make
|
|
// an effort to do something that should explode if we get something
|
|
// mistyped.
|
|
llvm::StructType *structTy =
|
|
cast<llvm::StructType>(
|
|
cast<llvm::PointerType>(object->getType())->getElementType());
|
|
|
|
llvm::Value *slot;
|
|
|
|
// We need a bitcast if we're dealing with an opaque class.
|
|
if (structTy->isOpaque()) {
|
|
auto metadataPtrPtrTy = IGF.IGM.TypeMetadataPtrTy->getPointerTo();
|
|
slot = IGF.Builder.CreateBitCast(object, metadataPtrPtrTy);
|
|
|
|
// Otherwise, make a GEP.
|
|
} else {
|
|
auto zero = llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0);
|
|
|
|
SmallVector<llvm::Value*, 4> indexes;
|
|
indexes.push_back(zero);
|
|
do {
|
|
indexes.push_back(zero);
|
|
|
|
// Keep drilling down to the first element type.
|
|
auto eltTy = structTy->getElementType(0);
|
|
assert(isa<llvm::StructType>(eltTy) || eltTy == IGF.IGM.TypeMetadataPtrTy);
|
|
structTy = dyn_cast<llvm::StructType>(eltTy);
|
|
} while (structTy != nullptr);
|
|
|
|
slot = IGF.Builder.CreateInBoundsGEP(object, indexes);
|
|
|
|
if (!suppressCast) {
|
|
slot = IGF.Builder.CreateBitCast(slot,
|
|
IGF.IGM.TypeMetadataPtrTy->getPointerTo());
|
|
}
|
|
}
|
|
|
|
auto metadata = IGF.Builder.CreateLoad(Address(slot,
|
|
IGF.IGM.getPointerAlignment()));
|
|
metadata->setName(llvm::Twine(object->getName()) + ".metadata");
|
|
return metadata;
|
|
}
|
|
|
|
case IsaEncoding::ObjC: {
|
|
// Feed the object pointer to object_getClass.
|
|
llvm::Value *objcClass = emitLoadOfObjCHeapMetadataRef(IGF, object);
|
|
objcClass = IGF.Builder.CreateBitCast(objcClass, IGF.IGM.TypeMetadataPtrTy);
|
|
return objcClass;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool isKnownNotTaggedPointer(IRGenModule &IGM, ClassDecl *theClass) {
|
|
// For now, assume any class type defined in Clang might be tagged.
|
|
return hasKnownSwiftMetadata(IGM, theClass);
|
|
}
|
|
|
|
/// Given an object of class type, produce the heap metadata reference
|
|
/// as an %objc_class*.
|
|
llvm::Value *irgen::emitHeapMetadataRefForHeapObject(IRGenFunction &IGF,
|
|
llvm::Value *object,
|
|
CanType objectType,
|
|
bool suppressCast) {
|
|
ClassDecl *theClass = objectType.getClassOrBoundGenericClass();
|
|
if (isKnownNotTaggedPointer(IGF.IGM, theClass))
|
|
return emitLoadOfHeapMetadataRef(IGF, object,
|
|
getIsaEncodingForType(IGF.IGM, objectType),
|
|
suppressCast);
|
|
|
|
// OK, ask the runtime for the class pointer of this
|
|
// potentially-ObjC object.
|
|
return emitLoadOfObjCHeapMetadataRef(IGF, object);
|
|
}
|
|
|
|
llvm::Value *irgen::emitHeapMetadataRefForHeapObject(IRGenFunction &IGF,
|
|
llvm::Value *object,
|
|
SILType objectType,
|
|
bool suppressCast) {
|
|
return emitHeapMetadataRefForHeapObject(IGF, object,
|
|
objectType.getSwiftRValueType(),
|
|
suppressCast);
|
|
}
|
|
|
|
/// Given an opaque class instance pointer, produce the type metadata reference
|
|
/// as a %type*.
|
|
llvm::Value *irgen::emitTypeMetadataRefForOpaqueHeapObject(IRGenFunction &IGF,
|
|
llvm::Value *object)
|
|
{
|
|
object = IGF.Builder.CreateBitCast(object, IGF.IGM.ObjCPtrTy);
|
|
auto metadata = IGF.Builder.CreateCall(IGF.IGM.getGetObjectTypeFn(),
|
|
object,
|
|
object->getName() + ".Type");
|
|
metadata->setCallingConv(IGF.IGM.RuntimeCC);
|
|
metadata->setDoesNotThrow();
|
|
metadata->setDoesNotAccessMemory();
|
|
return metadata;
|
|
}
|
|
|
|
/// Given an object of class type, produce the type metadata reference
|
|
/// as a %type*.
|
|
llvm::Value *irgen::emitTypeMetadataRefForHeapObject(IRGenFunction &IGF,
|
|
llvm::Value *object,
|
|
SILType objectType,
|
|
bool suppressCast) {
|
|
// If it is known to have swift metadata, just load.
|
|
if (hasKnownSwiftMetadata(IGF.IGM, objectType.getSwiftRValueType())) {
|
|
return emitLoadOfHeapMetadataRef(IGF, object,
|
|
getIsaEncodingForType(IGF.IGM, objectType.getSwiftRValueType()),
|
|
suppressCast);
|
|
}
|
|
|
|
// Okay, ask the runtime for the type metadata of this
|
|
// potentially-ObjC object.
|
|
return emitTypeMetadataRefForOpaqueHeapObject(IGF, object);
|
|
}
|
|
|
|
/// Given a class metatype, produce the necessary heap metadata
|
|
/// reference. This is generally the metatype pointer, but may
|
|
/// instead be a reference type.
|
|
llvm::Value *irgen::emitClassHeapMetadataRefForMetatype(IRGenFunction &IGF,
|
|
llvm::Value *metatype,
|
|
CanType type) {
|
|
// If the type is known to have Swift metadata, this is trivial.
|
|
if (hasKnownSwiftMetadata(IGF.IGM, type))
|
|
return metatype;
|
|
|
|
// Otherwise, we inline a little operation here.
|
|
|
|
// Load the metatype kind.
|
|
auto metatypeKindAddr =
|
|
Address(IGF.Builder.CreateStructGEP(metatype, 0),
|
|
IGF.IGM.getPointerAlignment());
|
|
auto metatypeKind =
|
|
IGF.Builder.CreateLoad(metatypeKindAddr, metatype->getName() + ".kind");
|
|
|
|
// Compare it with the class wrapper kind.
|
|
auto classWrapperKind =
|
|
llvm::ConstantInt::get(IGF.IGM.MetadataKindTy,
|
|
unsigned(MetadataKind::ObjCClassWrapper));
|
|
auto isObjCClassWrapper =
|
|
IGF.Builder.CreateICmpEQ(metatypeKind, classWrapperKind,
|
|
"isObjCClassWrapper");
|
|
|
|
// Branch based on that.
|
|
llvm::BasicBlock *contBB = IGF.createBasicBlock("metadataForClass.cont");
|
|
llvm::BasicBlock *wrapBB = IGF.createBasicBlock("isWrapper");
|
|
IGF.Builder.CreateCondBr(isObjCClassWrapper, wrapBB, contBB);
|
|
llvm::BasicBlock *origBB = IGF.Builder.GetInsertBlock();
|
|
|
|
// If it's a wrapper, load from the 'Class' field, which is at index 1.
|
|
// TODO: if we guaranteed that this load couldn't crash, we could use
|
|
// a select here instead, which might be profitable.
|
|
IGF.Builder.emitBlock(wrapBB);
|
|
auto classFromWrapper =
|
|
emitLoadFromMetadataAtIndex(IGF, metatype, 1, IGF.IGM.TypeMetadataPtrTy);
|
|
IGF.Builder.CreateBr(contBB);
|
|
|
|
// Continuation block.
|
|
IGF.Builder.emitBlock(contBB);
|
|
auto phi = IGF.Builder.CreatePHI(IGF.IGM.TypeMetadataPtrTy, 2,
|
|
metatype->getName() + ".class");
|
|
phi->addIncoming(metatype, origBB);
|
|
phi->addIncoming(classFromWrapper, wrapBB);
|
|
|
|
return phi;
|
|
}
|
|
|
|
namespace {
|
|
/// A class for finding a protocol witness table for a type argument
|
|
/// in a class metadata object.
|
|
BEGIN_METADATA_SEARCHER_1(FindClassMethodIndex, Class,
|
|
SILDeclRef, TargetMethod)
|
|
void addMethod(SILDeclRef fn) {
|
|
if (TargetMethod == fn)
|
|
setTargetOffset();
|
|
super::addMethod(fn);
|
|
}
|
|
END_METADATA_SEARCHER()
|
|
}
|
|
|
|
/// Provide the abstract parameters for virtual calls to the given method.
|
|
AbstractCallee irgen::getAbstractVirtualCallee(IRGenFunction &IGF,
|
|
FuncDecl *method) {
|
|
// TODO: maybe use better versions in the v-table sometimes?
|
|
ResilienceExpansion bestExplosion = ResilienceExpansion::Minimal;
|
|
unsigned naturalUncurry = method->getNaturalArgumentCount() - 1;
|
|
|
|
return AbstractCallee(AbstractCC::Method, bestExplosion,
|
|
naturalUncurry, naturalUncurry, ExtraData::None);
|
|
}
|
|
|
|
/// Find the function which will actually appear in the virtual table.
|
|
static AbstractFunctionDecl *findOverriddenFunction(
|
|
IRGenModule &IGM,
|
|
AbstractFunctionDecl *method,
|
|
ResilienceExpansion explosionLevel,
|
|
unsigned uncurryLevel) {
|
|
// 'method' is the most final method in the hierarchy which we
|
|
// haven't yet found a compatible override for. 'cur' is the method
|
|
// we're currently looking at. Compatibility is transitive,
|
|
// so we can forget our original method and just keep going up.
|
|
|
|
AbstractFunctionDecl *cur = method;
|
|
while ((cur = cur->getOverriddenDecl())) {
|
|
if (!hasKnownVTableEntry(IGM, cur))
|
|
break;
|
|
method = cur;
|
|
}
|
|
return method;
|
|
}
|
|
|
|
/// Load the correct virtual function for the given class method.
|
|
llvm::Value *irgen::emitVirtualMethodValue(IRGenFunction &IGF,
|
|
llvm::Value *base,
|
|
SILType baseType,
|
|
SILDeclRef method,
|
|
CanSILFunctionType methodType,
|
|
ResilienceExpansion maxExplosion) {
|
|
// FIXME: Support property accessors.
|
|
AbstractFunctionDecl *methodDecl
|
|
= cast<AbstractFunctionDecl>(method.getDecl());
|
|
|
|
// Find the function that's actually got an entry in the metadata.
|
|
AbstractFunctionDecl *overridden =
|
|
findOverriddenFunction(IGF.IGM, methodDecl,
|
|
method.getResilienceExpansion(), method.uncurryLevel);
|
|
|
|
// Find the metadata.
|
|
llvm::Value *metadata;
|
|
if ((isa<FuncDecl>(methodDecl) && cast<FuncDecl>(methodDecl)->isStatic()) ||
|
|
(isa<ConstructorDecl>(methodDecl) &&
|
|
method.kind == SILDeclRef::Kind::Allocator)) {
|
|
metadata = base;
|
|
} else {
|
|
metadata = emitHeapMetadataRefForHeapObject(IGF, base, baseType,
|
|
/*suppress cast*/ true);
|
|
}
|
|
|
|
// Use the type of the method we were type-checked against, not the
|
|
// type of the overridden method.
|
|
llvm::AttributeSet attrs;
|
|
auto fnTy = IGF.IGM.getFunctionType(methodType, method.getResilienceExpansion(),
|
|
ExtraData::None, attrs)->getPointerTo();
|
|
|
|
SILDeclRef fnRef(overridden, method.kind, method.getResilienceExpansion(),
|
|
method.uncurryLevel);
|
|
auto declaringClass = cast<ClassDecl>(overridden->getDeclContext());
|
|
auto index = FindClassMethodIndex(IGF.IGM, declaringClass, fnRef)
|
|
.getTargetIndex();
|
|
|
|
return emitLoadFromMetadataAtIndex(IGF, metadata, index, fnTy);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Foreign types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A CRTP layout class for foreign type metadata.
|
|
template <class Impl>
|
|
class ForeignTypeMetadataLayout {
|
|
protected:
|
|
IRGenModule &IGM;
|
|
Impl &asImpl() { return *static_cast<Impl*>(this); }
|
|
|
|
ForeignTypeMetadataLayout(IRGenModule &IGM) : IGM(IGM) {}
|
|
|
|
public:
|
|
void layout() {
|
|
if (asImpl().requiresInitializationFunction())
|
|
asImpl().addInitializationFunction();
|
|
asImpl().addValueWitnessTable();
|
|
asImpl().noteAddressPoint();
|
|
asImpl().addMetadataFlags();
|
|
asImpl().addForeignName();
|
|
asImpl().addUniquePointer();
|
|
asImpl().addForeignFlags();
|
|
}
|
|
|
|
void addInitializationFunction() {
|
|
llvm_unreachable("should have overridden this method if "
|
|
"you need an initialization function");
|
|
}
|
|
};
|
|
|
|
/// A CRTP layout class for foreign class metadata.
|
|
template <class Impl>
|
|
class ForeignClassMetadataLayout
|
|
: public ForeignTypeMetadataLayout<Impl> {
|
|
using super = ForeignTypeMetadataLayout<Impl>;
|
|
protected:
|
|
ClassDecl *Target;
|
|
using super::asImpl;
|
|
public:
|
|
ForeignClassMetadataLayout(IRGenModule &IGM, ClassDecl *target)
|
|
: super(IGM), Target(target) {}
|
|
|
|
void layout() {
|
|
super::layout();
|
|
asImpl().addSuperClass();
|
|
asImpl().addReservedWord();
|
|
asImpl().addReservedWord();
|
|
asImpl().addReservedWord();
|
|
}
|
|
|
|
bool requiresInitializationFunction() {
|
|
// TODO: superclasses?
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// A builder for ForeignClassMetadata.
|
|
class ForeignClassMetadataBuilder : public ConstantBuilder<
|
|
ForeignClassMetadataLayout<ForeignClassMetadataBuilder>> {
|
|
Size AddressPoint = Size::invalid();
|
|
public:
|
|
ForeignClassMetadataBuilder(IRGenModule &IGM, ClassDecl *target)
|
|
: ConstantBuilder(IGM, target) {}
|
|
|
|
Size getOffsetOfAddressPoint() const { return AddressPoint; }
|
|
|
|
// Visitor methods.
|
|
|
|
void addValueWitnessTable() {
|
|
auto type = IGM.Context.TheUnknownObjectType;
|
|
auto wtable = IGM.getAddrOfValueWitnessTable(type);
|
|
addWord(wtable);
|
|
}
|
|
|
|
void noteAddressPoint() {
|
|
AddressPoint = getNextOffset();
|
|
}
|
|
|
|
void addMetadataFlags() {
|
|
addConstantWord((unsigned) MetadataKind::ForeignClass);
|
|
}
|
|
|
|
void addForeignName() {
|
|
addWord(getMangledTypeName(IGM,
|
|
Target->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
|
|
void addUniquePointer() {
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addForeignFlags() {
|
|
int64_t flags = 0;
|
|
if (requiresInitializationFunction()) flags |= 1;
|
|
addConstantWord(flags);
|
|
}
|
|
|
|
void addSuperClass() {
|
|
// TODO: superclasses
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addReservedWord() {
|
|
addWord(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
}
|
|
};
|
|
}
|
|
|
|
llvm::Constant *
|
|
irgen::emitForeignTypeMetadataInitializer(IRGenModule &IGM, CanType type,
|
|
Size &offsetOfAddressPoint) {
|
|
if (auto classType = dyn_cast<ClassType>(type)) {
|
|
assert(!classType.getParent());
|
|
auto classDecl = classType->getDecl();
|
|
assert(classDecl->isForeign());
|
|
|
|
ForeignClassMetadataBuilder builder(IGM, classDecl);
|
|
builder.layout();
|
|
offsetOfAddressPoint = builder.getOffsetOfAddressPoint();
|
|
return builder.getInit();
|
|
} else {
|
|
llvm_unreachable("foreign type metadata layout for non-class!");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Structs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// An adapter for laying out struct metadata.
|
|
template <class Impl>
|
|
class StructMetadataBuilderBase
|
|
: public ConstantBuilder<StructMetadataLayout<Impl>> {
|
|
using super = ConstantBuilder<StructMetadataLayout<Impl>>;
|
|
|
|
protected:
|
|
using super::IGM;
|
|
using super::Target;
|
|
using super::addConstantWord;
|
|
using super::addWord;
|
|
|
|
StructMetadataBuilderBase(IRGenModule &IGM, StructDecl *theStruct)
|
|
: super(IGM, theStruct) {}
|
|
|
|
public:
|
|
void addMetadataFlags() {
|
|
addWord(getMetadataKind(IGM, MetadataKind::Struct));
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
addWord(StructNominalTypeDescriptorBuilder(IGM, Target).emit());
|
|
}
|
|
|
|
void addParentMetadataRef() {
|
|
// FIXME!
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addFieldOffset(VarDecl *var) {
|
|
assert(var->hasStorage() &&
|
|
"storing field offset for computed property?!");
|
|
SILType structType =
|
|
SILType::getPrimitiveAddressType(
|
|
Target->getDeclaredTypeInContext()->getCanonicalType());
|
|
|
|
llvm::Constant *offset =
|
|
emitPhysicalStructMemberFixedOffset(IGM, structType, var);
|
|
// If we have a fixed offset, add it. Otherwise, leave zero as a
|
|
// placeholder.
|
|
if (offset)
|
|
addWord(offset);
|
|
else
|
|
addConstantWord(0);
|
|
}
|
|
|
|
void addGenericArgument(ArchetypeType *type) {
|
|
addWord(llvm::Constant::getNullValue(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addGenericWitnessTable(ArchetypeType *type, ProtocolDecl *protocol) {
|
|
addWord(llvm::Constant::getNullValue(IGM.WitnessTablePtrTy));
|
|
}
|
|
|
|
llvm::Constant *getInit() {
|
|
return this->getInitWithSuggestedType(NumHeapMetadataFields,
|
|
IGM.FullHeapMetadataStructTy);
|
|
}
|
|
};
|
|
|
|
class StructMetadataBuilder :
|
|
public StructMetadataBuilderBase<StructMetadataBuilder> {
|
|
public:
|
|
StructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct)
|
|
: StructMetadataBuilderBase(IGM, theStruct) {}
|
|
|
|
void addValueWitnessTable() {
|
|
auto type = this->Target->getDeclaredType()->getCanonicalType();
|
|
addWord(emitValueWitnessTable(IGM, type));
|
|
}
|
|
};
|
|
|
|
/// Emit a value witness table for a fixed-layout generic type, or a null
|
|
/// placeholder if the value witness table is dependent on generic parameters.
|
|
/// Returns true if the value witness table is dependent.
|
|
static llvm::Constant *
|
|
getValueWitnessTableForGenericValueType(IRGenModule &IGM,
|
|
NominalTypeDecl *decl,
|
|
bool &dependent) {
|
|
CanType unboundType
|
|
= decl->getDeclaredTypeOfContext()->getCanonicalType();
|
|
|
|
dependent = hasDependentValueWitnessTable(IGM, unboundType);
|
|
if (dependent)
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
else
|
|
return emitValueWitnessTable(IGM, unboundType);
|
|
}
|
|
|
|
/// A builder for metadata templates.
|
|
class GenericStructMetadataBuilder :
|
|
public GenericMetadataBuilderBase<GenericStructMetadataBuilder,
|
|
StructMetadataBuilderBase<GenericStructMetadataBuilder>> {
|
|
|
|
typedef GenericMetadataBuilderBase super;
|
|
|
|
public:
|
|
GenericStructMetadataBuilder(IRGenModule &IGM, StructDecl *theStruct,
|
|
const GenericParamList &structGenerics)
|
|
: super(IGM, structGenerics, theStruct) {}
|
|
|
|
void addValueWitnessTable() {
|
|
addWord(getValueWitnessTableForGenericValueType(IGM, Target,
|
|
HasDependentVWT));
|
|
}
|
|
|
|
void addDependentValueWitnessTablePattern() {
|
|
SmallVector<llvm::Constant*, 20> pattern;
|
|
emitDependentValueWitnessTablePattern(IGM,
|
|
Target->getDeclaredTypeOfContext()->getCanonicalType(),
|
|
pattern);
|
|
for (auto witness: pattern)
|
|
addWord(witness);
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable) {
|
|
emitPolymorphicParametersForGenericValueWitness(IGF, Target, metadata);
|
|
IGM.getTypeInfoForLowered(CanType(Target->getDeclaredTypeInContext()))
|
|
.initializeMetadata(IGF, metadata, vwtable,
|
|
Target->getDeclaredTypeInContext()
|
|
->getCanonicalType());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Emit the type metadata or metadata template for a struct.
|
|
void irgen::emitStructMetadata(IRGenModule &IGM, StructDecl *structDecl) {
|
|
// TODO: structs nested within generic types
|
|
llvm::Constant *init;
|
|
bool isPattern;
|
|
if (auto *generics = structDecl->getGenericParamsOfContext()) {
|
|
GenericStructMetadataBuilder builder(IGM, structDecl, *generics);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = true;
|
|
} else {
|
|
StructMetadataBuilder builder(IGM, structDecl);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = false;
|
|
}
|
|
|
|
// For now, all type metadata is directly stored.
|
|
bool isIndirect = false;
|
|
|
|
CanType declaredType = structDecl->getDeclaredType()->getCanonicalType();
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
IGM.getAddrOfTypeMetadata(declaredType,
|
|
isIndirect, isPattern,
|
|
init->getType()));
|
|
var->setConstant(!isPattern);
|
|
var->setInitializer(init);
|
|
}
|
|
|
|
// Enums
|
|
|
|
namespace {
|
|
|
|
template<class Impl>
|
|
class EnumMetadataBuilderBase
|
|
: public ConstantBuilder<EnumMetadataLayout<Impl>> {
|
|
using super = ConstantBuilder<EnumMetadataLayout<Impl>>;
|
|
|
|
protected:
|
|
using super::IGM;
|
|
using super::Target;
|
|
using super::addWord;
|
|
|
|
public:
|
|
EnumMetadataBuilderBase(IRGenModule &IGM, EnumDecl *theEnum)
|
|
: super(IGM, theEnum) {}
|
|
|
|
void addMetadataFlags() {
|
|
addWord(getMetadataKind(IGM, MetadataKind::Enum));
|
|
}
|
|
|
|
void addNominalTypeDescriptor() {
|
|
// FIXME!
|
|
addWord(EnumNominalTypeDescriptorBuilder(IGM, Target).emit());
|
|
}
|
|
|
|
void addParentMetadataRef() {
|
|
// FIXME!
|
|
addWord(llvm::ConstantPointerNull::get(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addGenericArgument(ArchetypeType *type) {
|
|
addWord(llvm::Constant::getNullValue(IGM.TypeMetadataPtrTy));
|
|
}
|
|
|
|
void addGenericWitnessTable(ArchetypeType *type, ProtocolDecl *protocol) {
|
|
addWord(llvm::Constant::getNullValue(IGM.WitnessTablePtrTy));
|
|
}
|
|
};
|
|
|
|
class EnumMetadataBuilder
|
|
: public EnumMetadataBuilderBase<EnumMetadataBuilder>
|
|
{
|
|
public:
|
|
EnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum)
|
|
: EnumMetadataBuilderBase(IGM, theEnum) {}
|
|
|
|
void addValueWitnessTable() {
|
|
auto type = Target->getDeclaredType()->getCanonicalType();
|
|
addWord(emitValueWitnessTable(IGM, type));
|
|
}
|
|
};
|
|
|
|
class GenericEnumMetadataBuilder
|
|
: public GenericMetadataBuilderBase<GenericEnumMetadataBuilder,
|
|
EnumMetadataBuilderBase<GenericEnumMetadataBuilder>>
|
|
{
|
|
public:
|
|
GenericEnumMetadataBuilder(IRGenModule &IGM, EnumDecl *theEnum,
|
|
const GenericParamList &enumGenerics)
|
|
: GenericMetadataBuilderBase(IGM, enumGenerics, theEnum) {}
|
|
|
|
void addValueWitnessTable() {
|
|
addWord(getValueWitnessTableForGenericValueType(IGM, Target,
|
|
HasDependentVWT));
|
|
}
|
|
|
|
void addDependentValueWitnessTablePattern() {
|
|
SmallVector<llvm::Constant*, 20> pattern;
|
|
emitDependentValueWitnessTablePattern(IGM,
|
|
Target->getDeclaredTypeOfContext()->getCanonicalType(),
|
|
pattern);
|
|
for (auto witness: pattern)
|
|
addWord(witness);
|
|
}
|
|
|
|
void emitInitializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable) {
|
|
emitPolymorphicParametersForGenericValueWitness(IGF, Target, metadata);
|
|
IGM.getTypeInfoForLowered(CanType(Target->getDeclaredTypeInContext()))
|
|
.initializeMetadata(IGF, metadata, vwtable,
|
|
Target->getDeclaredTypeInContext()
|
|
->getCanonicalType());
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
void irgen::emitEnumMetadata(IRGenModule &IGM, EnumDecl *theEnum) {
|
|
// TODO: enums nested inside generic types
|
|
llvm::Constant *init;
|
|
|
|
bool isPattern;
|
|
if (auto *generics = theEnum->getGenericParamsOfContext()) {
|
|
GenericEnumMetadataBuilder builder(IGM, theEnum, *generics);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = true;
|
|
} else {
|
|
EnumMetadataBuilder builder(IGM, theEnum);
|
|
builder.layout();
|
|
init = builder.getInit();
|
|
isPattern = false;
|
|
}
|
|
|
|
// For now, all type metadata is directly stored.
|
|
bool isIndirect = false;
|
|
|
|
CanType declaredType = theEnum->getDeclaredType()->getCanonicalType();
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
IGM.getAddrOfTypeMetadata(declaredType,
|
|
isIndirect, isPattern,
|
|
init->getType()));
|
|
var->setConstant(!isPattern);
|
|
var->setInitializer(init);
|
|
}
|
|
|
|
llvm::Value *IRGenFunction::emitObjCSelectorRefLoad(StringRef selector) {
|
|
llvm::Constant *loadSelRef = IGM.getAddrOfObjCSelectorRef(selector);
|
|
llvm::Value *loadSel =
|
|
Builder.CreateLoad(Address(loadSelRef, IGM.getPointerAlignment()));
|
|
|
|
// When generating JIT'd code, we need to call sel_registerName() to force
|
|
// the runtime to unique the selector. For non-JIT'd code, the linker will
|
|
// do it for us.
|
|
if (IGM.Opts.UseJIT) {
|
|
loadSel = Builder.CreateCall(IGM.getObjCSelRegisterNameFn(), loadSel);
|
|
}
|
|
|
|
return loadSel;
|
|
}
|
|
|
|
// Protocols
|
|
|
|
namespace {
|
|
class ProtocolDescriptorBuilder {
|
|
IRGenModule &IGM;
|
|
ProtocolDecl *Protocol;
|
|
|
|
SmallVector<llvm::Constant*, 8> Fields;
|
|
|
|
public:
|
|
ProtocolDescriptorBuilder(IRGenModule &IGM, ProtocolDecl *protocol)
|
|
: IGM(IGM), Protocol(protocol) {}
|
|
|
|
void layout() {
|
|
addObjCCompatibilityIsa();
|
|
addName();
|
|
addInherited();
|
|
addObjCCompatibilityTables();
|
|
addSize();
|
|
addFlags();
|
|
}
|
|
|
|
llvm::Constant *null() {
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
void addObjCCompatibilityIsa() {
|
|
// The ObjC runtime will drop a reference to its magic Protocol class
|
|
// here.
|
|
Fields.push_back(null());
|
|
}
|
|
|
|
void addName() {
|
|
Fields.push_back(getMangledTypeName(IGM,
|
|
Protocol->getDeclaredType()->getCanonicalType()));
|
|
}
|
|
|
|
void addInherited() {
|
|
// If there are no inherited protocols, produce null.
|
|
auto inherited = Protocol->getProtocols();
|
|
if (inherited.empty()) {
|
|
Fields.push_back(null());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, collect references to all of the inherited protocol
|
|
// descriptors.
|
|
SmallVector<llvm::Constant*, 4> inheritedDescriptors;
|
|
inheritedDescriptors.push_back(IGM.getSize(Size(inherited.size())));
|
|
|
|
for (ProtocolDecl *p : inherited) {
|
|
auto descriptor = IGM.getAddrOfProtocolDescriptor(p, NotForDefinition);
|
|
inheritedDescriptors.push_back(descriptor);
|
|
}
|
|
|
|
auto inheritedInit = llvm::ConstantStruct::getAnon(inheritedDescriptors);
|
|
auto inheritedVar = new llvm::GlobalVariable(IGM.Module,
|
|
inheritedInit->getType(),
|
|
/*isConstant*/ true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
inheritedInit);
|
|
|
|
llvm::Constant *inheritedVarPtr
|
|
= llvm::ConstantExpr::getBitCast(inheritedVar, IGM.Int8PtrTy);
|
|
Fields.push_back(inheritedVarPtr);
|
|
}
|
|
|
|
void addObjCCompatibilityTables() {
|
|
// Required instance methods
|
|
Fields.push_back(null());
|
|
// Required class methods
|
|
Fields.push_back(null());
|
|
// Optional instance methods
|
|
Fields.push_back(null());
|
|
// Optional class methods
|
|
Fields.push_back(null());
|
|
// Properties
|
|
Fields.push_back(null());
|
|
}
|
|
|
|
void addSize() {
|
|
// The number of fields so far in words, plus 4 bytes for size and
|
|
// 4 bytes for flags.
|
|
unsigned sz = (Fields.size() * IGM.getPointerSize()).getValue() + 4 + 4;
|
|
Fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty, sz));
|
|
}
|
|
|
|
void addFlags() {
|
|
// enum : uint32_t {
|
|
// IsSwift = 1U << 0U,
|
|
unsigned flags = 1;
|
|
|
|
// ClassConstraint = 1U << 1U,
|
|
// Set if the protocol is *not* class constrained.
|
|
if (!Protocol->requiresClass())
|
|
flags |= (1U << 1U);
|
|
|
|
// NeedsWitnessTable = 1U << 2U,
|
|
if (requiresProtocolWitnessTable(Protocol))
|
|
flags |= (1U << 2U);
|
|
|
|
// };
|
|
|
|
Fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty, flags));
|
|
}
|
|
|
|
void addValueWitnessTable() {
|
|
// Build a fresh value witness table. FIXME: this is actually
|
|
// unnecessary --- every existential type will have the exact
|
|
// same value witness table.
|
|
CanType type = CanType(Protocol->getDeclaredType());
|
|
Fields.push_back(emitValueWitnessTable(IGM, type));
|
|
}
|
|
|
|
llvm::Constant *getInit() {
|
|
return llvm::ConstantStruct::get(IGM.ProtocolDescriptorStructTy,
|
|
Fields);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit global structures associated with the given protocol. This comprises
|
|
/// the protocol descriptor, and for ObjC interop, references to the descriptor
|
|
/// that the ObjC runtime uses for uniquing.
|
|
void IRGenModule::emitProtocolDecl(ProtocolDecl *protocol) {
|
|
// If the protocol is Objective-C-compatible, go through the path that
|
|
// produces an ObjC-compatible protocol_t.
|
|
if (protocol->isObjC()) {
|
|
// Native ObjC protocols are emitted on-demand in ObjC and uniqued by the
|
|
// runtime; we don't need to try to emit a unique descriptor symbol for them.
|
|
if (protocol->hasClangNode())
|
|
return;
|
|
|
|
getObjCProtocolGlobalVars(protocol);
|
|
return;
|
|
}
|
|
|
|
ProtocolDescriptorBuilder builder(*this, protocol);
|
|
builder.layout();
|
|
auto init = builder.getInit();
|
|
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
getAddrOfProtocolDescriptor(protocol, ForDefinition));
|
|
var->setConstant(true);
|
|
var->setInitializer(init);
|
|
}
|
|
|
|
/// \brief Load a reference to the protocol descriptor for the given protocol.
|
|
///
|
|
/// For Swift protocols, this is a constant reference to the protocol descriptor
|
|
/// symbol.
|
|
/// For ObjC protocols, descriptors are uniqued at runtime by the ObjC runtime.
|
|
/// We need to load the unique reference from a global variable fixed up at
|
|
/// startup.
|
|
llvm::Value *irgen::emitProtocolDescriptorRef(IRGenFunction &IGF,
|
|
ProtocolDecl *protocol) {
|
|
if (!protocol->isObjC())
|
|
return IGF.IGM.getAddrOfProtocolDescriptor(protocol, NotForDefinition);
|
|
|
|
auto refVar = IGF.IGM.getAddrOfObjCProtocolRef(protocol, NotForDefinition);
|
|
llvm::Value *val
|
|
= IGF.Builder.CreateLoad(refVar, IGF.IGM.getPointerAlignment());
|
|
val = IGF.Builder.CreateBitCast(val,
|
|
IGF.IGM.ProtocolDescriptorStructTy->getPointerTo());
|
|
return val;
|
|
}
|