mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Fix up all of type-checking, SILGen, IRGen, and the runtime to support checked casts of metatypes. <rdar://problem/16847453> Swift SVN r17719
4927 lines
190 KiB
C++
4927 lines
190 KiB
C++
//===--- GenProto.cpp - Swift IR Generation for Protocols -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for protocols in Swift.
|
|
//
|
|
// Protocols serve two masters: generic algorithms and existential
|
|
// types. In either case, the size and structure of a type is opaque
|
|
// to the code manipulating a value. Local values of the type must
|
|
// be stored in fixed-size buffers (which can overflow to use heap
|
|
// allocation), and basic operations on the type must be dynamically
|
|
// delegated to a collection of information that "witnesses" the
|
|
// truth that a particular type implements the protocol.
|
|
//
|
|
// In the comments throughout this file, three type names are used:
|
|
// 'B' is the type of a fixed-size buffer
|
|
// 'T' is the type which implements a protocol
|
|
// 'W' is the type of a witness to the protocol
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/CanTypeVisitor.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "CallEmission.h"
|
|
#include "Explosion.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "GenClass.h"
|
|
#include "GenHeap.h"
|
|
#include "GenMeta.h"
|
|
#include "GenOpaque.h"
|
|
#include "GenPoly.h"
|
|
#include "GenType.h"
|
|
#include "HeapTypeInfo.h"
|
|
#include "IndirectTypeInfo.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "Linking.h"
|
|
#include "NecessaryBindings.h"
|
|
#include "NonFixedTypeInfo.h"
|
|
#include "ProtocolInfo.h"
|
|
#include "TypeInfo.h"
|
|
#include "UnownedTypeInfo.h"
|
|
#include "WeakTypeInfo.h"
|
|
|
|
#include "GenProto.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
namespace {
|
|
/// The layout of an existential buffer. This is intended to be a
|
|
/// small, easily-computed type that can be passed around by value.
|
|
class OpaqueExistentialLayout {
|
|
private:
|
|
unsigned NumTables;
|
|
// If you add anything to the layout computation, you might need
|
|
// to update certain uses; check the external uses of getNumTables().
|
|
// For example, getAssignExistentialsFunction relies on being uniqued
|
|
// for different layout kinds.
|
|
|
|
public:
|
|
explicit OpaqueExistentialLayout(unsigned numTables)
|
|
: NumTables(numTables) {}
|
|
|
|
unsigned getNumTables() const { return NumTables; }
|
|
|
|
Size getSize(IRGenModule &IGM) const {
|
|
return getFixedBufferSize(IGM)
|
|
+ IGM.getPointerSize() * (getNumTables() + 1);
|
|
}
|
|
|
|
Alignment getAlignment(IRGenModule &IGM) const {
|
|
return getFixedBufferAlignment(IGM);
|
|
}
|
|
|
|
/*
|
|
friend bool operator==(ExistentialLayout a, ExistentialLayout b) {
|
|
return a.NumTables == b.NumTables;
|
|
}*/
|
|
|
|
/// Given the address of an existential object, drill down to the
|
|
/// buffer.
|
|
Address projectExistentialBuffer(IRGenFunction &IGF, Address addr) const {
|
|
return IGF.Builder.CreateStructGEP(addr, 0, Size(0));
|
|
|
|
}
|
|
|
|
/// Given the address of an existential object, drill down to the
|
|
/// witness-table field.
|
|
Address projectWitnessTable(IRGenFunction &IGF, Address addr,
|
|
unsigned which) const {
|
|
assert(which < getNumTables());
|
|
return IGF.Builder.CreateStructGEP(addr, which + 2,
|
|
getFixedBufferSize(IGF.IGM)
|
|
+ IGF.IGM.getPointerSize() * (which + 1));
|
|
}
|
|
|
|
/// Given the address of an existential object, load its witness table.
|
|
llvm::Value *loadWitnessTable(IRGenFunction &IGF, Address addr,
|
|
unsigned which) const {
|
|
return IGF.Builder.CreateLoad(projectWitnessTable(IGF, addr, which),
|
|
"witness-table");
|
|
}
|
|
|
|
/// Given the address of an existential object, drill down to the
|
|
/// metadata field.
|
|
Address projectMetadataRef(IRGenFunction &IGF, Address addr) {
|
|
return IGF.Builder.CreateStructGEP(addr, 1, getFixedBufferSize(IGF.IGM));
|
|
}
|
|
|
|
/// Given the address of an existential object, load its metadata
|
|
/// object.
|
|
llvm::Value *loadMetadataRef(IRGenFunction &IGF, Address addr) {
|
|
return IGF.Builder.CreateLoad(projectMetadataRef(IGF, addr),
|
|
addr.getAddress()->getName() + ".metadata");
|
|
}
|
|
};
|
|
|
|
/// A concrete witness table, together with its known layout.
|
|
class WitnessTable {
|
|
llvm::Value *Table;
|
|
const ProtocolInfo &Info;
|
|
public:
|
|
WitnessTable(llvm::Value *wtable, const ProtocolInfo &info)
|
|
: Table(wtable), Info(info) {}
|
|
|
|
llvm::Value *getTable() const { return Table; }
|
|
const ProtocolInfo &getInfo() const { return Info; }
|
|
};
|
|
}
|
|
|
|
/// Given the address of an existential object, destroy it.
|
|
static void emitDestroyExistential(IRGenFunction &IGF, Address addr,
|
|
OpaqueExistentialLayout layout) {
|
|
llvm::Value *metadata = layout.loadMetadataRef(IGF, addr);
|
|
|
|
Address object = layout.projectExistentialBuffer(IGF, addr);
|
|
emitDestroyBufferCall(IGF, metadata, object);
|
|
}
|
|
|
|
static llvm::Constant *getAssignExistentialsFunction(IRGenModule &IGM,
|
|
llvm::Type *objectPtrTy,
|
|
OpaqueExistentialLayout layout);
|
|
|
|
namespace {
|
|
|
|
/// A CRTP class for visiting the witnesses of a protocol.
|
|
///
|
|
/// The design here is that each entry (or small group of entries)
|
|
/// gets turned into a call to the implementation class describing
|
|
/// the exact variant of witness. For example, for member
|
|
/// variables, there should be separate callbacks for adding a
|
|
/// getter/setter pair, for just adding a getter, and for adding a
|
|
/// physical projection (if we decide to support that).
|
|
template <class T> class WitnessVisitor {
|
|
protected:
|
|
IRGenModule &IGM;
|
|
|
|
WitnessVisitor(IRGenModule &IGM) : IGM(IGM) {}
|
|
|
|
public:
|
|
void visit(ProtocolDecl *protocol) {
|
|
// Visit inherited protocols.
|
|
// TODO: We need to figure out all the guarantees we want here.
|
|
// It would be abstractly good to allow conversion to a base
|
|
// protocol to be trivial, but it's not clear that there's
|
|
// really a structural guarantee we can rely on here.
|
|
for (auto baseProto : protocol->getProtocols()) {
|
|
// ObjC protocols do not have witnesses.
|
|
if (!requiresProtocolWitnessTable(baseProto))
|
|
continue;
|
|
|
|
asDerived().addOutOfLineBaseProtocol(baseProto);
|
|
}
|
|
|
|
visitMembers(protocol->getMembers());
|
|
}
|
|
|
|
private:
|
|
T &asDerived() { return *static_cast<T*>(this); }
|
|
|
|
/// Visit the witnesses for the direct members of a protocol.
|
|
void visitMembers(DeclRange members) {
|
|
for (Decl *member : members) {
|
|
visitMember(member);
|
|
}
|
|
}
|
|
|
|
void visitMember(Decl *member) {
|
|
switch (member->getKind()) {
|
|
case DeclKind::Import:
|
|
case DeclKind::Extension:
|
|
case DeclKind::TopLevelCode:
|
|
case DeclKind::Enum:
|
|
case DeclKind::Struct:
|
|
case DeclKind::Class:
|
|
case DeclKind::Protocol:
|
|
case DeclKind::EnumCase:
|
|
case DeclKind::EnumElement:
|
|
case DeclKind::Destructor:
|
|
case DeclKind::InfixOperator:
|
|
case DeclKind::PrefixOperator:
|
|
case DeclKind::PostfixOperator:
|
|
case DeclKind::TypeAlias:
|
|
case DeclKind::GenericTypeParam:
|
|
case DeclKind::Param:
|
|
llvm_unreachable("declaration not legal as a protocol member");
|
|
|
|
case DeclKind::PatternBinding:
|
|
// We only care about the var decls in the pattern binding.
|
|
return;
|
|
|
|
// Active members of the IfConfig block are handled separately.
|
|
case DeclKind::IfConfig:
|
|
return;
|
|
|
|
case DeclKind::Func:
|
|
return visitFunc(cast<FuncDecl>(member));
|
|
|
|
case DeclKind::Subscript:
|
|
case DeclKind::Var: {
|
|
auto *SD = cast<AbstractStorageDecl>(member);
|
|
emitFunc(SD->getGetter());
|
|
if (SD->isSettable(member->getDeclContext()))
|
|
emitFunc(SD->getSetter());
|
|
return;
|
|
}
|
|
|
|
case DeclKind::Constructor:
|
|
// Only the allocating entry point gets a witness.
|
|
return asDerived().addConstructor(cast<ConstructorDecl>(member));
|
|
|
|
case DeclKind::AssociatedType:
|
|
return visitAssociatedType(cast<AssociatedTypeDecl>(member));
|
|
}
|
|
llvm_unreachable("bad decl kind");
|
|
}
|
|
|
|
void visitFunc(FuncDecl *func) {
|
|
// Accessors are emitted by their var/subscript declaration.
|
|
if (func->isAccessor())
|
|
return;
|
|
emitFunc(func);
|
|
}
|
|
|
|
void emitFunc(FuncDecl *func) {
|
|
if (func->isStatic()) {
|
|
asDerived().addStaticMethod(func);
|
|
} else {
|
|
asDerived().addInstanceMethod(func);
|
|
}
|
|
}
|
|
|
|
void visitAssociatedType(AssociatedTypeDecl *ty) {
|
|
asDerived().addAssociatedType(ty);
|
|
}
|
|
};
|
|
|
|
/// A class which lays out a witness table in the abstract.
|
|
class WitnessTableLayout : public WitnessVisitor<WitnessTableLayout> {
|
|
unsigned NumWitnesses;
|
|
SmallVector<WitnessTableEntry, 16> Entries;
|
|
|
|
WitnessIndex getNextIndex() {
|
|
return WitnessIndex(NumWitnesses++, /*isPrefix=*/false);
|
|
}
|
|
|
|
public:
|
|
WitnessTableLayout(IRGenModule &IGM)
|
|
: WitnessVisitor(IGM), NumWitnesses(0) {}
|
|
|
|
/// The next witness is an out-of-line base protocol.
|
|
void addOutOfLineBaseProtocol(ProtocolDecl *baseProto) {
|
|
Entries.push_back(
|
|
WitnessTableEntry::forOutOfLineBase(baseProto, getNextIndex()));
|
|
}
|
|
|
|
void addStaticMethod(FuncDecl *func) {
|
|
Entries.push_back(WitnessTableEntry::forFunction(func, getNextIndex()));
|
|
}
|
|
|
|
void addInstanceMethod(FuncDecl *func) {
|
|
Entries.push_back(WitnessTableEntry::forFunction(func, getNextIndex()));
|
|
}
|
|
|
|
void addConstructor(ConstructorDecl *ctor) {
|
|
Entries.push_back(WitnessTableEntry::forFunction(ctor, getNextIndex()));
|
|
}
|
|
|
|
void addAssociatedType(AssociatedTypeDecl *ty) {
|
|
// An associated type takes up a spot for the type metadata and for the
|
|
// witnesses to all its conformances.
|
|
Entries.push_back(
|
|
WitnessTableEntry::forAssociatedType(ty, getNextIndex()));
|
|
NumWitnesses += ty->getProtocols().size();
|
|
}
|
|
|
|
unsigned getNumWitnesses() const { return NumWitnesses; }
|
|
ArrayRef<WitnessTableEntry> getEntries() const { return Entries; }
|
|
};
|
|
|
|
/// A path through a protocol hierarchy.
|
|
class ProtocolPath {
|
|
IRGenModule &IGM;
|
|
|
|
/// The destination protocol.
|
|
ProtocolDecl *Dest;
|
|
|
|
/// The path from the selected origin down to the destination
|
|
/// protocol.
|
|
SmallVector<WitnessIndex, 8> ReversePath;
|
|
|
|
/// The origin index to use.
|
|
unsigned OriginIndex;
|
|
|
|
/// The best path length we found.
|
|
unsigned BestPathLength;
|
|
|
|
public:
|
|
/// Find a path from the given set of origins to the destination
|
|
/// protocol.
|
|
///
|
|
/// T needs to provide a couple of member functions:
|
|
/// ProtocolDecl *getProtocol() const;
|
|
/// const ProtocolInfo &getInfo() const;
|
|
template <class T>
|
|
ProtocolPath(IRGenModule &IGM, ArrayRef<T> origins, ProtocolDecl *dest)
|
|
: IGM(IGM), Dest(dest), BestPathLength(~0U) {
|
|
|
|
// Consider each of the origins in turn, breaking out if any of
|
|
// them yields a zero-length path.
|
|
for (unsigned i = 0, e = origins.size(); i != e; ++i) {
|
|
auto &origin = origins[i];
|
|
if (considerOrigin(origin.getProtocol(), origin.getInfo(), i))
|
|
break;
|
|
}
|
|
|
|
// Sanity check that we actually found a path at all.
|
|
assert(BestPathLength != ~0U);
|
|
assert(BestPathLength == ReversePath.size());
|
|
}
|
|
|
|
/// Returns the index of the origin protocol we chose.
|
|
unsigned getOriginIndex() const { return OriginIndex; }
|
|
|
|
/// Apply the path to the given witness table.
|
|
llvm::Value *apply(IRGenFunction &IGF, llvm::Value *wtable) const {
|
|
for (unsigned i = ReversePath.size(); i != 0; --i) {
|
|
wtable = emitLoadOfOpaqueWitness(IGF, wtable, ReversePath[i-1]);
|
|
wtable = IGF.Builder.CreateBitCast(wtable, IGF.IGM.WitnessTablePtrTy);
|
|
}
|
|
return wtable;
|
|
}
|
|
|
|
private:
|
|
/// Consider paths starting from a new origin protocol.
|
|
/// Returns true if there's no point in considering other origins.
|
|
bool considerOrigin(ProtocolDecl *origin, const ProtocolInfo &originInfo,
|
|
unsigned originIndex) {
|
|
assert(BestPathLength != 0);
|
|
|
|
// If the origin *is* the destination, we can stop here.
|
|
if (origin == Dest) {
|
|
OriginIndex = originIndex;
|
|
BestPathLength = 0;
|
|
ReversePath.clear();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if the origin gives rise to a better path, that's
|
|
// also cool.
|
|
if (findBetterPath(origin, originInfo, 0)) {
|
|
OriginIndex = originIndex;
|
|
return BestPathLength == 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Consider paths starting at the given protocol.
|
|
bool findBetterPath(ProtocolDecl *proto, const ProtocolInfo &protoInfo,
|
|
unsigned lengthSoFar) {
|
|
assert(lengthSoFar < BestPathLength);
|
|
assert(proto != Dest);
|
|
|
|
// Keep track of whether we found a better path than the
|
|
// previous best.
|
|
bool foundBetter = false;
|
|
for (auto base : proto->getProtocols()) {
|
|
auto &baseEntry = protoInfo.getWitnessEntry(base);
|
|
assert(baseEntry.isBase());
|
|
|
|
// Compute the length down to this base.
|
|
unsigned lengthToBase = lengthSoFar;
|
|
if (baseEntry.isOutOfLineBase()) {
|
|
lengthToBase++;
|
|
|
|
// Don't consider this path if we reach a length that can't
|
|
// possibly be better than the best so far.
|
|
if (lengthToBase == BestPathLength) continue;
|
|
}
|
|
assert(lengthToBase < BestPathLength);
|
|
|
|
// If this base *is* the destination, go ahead and start
|
|
// building the path into ReversePath.
|
|
if (base == Dest) {
|
|
// Reset the collected best-path information.
|
|
BestPathLength = lengthToBase;
|
|
ReversePath.clear();
|
|
|
|
// Otherwise, if there isn't a better path through this base,
|
|
// don't accumulate anything in the path.
|
|
} else if (!findBetterPath(base, IGM.getProtocolInfo(base),
|
|
lengthToBase)) {
|
|
continue;
|
|
}
|
|
|
|
// Okay, we've found a better path, and ReversePath contains a
|
|
// path leading from base to Dest.
|
|
assert(BestPathLength >= lengthToBase);
|
|
foundBetter = true;
|
|
|
|
// Add the link from proto to base if necessary.
|
|
if (baseEntry.isOutOfLineBase()) {
|
|
ReversePath.push_back(baseEntry.getOutOfLineBaseIndex());
|
|
|
|
// If it isn't necessary, then we might be able to
|
|
// short-circuit considering the bases of this protocol.
|
|
} else {
|
|
if (lengthSoFar == BestPathLength)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return foundBetter;
|
|
}
|
|
};
|
|
|
|
/// An entry in an existential type's list of known protocols.
|
|
class ProtocolEntry {
|
|
ProtocolDecl *Protocol;
|
|
const ProtocolInfo &Impl;
|
|
|
|
public:
|
|
explicit ProtocolEntry(ProtocolDecl *proto, const ProtocolInfo &impl)
|
|
: Protocol(proto), Impl(impl) {}
|
|
|
|
ProtocolDecl *getProtocol() const { return Protocol; }
|
|
const ProtocolInfo &getInfo() const { return Impl; }
|
|
};
|
|
|
|
/// A TypeInfo implementation for existential types, i.e., types like:
|
|
/// Printable
|
|
/// protocol<Printable, Serializable>
|
|
/// with the semantic translation:
|
|
/// \exists t : Printable . t
|
|
/// t here is an ArchetypeType.
|
|
///
|
|
/// This is used for both ProtocolTypes and ProtocolCompositionTypes.
|
|
class OpaqueExistentialTypeInfo :
|
|
public IndirectTypeInfo<OpaqueExistentialTypeInfo, FixedTypeInfo> {
|
|
unsigned NumProtocols;
|
|
|
|
ProtocolEntry *getProtocolsBuffer() {
|
|
return reinterpret_cast<ProtocolEntry *>(this + 1);
|
|
}
|
|
const ProtocolEntry *getProtocolsBuffer() const {
|
|
return reinterpret_cast<const ProtocolEntry *>(this + 1);
|
|
}
|
|
|
|
// FIXME: We could get spare bits out of the metadata and/or witness
|
|
// pointers.
|
|
OpaqueExistentialTypeInfo(llvm::Type *ty, Size size, Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols)
|
|
: IndirectTypeInfo(ty, size, llvm::BitVector{}, align,
|
|
IsNotPOD,
|
|
// We ensure opaque existentials are always bitwise-
|
|
// takable by storing non-bitwise-takable objects out
|
|
// of line.
|
|
IsBitwiseTakable),
|
|
NumProtocols(protocols.size()) {
|
|
|
|
for (unsigned i = 0; i != NumProtocols; ++i) {
|
|
new (&getProtocolsBuffer()[i]) ProtocolEntry(protocols[i]);
|
|
}
|
|
}
|
|
|
|
public:
|
|
OpaqueExistentialLayout getLayout() const {
|
|
return OpaqueExistentialLayout(NumProtocols);
|
|
}
|
|
|
|
static const OpaqueExistentialTypeInfo *create(llvm::Type *ty, Size size,
|
|
Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols) {
|
|
void *buffer = operator new(sizeof(OpaqueExistentialTypeInfo) +
|
|
protocols.size() * sizeof(ProtocolEntry));
|
|
return new(buffer) OpaqueExistentialTypeInfo(ty, size, align, protocols);
|
|
}
|
|
|
|
/// Returns the protocols that values of this type are known to
|
|
/// implement. This can be empty, meaning that values of this
|
|
/// type are not know to implement any protocols, although we do
|
|
/// still know how to manipulate them.
|
|
ArrayRef<ProtocolEntry> getProtocols() const {
|
|
return ArrayRef<ProtocolEntry>(getProtocolsBuffer(), NumProtocols);
|
|
}
|
|
|
|
/// Given an existential object, find the witness table
|
|
/// corresponding to the given protocol.
|
|
llvm::Value *findWitnessTable(IRGenFunction &IGF, Address obj,
|
|
ProtocolDecl *protocol) const {
|
|
assert(NumProtocols != 0 &&
|
|
"finding a witness table in a trivial existential");
|
|
|
|
ProtocolPath path(IGF.IGM, getProtocols(), protocol);
|
|
llvm::Value *originTable =
|
|
getLayout().loadWitnessTable(IGF, obj, path.getOriginIndex());
|
|
return path.apply(IGF, originTable);
|
|
}
|
|
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
CanType T) const {
|
|
auto objPtrTy = dest.getAddress()->getType();
|
|
auto fn = getAssignExistentialsFunction(IGF.IGM, objPtrTy, getLayout());
|
|
auto call = IGF.Builder.CreateCall2(fn, dest.getAddress(),
|
|
src.getAddress());
|
|
call->setCallingConv(IGF.IGM.RuntimeCC);
|
|
call->setDoesNotThrow();
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
CanType T) const {
|
|
auto layout = getLayout();
|
|
|
|
llvm::Value *metadata = layout.loadMetadataRef(IGF, src);
|
|
IGF.Builder.CreateStore(metadata, layout.projectMetadataRef(IGF, dest));
|
|
|
|
// Load the witness tables and copy them into the new object.
|
|
// Remember one of them for the copy later; it doesn't matter which.
|
|
llvm::Value *wtable = nullptr;
|
|
for (unsigned i = 0, e = layout.getNumTables(); i != e; ++i) {
|
|
llvm::Value *table = layout.loadWitnessTable(IGF, src, i);
|
|
Address destSlot = layout.projectWitnessTable(IGF, dest, i);
|
|
IGF.Builder.CreateStore(table, destSlot);
|
|
|
|
if (i == 0) wtable = table;
|
|
}
|
|
|
|
// Project down to the buffers and ask the witnesses to do a
|
|
// copy-initialize.
|
|
Address srcBuffer = layout.projectExistentialBuffer(IGF, src);
|
|
Address destBuffer = layout.projectExistentialBuffer(IGF, dest);
|
|
emitInitializeBufferWithCopyOfBufferCall(IGF, metadata,
|
|
destBuffer, srcBuffer);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, CanType T) const {
|
|
emitDestroyExistential(IGF, addr, getLayout());
|
|
}
|
|
};
|
|
|
|
/// A type implementation for [weak] existential types.
|
|
class WeakClassExistentialTypeInfo :
|
|
public IndirectTypeInfo<WeakClassExistentialTypeInfo, WeakTypeInfo> {
|
|
unsigned NumProtocols;
|
|
|
|
public:
|
|
WeakClassExistentialTypeInfo(unsigned numProtocols,
|
|
llvm::Type *ty, Size size, Alignment align)
|
|
: IndirectTypeInfo(ty, size, align), NumProtocols(numProtocols) {
|
|
}
|
|
|
|
void emitCopyOfTables(IRGenFunction &IGF, Address dest, Address src) const {
|
|
if (NumProtocols == 0) return;
|
|
|
|
Explosion temp(ResilienceExpansion::Minimal);
|
|
emitLoadOfTables(IGF, src, temp);
|
|
emitStoreOfTables(IGF, temp, dest);
|
|
}
|
|
|
|
void emitLoadOfTables(IRGenFunction &IGF, Address existential,
|
|
Explosion &out) const {
|
|
for (unsigned i = 0; i != NumProtocols; ++i) {
|
|
auto tableAddr = projectWitnessTable(IGF, existential, i);
|
|
out.add(IGF.Builder.CreateLoad(tableAddr));
|
|
}
|
|
}
|
|
|
|
void emitStoreOfTables(IRGenFunction &IGF, Explosion &in,
|
|
Address existential) const {
|
|
for (unsigned i = 0; i != NumProtocols; ++i) {
|
|
auto tableAddr = projectWitnessTable(IGF, existential, i);
|
|
IGF.Builder.CreateStore(in.claimNext(), tableAddr);
|
|
}
|
|
}
|
|
|
|
Address projectWitnessTable(IRGenFunction &IGF, Address container,
|
|
unsigned index) const {
|
|
assert(index < NumProtocols);
|
|
return IGF.Builder.CreateStructGEP(container, index + 1,
|
|
(index + 1) * IGF.IGM.getPointerSize());
|
|
}
|
|
|
|
Address projectValue(IRGenFunction &IGF, Address existential) const {
|
|
return IGF.Builder.CreateStructGEP(existential, 0, Size(0),
|
|
existential.getAddress()->getName() + ".weakref");
|
|
}
|
|
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
CanType T) const {
|
|
Address destValue = projectValue(IGF, dest);
|
|
Address srcValue = projectValue(IGF, dest);
|
|
IGF.emitUnknownWeakCopyAssign(destValue, srcValue);
|
|
emitCopyOfTables(IGF, dest, src);
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
CanType T) const {
|
|
Address destValue = projectValue(IGF, dest);
|
|
Address srcValue = projectValue(IGF, dest);
|
|
IGF.emitUnknownWeakCopyInit(destValue, srcValue);
|
|
emitCopyOfTables(IGF, dest, src);
|
|
}
|
|
|
|
void assignWithTake(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
CanType T) const {
|
|
Address destValue = projectValue(IGF, dest);
|
|
Address srcValue = projectValue(IGF, dest);
|
|
IGF.emitUnknownWeakTakeAssign(destValue, srcValue);
|
|
emitCopyOfTables(IGF, dest, src);
|
|
}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
CanType T) const {
|
|
Address destValue = projectValue(IGF, dest);
|
|
Address srcValue = projectValue(IGF, dest);
|
|
IGF.emitUnknownWeakTakeInit(destValue, srcValue);
|
|
emitCopyOfTables(IGF, dest, src);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address existential,
|
|
CanType T) const {
|
|
Address valueAddr = projectValue(IGF, existential);
|
|
IGF.emitUnknownWeakDestroy(valueAddr);
|
|
}
|
|
|
|
// These explosions must follow the same schema as
|
|
// ClassExistentialTypeInfo, i.e. first the value, then the tables.
|
|
|
|
void weakLoadStrong(IRGenFunction &IGF, Address existential,
|
|
Explosion &out) const override {
|
|
Address valueAddr = projectValue(IGF, existential);
|
|
out.add(IGF.emitUnknownWeakLoadStrong(valueAddr,
|
|
IGF.IGM.UnknownRefCountedPtrTy));
|
|
emitLoadOfTables(IGF, existential, out);
|
|
}
|
|
|
|
void weakTakeStrong(IRGenFunction &IGF, Address existential,
|
|
Explosion &out) const override {
|
|
Address valueAddr = projectValue(IGF, existential);
|
|
out.add(IGF.emitUnknownWeakTakeStrong(valueAddr,
|
|
IGF.IGM.UnknownRefCountedPtrTy));
|
|
emitLoadOfTables(IGF, existential, out);
|
|
}
|
|
|
|
void weakInit(IRGenFunction &IGF, Explosion &in,
|
|
Address existential) const override {
|
|
llvm::Value *value = in.claimNext();
|
|
assert(value->getType() == IGF.IGM.UnknownRefCountedPtrTy);
|
|
emitStoreOfTables(IGF, in, existential);
|
|
Address valueAddr = projectValue(IGF, existential);
|
|
IGF.emitUnknownWeakInit(value, valueAddr);
|
|
}
|
|
|
|
void weakAssign(IRGenFunction &IGF, Explosion &in,
|
|
Address existential) const override {
|
|
llvm::Value *value = in.claimNext();
|
|
assert(value->getType() == IGF.IGM.UnknownRefCountedPtrTy);
|
|
emitStoreOfTables(IGF, in, existential);
|
|
Address valueAddr = projectValue(IGF, existential);
|
|
IGF.emitUnknownWeakAssign(value, valueAddr);
|
|
}
|
|
};
|
|
|
|
/// A helper class for working with existential types that can be
|
|
/// exploded into scalars.
|
|
template <class Derived, class Base>
|
|
class ScalarExistentialTypeInfoBase : public ScalarTypeInfo<Derived, Base> {
|
|
typedef ScalarTypeInfo<Derived, Base> super;
|
|
const Derived &asDerived() const {
|
|
return *static_cast<const Derived*>(this);
|
|
}
|
|
|
|
protected:
|
|
const unsigned NumProtocols;
|
|
|
|
template <class... T>
|
|
ScalarExistentialTypeInfoBase(unsigned numProtos, T &&...args)
|
|
: super(std::forward<T>(args)...), NumProtocols(numProtos) {}
|
|
|
|
public:
|
|
/// The storage type of a class existential is a struct containing
|
|
/// a refcounted pointer to the class instance value followed by
|
|
/// witness table pointers for each conformed-to protocol. Unlike opaque
|
|
/// existentials, a class existential does not need to store type
|
|
/// metadata as an additional element, since it can be derived from the
|
|
/// class instance.
|
|
llvm::StructType *getStorageType() const {
|
|
return cast<llvm::StructType>(TypeInfo::getStorageType());
|
|
}
|
|
|
|
unsigned getNumProtocols() const { return NumProtocols; }
|
|
|
|
unsigned getExplosionSize(ResilienceExpansion kind) const override {
|
|
return 1 + NumProtocols;
|
|
}
|
|
|
|
void getSchema(ExplosionSchema &schema) const override {
|
|
llvm::StructType *ty = getStorageType();
|
|
for (unsigned i = 0; i < 1 + NumProtocols; ++i)
|
|
schema.add(ExplosionSchema::Element::forScalar(ty->getElementType(i)));
|
|
}
|
|
|
|
/// Given the address of a class existential container, returns
|
|
/// the address of a witness table pointer.
|
|
Address projectWitnessTable(IRGenFunction &IGF, Address address,
|
|
unsigned n) const {
|
|
assert(n < NumProtocols && "witness table index out of bounds");
|
|
return IGF.Builder.CreateStructGEP(address, n+1,
|
|
IGF.IGM.getPointerSize() * (n+1));
|
|
}
|
|
|
|
/// Given the address of a class existential container, returns
|
|
/// the address of its instance pointer.
|
|
Address projectValue(IRGenFunction &IGF, Address address) const {
|
|
return IGF.Builder.CreateStructGEP(address, 0, Size(0));
|
|
}
|
|
|
|
llvm::Value *loadValue(IRGenFunction &IGF, Address addr) const {
|
|
return IGF.Builder.CreateLoad(projectValue(IGF, addr));
|
|
}
|
|
|
|
/// Given a class existential container, returns a witness table
|
|
/// pointer out of the container, and the type metadata pointer for the
|
|
/// value.
|
|
llvm::Value *
|
|
getWitnessTable(IRGenFunction &IGF, Explosion &container,
|
|
unsigned which) const {
|
|
assert(which < NumProtocols && "witness table index out of bounds");
|
|
ArrayRef<llvm::Value *> values = container.claim(NumProtocols+1);
|
|
return values[which+1];
|
|
}
|
|
|
|
/// Deconstruct an existential object into witness tables and instance
|
|
/// pointer.
|
|
std::pair<ArrayRef<llvm::Value*>, llvm::Value*>
|
|
getWitnessTablesAndValue(Explosion &container) const {
|
|
llvm::Value *instance = container.claimNext();
|
|
ArrayRef<llvm::Value*> witnesses = container.claim(NumProtocols);
|
|
return {witnesses, instance};
|
|
}
|
|
|
|
/// Given a class existential container, returns the instance
|
|
/// pointer value.
|
|
llvm::Value *getValue(IRGenFunction &IGF, Explosion &container) const {
|
|
llvm::Value *instance = container.claimNext();
|
|
container.claim(NumProtocols);
|
|
return instance;
|
|
}
|
|
|
|
void loadAsCopy(IRGenFunction &IGF, Address address,
|
|
Explosion &out) const override {
|
|
// Load the instance pointer, which is unknown-refcounted.
|
|
llvm::Value *instance
|
|
= IGF.Builder.CreateLoad(projectValue(IGF, address));
|
|
asDerived().emitPayloadRetain(IGF, instance);
|
|
out.add(instance);
|
|
|
|
// Load the witness table pointers.
|
|
for (unsigned i = 0; i < NumProtocols; ++i)
|
|
out.add(IGF.Builder.CreateLoad(projectWitnessTable(IGF, address, i)));
|
|
}
|
|
|
|
void loadAsTake(IRGenFunction &IGF, Address address,
|
|
Explosion &e) const override {
|
|
// Load the instance pointer.
|
|
e.add(IGF.Builder.CreateLoad(projectValue(IGF, address)));
|
|
|
|
// Load the witness table pointers.
|
|
for (unsigned i = 0; i < NumProtocols; ++i)
|
|
e.add(IGF.Builder.CreateLoad(projectWitnessTable(IGF, address, i)));
|
|
}
|
|
|
|
void assign(IRGenFunction &IGF, Explosion &e,
|
|
Address address) const override {
|
|
// Assign the value.
|
|
Address instanceAddr = projectValue(IGF, address);
|
|
llvm::Value *old = IGF.Builder.CreateLoad(instanceAddr);
|
|
IGF.Builder.CreateStore(e.claimNext(), instanceAddr);
|
|
asDerived().emitPayloadRelease(IGF, old);
|
|
|
|
// Store the witness table pointers.
|
|
for (unsigned i = 0; i < NumProtocols; ++i) {
|
|
IGF.Builder.CreateStore(e.claimNext(),
|
|
projectWitnessTable(IGF, address, i));
|
|
}
|
|
}
|
|
|
|
void initialize(IRGenFunction &IGF, Explosion &e,
|
|
Address address) const override {
|
|
// Store the instance pointer.
|
|
IGF.Builder.CreateStore(e.claimNext(),
|
|
projectValue(IGF, address));
|
|
|
|
// Store the witness table pointers.
|
|
for (unsigned i = 0; i < NumProtocols; ++i) {
|
|
IGF.Builder.CreateStore(e.claimNext(),
|
|
projectWitnessTable(IGF, address, i));
|
|
}
|
|
}
|
|
|
|
void copy(IRGenFunction &IGF, Explosion &src, Explosion &dest)
|
|
const override {
|
|
// Copy the instance pointer.
|
|
llvm::Value *value = src.claimNext();
|
|
dest.add(value);
|
|
asDerived().emitPayloadRetain(IGF, value);
|
|
|
|
// Transfer the witness table pointers.
|
|
src.transferInto(dest, NumProtocols);
|
|
}
|
|
|
|
void consume(IRGenFunction &IGF, Explosion &src)
|
|
const override {
|
|
// Copy the instance pointer.
|
|
llvm::Value *value = src.claimNext();
|
|
asDerived().emitPayloadRelease(IGF, value);
|
|
|
|
// Throw out the witness table pointers.
|
|
src.claim(NumProtocols);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, CanType T) const override {
|
|
llvm::Value *value = IGF.Builder.CreateLoad(projectValue(IGF, addr));
|
|
asDerived().emitPayloadRelease(IGF, value);
|
|
}
|
|
|
|
llvm::Value *packEnumPayload(IRGenFunction &IGF,
|
|
Explosion &src,
|
|
unsigned bitWidth,
|
|
unsigned offset) const override {
|
|
PackEnumPayload pack(IGF, bitWidth);
|
|
pack.moveToOffset(offset);
|
|
pack.add(src.claimNext());
|
|
for (unsigned i = 0; i < NumProtocols; ++i)
|
|
pack.add(src.claimNext());
|
|
return pack.get();
|
|
}
|
|
|
|
void unpackEnumPayload(IRGenFunction &IGF,
|
|
llvm::Value *payload,
|
|
Explosion &dest,
|
|
unsigned offset) const override {
|
|
UnpackEnumPayload unpack(IGF, payload);
|
|
unpack.moveToOffset(offset);
|
|
dest.add(unpack.claim(IGF.IGM.UnknownRefCountedPtrTy));
|
|
for (unsigned i = 0; i < NumProtocols; ++i)
|
|
dest.add(unpack.claim(IGF.IGM.WitnessTablePtrTy));
|
|
}
|
|
};
|
|
|
|
/// A type implementation for [unowned] class existential types.
|
|
class UnownedClassExistentialTypeInfo
|
|
: public ScalarExistentialTypeInfoBase<UnownedClassExistentialTypeInfo,
|
|
UnownedTypeInfo> {
|
|
public:
|
|
UnownedClassExistentialTypeInfo(unsigned numTables,
|
|
llvm::Type *ty,
|
|
const llvm::BitVector &spareBits,
|
|
Size size, Alignment align)
|
|
: ScalarExistentialTypeInfoBase(numTables, ty, size, spareBits, align) {}
|
|
|
|
void emitPayloadRetain(IRGenFunction &IGF, llvm::Value *value) const {
|
|
IGF.emitUnknownUnownedRetain(value);
|
|
}
|
|
|
|
void emitPayloadRelease(IRGenFunction &IGF, llvm::Value *value) const {
|
|
IGF.emitUnknownUnownedRelease(value);
|
|
}
|
|
};
|
|
|
|
/// A type implementation for @unowned(unsafe) class existential types.
|
|
class UnmanagedClassExistentialTypeInfo
|
|
: public ScalarExistentialTypeInfoBase<UnmanagedClassExistentialTypeInfo,
|
|
LoadableTypeInfo> {
|
|
public:
|
|
UnmanagedClassExistentialTypeInfo(unsigned numTables,
|
|
llvm::Type *ty,
|
|
const llvm::BitVector &spareBits,
|
|
Size size, Alignment align)
|
|
: ScalarExistentialTypeInfoBase(numTables, ty, size,
|
|
spareBits, align, IsPOD) {}
|
|
|
|
void emitPayloadRetain(IRGenFunction &IGF, llvm::Value *value) const {
|
|
// do nothing
|
|
}
|
|
|
|
void emitPayloadRelease(IRGenFunction &IGF, llvm::Value *value) const {
|
|
// do nothing
|
|
}
|
|
};
|
|
|
|
/// A type info implementation for class existential types, that is,
|
|
/// an existential type known to conform to one or more class protocols.
|
|
/// Class existentials can be represented directly as an aggregation
|
|
/// of a refcounted pointer plus witness tables instead of using an indirect
|
|
/// buffer.
|
|
class ClassExistentialTypeInfo
|
|
: public ScalarExistentialTypeInfoBase<ClassExistentialTypeInfo,
|
|
ReferenceTypeInfo>
|
|
{
|
|
ProtocolEntry *getProtocolsBuffer() {
|
|
return reinterpret_cast<ProtocolEntry *>(this + 1);
|
|
}
|
|
const ProtocolEntry *getProtocolsBuffer() const {
|
|
return reinterpret_cast<const ProtocolEntry *>(this + 1);
|
|
}
|
|
|
|
ClassExistentialTypeInfo(llvm::Type *ty,
|
|
Size size,
|
|
llvm::BitVector &&spareBits,
|
|
Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols)
|
|
: ScalarExistentialTypeInfoBase(protocols.size(), ty, size,
|
|
std::move(spareBits), align)
|
|
{
|
|
for (unsigned i = 0; i != NumProtocols; ++i) {
|
|
new (&getProtocolsBuffer()[i]) ProtocolEntry(protocols[i]);
|
|
}
|
|
}
|
|
|
|
public:
|
|
static const ClassExistentialTypeInfo *
|
|
create(llvm::Type *ty, Size size,
|
|
llvm::BitVector &&spareBits, Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols)
|
|
{
|
|
void *buffer = operator new(sizeof(ClassExistentialTypeInfo) +
|
|
protocols.size() * sizeof(ProtocolEntry));
|
|
return new (buffer) ClassExistentialTypeInfo(ty, size,
|
|
std::move(spareBits),
|
|
align,
|
|
protocols);
|
|
}
|
|
|
|
/// Class existentials are single refcounted pointers if they have no
|
|
/// witness tables. Right now we have no way of constraining an existential
|
|
/// to Swift-refcounted types.
|
|
bool isSingleSwiftRetainablePointer(ResilienceScope scope) const override {
|
|
return false;
|
|
}
|
|
bool isSingleUnknownRetainablePointer(ResilienceScope scope) const override{
|
|
return NumProtocols == 0;
|
|
}
|
|
|
|
/// Returns the protocols that values of this type are known to
|
|
/// implement. This can be empty, meaning that values of this
|
|
/// type are not know to implement any protocols, although we do
|
|
/// still know how to manipulate them.
|
|
ArrayRef<ProtocolEntry> getProtocols() const {
|
|
return ArrayRef<ProtocolEntry>(getProtocolsBuffer(), NumProtocols);
|
|
}
|
|
|
|
/// Given an existential object, find the witness table
|
|
/// corresponding to the given protocol.
|
|
llvm::Value *findWitnessTable(IRGenFunction &IGF,
|
|
Explosion &container,
|
|
ProtocolDecl *protocol) const {
|
|
assert(NumProtocols != 0 &&
|
|
"finding a witness table in a trivial existential");
|
|
|
|
ProtocolPath path(IGF.IGM, getProtocols(), protocol);
|
|
llvm::Value *witness
|
|
= getWitnessTable(IGF, container, path.getOriginIndex());
|
|
return path.apply(IGF, witness);
|
|
}
|
|
|
|
/// Given the witness table vector from an existential object, find the
|
|
/// witness table corresponding to the given protocol.
|
|
llvm::Value *findWitnessTable(IRGenFunction &IGF,
|
|
ArrayRef<llvm::Value *> witnesses,
|
|
ProtocolDecl *protocol) const {
|
|
ProtocolPath path(IGF.IGM, getProtocols(), protocol);
|
|
return path.apply(IGF, witnesses[path.getOriginIndex()]);
|
|
}
|
|
|
|
void retain(IRGenFunction &IGF, Explosion &e) const override {
|
|
// The instance is treated as unknown-refcounted.
|
|
IGF.emitUnknownRetainCall(e.claimNext());
|
|
e.claim(NumProtocols);
|
|
}
|
|
|
|
void release(IRGenFunction &IGF, Explosion &e) const override {
|
|
// The instance is treated as unknown-refcounted.
|
|
IGF.emitUnknownRelease(e.claimNext());
|
|
e.claim(NumProtocols);
|
|
}
|
|
|
|
void retainUnowned(IRGenFunction &IGF, Explosion &e) const override {
|
|
// The instance is treated as unknown-refcounted.
|
|
IGF.emitUnknownRetainUnowned(e.claimNext());
|
|
e.claim(NumProtocols);
|
|
}
|
|
|
|
void unownedRetain(IRGenFunction &IGF, Explosion &e) const override {
|
|
// The instance is treated as unknown-refcounted.
|
|
IGF.emitUnknownUnownedRetain(e.claimNext());
|
|
e.claim(NumProtocols);
|
|
}
|
|
|
|
void unownedRelease(IRGenFunction &IGF, Explosion &e) const override {
|
|
// The instance is treated as unknown-refcounted.
|
|
IGF.emitUnknownUnownedRelease(e.claimNext());
|
|
e.claim(NumProtocols);
|
|
}
|
|
|
|
void emitPayloadRetain(IRGenFunction &IGF, llvm::Value *value) const {
|
|
IGF.emitUnknownRetainCall(value);
|
|
}
|
|
|
|
void emitPayloadRelease(IRGenFunction &IGF, llvm::Value *value) const {
|
|
IGF.emitUnknownRelease(value);
|
|
}
|
|
|
|
const UnownedTypeInfo *
|
|
createUnownedStorageType(TypeConverter &TC) const override {
|
|
// We can just re-use the storage type for the @unowned(safe) type.
|
|
return new UnownedClassExistentialTypeInfo(NumProtocols,
|
|
getStorageType(),
|
|
getSpareBits(),
|
|
getFixedSize(),
|
|
getFixedAlignment());
|
|
}
|
|
|
|
const TypeInfo *
|
|
createUnmanagedStorageType(TypeConverter &TC) const override {
|
|
// We can just re-use the storage type for the @unowned(unsafe) type.
|
|
return new UnmanagedClassExistentialTypeInfo(NumProtocols,
|
|
getStorageType(),
|
|
getSpareBits(),
|
|
getFixedSize(),
|
|
getFixedAlignment());
|
|
}
|
|
|
|
const WeakTypeInfo *
|
|
createWeakStorageType(TypeConverter &TC) const override {
|
|
Size size = TC.IGM.getWeakReferenceSize()
|
|
+ NumProtocols * TC.IGM.getPointerSize();
|
|
|
|
Alignment align = TC.IGM.getWeakReferenceAlignment();
|
|
assert(align == TC.IGM.getPointerAlignment() &&
|
|
"[weak] alignment not pointer alignment; fix existential layout");
|
|
(void)align;
|
|
|
|
// We need to build a new struct for the [weak] type because the weak
|
|
// component is not necessarily pointer-sized.
|
|
SmallVector<llvm::Type*, 8> fieldTys;
|
|
fieldTys.push_back(TC.IGM.WeakReferencePtrTy->getElementType());
|
|
fieldTys.resize(NumProtocols + 1, TC.IGM.WitnessTablePtrTy);
|
|
auto storageTy = llvm::StructType::get(TC.IGM.getLLVMContext(), fieldTys);
|
|
|
|
return new WeakClassExistentialTypeInfo(NumProtocols, storageTy, size,
|
|
TC.IGM.getWeakReferenceAlignment());
|
|
}
|
|
|
|
// Extra inhabitants of class existential containers.
|
|
// We use the heap object extra inhabitants over the class pointer value.
|
|
// We could get even more extra inhabitants from the witness table
|
|
// pointer(s), but it's unlikely we would ever need to.
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
return true;
|
|
}
|
|
|
|
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
|
|
return getHeapObjectExtraInhabitantCount(IGM);
|
|
}
|
|
|
|
llvm::ConstantInt *getFixedExtraInhabitantValue(IRGenModule &IGM,
|
|
unsigned bits,
|
|
unsigned index) const override {
|
|
// We place the extra inhabitant in the class pointer slot.
|
|
auto offset = 0;
|
|
return getHeapObjectFixedExtraInhabitantValue(IGM, bits, index,
|
|
offset);
|
|
}
|
|
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
|
|
CanType T)
|
|
const override {
|
|
// NB: We assume that the witness table slots are zero if an extra
|
|
// inhabitant is stored in the container.
|
|
|
|
src = projectValue(IGF, src);
|
|
return getHeapObjectExtraInhabitantIndex(IGF, src);
|
|
}
|
|
|
|
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
|
|
Address dest, CanType T) const override {
|
|
for (unsigned i = 0; i < NumProtocols; ++i) {
|
|
Address witnessDest = projectWitnessTable(IGF, dest, i);
|
|
IGF.Builder.CreateStore(
|
|
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy),
|
|
witnessDest);
|
|
}
|
|
|
|
Address valueDest = projectValue(IGF, dest);
|
|
storeHeapObjectExtraInhabitant(IGF, index, valueDest);
|
|
}
|
|
};
|
|
|
|
/// Common type implementation details for all archetypes.
|
|
class ArchetypeTypeInfoBase {
|
|
protected:
|
|
unsigned NumProtocols;
|
|
ProtocolEntry *ProtocolsBuffer;
|
|
|
|
ArchetypeTypeInfoBase(void *protocolsBuffer,
|
|
ArrayRef<ProtocolEntry> protocols)
|
|
: NumProtocols(protocols.size()),
|
|
ProtocolsBuffer(reinterpret_cast<ProtocolEntry*>(protocolsBuffer))
|
|
{
|
|
for (unsigned i = 0, e = protocols.size(); i != e; ++i) {
|
|
::new (&ProtocolsBuffer[i]) ProtocolEntry(protocols[i]);
|
|
}
|
|
}
|
|
|
|
public:
|
|
unsigned getNumProtocols() const {
|
|
return NumProtocols;
|
|
}
|
|
|
|
ArrayRef<ProtocolEntry> getProtocols() const {
|
|
return llvm::makeArrayRef(ProtocolsBuffer, getNumProtocols());
|
|
}
|
|
|
|
/// Return the witness table that's been set for this type.
|
|
llvm::Value *getWitnessTable(IRGenFunction &IGF,
|
|
CanArchetypeType archetype,
|
|
unsigned which) const {
|
|
assert(which < getNumProtocols());
|
|
return IGF.getLocalTypeData(archetype, LocalTypeData(which));
|
|
}
|
|
};
|
|
|
|
/// A type implementation for an ArchetypeType, otherwise known as a
|
|
/// type variable: for example, This in a protocol declaration, or T
|
|
/// in a generic declaration like foo<T>(x : T) -> T. The critical
|
|
/// thing here is that performing an operation involving archetypes
|
|
/// is dependent on the witness binding we can see.
|
|
class OpaqueArchetypeTypeInfo
|
|
: public IndirectTypeInfo<OpaqueArchetypeTypeInfo,
|
|
WitnessSizedTypeInfo<OpaqueArchetypeTypeInfo>>,
|
|
public ArchetypeTypeInfoBase
|
|
{
|
|
OpaqueArchetypeTypeInfo(llvm::Type *type,
|
|
ArrayRef<ProtocolEntry> protocols)
|
|
: IndirectTypeInfo(type, Alignment(1), IsNotPOD, IsNotBitwiseTakable),
|
|
ArchetypeTypeInfoBase(this + 1, protocols)
|
|
{}
|
|
|
|
public:
|
|
static const OpaqueArchetypeTypeInfo *create(llvm::Type *type,
|
|
ArrayRef<ProtocolEntry> protocols) {
|
|
void *buffer = operator new(sizeof(OpaqueArchetypeTypeInfo)
|
|
+ protocols.size() * sizeof(ProtocolEntry));
|
|
return ::new (buffer) OpaqueArchetypeTypeInfo(type, protocols);
|
|
}
|
|
|
|
void assignWithCopy(IRGenFunction &IGF, Address dest, Address src,
|
|
CanType T) const {
|
|
emitAssignWithCopyCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress());
|
|
}
|
|
|
|
void assignWithTake(IRGenFunction &IGF, Address dest, Address src,
|
|
CanType T) const {
|
|
emitAssignWithTakeCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress());
|
|
}
|
|
|
|
void initializeWithCopy(IRGenFunction &IGF,
|
|
Address dest, Address src, CanType T) const override {
|
|
emitInitializeWithCopyCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress());
|
|
}
|
|
|
|
void initializeArrayWithCopy(IRGenFunction &IGF,
|
|
Address dest, Address src, llvm::Value *count,
|
|
CanType T) const override {
|
|
emitInitializeArrayWithCopyCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress(), count);
|
|
}
|
|
|
|
void initializeWithTake(IRGenFunction &IGF,
|
|
Address dest, Address src, CanType T) const override {
|
|
emitInitializeWithTakeCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress());
|
|
}
|
|
|
|
void initializeArrayWithTakeFrontToBack(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
llvm::Value *count,
|
|
CanType T) const override {
|
|
emitInitializeArrayWithTakeFrontToBackCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress(), count);
|
|
}
|
|
|
|
void initializeArrayWithTakeBackToFront(IRGenFunction &IGF,
|
|
Address dest, Address src,
|
|
llvm::Value *count,
|
|
CanType T) const override {
|
|
emitInitializeArrayWithTakeBackToFrontCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
dest.getAddress(), src.getAddress(), count);
|
|
}
|
|
|
|
void destroy(IRGenFunction &IGF, Address addr, CanType T) const override {
|
|
emitDestroyCall(IGF, IGF.emitTypeMetadataRef(T), addr.getAddress());
|
|
}
|
|
|
|
void destroyArray(IRGenFunction &IGF, Address addr, llvm::Value *count,
|
|
CanType T) const override {
|
|
emitDestroyArrayCall(IGF, IGF.emitTypeMetadataRef(T),
|
|
addr.getAddress(), count);
|
|
}
|
|
|
|
std::pair<llvm::Value*,llvm::Value*>
|
|
getSizeAndAlignment(IRGenFunction &IGF, CanType T) const {
|
|
llvm::Value *wtable = getValueWitnessTable(IGF, T);
|
|
auto size = emitLoadOfSize(IGF, wtable);
|
|
auto align = emitLoadOfAlignmentMask(IGF, wtable);
|
|
return std::make_pair(size, align);
|
|
}
|
|
|
|
llvm::Value *getSize(IRGenFunction &IGF, CanType T) const {
|
|
llvm::Value *wtable = getValueWitnessTable(IGF, T);
|
|
return emitLoadOfSize(IGF, wtable);
|
|
}
|
|
|
|
llvm::Value *getAlignment(IRGenFunction &IGF, CanType T) const {
|
|
llvm::Value *wtable = getValueWitnessTable(IGF, T);
|
|
return emitLoadOfAlignmentMask(IGF, wtable);
|
|
}
|
|
|
|
llvm::Value *getStride(IRGenFunction &IGF, CanType T) const {
|
|
llvm::Value *wtable = getValueWitnessTable(IGF, T);
|
|
return emitLoadOfStride(IGF, wtable);
|
|
}
|
|
|
|
llvm::Constant *getStaticSize(IRGenModule &IGM) const { return nullptr; }
|
|
llvm::Constant *getStaticAlignment(IRGenModule &IGM) const { return nullptr; }
|
|
llvm::Constant *getStaticStride(IRGenModule &IGM) const { return nullptr; }
|
|
|
|
void initializeMetadata(IRGenFunction &IGF,
|
|
llvm::Value *metadata,
|
|
llvm::Value *vwtable,
|
|
CanType T) const override {
|
|
// Archetypes always refer to an existing type. A witness table should
|
|
// never be independently initialized for one.
|
|
llvm_unreachable("initializing value witness table for archetype?!");
|
|
}
|
|
|
|
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
|
|
return true;
|
|
}
|
|
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF,
|
|
Address src,
|
|
CanType T) const override {
|
|
auto metadata = IGF.emitTypeMetadataRef(T);
|
|
return emitGetExtraInhabitantIndexCall(IGF, metadata, src.getAddress());
|
|
}
|
|
void storeExtraInhabitant(IRGenFunction &IGF,
|
|
llvm::Value *index,
|
|
Address dest,
|
|
CanType T) const override {
|
|
auto metadata = IGF.emitTypeMetadataRef(T);
|
|
emitStoreExtraInhabitantCall(IGF, metadata, index, dest.getAddress());
|
|
}
|
|
};
|
|
|
|
/// A type implementation for a class archetype, that is, an archetype
|
|
/// bounded by a class protocol constraint. These archetypes can be
|
|
/// represented by a refcounted pointer instead of an opaque value buffer.
|
|
/// We use an unknown-refcounted pointer in order to allow ObjC or Swift
|
|
/// classes to conform to the type variable.
|
|
class ClassArchetypeTypeInfo
|
|
: public HeapTypeInfo<ClassArchetypeTypeInfo>,
|
|
public ArchetypeTypeInfoBase
|
|
{
|
|
ReferenceCounting RefCount;
|
|
|
|
ClassArchetypeTypeInfo(llvm::PointerType *storageType,
|
|
Size size, llvm::BitVector spareBits,
|
|
Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols,
|
|
ReferenceCounting refCount)
|
|
: HeapTypeInfo(storageType, size, spareBits, align),
|
|
ArchetypeTypeInfoBase(this + 1, protocols),
|
|
RefCount(refCount)
|
|
{}
|
|
|
|
public:
|
|
static const ClassArchetypeTypeInfo *create(llvm::PointerType *storageType,
|
|
Size size, llvm::BitVector spareBits,
|
|
Alignment align,
|
|
ArrayRef<ProtocolEntry> protocols,
|
|
ReferenceCounting refCount) {
|
|
void *buffer = operator new(sizeof(ClassArchetypeTypeInfo)
|
|
+ protocols.size() * sizeof(ProtocolEntry));
|
|
return ::new (buffer)
|
|
ClassArchetypeTypeInfo(storageType, size, spareBits, align,
|
|
protocols, refCount);
|
|
}
|
|
|
|
ReferenceCounting getReferenceCounting() const {
|
|
return RefCount;
|
|
}
|
|
};
|
|
|
|
/// Return the ArchetypeTypeInfoBase information from the TypeInfo for any
|
|
/// archetype.
|
|
static const ArchetypeTypeInfoBase &
|
|
getArchetypeInfo(IRGenFunction &IGF, CanArchetypeType t, const TypeInfo &ti) {
|
|
if (t->requiresClass())
|
|
return ti.as<ClassArchetypeTypeInfo>();
|
|
return ti.as<OpaqueArchetypeTypeInfo>();
|
|
}
|
|
}
|
|
|
|
static void setMetadataRef(IRGenFunction &IGF,
|
|
ArchetypeType *archetype,
|
|
llvm::Value *metadata) {
|
|
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
|
|
IGF.setUnscopedLocalTypeData(CanType(archetype),
|
|
LocalTypeData::Metatype,
|
|
metadata);
|
|
|
|
// Create a shadow copy of the metadata in an alloca for the debug info.
|
|
StringRef Name = metadata->getName();
|
|
if (IGF.IGM.Opts.OptLevel == 0) {
|
|
auto Alloca = IGF.createAlloca(metadata->getType(),
|
|
IGF.IGM.getPointerAlignment(), Name);
|
|
IGF.Builder.CreateAlignedStore(metadata, Alloca.getAddress(),
|
|
IGF.IGM.getPointerAlignment().getValue());
|
|
metadata = Alloca.getAddress();
|
|
}
|
|
|
|
// Emit debug info for the metadata.
|
|
if (IGF.IGM.DebugInfo)
|
|
IGF.IGM.DebugInfo->emitTypeMetadata(IGF, metadata, Name);
|
|
}
|
|
|
|
static void setWitnessTable(IRGenFunction &IGF,
|
|
ArchetypeType *archetype,
|
|
unsigned protocolIndex,
|
|
llvm::Value *wtable) {
|
|
assert(wtable->getType() == IGF.IGM.WitnessTablePtrTy);
|
|
assert(protocolIndex < archetype->getConformsTo().size());
|
|
IGF.setUnscopedLocalTypeData(CanType(archetype),
|
|
LocalTypeData(protocolIndex),
|
|
wtable);
|
|
}
|
|
|
|
/// Detail about how an object conforms to a protocol.
|
|
class irgen::ConformanceInfo {
|
|
friend class ProtocolInfo;
|
|
public:
|
|
virtual ~ConformanceInfo() {}
|
|
virtual llvm::Value *getTable(IRGenFunction &IGF) const = 0;
|
|
/// Try to get this table as a constant pointer. This might just
|
|
/// not be supportable at all.
|
|
virtual llvm::Constant *tryGetConstantTable(IRGenModule &IGM) const = 0;
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// Conformance info for a witness table that can be directly generated.
|
|
class DirectConformanceInfo : public ConformanceInfo {
|
|
friend class ProtocolInfo;
|
|
|
|
const NormalProtocolConformance *RootConformance;
|
|
public:
|
|
DirectConformanceInfo(const NormalProtocolConformance *C)
|
|
: RootConformance(C) {}
|
|
|
|
llvm::Value *getTable(IRGenFunction &IGF) const override {
|
|
return IGF.IGM.getAddrOfWitnessTable(RootConformance);
|
|
}
|
|
|
|
llvm::Constant *tryGetConstantTable(IRGenModule &IGM) const override {
|
|
return IGM.getAddrOfWitnessTable(RootConformance);
|
|
}
|
|
};
|
|
|
|
} //end anonymous namespace
|
|
|
|
static bool isNeverAllocated(FixedPacking packing) {
|
|
switch (packing) {
|
|
case FixedPacking::OffsetZero: return true;
|
|
case FixedPacking::Allocate: return false;
|
|
case FixedPacking::Dynamic: return false;
|
|
}
|
|
llvm_unreachable("bad FixedPacking value");
|
|
}
|
|
|
|
namespace {
|
|
/// An operation to be peformed for various kinds of packing.
|
|
struct DynamicPackingOperation {
|
|
virtual ~DynamicPackingOperation() = default;
|
|
|
|
/// Emit the operation at a concrete packing kind.
|
|
///
|
|
/// Immediately after this call, there will be an unconditional
|
|
/// branch to the continuation block.
|
|
virtual void emitForPacking(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing) = 0;
|
|
|
|
/// Given that we are currently at the beginning of the
|
|
/// continuation block, complete the operation.
|
|
virtual void complete(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type) = 0;
|
|
};
|
|
|
|
/// A class for merging a particular kind of value across control flow.
|
|
template <class T> class DynamicPackingPHIMapping;
|
|
|
|
/// An implementation of DynamicPackingPHIMapping for a single LLVM value.
|
|
template <> class DynamicPackingPHIMapping<llvm::Value*> {
|
|
llvm::PHINode *PHI = nullptr;
|
|
public:
|
|
void collect(IRGenFunction &IGF, CanType T,
|
|
const TypeInfo &type, llvm::Value *value) {
|
|
// Add the result to the phi, creating it (unparented) if necessary.
|
|
if (!PHI) PHI = llvm::PHINode::Create(value->getType(), 2,
|
|
"dynamic-packing.result");
|
|
PHI->addIncoming(value, IGF.Builder.GetInsertBlock());
|
|
}
|
|
void complete(IRGenFunction &IGF, CanType T, const TypeInfo &type) {
|
|
assert(PHI);
|
|
IGF.Builder.Insert(PHI);
|
|
}
|
|
llvm::Value *get(IRGenFunction &IGF, CanType T, const TypeInfo &type) {
|
|
assert(PHI);
|
|
return PHI;
|
|
}
|
|
};
|
|
|
|
/// An implementation of DynamicPackingPHIMapping for Addresses.
|
|
template <> class DynamicPackingPHIMapping<Address>
|
|
: private DynamicPackingPHIMapping<llvm::Value*> {
|
|
typedef DynamicPackingPHIMapping<llvm::Value*> super;
|
|
public:
|
|
void collect(IRGenFunction &IGF, CanType T,
|
|
const TypeInfo &type, Address value) {
|
|
super::collect(IGF, T, type, value.getAddress());
|
|
}
|
|
void complete(IRGenFunction &IGF, CanType T,
|
|
const TypeInfo &type) {
|
|
super::complete(IGF, T, type);
|
|
}
|
|
Address get(IRGenFunction &IGF, CanType T, const TypeInfo &type) {
|
|
return type.getAddressForPointer(super::get(IGF, T, type));
|
|
}
|
|
};
|
|
|
|
/// An implementation of packing operations based around a lambda.
|
|
template <class ResultTy, class FnTy>
|
|
class LambdaDynamicPackingOperation : public DynamicPackingOperation {
|
|
FnTy Fn;
|
|
DynamicPackingPHIMapping<ResultTy> Mapping;
|
|
public:
|
|
explicit LambdaDynamicPackingOperation(FnTy &&fn) : Fn(fn) {}
|
|
void emitForPacking(IRGenFunction &IGF, CanType T, const TypeInfo &type,
|
|
FixedPacking packing) override {
|
|
Mapping.collect(IGF, T, type, Fn(IGF, T, type, packing));
|
|
}
|
|
|
|
void complete(IRGenFunction &IGF, CanType T,
|
|
const TypeInfo &type) override {
|
|
Mapping.complete(IGF, T, type);
|
|
}
|
|
|
|
ResultTy get(IRGenFunction &IGF, CanType T, const TypeInfo &type) {
|
|
return Mapping.get(IGF, T, type);
|
|
}
|
|
};
|
|
|
|
/// A partial specialization for lambda-based packing operations
|
|
/// that return 'void'.
|
|
template <class FnTy>
|
|
class LambdaDynamicPackingOperation<void, FnTy>
|
|
: public DynamicPackingOperation {
|
|
FnTy Fn;
|
|
public:
|
|
explicit LambdaDynamicPackingOperation(FnTy &&fn) : Fn(fn) {}
|
|
void emitForPacking(IRGenFunction &IGF, CanType T, const TypeInfo &type,
|
|
FixedPacking packing) override {
|
|
Fn(IGF, T, type, packing);
|
|
}
|
|
void complete(IRGenFunction &IGF, CanType T,
|
|
const TypeInfo &type) override {}
|
|
void get(IRGenFunction &IGF, CanType T, const TypeInfo &type) {}
|
|
};
|
|
}
|
|
|
|
/// Dynamic check for the enabling conditions of different kinds of
|
|
/// packing into a fixed-size buffer, and perform an operation at each
|
|
/// of them.
|
|
static void emitDynamicPackingOperation(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
DynamicPackingOperation &operation) {
|
|
llvm::Value *size = type.getSize(IGF, T);
|
|
llvm::Value *alignMask = type.getAlignmentMask(IGF, T);
|
|
|
|
auto indirectBB = IGF.createBasicBlock("dynamic-packing.indirect");
|
|
auto directBB = IGF.createBasicBlock("dynamic-packing.direct");
|
|
auto contBB = IGF.createBasicBlock("dynamic-packing.cont");
|
|
|
|
// Check whether the type is either over-sized or over-aligned.
|
|
// Note that, since alignof(FixedBuffer) is a power of 2 and
|
|
// alignMask is one less than one, alignMask > alignof(FixedBuffer)
|
|
// is equivalent to alignMask+1 > alignof(FixedBuffer).
|
|
auto bufferSize = IGF.IGM.getSize(getFixedBufferSize(IGF.IGM));
|
|
auto oversize = IGF.Builder.CreateICmpUGT(size, bufferSize, "oversized");
|
|
auto bufferAlign = IGF.IGM.getSize(getFixedBufferAlignment(IGF.IGM).asSize());
|
|
auto overalign = IGF.Builder.CreateICmpUGT(alignMask, bufferAlign, "overaligned");
|
|
|
|
// Branch.
|
|
llvm::Value *cond = IGF.Builder.CreateOr(oversize, overalign, "indirect");
|
|
IGF.Builder.CreateCondBr(cond, indirectBB, directBB);
|
|
|
|
// Emit the indirect path.
|
|
IGF.Builder.emitBlock(indirectBB);
|
|
operation.emitForPacking(IGF, T, type, FixedPacking::Allocate);
|
|
IGF.Builder.CreateBr(contBB);
|
|
|
|
// Emit the direct path.
|
|
IGF.Builder.emitBlock(directBB);
|
|
operation.emitForPacking(IGF, T, type, FixedPacking::OffsetZero);
|
|
IGF.Builder.CreateBr(contBB);
|
|
|
|
// Enter the continuation block and add the PHI if required.
|
|
IGF.Builder.emitBlock(contBB);
|
|
operation.complete(IGF, T, type);
|
|
}
|
|
|
|
/// A helper function for creating a lambda-based DynamicPackingOperation.
|
|
template <class ResultTy, class FnTy>
|
|
LambdaDynamicPackingOperation<ResultTy, FnTy>
|
|
makeLambdaDynamicPackingOperation(FnTy &&fn) {
|
|
return LambdaDynamicPackingOperation<ResultTy, FnTy>(std::move(fn));
|
|
}
|
|
|
|
/// Perform an operation on a type that requires dynamic packing.
|
|
template <class ResultTy, class... ArgTys>
|
|
static ResultTy emitForDynamicPacking(IRGenFunction &IGF,
|
|
ResultTy (*fn)(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
ArgTys... args),
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
// using enable_if to block template argument deduction
|
|
typename std::enable_if<true,ArgTys>::type... args) {
|
|
auto operation = makeLambdaDynamicPackingOperation<ResultTy>(
|
|
[&](IRGenFunction &IGF, CanType T, const TypeInfo &type, FixedPacking packing) {
|
|
return fn(IGF, T, type, packing, args...);
|
|
});
|
|
emitDynamicPackingOperation(IGF, T, type, operation);
|
|
return operation.get(IGF, T, type);
|
|
}
|
|
|
|
/// Emit a 'projectBuffer' operation. Always returns a T*.
|
|
static Address emitProjectBuffer(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
llvm::PointerType *resultTy = type.getStorageType()->getPointerTo();
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
Address slot = IGF.Builder.CreateBitCast(buffer, resultTy->getPointerTo(),
|
|
"storage-slot");
|
|
llvm::Value *address = IGF.Builder.CreateLoad(slot);
|
|
return type.getAddressForPointer(address);
|
|
}
|
|
|
|
case FixedPacking::OffsetZero: {
|
|
return IGF.Builder.CreateBitCast(buffer, resultTy, "object");
|
|
}
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitProjectBuffer, T, type, buffer);
|
|
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
|
|
}
|
|
|
|
/// Emit an 'allocateBuffer' operation. Always returns a T*.
|
|
static Address emitAllocateBuffer(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
auto sizeAndAlign = type.getSizeAndAlignmentMask(IGF, T);
|
|
llvm::Value *addr =
|
|
IGF.emitAllocRawCall(sizeAndAlign.first, sizeAndAlign.second);
|
|
buffer = IGF.Builder.CreateBitCast(buffer, IGF.IGM.Int8PtrPtrTy);
|
|
IGF.Builder.CreateStore(addr, buffer);
|
|
|
|
addr = IGF.Builder.CreateBitCast(addr,
|
|
type.getStorageType()->getPointerTo());
|
|
return type.getAddressForPointer(addr);
|
|
}
|
|
|
|
case FixedPacking::OffsetZero:
|
|
return emitProjectBuffer(IGF, T, type, packing, buffer);
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitAllocateBuffer, T, type, buffer);
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
}
|
|
|
|
/// Emit a 'deallocateBuffer' operation.
|
|
static void emitDeallocateBuffer(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
Address slot =
|
|
IGF.Builder.CreateBitCast(buffer, IGF.IGM.Int8PtrPtrTy);
|
|
llvm::Value *addr = IGF.Builder.CreateLoad(slot, "storage");
|
|
IGF.emitDeallocRawCall(addr, type.getSize(IGF, T));
|
|
return;
|
|
}
|
|
|
|
case FixedPacking::OffsetZero:
|
|
return;
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitDeallocateBuffer, T, type, buffer);
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
}
|
|
|
|
/// Emit a 'destroyBuffer' operation.
|
|
static void emitDestroyBuffer(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
// Special-case dynamic packing in order to thread the jumps.
|
|
if (packing == FixedPacking::Dynamic)
|
|
return emitForDynamicPacking(IGF, &emitDestroyBuffer, T, type, buffer);
|
|
|
|
Address object = emitProjectBuffer(IGF, T, type, packing, buffer);
|
|
type.destroy(IGF, object, T);
|
|
emitDeallocateBuffer(IGF, T, type, packing, buffer);
|
|
}
|
|
|
|
/// Emit an 'initializeWithCopy' operation.
|
|
static void emitInitializeWithCopy(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
Address dest, Address src) {
|
|
type.initializeWithCopy(IGF, dest, src, T);
|
|
}
|
|
|
|
/// Emit an 'initializeWithTake' operation.
|
|
static void emitInitializeWithTake(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
Address dest, Address src) {
|
|
type.initializeWithTake(IGF, dest, src, T);
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithCopyOfBuffer' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithCopyOfBuffer(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address src) {
|
|
// Special-case dynamic packing in order to thread the jumps.
|
|
if (packing == FixedPacking::Dynamic)
|
|
return emitForDynamicPacking(IGF, &emitInitializeBufferWithCopyOfBuffer,
|
|
T, type, dest, src);
|
|
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
Address srcObject = emitProjectBuffer(IGF, T, type, packing, src);
|
|
emitInitializeWithCopy(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithCopy' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithCopy(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address srcObject) {
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
emitInitializeWithCopy(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithTake' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithTake(IRGenFunction &IGF,
|
|
CanType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address srcObject) {
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
emitInitializeWithTake(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
static llvm::Value *getArg(llvm::Function::arg_iterator &it,
|
|
StringRef name) {
|
|
llvm::Value *arg = it++;
|
|
arg->setName(name);
|
|
return arg;
|
|
}
|
|
|
|
/// Get the next argument as a pointer to the given storage type.
|
|
static Address getArgAs(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
const TypeInfo &type,
|
|
StringRef name) {
|
|
llvm::Value *arg = getArg(it, name);
|
|
llvm::Value *result =
|
|
IGF.Builder.CreateBitCast(arg, type.getStorageType()->getPointerTo());
|
|
return type.getAddressForPointer(result);
|
|
}
|
|
|
|
/// Get the next argument as a pointer to the given storage type.
|
|
static Address getArgAsBuffer(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
StringRef name) {
|
|
llvm::Value *arg = getArg(it, name);
|
|
return Address(arg, getFixedBufferAlignment(IGF.IGM));
|
|
}
|
|
|
|
/// Get the next argument and use it as the 'self' type metadata.
|
|
static void getArgAsLocalSelfTypeMetadata(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
CanType abstractType);
|
|
|
|
/// Build a value witness that initializes an array front-to-back.
|
|
static void emitInitializeArrayFrontToBack(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator argv,
|
|
CanType abstractType,
|
|
CanType concreteType,
|
|
const TypeInfo &type,
|
|
void (*emitInitializeElement)(IRGenFunction &,
|
|
CanType,
|
|
const TypeInfo &,
|
|
Address,
|
|
Address)) {
|
|
auto &IGM = IGF.IGM;
|
|
|
|
Address destArray = getArgAs(IGF, argv, type, "dest");
|
|
Address srcArray = getArgAs(IGF, argv, type, "src");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto entry = IGF.Builder.GetInsertBlock();
|
|
auto iter = IGF.createBasicBlock("iter");
|
|
auto loop = IGF.createBasicBlock("loop");
|
|
auto exit = IGF.createBasicBlock("exit");
|
|
IGF.Builder.CreateBr(iter);
|
|
IGF.Builder.emitBlock(iter);
|
|
|
|
auto counter = IGF.Builder.CreatePHI(IGM.SizeTy, 2);
|
|
counter->addIncoming(count, entry);
|
|
auto destVal = IGF.Builder.CreatePHI(destArray.getType(), 2);
|
|
destVal->addIncoming(destArray.getAddress(), entry);
|
|
auto srcVal = IGF.Builder.CreatePHI(srcArray.getType(), 2);
|
|
srcVal->addIncoming(srcArray.getAddress(), entry);
|
|
Address dest(destVal, destArray.getAlignment());
|
|
Address src(srcVal, srcArray.getAlignment());
|
|
|
|
auto done = IGF.Builder.CreateICmpEQ(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 0));
|
|
IGF.Builder.CreateCondBr(done, exit, loop);
|
|
|
|
IGF.Builder.emitBlock(loop);
|
|
emitInitializeElement(IGF, concreteType, type, dest, src);
|
|
|
|
auto nextCounter = IGF.Builder.CreateSub(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1));
|
|
auto nextDest = type.indexArray(IGF, dest,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1),
|
|
concreteType);
|
|
auto nextSrc = type.indexArray(IGF, src,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1),
|
|
concreteType);
|
|
auto loopEnd = IGF.Builder.GetInsertBlock();
|
|
counter->addIncoming(nextCounter, loopEnd);
|
|
destVal->addIncoming(nextDest.getAddress(), loopEnd);
|
|
srcVal->addIncoming(nextSrc.getAddress(), loopEnd);
|
|
IGF.Builder.CreateBr(iter);
|
|
|
|
IGF.Builder.emitBlock(exit);
|
|
destArray = IGF.Builder.CreateBitCast(destArray, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(destArray.getAddress());
|
|
}
|
|
|
|
/// Build a value witness that initializes an array back-to-front.
|
|
static void emitInitializeArrayBackToFront(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator argv,
|
|
CanType abstractType,
|
|
CanType concreteType,
|
|
const TypeInfo &type,
|
|
void (*emitInitializeElement)(IRGenFunction &,
|
|
CanType,
|
|
const TypeInfo &,
|
|
Address,
|
|
Address))
|
|
{
|
|
auto &IGM = IGF.IGM;
|
|
|
|
Address destArray = getArgAs(IGF, argv, type, "dest");
|
|
Address srcArray = getArgAs(IGF, argv, type, "src");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto destEnd = type.indexArray(IGF, destArray, count, concreteType);
|
|
auto srcEnd = type.indexArray(IGF, destArray, count, concreteType);
|
|
|
|
auto entry = IGF.Builder.GetInsertBlock();
|
|
auto iter = IGF.createBasicBlock("iter");
|
|
auto loop = IGF.createBasicBlock("loop");
|
|
auto exit = IGF.createBasicBlock("exit");
|
|
IGF.Builder.CreateBr(iter);
|
|
IGF.Builder.emitBlock(iter);
|
|
|
|
auto counter = IGF.Builder.CreatePHI(IGM.SizeTy, 2);
|
|
counter->addIncoming(count, entry);
|
|
auto destVal = IGF.Builder.CreatePHI(destEnd.getType(), 2);
|
|
destVal->addIncoming(destArray.getAddress(), entry);
|
|
auto srcVal = IGF.Builder.CreatePHI(srcEnd.getType(), 2);
|
|
srcVal->addIncoming(srcArray.getAddress(), entry);
|
|
Address dest(destVal, destArray.getAlignment());
|
|
Address src(srcVal, srcArray.getAlignment());
|
|
|
|
auto done = IGF.Builder.CreateICmpEQ(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 0));
|
|
IGF.Builder.CreateCondBr(done, exit, loop);
|
|
|
|
IGF.Builder.emitBlock(loop);
|
|
auto prevDest = type.indexArray(IGF, dest,
|
|
llvm::ConstantInt::getSigned(IGM.SizeTy, -1),
|
|
concreteType);
|
|
auto prevSrc = type.indexArray(IGF, src,
|
|
llvm::ConstantInt::getSigned(IGM.SizeTy, -1),
|
|
concreteType);
|
|
|
|
emitInitializeElement(IGF, concreteType, type, prevDest, prevSrc);
|
|
|
|
auto nextCounter = IGF.Builder.CreateSub(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1));
|
|
auto loopEnd = IGF.Builder.GetInsertBlock();
|
|
counter->addIncoming(nextCounter, loopEnd);
|
|
destVal->addIncoming(prevDest.getAddress(), loopEnd);
|
|
srcVal->addIncoming(prevSrc.getAddress(), loopEnd);
|
|
IGF.Builder.CreateBr(iter);
|
|
|
|
IGF.Builder.emitBlock(exit);
|
|
destArray = IGF.Builder.CreateBitCast(destArray, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(destArray.getAddress());
|
|
}
|
|
|
|
/// Build a specific value-witness function.
|
|
static void buildValueWitnessFunction(IRGenModule &IGM,
|
|
llvm::Function *fn,
|
|
ValueWitness index,
|
|
FixedPacking packing,
|
|
CanType abstractType,
|
|
CanType concreteType,
|
|
const TypeInfo &type) {
|
|
assert(isValueWitnessFunction(index));
|
|
|
|
IRGenFunction IGF(IGM, fn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, fn);
|
|
|
|
auto argv = fn->arg_begin();
|
|
switch (index) {
|
|
case ValueWitness::AllocateBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
Address result = emitAllocateBuffer(IGF, concreteType, type, packing, buffer);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::AssignWithCopy: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.assignWithCopy(IGF, dest, src, concreteType);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::AssignWithTake: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.assignWithTake(IGF, dest, src, concreteType);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DeallocateBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
emitDeallocateBuffer(IGF, concreteType, type, packing, buffer);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::Destroy: {
|
|
Address object = getArgAs(IGF, argv, type, "object");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.destroy(IGF, object, concreteType);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DestroyArray: {
|
|
Address array = getArgAs(IGF, argv, type, "array");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto entry = IGF.Builder.GetInsertBlock();
|
|
auto iter = IGF.createBasicBlock("iter");
|
|
auto loop = IGF.createBasicBlock("loop");
|
|
auto exit = IGF.createBasicBlock("exit");
|
|
IGF.Builder.CreateBr(iter);
|
|
IGF.Builder.emitBlock(iter);
|
|
|
|
auto counter = IGF.Builder.CreatePHI(IGM.SizeTy, 2);
|
|
counter->addIncoming(count, entry);
|
|
auto elementVal = IGF.Builder.CreatePHI(array.getType(), 2);
|
|
elementVal->addIncoming(array.getAddress(), entry);
|
|
Address element(elementVal, array.getAlignment());
|
|
|
|
auto done = IGF.Builder.CreateICmpEQ(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 0));
|
|
IGF.Builder.CreateCondBr(done, exit, loop);
|
|
|
|
IGF.Builder.emitBlock(loop);
|
|
type.destroy(IGF, element, concreteType);
|
|
auto nextCounter = IGF.Builder.CreateSub(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1));
|
|
auto nextElement = type.indexArray(IGF, element,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1),
|
|
concreteType);
|
|
auto loopEnd = IGF.Builder.GetInsertBlock();
|
|
counter->addIncoming(nextCounter, loopEnd);
|
|
elementVal->addIncoming(nextElement.getAddress(), loopEnd);
|
|
IGF.Builder.CreateBr(iter);
|
|
|
|
IGF.Builder.emitBlock(exit);
|
|
IGF.Builder.CreateRetVoid();
|
|
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DestroyBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
emitDestroyBuffer(IGF, concreteType, type, packing, buffer);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithCopyOfBuffer: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAsBuffer(IGF, argv, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithCopyOfBuffer(IGF, concreteType,
|
|
type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithCopy: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithCopy(IGF, concreteType, type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithTake: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithTake(IGF, concreteType, type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeWithCopy: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeWithCopy(IGF, concreteType, type, dest, src);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithCopy: {
|
|
emitInitializeArrayFrontToBack(IGF, argv, abstractType, concreteType,
|
|
type, emitInitializeWithCopy);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeWithTake: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeWithTake(IGF, concreteType, type, dest, src);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithTakeFrontToBack: {
|
|
emitInitializeArrayFrontToBack(IGF, argv, abstractType, concreteType,
|
|
type, emitInitializeWithTake);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithTakeBackToFront: {
|
|
emitInitializeArrayBackToFront(IGF, argv, abstractType, concreteType,
|
|
type, emitInitializeWithTake);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::ProjectBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result = emitProjectBuffer(IGF, concreteType, type, packing, buffer);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::TypeOf: {
|
|
// Only existentials need bespoke typeof witnesses, which are instantiated
|
|
// by the runtime.
|
|
llvm_unreachable("should always be able to use a standard typeof witness "
|
|
"from the runtime");
|
|
}
|
|
|
|
case ValueWitness::StoreExtraInhabitant: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
llvm::Value *index = getArg(argv, "index");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
type.storeExtraInhabitant(IGF, index, dest, concreteType);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::GetExtraInhabitantIndex: {
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
llvm::Value *idx = type.getExtraInhabitantIndex(IGF, src, concreteType);
|
|
IGF.Builder.CreateRet(idx);
|
|
return;
|
|
}
|
|
|
|
// TODO
|
|
case ValueWitness::GetEnumTag:
|
|
case ValueWitness::InplaceProjectEnumData: {
|
|
IGF.Builder.CreateUnreachable();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::Size:
|
|
case ValueWitness::Flags:
|
|
case ValueWitness::Stride:
|
|
case ValueWitness::ExtraInhabitantFlags:
|
|
llvm_unreachable("these value witnesses aren't functions");
|
|
}
|
|
llvm_unreachable("bad value witness kind!");
|
|
}
|
|
|
|
static llvm::Constant *asOpaquePtr(IRGenModule &IGM, llvm::Constant *in) {
|
|
return llvm::ConstantExpr::getBitCast(in, IGM.Int8PtrTy);
|
|
}
|
|
|
|
/// Should we be defining the given helper function?
|
|
static llvm::Function *shouldDefineHelper(IRGenModule &IGM,
|
|
llvm::Constant *fn) {
|
|
llvm::Function *def = dyn_cast<llvm::Function>(fn);
|
|
if (!def) return nullptr;
|
|
if (!def->empty()) return nullptr;
|
|
|
|
def->setLinkage(llvm::Function::LinkOnceODRLinkage);
|
|
def->setVisibility(llvm::Function::HiddenVisibility);
|
|
def->setDoesNotThrow();
|
|
def->setCallingConv(IGM.RuntimeCC);
|
|
return def;
|
|
}
|
|
|
|
/// Return a function which performs an assignment operation on two
|
|
/// existentials.
|
|
///
|
|
/// Existential types are nominal, so we potentially need to cast the
|
|
/// function to the appropriate object-pointer type.
|
|
static llvm::Constant *getAssignExistentialsFunction(IRGenModule &IGM,
|
|
llvm::Type *objectPtrTy,
|
|
OpaqueExistentialLayout layout) {
|
|
llvm::Type *argTys[] = { objectPtrTy, objectPtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.VoidTy, argTys, false);
|
|
|
|
// __swift_assign_existentials_N is the well-known function for
|
|
// assigning existential types with N witness tables.
|
|
llvm::SmallString<40> fnName;
|
|
llvm::raw_svector_ostream(fnName)
|
|
<< "__swift_assign_existentials_" << layout.getNumTables();
|
|
llvm::Constant *fn = IGM.Module.getOrInsertFunction(fnName, fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, getFixedBufferAlignment(IGM));
|
|
Address src(it++, getFixedBufferAlignment(IGM));
|
|
|
|
// If doing a self-assignment, we're done.
|
|
llvm::BasicBlock *doneBB = IGF.createBasicBlock("done");
|
|
llvm::BasicBlock *contBB = IGF.createBasicBlock("cont");
|
|
llvm::Value *isSelfAssign =
|
|
IGF.Builder.CreateICmpEQ(dest.getAddress(), src.getAddress(),
|
|
"isSelfAssign");
|
|
IGF.Builder.CreateCondBr(isSelfAssign, doneBB, contBB);
|
|
|
|
// Project down to the buffers.
|
|
IGF.Builder.emitBlock(contBB);
|
|
Address destBuffer = layout.projectExistentialBuffer(IGF, dest);
|
|
Address srcBuffer = layout.projectExistentialBuffer(IGF, src);
|
|
|
|
// Load the metadata tables.
|
|
Address destMetadataSlot = layout.projectMetadataRef(IGF, dest);
|
|
llvm::Value *destMetadata = IGF.Builder.CreateLoad(destMetadataSlot);
|
|
llvm::Value *srcMetadata = layout.loadMetadataRef(IGF, src);
|
|
|
|
// Check whether the metadata match.
|
|
llvm::BasicBlock *matchBB = IGF.createBasicBlock("match");
|
|
llvm::BasicBlock *noMatchBB = IGF.createBasicBlock("no-match");
|
|
llvm::Value *sameMetadata =
|
|
IGF.Builder.CreateICmpEQ(destMetadata, srcMetadata, "sameMetadata");
|
|
IGF.Builder.CreateCondBr(sameMetadata, matchBB, noMatchBB);
|
|
|
|
{ // (scope to avoid contaminating other branches with these values)
|
|
|
|
// If so, do a direct assignment.
|
|
IGF.Builder.emitBlock(matchBB);
|
|
|
|
llvm::Value *destObject =
|
|
emitProjectBufferCall(IGF, destMetadata, destBuffer);
|
|
llvm::Value *srcObject =
|
|
emitProjectBufferCall(IGF, destMetadata, srcBuffer);
|
|
emitAssignWithCopyCall(IGF, destMetadata, destObject, srcObject);
|
|
IGF.Builder.CreateBr(doneBB);
|
|
}
|
|
|
|
// Otherwise, destroy and copy-initialize.
|
|
// TODO: should we copy-initialize and then destroy? That's
|
|
// possible if we copy aside, which is a small expense but
|
|
// always safe. Otherwise the destroy (which can invoke user code)
|
|
// could see invalid memory at this address. These are basically
|
|
// the madnesses that boost::variant has to go through, with the
|
|
// advantage of address-invariance.
|
|
IGF.Builder.emitBlock(noMatchBB);
|
|
|
|
// Store the metadata ref.
|
|
IGF.Builder.CreateStore(srcMetadata, destMetadataSlot);
|
|
|
|
// Store the protocol witness tables.
|
|
unsigned numTables = layout.getNumTables();
|
|
for (unsigned i = 0, e = numTables; i != e; ++i) {
|
|
Address destTableSlot = layout.projectWitnessTable(IGF, dest, i);
|
|
llvm::Value *srcTable = layout.loadWitnessTable(IGF, src, i);
|
|
|
|
// Overwrite the old witness table.
|
|
IGF.Builder.CreateStore(srcTable, destTableSlot);
|
|
}
|
|
|
|
// Destroy the old value.
|
|
emitDestroyBufferCall(IGF, destMetadata, destBuffer);
|
|
|
|
// Copy-initialize with the new value. Again, pull a value
|
|
// witness table from the source metadata if we can't use a
|
|
// protocol witness table.
|
|
emitInitializeBufferWithCopyOfBufferCall(IGF, srcMetadata,
|
|
destBuffer, srcBuffer);
|
|
IGF.Builder.CreateBr(doneBB);
|
|
|
|
// All done.
|
|
IGF.Builder.emitBlock(doneBB);
|
|
IGF.Builder.CreateRetVoid();
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and returns
|
|
/// void immediately.
|
|
static llvm::Constant *getNoOpVoidFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.VoidTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_noop_void_return", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
llvm::BasicBlock *entry =
|
|
llvm::BasicBlock::Create(IGM.getLLVMContext(), "entry", def);
|
|
IRBuilder B(IGM.getLLVMContext());
|
|
B.SetInsertPoint(entry);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(*IGM.SILMod, B, def);
|
|
B.CreateRetVoid();
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and returns
|
|
/// the first one immediately.
|
|
static llvm::Constant *getReturnSelfFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.Int8PtrTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_noop_self_return", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
llvm::BasicBlock *entry =
|
|
llvm::BasicBlock::Create(IGM.getLLVMContext(), "entry", def);
|
|
IRBuilder B(IGM.getLLVMContext());
|
|
B.SetInsertPoint(entry);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(*IGM.SILMod, B, def);
|
|
B.CreateRet(def->arg_begin());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining assignWithCopy on the first two: it loads a pointer from
|
|
/// the second, retains it, loads a pointer from the first, stores the
|
|
/// new pointer in the first, and releases the old pointer.
|
|
static llvm::Constant *getAssignWithCopyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(ptrPtrTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_assignWithCopy_strong", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
IGF.emitRetainCall(newValue);
|
|
llvm::Value *oldValue = IGF.Builder.CreateLoad(dest, "old");
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
IGF.emitRelease(oldValue);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining assignWithTake on the first two: it loads a pointer from
|
|
/// the second, retains it, loads a pointer from the first, stores the
|
|
/// new pointer in the first, and releases the old pointer.
|
|
static llvm::Constant *getAssignWithTakeStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(ptrPtrTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_assignWithTake_strong", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
llvm::Value *oldValue = IGF.Builder.CreateLoad(dest, "old");
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
IGF.emitRelease(oldValue);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining initWithCopy on the first two: it loads a pointer from
|
|
/// the second, retains it, and stores that in the first.
|
|
static llvm::Constant *getInitWithCopyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(ptrPtrTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_initWithCopy_strong", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
IGF.emitRetainCall(newValue);
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments, loads a
|
|
/// pointer from the first, and calls swift_release on it immediately.
|
|
static llvm::Constant *getDestroyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrPtrTy, IGM.WitnessTablePtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.VoidTy, argTys, false);
|
|
llvm::Constant *fn =
|
|
IGM.Module.getOrInsertFunction("__swift_destroy_strong", fnTy);
|
|
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
Address arg(def->arg_begin(), IGM.getPointerAlignment());
|
|
IGF.emitRelease(IGF.Builder.CreateLoad(arg));
|
|
IGF.Builder.CreateRetVoid();
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments, memcpys
|
|
/// from the second to the first, and returns the first argument.
|
|
static llvm::Constant *getMemCpyFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.Int8PtrTy, argTys, false);
|
|
|
|
// If we don't have a fixed type, use the standard copy-opaque-POD
|
|
// routine. It's not quite clear how in practice we'll be able to
|
|
// conclude that something is known-POD without knowing its size,
|
|
// but it's (1) conceivable and (2) needed as a general export anyway.
|
|
auto *fixedTI = dyn_cast<FixedTypeInfo>(&objectTI);
|
|
if (!fixedTI) return IGM.getCopyPODFn();
|
|
|
|
// We need to unique by both size and alignment. Note that we're
|
|
// assuming that it's safe to call a function that returns a pointer
|
|
// at a site that assumes the function returns void.
|
|
llvm::SmallString<40> name;
|
|
{
|
|
llvm::raw_svector_ostream nameStream(name);
|
|
nameStream << "__swift_memcpy";
|
|
nameStream << fixedTI->getFixedSize().getValue();
|
|
nameStream << '_';
|
|
nameStream << fixedTI->getFixedAlignment().getValue();
|
|
}
|
|
|
|
llvm::Constant *fn = IGM.Module.getOrInsertFunction(name, fnTy);
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, fixedTI->getFixedAlignment());
|
|
Address src(it++, fixedTI->getFixedAlignment());
|
|
IGF.emitMemCpy(dest, src, fixedTI->getFixedSize());
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
namespace {
|
|
enum class MemMoveOrCpy { MemMove, MemCpy };
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and a count, memmoves
|
|
/// or memcpys from the second to the first, and returns the first argument.
|
|
static llvm::Constant *getMemOpArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI,
|
|
MemMoveOrCpy kind) {
|
|
llvm::Type *argTys[] = {
|
|
IGM.Int8PtrTy, IGM.Int8PtrTy, IGM.SizeTy,
|
|
IGM.TypeMetadataPtrTy
|
|
};
|
|
llvm::FunctionType *fnTy =
|
|
llvm::FunctionType::get(IGM.Int8PtrTy, argTys, false);
|
|
|
|
// TODO: Add a copyPODArray runtime entry point for bitwise-takable but non-
|
|
// fixed-size types. Currently only fixed-layout types should be known
|
|
// bitwise-takable.
|
|
auto &fixedTI = cast<FixedTypeInfo>(objectTI);
|
|
|
|
// We need to unique by both size and alignment. Note that we're
|
|
// assuming that it's safe to call a function that returns a pointer
|
|
// at a site that assumes the function returns void.
|
|
llvm::SmallString<40> name;
|
|
{
|
|
llvm::raw_svector_ostream nameStream(name);
|
|
switch (kind) {
|
|
case MemMoveOrCpy::MemCpy:
|
|
nameStream << "__swift_memcpy_array";
|
|
break;
|
|
case MemMoveOrCpy::MemMove:
|
|
nameStream << "__swift_memmove_array";
|
|
break;
|
|
}
|
|
nameStream << fixedTI.getFixedStride().getValue();
|
|
nameStream << '_';
|
|
nameStream << fixedTI.getFixedAlignment().getValue();
|
|
}
|
|
|
|
llvm::Constant *fn = IGM.Module.getOrInsertFunction(name, fnTy);
|
|
if (llvm::Function *def = shouldDefineHelper(IGM, fn)) {
|
|
IRGenFunction IGF(IGM, def);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, def);
|
|
|
|
auto it = def->arg_begin();
|
|
Address dest(it++, fixedTI.getFixedAlignment());
|
|
Address src(it++, fixedTI.getFixedAlignment());
|
|
llvm::Value *count = it++;
|
|
llvm::Value *stride
|
|
= llvm::ConstantInt::get(IGM.SizeTy, fixedTI.getFixedStride().getValue());
|
|
llvm::Value *totalCount = IGF.Builder.CreateNUWMul(count, stride);
|
|
switch (kind) {
|
|
case MemMoveOrCpy::MemMove:
|
|
IGF.Builder.CreateMemMove(dest.getAddress(), src.getAddress(), totalCount,
|
|
fixedTI.getFixedAlignment().getValue());
|
|
break;
|
|
case MemMoveOrCpy::MemCpy:
|
|
IGF.Builder.CreateMemCpy(dest.getAddress(), src.getAddress(), totalCount,
|
|
fixedTI.getFixedAlignment().getValue());
|
|
break;
|
|
}
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
}
|
|
return fn;
|
|
}
|
|
|
|
static llvm::Constant *getMemMoveArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
return getMemOpArrayFunction(IGM, objectTI, MemMoveOrCpy::MemMove);
|
|
}
|
|
static llvm::Constant *getMemCpyArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
return getMemOpArrayFunction(IGM, objectTI, MemMoveOrCpy::MemCpy);
|
|
}
|
|
|
|
/// Find a witness to the fact that a type is a value type.
|
|
/// Always returns an i8*.
|
|
static llvm::Constant *getValueWitness(IRGenModule &IGM,
|
|
ValueWitness index,
|
|
FixedPacking packing,
|
|
CanType abstractType,
|
|
CanType concreteType,
|
|
const TypeInfo &concreteTI) {
|
|
// Try to use a standard function.
|
|
switch (index) {
|
|
case ValueWitness::DeallocateBuffer:
|
|
if (isNeverAllocated(packing))
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
goto standard;
|
|
|
|
case ValueWitness::DestroyBuffer:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
if (isNeverAllocated(packing))
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
assert(isNeverAllocated(packing));
|
|
return asOpaquePtr(IGM, getDestroyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::Destroy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getDestroyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::DestroyArray:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
}
|
|
// TODO: A standard "destroy strong array" entrypoint for arrays of single
|
|
// refcounted pointer types.
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeBufferWithCopyOfBuffer:
|
|
case ValueWitness::InitializeBufferWithCopy:
|
|
if (packing == FixedPacking::OffsetZero) {
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getInitWithCopyStrongFunction(IGM));
|
|
}
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeBufferWithTake:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)
|
|
&& packing == FixedPacking::OffsetZero)
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeWithTake:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithTakeFrontToBack:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemMoveArrayFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithTakeBackToFront:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemMoveArrayFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::AssignWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getAssignWithCopyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::AssignWithTake:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getAssignWithTakeStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getInitWithCopyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyArrayFunction(IGM, concreteTI));
|
|
}
|
|
// TODO: A standard "copy strong array" entrypoint for arrays of single
|
|
// refcounted pointer types.
|
|
goto standard;
|
|
|
|
case ValueWitness::AllocateBuffer:
|
|
case ValueWitness::ProjectBuffer:
|
|
if (packing == FixedPacking::OffsetZero)
|
|
return asOpaquePtr(IGM, getReturnSelfFunction(IGM));
|
|
goto standard;
|
|
|
|
case ValueWitness::TypeOf:
|
|
/// Class types require dynamic type lookup.
|
|
if (ClassDecl *cd = concreteType.getClassOrBoundGenericClass()) {
|
|
if (hasKnownSwiftMetadata(IGM, cd))
|
|
return asOpaquePtr(IGM, IGM.getObjectTypeofFn());
|
|
return asOpaquePtr(IGM, IGM.getObjCTypeofFn());
|
|
} else if (!concreteType.isAnyExistentialType()) {
|
|
// Other non-existential types have static metadata.
|
|
return asOpaquePtr(IGM, IGM.getStaticTypeofFn());
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::Size: {
|
|
if (auto value = concreteTI.getStaticSize(IGM))
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
|
|
// Just fill in null here if the type can't be statically laid out.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::Flags: {
|
|
// If we locally know that the type has fixed layout, we can emit
|
|
// meaningful flags for it.
|
|
if (auto *fixedTI = dyn_cast<FixedTypeInfo>(&concreteTI)) {
|
|
uint64_t flags = fixedTI->getFixedAlignment().getValue() - 1;
|
|
if (!fixedTI->isPOD(ResilienceScope::Local))
|
|
flags |= ValueWitnessFlags::IsNonPOD;
|
|
assert(packing == FixedPacking::OffsetZero ||
|
|
packing == FixedPacking::Allocate);
|
|
if (packing != FixedPacking::OffsetZero)
|
|
flags |= ValueWitnessFlags::IsNonInline;
|
|
|
|
if (fixedTI->getFixedExtraInhabitantCount(IGM) > 0)
|
|
flags |= ValueWitnessFlags::Enum_HasExtraInhabitants;
|
|
|
|
if (!fixedTI->isBitwiseTakable(ResilienceScope::Local))
|
|
flags |= ValueWitnessFlags::IsNonBitwiseTakable;
|
|
|
|
auto value = IGM.getSize(Size(flags));
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
}
|
|
|
|
// Just fill in null here if the type can't be statically laid out.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::Stride: {
|
|
if (auto value = concreteTI.getStaticStride(IGM))
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
|
|
// Just fill in null here if the type can't be statically laid out.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::StoreExtraInhabitant:
|
|
case ValueWitness::GetExtraInhabitantIndex: {
|
|
assert(concreteTI.mayHaveExtraInhabitants(IGM));
|
|
|
|
goto standard;
|
|
}
|
|
|
|
case ValueWitness::ExtraInhabitantFlags: {
|
|
assert(concreteTI.mayHaveExtraInhabitants(IGM));
|
|
|
|
// If we locally know that the type has fixed layout, we can emit
|
|
// meaningful flags for it.
|
|
if (auto *fixedTI = dyn_cast<FixedTypeInfo>(&concreteTI)) {
|
|
uint64_t numExtraInhabitants = fixedTI->getFixedExtraInhabitantCount(IGM);
|
|
assert(numExtraInhabitants <= ExtraInhabitantFlags::NumExtraInhabitantsMask);
|
|
auto value = IGM.getSize(Size(numExtraInhabitants));
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
}
|
|
|
|
// Otherwise, just fill in null here if the type can't be statically
|
|
// queried for extra inhabitants.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
/// TODO:
|
|
case ValueWitness::GetEnumTag:
|
|
case ValueWitness::InplaceProjectEnumData:
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
llvm_unreachable("bad value witness kind");
|
|
|
|
standard:
|
|
llvm::Function *fn =
|
|
IGM.getAddrOfValueWitness(abstractType, index, ForDefinition);
|
|
if (fn->empty())
|
|
buildValueWitnessFunction(IGM, fn, index, packing, abstractType,
|
|
concreteType, concreteTI);
|
|
return asOpaquePtr(IGM, fn);
|
|
}
|
|
|
|
static void emitPolymorphicArgumentsWithInput(IRGenFunction &IGF,
|
|
CanSILFunctionType origFnType,
|
|
CanType substInputType,
|
|
ArrayRef<Substitution> subs,
|
|
Explosion &out);
|
|
|
|
namespace {
|
|
/// A class which lays out a specific conformance to a protocol.
|
|
class WitnessTableBuilder : public WitnessVisitor<WitnessTableBuilder> {
|
|
SmallVectorImpl<llvm::Constant*> &Table;
|
|
CanType ConcreteType;
|
|
GenericParamList *ConcreteGenerics = nullptr;
|
|
const TypeInfo &ConcreteTI;
|
|
const ProtocolConformance &Conformance;
|
|
ArrayRef<Substitution> Substitutions;
|
|
ArrayRef<SILWitnessTable::Entry> SILEntries;
|
|
|
|
void computeSubstitutionsForType() {
|
|
// FIXME: This is a bit of a hack; the AST doesn't directly encode
|
|
// substitutions for the conformance of a generic type to a
|
|
// protocol, so we have to dig them out.
|
|
Type ty = ConcreteType;
|
|
while (ty) {
|
|
if (auto nomTy = ty->getAs<NominalType>())
|
|
ty = nomTy->getParent();
|
|
else
|
|
break;
|
|
}
|
|
if (ty) {
|
|
if (auto boundTy = ty->getAs<BoundGenericType>()) {
|
|
ConcreteGenerics = boundTy->getDecl()->getGenericParams();
|
|
Substitutions = boundTy->getSubstitutions(/*FIXME:*/nullptr, nullptr);
|
|
} else {
|
|
assert(!ty || !ty->isSpecialized());
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
WitnessTableBuilder(IRGenModule &IGM,
|
|
SmallVectorImpl<llvm::Constant*> &table,
|
|
SILWitnessTable *SILWT)
|
|
: WitnessVisitor(IGM), Table(table),
|
|
ConcreteType(SILWT->getConformance()->getType()->getCanonicalType()),
|
|
ConcreteTI(
|
|
IGM.getTypeInfoForUnlowered(SILWT->getConformance()->getType())),
|
|
Conformance(*SILWT->getConformance()),
|
|
SILEntries(SILWT->getEntries())
|
|
{
|
|
computeSubstitutionsForType();
|
|
}
|
|
|
|
/// A base protocol is witnessed by a pointer to the conformance
|
|
/// of this type to that protocol.
|
|
void addOutOfLineBaseProtocol(ProtocolDecl *baseProto) {
|
|
auto &entry = SILEntries.front();
|
|
(void)entry;
|
|
assert(entry.getKind() == SILWitnessTable::BaseProtocol
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getBaseProtocolWitness().Requirement == baseProto
|
|
&& "sil witness table does not match protocol");
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// TODO: Use the witness entry instead of falling through here.
|
|
|
|
// Look for a protocol type info.
|
|
const ProtocolInfo &basePI = IGM.getProtocolInfo(baseProto);
|
|
const ProtocolConformance *astConf
|
|
= Conformance.getInheritedConformance(baseProto);
|
|
const ConformanceInfo &conf =
|
|
basePI.getConformance(IGM, ConcreteType, ConcreteTI,
|
|
baseProto, *astConf);
|
|
|
|
llvm::Constant *baseWitness = conf.tryGetConstantTable(IGM);
|
|
assert(baseWitness && "couldn't get a constant table!");
|
|
Table.push_back(asOpaquePtr(IGM, baseWitness));
|
|
}
|
|
|
|
void addMethodFromSILWitnessTable(AbstractFunctionDecl *iface) {
|
|
auto &entry = SILEntries.front();
|
|
assert(entry.getKind() == SILWitnessTable::Method
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getMethodWitness().Requirement.getDecl() == iface
|
|
&& "sil witness table does not match protocol");
|
|
|
|
llvm::Constant *witness
|
|
= IGM.getAddrOfSILFunction(entry.getMethodWitness().Witness,
|
|
NotForDefinition);
|
|
witness = llvm::ConstantExpr::getBitCast(witness, IGM.Int8PtrTy);
|
|
Table.push_back(witness);
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
return;
|
|
}
|
|
|
|
void addStaticMethod(FuncDecl *iface) {
|
|
return addMethodFromSILWitnessTable(iface);
|
|
}
|
|
|
|
void addInstanceMethod(FuncDecl *iface) {
|
|
return addMethodFromSILWitnessTable(iface);
|
|
}
|
|
|
|
void addConstructor(ConstructorDecl *iface) {
|
|
return addMethodFromSILWitnessTable(iface);
|
|
}
|
|
|
|
void addAssociatedType(AssociatedTypeDecl *ty) {
|
|
auto &entry = SILEntries.front();
|
|
(void)entry;
|
|
assert(entry.getKind() == SILWitnessTable::AssociatedType
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeWitness().Requirement == ty
|
|
&& "sil witness table does not match protocol");
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// FIXME: Use info from SILWitnessTable instead of falling through.
|
|
|
|
// Determine whether the associated type has static metadata. If it
|
|
// doesn't, then this witness table is a template that requires runtime
|
|
// instantiation.
|
|
|
|
// FIXME: Add static type metadata.
|
|
Table.push_back(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
|
|
// FIXME: Add static witness tables for type conformances.
|
|
for (auto protocol : ty->getProtocols()) {
|
|
if (!requiresProtocolWitnessTable(protocol))
|
|
continue;
|
|
|
|
auto &entry = SILEntries.front();
|
|
(void)entry;
|
|
assert(entry.getKind() == SILWitnessTable::AssociatedTypeProtocol
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeProtocolWitness().Requirement == ty
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeProtocolWitness().Protocol == protocol
|
|
&& "sil witness table does not match protocol");
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// FIXME: Use info from SILWitnessTable instead of falling through.
|
|
// FIXME: Add static witness table reference.
|
|
Table.push_back(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Collect the value witnesses for a particular type.
|
|
static void addValueWitnesses(IRGenModule &IGM, FixedPacking packing,
|
|
CanType abstractType,
|
|
CanType concreteType, const TypeInfo &concreteTI,
|
|
SmallVectorImpl<llvm::Constant*> &table) {
|
|
for (unsigned i = 0; i != NumRequiredValueWitnesses; ++i) {
|
|
table.push_back(getValueWitness(IGM, ValueWitness(i),
|
|
packing, abstractType, concreteType,
|
|
concreteTI));
|
|
}
|
|
if (concreteTI.mayHaveExtraInhabitants(IGM)) {
|
|
for (auto i = unsigned(ValueWitness::First_ExtraInhabitantValueWitness);
|
|
i <= unsigned(ValueWitness::Last_ExtraInhabitantValueWitness);
|
|
++i) {
|
|
table.push_back(getValueWitness(IGM, ValueWitness(i), packing,
|
|
abstractType, concreteType, concreteTI));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// True if a type has a generic-parameter-dependent value witness table.
|
|
/// Currently, This is true if the size and/or alignment of the type is
|
|
/// dependent on its generic parameters.
|
|
bool irgen::hasDependentValueWitnessTable(IRGenModule &IGM, CanType ty) {
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(ty))
|
|
ty = ugt->getDecl()->getDeclaredTypeInContext()->getCanonicalType();
|
|
|
|
return !IGM.getTypeInfoForUnlowered(ty).isFixedSize();
|
|
}
|
|
|
|
static void addValueWitnessesForAbstractType(IRGenModule &IGM,
|
|
CanType abstractType,
|
|
SmallVectorImpl<llvm::Constant*> &witnesses) {
|
|
// Instantiate unbound generic types on their context archetypes.
|
|
CanType concreteType = abstractType;
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(abstractType)) {
|
|
concreteType = ugt->getDecl()->getDeclaredTypeInContext()->getCanonicalType();
|
|
}
|
|
|
|
auto &concreteTI = IGM.getTypeInfoForUnlowered(concreteType);
|
|
FixedPacking packing = concreteTI.getFixedPacking(IGM);
|
|
|
|
addValueWitnesses(IGM, packing, abstractType,
|
|
concreteType, concreteTI, witnesses);
|
|
}
|
|
|
|
/// Emit a value-witness table for the given type, which is assumed to
|
|
/// be non-dependent.
|
|
llvm::Constant *irgen::emitValueWitnessTable(IRGenModule &IGM,
|
|
CanType abstractType) {
|
|
// We shouldn't emit global value witness tables for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting VWT for generic instance");
|
|
|
|
// We shouldn't emit global value witness tables for non-fixed-layout types.
|
|
assert(!hasDependentValueWitnessTable(IGM, abstractType) &&
|
|
"emitting global VWT for dynamic-layout type");
|
|
|
|
SmallVector<llvm::Constant*, MaxNumValueWitnesses> witnesses;
|
|
addValueWitnessesForAbstractType(IGM, abstractType, witnesses);
|
|
|
|
auto tableTy = llvm::ArrayType::get(IGM.Int8PtrTy, witnesses.size());
|
|
auto table = llvm::ConstantArray::get(tableTy, witnesses);
|
|
|
|
auto addr = IGM.getAddrOfValueWitnessTable(abstractType, table->getType());
|
|
auto global = cast<llvm::GlobalVariable>(addr);
|
|
global->setConstant(true);
|
|
global->setInitializer(table);
|
|
|
|
return llvm::ConstantExpr::getBitCast(global, IGM.WitnessTablePtrTy);
|
|
}
|
|
|
|
/// Emit the elements of a dependent value witness table template into a
|
|
/// vector.
|
|
void irgen::emitDependentValueWitnessTablePattern(IRGenModule &IGM,
|
|
CanType abstractType,
|
|
SmallVectorImpl<llvm::Constant*> &fields) {
|
|
// We shouldn't emit global value witness tables for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting VWT for generic instance");
|
|
|
|
// We shouldn't emit global value witness tables for fixed-layout types.
|
|
assert(hasDependentValueWitnessTable(IGM, abstractType) &&
|
|
"emitting VWT pattern for fixed-layout type");
|
|
|
|
addValueWitnessesForAbstractType(IGM, abstractType, fields);
|
|
}
|
|
|
|
/// Do a memoized witness-table layout for a protocol.
|
|
const ProtocolInfo &IRGenModule::getProtocolInfo(ProtocolDecl *protocol) {
|
|
return Types.getProtocolInfo(protocol);
|
|
}
|
|
|
|
/// Do a memoized witness-table layout for a protocol.
|
|
const ProtocolInfo &TypeConverter::getProtocolInfo(ProtocolDecl *protocol) {
|
|
// Check whether we've already translated this protocol.
|
|
auto it = Protocols.find(protocol);
|
|
if (it != Protocols.end()) return *it->second;
|
|
|
|
// If not, layout the protocol's witness table.
|
|
WitnessTableLayout layout(IGM);
|
|
layout.visit(protocol);
|
|
|
|
// Create a ProtocolInfo object from the layout.
|
|
ProtocolInfo *info = ProtocolInfo::create(layout.getNumWitnesses(),
|
|
layout.getEntries());
|
|
info->NextConverted = FirstProtocol;
|
|
FirstProtocol = info;
|
|
|
|
// Memoize.
|
|
Protocols.insert(std::make_pair(protocol, info));
|
|
|
|
// Done.
|
|
return *info;
|
|
}
|
|
|
|
/// Allocate a new ProtocolInfo.
|
|
ProtocolInfo *ProtocolInfo::create(unsigned numWitnesses,
|
|
ArrayRef<WitnessTableEntry> table) {
|
|
unsigned numEntries = table.size();
|
|
size_t bufferSize =
|
|
sizeof(ProtocolInfo) + numEntries * sizeof(WitnessTableEntry);
|
|
void *buffer = ::operator new(bufferSize);
|
|
return new(buffer) ProtocolInfo(numWitnesses, table);
|
|
}
|
|
|
|
ProtocolInfo::~ProtocolInfo() {
|
|
for (auto &conf : Conformances) {
|
|
delete conf.second;
|
|
}
|
|
}
|
|
|
|
/// Find the conformance information for a protocol.
|
|
const ConformanceInfo &
|
|
ProtocolInfo::getConformance(IRGenModule &IGM, CanType concreteType,
|
|
const TypeInfo &concreteTI,
|
|
ProtocolDecl *protocol,
|
|
const ProtocolConformance &conformance) const {
|
|
// Check whether we've already cached this.
|
|
auto it = Conformances.find(&conformance);
|
|
if (it != Conformances.end()) return *it->second;
|
|
|
|
// Drill down to the root normal conformance.
|
|
auto normalConformance = conformance.getRootNormalConformance();
|
|
|
|
// Emit a direct-referencing conformance.
|
|
// FIXME: For some conformances we need to do lazy initialization or runtime
|
|
// instantiation.
|
|
ConformanceInfo *info = new DirectConformanceInfo(normalConformance);
|
|
auto res = Conformances.insert(std::make_pair(&conformance, info));
|
|
return *res.first->second;
|
|
}
|
|
|
|
void IRGenModule::emitSILWitnessTable(SILWitnessTable *wt) {
|
|
// Don't emit a witness table if it is a declaration.
|
|
if (wt->isDeclaration())
|
|
return;
|
|
// Don't emit a witness table that is available externally if we are emitting
|
|
// code for the JIT. We do not do any optimization for the JIT and it has
|
|
// problems with external symbols that get merged with non-external symbols.
|
|
if (Opts.UseJIT && isAvailableExternally(wt->getLinkage()))
|
|
return;
|
|
|
|
// Build the witnesses.
|
|
SmallVector<llvm::Constant*, 32> witnesses;
|
|
WitnessTableBuilder(*this, witnesses, wt)
|
|
.visit(wt->getConformance()->getProtocol());
|
|
|
|
// Produce the initializer value.
|
|
auto tableTy = llvm::ArrayType::get(FunctionPtrTy, witnesses.size());
|
|
auto initializer = llvm::ConstantArray::get(tableTy, witnesses);
|
|
|
|
auto global = cast<llvm::GlobalVariable>(
|
|
getAddrOfWitnessTable(wt->getConformance(), tableTy));
|
|
global->setConstant(true);
|
|
global->setInitializer(initializer);
|
|
global->setAlignment(getWitnessTableAlignment().getValue());
|
|
|
|
// TODO: We should record what access mode the witness table requires:
|
|
// direct, lazily initialized, or runtime instantiated template.
|
|
}
|
|
|
|
static const TypeInfo *createExistentialTypeInfo(IRGenModule &IGM,
|
|
llvm::StructType *type,
|
|
ArrayRef<ProtocolDecl*> protocols) {
|
|
assert(type->isOpaque() && "creating existential type in concrete struct");
|
|
|
|
SmallVector<llvm::Type*, 5> fields;
|
|
SmallVector<ProtocolEntry, 4> entries;
|
|
|
|
// In an opaque metadata, the first two fields are the fixed buffer
|
|
// followed by the metadata reference. In a class metadata, the
|
|
// first field is the class instance.
|
|
//
|
|
// Leave space in the buffer for both, but make sure we set it up later.
|
|
fields.push_back(nullptr);
|
|
fields.push_back(nullptr);
|
|
|
|
bool requiresClass = false;
|
|
|
|
for (auto protocol : protocols) {
|
|
// The existential container is class-constrained if any of its protocol
|
|
// constraints are.
|
|
requiresClass |= protocol->requiresClass();
|
|
|
|
// ObjC protocols need no layout or witness table info. All dispatch is done
|
|
// through objc_msgSend.
|
|
if (!requiresProtocolWitnessTable(protocol))
|
|
continue;
|
|
|
|
// Find the protocol layout.
|
|
const ProtocolInfo &impl = IGM.getProtocolInfo(protocol);
|
|
entries.push_back(ProtocolEntry(protocol, impl));
|
|
|
|
// Each protocol gets a witness table.
|
|
fields.push_back(IGM.WitnessTablePtrTy);
|
|
}
|
|
|
|
// If the existential is class, lower it to a class
|
|
// existential representation.
|
|
if (requiresClass) {
|
|
// Replace the type metadata pointer with the class instance.
|
|
fields[1] = IGM.UnknownRefCountedPtrTy;
|
|
auto classFields = llvm::makeArrayRef(fields).slice(1);
|
|
type->setBody(classFields);
|
|
|
|
Alignment align = IGM.getPointerAlignment();
|
|
Size size = classFields.size() * IGM.getPointerSize();
|
|
|
|
llvm::BitVector spareBits;
|
|
// BitVector doesn't have an append method...
|
|
auto append = [](llvm::BitVector &b, const llvm::BitVector &x) {
|
|
auto bSize = b.size(), xSize = x.size();
|
|
b.resize(bSize + xSize);
|
|
|
|
for (unsigned i = 0; i < xSize; ++i) {
|
|
b[bSize + i] = x[i];
|
|
}
|
|
};
|
|
|
|
// The class pointer is a heap object reference and has heap object spare
|
|
// bits.
|
|
append(spareBits, IGM.getHeapObjectSpareBits());
|
|
|
|
// The witness table fields are pointers and have pointer spare bits.
|
|
for (unsigned i = 1, e = classFields.size(); i < e; ++i) {
|
|
append(spareBits, IGM.TargetInfo.PointerSpareBits);
|
|
}
|
|
|
|
return ClassExistentialTypeInfo::create(type,
|
|
size, std::move(spareBits), align,
|
|
entries);
|
|
}
|
|
|
|
// Set up the first two fields.
|
|
fields[0] = IGM.getFixedBufferTy();
|
|
fields[1] = IGM.TypeMetadataPtrTy;
|
|
type->setBody(fields);
|
|
|
|
OpaqueExistentialLayout layout(entries.size());
|
|
Alignment align = layout.getAlignment(IGM);
|
|
Size size = layout.getSize(IGM);
|
|
return OpaqueExistentialTypeInfo::create(type, size, align, entries);
|
|
}
|
|
|
|
const TypeInfo *TypeConverter::convertProtocolType(ProtocolType *T) {
|
|
// Protocol types are nominal.
|
|
llvm::StructType *type = IGM.createNominalType(T->getDecl());
|
|
return createExistentialTypeInfo(IGM, type, T->getDecl());
|
|
}
|
|
|
|
const TypeInfo *
|
|
TypeConverter::convertProtocolCompositionType(ProtocolCompositionType *T) {
|
|
// Protocol composition types are not nominal, but we name them anyway.
|
|
llvm::StructType *type = IGM.createNominalType(T);
|
|
|
|
// Find the canonical protocols. There might not be any.
|
|
SmallVector<ProtocolDecl*, 4> protocols;
|
|
T->getAnyExistentialTypeProtocols(protocols);
|
|
|
|
return createExistentialTypeInfo(IGM, type, protocols);
|
|
}
|
|
|
|
const TypeInfo *TypeConverter::convertArchetypeType(ArchetypeType *archetype) {
|
|
assert(isExemplarArchetype(archetype) && "lowering non-exemplary archetype");
|
|
|
|
// Compute layouts for the protocols we ascribe to.
|
|
SmallVector<ProtocolEntry, 4> protocols;
|
|
for (auto protocol : archetype->getConformsTo()) {
|
|
const ProtocolInfo &impl = IGM.getProtocolInfo(protocol);
|
|
protocols.push_back(ProtocolEntry(protocol, impl));
|
|
}
|
|
|
|
// If the archetype is class-constrained, use a class pointer
|
|
// representation.
|
|
if (archetype->requiresClass()) {
|
|
// Fully general archetypes can't be assumed to have any particular
|
|
// refcounting scheme.
|
|
ReferenceCounting refcount = ReferenceCounting::Unknown;
|
|
llvm::PointerType *reprTy = IGM.UnknownRefCountedPtrTy;
|
|
|
|
// If the archetype has a superclass constraint, it has at least the
|
|
// retain semantics of its superclass, and it can be represented with
|
|
// the supertype's pointer type.
|
|
if (Type super = archetype->getSuperclass()) {
|
|
ClassDecl *superClass = super->getClassOrBoundGenericClass();
|
|
refcount = getReferenceCountingForClass(IGM, superClass);
|
|
|
|
auto &superTI = IGM.getTypeInfoForUnlowered(super);
|
|
reprTy = cast<llvm::PointerType>(superTI.StorageType);
|
|
}
|
|
|
|
return ClassArchetypeTypeInfo::create(reprTy,
|
|
IGM.getPointerSize(),
|
|
IGM.getHeapObjectSpareBits(),
|
|
IGM.getPointerAlignment(),
|
|
protocols, refcount);
|
|
}
|
|
|
|
// Otherwise, for now, always use an opaque indirect type.
|
|
llvm::Type *storageType = IGM.OpaquePtrTy->getElementType();
|
|
return OpaqueArchetypeTypeInfo::create(storageType, protocols);
|
|
}
|
|
|
|
/// Inform IRGenFunction that the given archetype has the given value
|
|
/// witness value within this scope.
|
|
void IRGenFunction::bindArchetype(ArchetypeType *archetype,
|
|
llvm::Value *metadata,
|
|
ArrayRef<llvm::Value*> wtables) {
|
|
// Set the metadata pointer.
|
|
bool setNames = !archetype->getOpenedExistentialType();
|
|
if (setNames)
|
|
metadata->setName(archetype->getFullName());
|
|
setMetadataRef(*this, archetype, metadata);
|
|
|
|
// Set the protocol witness tables.
|
|
|
|
unsigned wtableI = 0;
|
|
for (unsigned i = 0, e = wtables.size(); i != e; ++i) {
|
|
auto proto = archetype->getConformsTo()[i];
|
|
if (!requiresProtocolWitnessTable(proto)) continue;
|
|
auto wtable = wtables[wtableI++];
|
|
if (setNames) {
|
|
wtable->setName(Twine(archetype->getFullName()) + "." +
|
|
proto->getName().str());
|
|
}
|
|
setWitnessTable(*this, archetype, i, wtable);
|
|
}
|
|
assert(wtableI == wtables.size());
|
|
}
|
|
|
|
/// True if a function's signature in LLVM carries polymorphic parameters.
|
|
/// Generic functions and protocol witnesses carry polymorphic parameters.
|
|
bool irgen::hasPolymorphicParameters(CanSILFunctionType ty) {
|
|
switch (ty->getAbstractCC()) {
|
|
case AbstractCC::C:
|
|
// Should never be polymorphic.
|
|
assert(!ty->isPolymorphic() && "polymorphic C function?!");
|
|
return false;
|
|
case AbstractCC::ObjCMethod:
|
|
// An ObjC witness_method reference will notionally have polymorphic type
|
|
// <Self: P> (...) -> (...), but there are no polymorphic parameters that
|
|
// can't be solved from the usual ObjC metadata.
|
|
return false;
|
|
|
|
case AbstractCC::Freestanding:
|
|
case AbstractCC::Method:
|
|
return ty->isPolymorphic();
|
|
|
|
case AbstractCC::WitnessMethod:
|
|
// Always carries polymorphic parameters for the Self type.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct Fulfillment {
|
|
Fulfillment() = default;
|
|
Fulfillment(unsigned depth, unsigned index) : Depth(depth), Index(index) {}
|
|
|
|
/// The distance up the metadata chain.
|
|
/// 0 is the origin metadata, 1 is the parent of that, etc.
|
|
unsigned Depth;
|
|
|
|
/// The generic argument index.
|
|
unsigned Index;
|
|
};
|
|
typedef std::pair<Type, ProtocolDecl*> FulfillmentKey;
|
|
|
|
/// A class for computing how to pass arguments to a polymorphic
|
|
/// function. The subclasses of this are the places which need to
|
|
/// be updated if the convention changes.
|
|
class PolymorphicConvention {
|
|
public:
|
|
enum class SourceKind {
|
|
/// There is no source of additional information.
|
|
None,
|
|
|
|
/// The polymorphic arguments are derived from a source class
|
|
/// pointer.
|
|
ClassPointer,
|
|
|
|
/// The polymorphic arguments are derived from a type metadata
|
|
/// pointer.
|
|
Metadata,
|
|
|
|
/// The polymorphic arguments are passed from generic type
|
|
/// metadata for the origin type.
|
|
GenericLValueMetadata,
|
|
|
|
/// The polymorphic arguments are derived from a Self type binding
|
|
/// passed via the WitnessMethod convention.
|
|
WitnessSelf,
|
|
|
|
/// The polymorphic arguments are derived from a Self type binding
|
|
/// embedded in a thick WitnessMethod function value.
|
|
WitnessExtraData,
|
|
};
|
|
|
|
protected:
|
|
CanSILFunctionType FnType;
|
|
SourceKind TheSourceKind = SourceKind::None;
|
|
SmallVector<NominalTypeDecl*, 4> TypesForDepths;
|
|
|
|
llvm::DenseMap<FulfillmentKey, Fulfillment> Fulfillments;
|
|
|
|
ArchetypeBuilder ParamArchetypes;
|
|
|
|
// Retrieve a representative archetype for a dependent type if it refers to
|
|
// a generic parameter or a member of a generic parameter, or return null
|
|
// if it does not.
|
|
ArchetypeType::NestedType getRepresentativeArchetype(Type depType) {
|
|
assert(depType->isDependentType()
|
|
&& "considering non-dependent type?!");
|
|
|
|
auto *potential = ParamArchetypes.resolveArchetype(depType);
|
|
if (!potential)
|
|
return nullptr;
|
|
|
|
return potential->getType(nullptr, ParamArchetypes.getModule());
|
|
}
|
|
|
|
public:
|
|
PolymorphicConvention(CanSILFunctionType fnType, Module &M)
|
|
: FnType(fnType), ParamArchetypes(M, M.getASTContext().Diags) {
|
|
assert(hasPolymorphicParameters(fnType));
|
|
|
|
// Build archetypes from the generic signature so we can consult the
|
|
// protocol requirements on the parameters and dependent types.
|
|
//
|
|
// TODO: The ArchetypeBuilder should be cached in the generic signature.
|
|
ParamArchetypes.addGenericSignature(fnType->getGenericSignature());
|
|
|
|
// Protocol witnesses always derive all polymorphic parameter information
|
|
// from the Self argument. We also *cannot* consider other arguments;
|
|
// doing so would potentially make the signature incompatible with other
|
|
// witnesses for the same method.
|
|
if (fnType->getAbstractCC() == AbstractCC::WitnessMethod) {
|
|
// If the type is thick, the metadata is derived from the extra data
|
|
// in the function value. Otherwise, it's provided from the type of the
|
|
// self argument.
|
|
switch (fnType->getRepresentation()) {
|
|
case AnyFunctionType::Representation::Thin:
|
|
TheSourceKind = SourceKind::WitnessSelf;
|
|
break;
|
|
case AnyFunctionType::Representation::Thick:
|
|
TheSourceKind = SourceKind::WitnessExtraData;
|
|
break;
|
|
case AnyFunctionType::Representation::Block:
|
|
llvm_unreachable("witnesses cannot be blocks");
|
|
}
|
|
|
|
// Testify to generic parameters in the Self type.
|
|
auto params = fnType->getInterfaceParameters();
|
|
CanType selfTy = params.back().getType();
|
|
if (auto metaTy = dyn_cast<AnyMetatypeType>(selfTy))
|
|
selfTy = metaTy.getInstanceType();
|
|
|
|
if (auto nomTy = dyn_cast<NominalType>(selfTy))
|
|
considerNominalType(nomTy, 0);
|
|
else if (auto bgTy = dyn_cast<BoundGenericType>(selfTy))
|
|
considerBoundGenericType(bgTy, 0);
|
|
else if (auto param = dyn_cast<GenericTypeParamType>(selfTy))
|
|
considerWitnessParamType(param);
|
|
else if (isa<ArchetypeType>(selfTy))
|
|
// A bound Self archetype from a protocol. Nothing to do.
|
|
(void)0;
|
|
else
|
|
llvm_unreachable("witness for non-nominal type?!");
|
|
|
|
return;
|
|
}
|
|
|
|
// We don't need to pass anything extra as long as all of the
|
|
// archetypes (and their requirements) are producible from the
|
|
// class-pointer argument.
|
|
|
|
// Just consider the 'self' parameter for now.
|
|
auto params = fnType->getInterfaceParameters();
|
|
if (params.empty()) return;
|
|
SourceKind source = considerParameter(params.back());
|
|
|
|
// If we didn't fulfill anything, there's no source.
|
|
if (Fulfillments.empty()) return;
|
|
|
|
TheSourceKind = source;
|
|
}
|
|
|
|
/// Extract dependent type metadata for a value witness function of the given
|
|
/// type.
|
|
PolymorphicConvention(NominalTypeDecl *ntd, Module &M)
|
|
: FnType(getNotionalFunctionType(ntd)),
|
|
ParamArchetypes(M, M.getASTContext().Diags)
|
|
{
|
|
TheSourceKind = SourceKind::Metadata;
|
|
|
|
// Build archetypes from the generic signature so we can consult the
|
|
// protocol requirements on the parameters and dependent types.
|
|
//
|
|
// TODO: The ArchetypeBuilder should be cached in the generic signature.
|
|
ParamArchetypes.addGenericSignature(FnType->getGenericSignature());
|
|
|
|
auto paramType = FnType->getInterfaceParameters()[0].getType();
|
|
considerBoundGenericType(cast<BoundGenericType>(paramType), 0);
|
|
}
|
|
|
|
SourceKind getSourceKind() const { return TheSourceKind; }
|
|
|
|
GenericSignatureWitnessIterator getAllDependentTypes() const {
|
|
if (auto gs = FnType->getGenericSignature())
|
|
return gs->getAllDependentTypes();
|
|
return GenericSignatureWitnessIterator::emptyRange();
|
|
}
|
|
|
|
private:
|
|
static CanSILFunctionType getNotionalFunctionType(NominalTypeDecl *D) {
|
|
ASTContext &ctx = D->getASTContext();
|
|
SILFunctionType::ExtInfo extInfo(AbstractCC::Method,
|
|
FunctionType::Representation::Thin,
|
|
/*noreturn*/ false);
|
|
SILResultInfo result(TupleType::getEmpty(ctx),
|
|
ResultConvention::Unowned);
|
|
SILParameterInfo param(D->getDeclaredInterfaceType()->getCanonicalType(),
|
|
ParameterConvention::Direct_Owned);
|
|
|
|
CanGenericSignature sig = D->getGenericSignatureOfContext()
|
|
? D->getGenericSignatureOfContext()->getCanonicalSignature()
|
|
: nullptr;
|
|
|
|
return SILFunctionType::get(sig, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
param, result, ctx);
|
|
}
|
|
|
|
SourceKind considerParameter(SILParameterInfo param) {
|
|
auto type = param.getType();
|
|
switch (param.getConvention()) {
|
|
// Out-parameters don't give us a value we can use.
|
|
case ParameterConvention::Indirect_Out:
|
|
return SourceKind::None;
|
|
|
|
// In-parameters do, but right now we don't bother, for no good reason.
|
|
case ParameterConvention::Indirect_In:
|
|
return SourceKind::None;
|
|
|
|
case ParameterConvention::Indirect_Inout:
|
|
if (auto nomTy = dyn_cast<NominalType>(type)) {
|
|
considerNominalType(nomTy, 0);
|
|
return SourceKind::GenericLValueMetadata;
|
|
} else if (auto boundTy = dyn_cast<BoundGenericType>(type)) {
|
|
considerBoundGenericType(boundTy, 0);
|
|
return SourceKind::GenericLValueMetadata;
|
|
}
|
|
return SourceKind::None;
|
|
|
|
case ParameterConvention::Direct_Owned:
|
|
case ParameterConvention::Direct_Unowned:
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
if (auto classTy = dyn_cast<ClassType>(type)) {
|
|
considerNominalType(classTy, 0);
|
|
return SourceKind::ClassPointer;
|
|
} else if (auto boundTy = dyn_cast<BoundGenericClassType>(type)) {
|
|
considerBoundGenericType(boundTy, 0);
|
|
return SourceKind::ClassPointer;
|
|
} else if (auto metatypeTy = dyn_cast<MetatypeType>(type)) {
|
|
CanType objTy = metatypeTy.getInstanceType();
|
|
if (auto nomTy = dyn_cast<ClassType>(objTy)) {
|
|
considerNominalType(nomTy, 0);
|
|
return SourceKind::Metadata;
|
|
} else if (auto boundTy = dyn_cast<BoundGenericClassType>(objTy)) {
|
|
considerBoundGenericType(boundTy, 0);
|
|
return SourceKind::Metadata;
|
|
}
|
|
}
|
|
return SourceKind::None;
|
|
}
|
|
llvm_unreachable("bad parameter convention");
|
|
}
|
|
|
|
void considerParentType(CanType parent, unsigned depth) {
|
|
// We might not have a parent type.
|
|
if (!parent) return;
|
|
|
|
// If we do, it has to be nominal one way or another.
|
|
depth++;
|
|
if (auto nom = dyn_cast<NominalType>(parent))
|
|
considerNominalType(nom, depth);
|
|
else
|
|
considerBoundGenericType(cast<BoundGenericType>(parent), depth);
|
|
}
|
|
|
|
void considerNominalType(NominalType *type, unsigned depth) {
|
|
assert(TypesForDepths.size() == depth);
|
|
TypesForDepths.push_back(type->getDecl());
|
|
|
|
// Nominal types add no generic arguments themselves, but they
|
|
// may have the arguments of their parents.
|
|
considerParentType(CanType(type->getParent()), depth);
|
|
}
|
|
|
|
void considerBoundGenericType(BoundGenericType *type, unsigned depth) {
|
|
assert(TypesForDepths.size() == depth);
|
|
TypesForDepths.push_back(type->getDecl());
|
|
|
|
auto params = type->getDecl()->getGenericParams()->getAllArchetypes();
|
|
auto substitutions = type->getSubstitutions(/*FIXME:*/nullptr, nullptr);
|
|
assert(params.size() >= substitutions.size() &&
|
|
"generic decl archetypes should parallel generic type subs");
|
|
|
|
for (unsigned i = 0, e = substitutions.size(); i != e; ++i) {
|
|
auto sub = substitutions[i];
|
|
CanType arg = sub.Replacement->getCanonicalType();
|
|
|
|
// Right now, we can only pull things out of the direct
|
|
// arguments, not out of nested metadata. For example, this
|
|
// prevents us from realizing that we can rederive T and U in the
|
|
// following:
|
|
// \forall T U . Vector<T->U> -> ()
|
|
if (arg->isDependentType()) {
|
|
// Find the archetype from the dependent type.
|
|
considerDependentType(arg, params[i], depth, i);
|
|
}
|
|
}
|
|
|
|
// Match against the parent first. The polymorphic type
|
|
// will start with any arguments from the parent.
|
|
considerParentType(CanType(type->getParent()), depth);
|
|
}
|
|
|
|
/// We found a reference to the dependent arg type at the given depth
|
|
/// and index. Add any fulfillments this gives us.
|
|
void considerDependentType(Type arg,
|
|
ArchetypeType *param,
|
|
unsigned depth,
|
|
unsigned index) {
|
|
// If we don't have a representative archetype for this dependent type,
|
|
// don't try to fulfill it. It doesn't directly correspond to one of our
|
|
// parameters or their associated types.
|
|
auto representative = getRepresentativeArchetype(arg);
|
|
if (!representative)
|
|
return;
|
|
auto arch = representative.dyn_cast<ArchetypeType*>();
|
|
if (!arch)
|
|
return;
|
|
|
|
// First, record that we can find this dependent type at this point.
|
|
addFulfillment(arg, nullptr, depth, index);
|
|
|
|
// Now consider each of the protocols that the parameter guarantees.
|
|
for (auto protocol : param->getConformsTo()) {
|
|
if (requiresFulfillment(arch, protocol))
|
|
addFulfillment(arg, protocol, depth, index);
|
|
}
|
|
}
|
|
|
|
/// We're binding an archetype for a protocol witness.
|
|
void considerWitnessParamType(CanGenericTypeParamType arg) {
|
|
assert(arg->getDepth() == 0 && arg->getIndex() == 0);
|
|
auto representative = getRepresentativeArchetype(arg);
|
|
assert(representative && "no representative for dependent type?!");
|
|
|
|
// First of all, the archetype or concrete type fulfills its own
|
|
// requirements.
|
|
if (auto arch = representative.dyn_cast<ArchetypeType*>())
|
|
considerDependentType(arg, arch, 0, 0);
|
|
|
|
// FIXME: We can't pass associated types of Self through the witness
|
|
// CC, so as a hack, fake up impossible fulfillments for the associated
|
|
// types. For now all conformances are concrete, so the associated types
|
|
// can be recovered by substitution on the implementation side. For
|
|
// default implementations, we will need to get associated types from
|
|
// witness tables anyway.
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Is this a dependent member?
|
|
auto depMemTy = dyn_cast<DependentMemberType>(CanType(depTy));
|
|
if (!depMemTy)
|
|
continue;
|
|
|
|
// Is it rooted in a generic parameter?
|
|
CanType rootTy;
|
|
do {
|
|
rootTy = depMemTy.getBase();
|
|
} while ((depMemTy = dyn_cast<DependentMemberType>(rootTy)));
|
|
|
|
auto rootParamTy = dyn_cast<GenericTypeParamType>(rootTy);
|
|
if (!rootParamTy)
|
|
continue;
|
|
|
|
// If so, suppress providing metadata for the type by making up a bogus
|
|
// fulfillment.
|
|
if (rootParamTy == arg) {
|
|
auto depRep = getRepresentativeArchetype(depTy);
|
|
assert(depRep && "no representative for dependent type?!");
|
|
if (auto depArch = depRep.dyn_cast<ArchetypeType*>())
|
|
considerDependentType(depTy, depArch, ~0u, ~0u);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Does the given archetype require the given protocol to be fulfilled?
|
|
static bool requiresFulfillment(ArchetypeType *representative,
|
|
ProtocolDecl *proto) {
|
|
// TODO: protocol inheritance should be considered here somehow.
|
|
for (auto argProto : representative->getConformsTo()) {
|
|
if (argProto == proto)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Testify that there's a fulfillment at the given depth and level.
|
|
void addFulfillment(Type arg, ProtocolDecl *proto,
|
|
unsigned depth, unsigned index) {
|
|
// Only add a fulfillment if it's not enough information otherwise.
|
|
assert(arg->isDependentType() && "fulfilling non-dependent type?!");
|
|
auto key = FulfillmentKey(arg, proto);
|
|
if (!Fulfillments.count(key))
|
|
Fulfillments.insert(std::make_pair(key, Fulfillment(depth, index)));
|
|
}
|
|
};
|
|
|
|
/// A class for binding type parameters of a generic function.
|
|
class EmitPolymorphicParameters : public PolymorphicConvention {
|
|
IRGenFunction &IGF;
|
|
GenericParamList *ContextParams;
|
|
SmallVector<llvm::Value*, 4> MetadataForDepths;
|
|
|
|
public:
|
|
EmitPolymorphicParameters(IRGenFunction &IGF,
|
|
SILFunction &Fn)
|
|
: PolymorphicConvention(Fn.getLoweredFunctionType(),
|
|
*IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF), ContextParams(Fn.getContextGenericParams()) {}
|
|
|
|
void emit(Explosion &in);
|
|
|
|
/// Emit polymorphic parameters for a generic value witness.
|
|
EmitPolymorphicParameters(IRGenFunction &IGF, NominalTypeDecl *ntd)
|
|
: PolymorphicConvention(ntd, *IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF), ContextParams(ntd->getGenericParams()) {}
|
|
|
|
void emitForGenericValueWitness(llvm::Value *selfMeta);
|
|
|
|
private:
|
|
// Emit metadata bindings after the source, if any, has been bound.
|
|
void emitWithSourceBound(Explosion &in);
|
|
|
|
CanType getArgTypeInContext() const {
|
|
return ArchetypeBuilder::mapTypeIntoContext(
|
|
IGF.IGM.SILMod->getSwiftModule(), ContextParams,
|
|
FnType->getInterfaceParameters().back().getType())
|
|
->getCanonicalType();
|
|
}
|
|
|
|
/// Emit the source value for parameters.
|
|
llvm::Value *emitSourceForParameters(Explosion &in) {
|
|
switch (getSourceKind()) {
|
|
case SourceKind::None:
|
|
return nullptr;
|
|
|
|
case SourceKind::Metadata:
|
|
return in.getLastClaimed();
|
|
|
|
case SourceKind::ClassPointer:
|
|
return emitHeapMetadataRefForHeapObject(IGF, in.getLastClaimed(),
|
|
getArgTypeInContext(),
|
|
/*suppress cast*/ true);
|
|
|
|
case SourceKind::GenericLValueMetadata: {
|
|
llvm::Value *metatype = in.claimNext();
|
|
metatype->setName("Self");
|
|
|
|
// Mark this as the cached metatype for the l-value's object type.
|
|
CanType argTy = getArgTypeInContext();
|
|
IGF.setUnscopedLocalTypeData(argTy, LocalTypeData::Metatype, metatype);
|
|
return metatype;
|
|
}
|
|
|
|
case SourceKind::WitnessSelf:
|
|
case SourceKind::WitnessExtraData: {
|
|
// The 'Self' parameter is provided last.
|
|
// TODO: For default implementations, the witness table pointer for
|
|
// the 'Self : P' conformance must be provided last along with the
|
|
// metatype.
|
|
llvm::Value *metatype = in.takeLast();
|
|
metatype->setName("Self");
|
|
return metatype;
|
|
}
|
|
}
|
|
llvm_unreachable("bad source kind!");
|
|
}
|
|
|
|
/// Produce the metadata value for the given depth, using the
|
|
/// given cache.
|
|
llvm::Value *getMetadataForDepth(unsigned depth) {
|
|
assert(!MetadataForDepths.empty());
|
|
while (depth >= MetadataForDepths.size()) {
|
|
auto child = MetadataForDepths.back();
|
|
auto childDecl = TypesForDepths[MetadataForDepths.size()];
|
|
auto parent = emitParentMetadataRef(IGF, childDecl, child);
|
|
MetadataForDepths.push_back(parent);
|
|
}
|
|
return MetadataForDepths[depth];
|
|
}
|
|
};
|
|
};
|
|
|
|
/// Emit a polymorphic parameters clause, binding all the metadata necessary.
|
|
void EmitPolymorphicParameters::emit(Explosion &in) {
|
|
// Compute the first source metadata.
|
|
MetadataForDepths.push_back(emitSourceForParameters(in));
|
|
|
|
emitWithSourceBound(in);
|
|
}
|
|
|
|
/// Emit a polymorphic parameters clause for a generic value witness, binding
|
|
/// all the metadata necessary.
|
|
void
|
|
EmitPolymorphicParameters::emitForGenericValueWitness(llvm::Value *selfMeta) {
|
|
// We get the source metadata verbatim from the value witness signature.
|
|
MetadataForDepths.push_back(selfMeta);
|
|
|
|
// All our archetypes should be satisfiable from the source.
|
|
Explosion empty(ResilienceExpansion::Minimal);
|
|
emitWithSourceBound(empty);
|
|
}
|
|
|
|
void
|
|
EmitPolymorphicParameters::emitWithSourceBound(Explosion &in) {
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Get the corresponding context archetype.
|
|
auto contextTy
|
|
= ArchetypeBuilder::mapTypeIntoContext(IGF.IGM.SILMod->getSwiftModule(),
|
|
ContextParams, depTy)
|
|
->getAs<ArchetypeType>();
|
|
if (!contextTy)
|
|
continue;
|
|
|
|
// Derive the appropriate metadata reference.
|
|
llvm::Value *metadata;
|
|
|
|
// If the reference is fulfilled by the source, go for it.
|
|
auto it = Fulfillments.find(FulfillmentKey(depTy, nullptr));
|
|
if (it != Fulfillments.end()) {
|
|
auto &fulfillment = it->second;
|
|
auto ancestor = getMetadataForDepth(fulfillment.Depth);
|
|
auto ancestorDecl = TypesForDepths[fulfillment.Depth];
|
|
metadata = emitArgumentMetadataRef(IGF, ancestorDecl,
|
|
fulfillment.Index, ancestor);
|
|
|
|
// Otherwise, it's just next in line.
|
|
} else {
|
|
metadata = in.claimNext();
|
|
}
|
|
|
|
// Collect all the witness tables.
|
|
SmallVector<llvm::Value *, 8> wtables;
|
|
for (auto protocol : contextTy->getConformsTo()) {
|
|
if (!requiresProtocolWitnessTable(protocol))
|
|
continue;
|
|
|
|
llvm::Value *wtable;
|
|
|
|
// If the protocol witness table is fulfilled by the source, go for it.
|
|
auto it = Fulfillments.find(FulfillmentKey(depTy, protocol));
|
|
if (it != Fulfillments.end()) {
|
|
auto &fulfillment = it->second;
|
|
auto ancestor = getMetadataForDepth(fulfillment.Depth);
|
|
auto ancestorDecl = TypesForDepths[fulfillment.Depth];
|
|
wtable = emitArgumentWitnessTableRef(IGF, ancestorDecl,
|
|
fulfillment.Index, protocol,
|
|
ancestor);
|
|
|
|
// Otherwise, it's just next in line.
|
|
} else {
|
|
wtable = in.claimNext();
|
|
}
|
|
wtables.push_back(wtable);
|
|
}
|
|
IGF.bindArchetype(contextTy, metadata, wtables);
|
|
}
|
|
}
|
|
|
|
/// Perform all the bindings necessary to emit the given declaration.
|
|
void irgen::emitPolymorphicParameters(IRGenFunction &IGF,
|
|
SILFunction &Fn,
|
|
Explosion &in) {
|
|
EmitPolymorphicParameters(IGF, Fn).emit(in);
|
|
}
|
|
|
|
/// Perform the metadata bindings necessary to emit a generic value witness.
|
|
void irgen::emitPolymorphicParametersForGenericValueWitness(IRGenFunction &IGF,
|
|
NominalTypeDecl *ntd,
|
|
llvm::Value *selfMeta) {
|
|
// Nothing to do if the type isn't generic.
|
|
if (!ntd->getGenericParamsOfContext())
|
|
return;
|
|
|
|
EmitPolymorphicParameters(IGF, ntd).emitForGenericValueWitness(selfMeta);
|
|
// Register the 'Self' argument as generic metadata for the type.
|
|
IGF.setUnscopedLocalTypeData(ntd->getDeclaredTypeInContext()->getCanonicalType(),
|
|
LocalTypeData::Metatype, selfMeta);
|
|
}
|
|
|
|
/// Get the next argument and use it as the 'self' type metadata.
|
|
static void getArgAsLocalSelfTypeMetadata(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
CanType abstractType) {
|
|
llvm::Value *arg = getArg(it, "Self");
|
|
assert(arg->getType() == IGF.IGM.TypeMetadataPtrTy &&
|
|
"Self argument is not a type?!");
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(abstractType)) {
|
|
emitPolymorphicParametersForGenericValueWitness(IGF, ugt->getDecl(), arg);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A CRTP class for finding the archetypes we need to bind in order
|
|
/// to perform value operations on the given type.
|
|
struct FindArchetypesToBind : CanTypeVisitor<FindArchetypesToBind> {
|
|
llvm::SetVector<ArchetypeType*> &Types;
|
|
public:
|
|
FindArchetypesToBind(llvm::SetVector<ArchetypeType*> &types)
|
|
: Types(types) {}
|
|
|
|
// We're collecting archetypes.
|
|
void visitArchetypeType(CanArchetypeType type) {
|
|
Types.insert(type);
|
|
}
|
|
|
|
// We need to walk into tuples.
|
|
void visitTupleType(CanTupleType tuple) {
|
|
for (auto eltType : tuple.getElementTypes()) {
|
|
visit(eltType);
|
|
}
|
|
}
|
|
|
|
// Walk into on-stack block storage.
|
|
void visitSILBlockStorageType(CanSILBlockStorageType t) {
|
|
visit(t->getCaptureType());
|
|
}
|
|
|
|
// We do not need to walk into any of these types, because their
|
|
// value operations do not depend on the specifics of their
|
|
// sub-structure (or they have none).
|
|
void visitAnyFunctionType(CanAnyFunctionType fn) {}
|
|
void visitSILFunctionType(CanSILFunctionType fn) {}
|
|
void visitBuiltinType(CanBuiltinType type) {}
|
|
void visitAnyMetatypeType(CanAnyMetatypeType type) {}
|
|
void visitModuleType(CanModuleType type) {}
|
|
void visitDynamicSelfType(CanDynamicSelfType type) {}
|
|
void visitProtocolCompositionType(CanProtocolCompositionType type) {}
|
|
void visitReferenceStorageType(CanReferenceStorageType type) {}
|
|
|
|
// L-values are impossible.
|
|
void visitLValueType(CanLValueType type) {
|
|
llvm_unreachable("cannot store l-value type directly");
|
|
}
|
|
void visitInOutType(CanInOutType type) {
|
|
llvm_unreachable("cannot store inout type directly");
|
|
}
|
|
|
|
// Bind archetypes from the parent of nominal types.
|
|
void visitNominalType(CanNominalType type) {
|
|
if (auto parent = CanType(type->getParent()))
|
|
visit(parent);
|
|
}
|
|
// Bind archetypes from bound generic types and their parents.
|
|
void visitBoundGenericType(CanBoundGenericType type) {
|
|
if (auto parent = CanType(type->getParent()))
|
|
visit(parent);
|
|
for (auto arg : type->getGenericArgs())
|
|
visit(CanType(arg));
|
|
}
|
|
|
|
// FIXME: Will need to bind the archetype that this eventually refers to.
|
|
void visitGenericTypeParamType(CanGenericTypeParamType type) { }
|
|
|
|
// FIXME: Will need to bind the archetype that this eventually refers to.
|
|
void visitDependentMemberType(CanDependentMemberType type) { }
|
|
};
|
|
}
|
|
|
|
/// Initialize this set of necessary bindings.
|
|
NecessaryBindings::NecessaryBindings(IRGenModule &IGM, CanType type) {
|
|
FindArchetypesToBind(Types).visit(type);
|
|
}
|
|
|
|
Size NecessaryBindings::getBufferSize(IRGenModule &IGM) const {
|
|
return IGM.getPointerSize() * Types.size();
|
|
}
|
|
|
|
void NecessaryBindings::restore(IRGenFunction &IGF, Address buffer) const {
|
|
if (Types.empty()) return;
|
|
|
|
// Cast the buffer to %type**.
|
|
auto metatypePtrPtrTy = IGF.IGM.TypeMetadataPtrTy->getPointerTo();
|
|
buffer = IGF.Builder.CreateBitCast(buffer, metatypePtrPtrTy);
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
auto archetype = Types[i];
|
|
|
|
// GEP to the appropriate slot.
|
|
Address slot = buffer;
|
|
if (i) slot = IGF.Builder.CreateConstArrayGEP(slot, i,
|
|
IGF.IGM.getPointerSize());
|
|
|
|
// Load the archetype's metatype.
|
|
llvm::Value *metatype = IGF.Builder.CreateLoad(slot);
|
|
metatype->setName(archetype->getFullName());
|
|
setMetadataRef(IGF, archetype, metatype);
|
|
}
|
|
}
|
|
|
|
void NecessaryBindings::save(IRGenFunction &IGF, Address buffer) const {
|
|
if (Types.empty()) return;
|
|
|
|
// Cast the buffer to %type**.
|
|
auto metatypePtrPtrTy = IGF.IGM.TypeMetadataPtrTy->getPointerTo();
|
|
buffer = IGF.Builder.CreateBitCast(buffer, metatypePtrPtrTy);
|
|
|
|
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
|
|
auto archetype = Types[i];
|
|
|
|
// GEP to the appropriate slot.
|
|
Address slot = buffer;
|
|
if (i) slot = IGF.Builder.CreateConstArrayGEP(slot, i,
|
|
IGF.IGM.getPointerSize());
|
|
|
|
// Find the metatype for the appropriate archetype and store it in
|
|
// the slot.
|
|
llvm::Value *metatype =
|
|
IGF.getLocalTypeData(CanType(archetype), LocalTypeData::Metatype);
|
|
IGF.Builder.CreateStore(metatype, slot);
|
|
}
|
|
}
|
|
|
|
/// Emit the witness table references required for the given type
|
|
/// substitution.
|
|
void irgen::emitWitnessTableRefs(IRGenFunction &IGF,
|
|
const Substitution &sub,
|
|
SmallVectorImpl<llvm::Value*> &out) {
|
|
// We don't need to do anything if we have no protocols to conform to.
|
|
auto archetypeProtos = sub.Archetype->getConformsTo();
|
|
if (archetypeProtos.empty()) return;
|
|
|
|
// Look at the replacement type.
|
|
CanType replType = sub.Replacement->getCanonicalType();
|
|
|
|
// If it's an archetype, we'll need to grab from the local context.
|
|
if (auto archetype = dyn_cast<ArchetypeType>(replType)) {
|
|
auto &archTI = getArchetypeInfo(IGF, archetype,
|
|
IGF.getTypeInfoForLowered(archetype));
|
|
|
|
for (auto proto : archetypeProtos) {
|
|
if (!requiresProtocolWitnessTable(proto))
|
|
continue;
|
|
|
|
ProtocolPath path(IGF.IGM, archTI.getProtocols(), proto);
|
|
auto wtable = archTI.getWitnessTable(IGF, archetype,
|
|
path.getOriginIndex());
|
|
wtable = path.apply(IGF, wtable);
|
|
out.push_back(wtable);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we can construct the witnesses from the protocol
|
|
// conformances.
|
|
auto &replTI = IGF.getTypeInfoForUnlowered(replType);
|
|
|
|
assert(archetypeProtos.size() == sub.Conformance.size());
|
|
for (unsigned j = 0, je = archetypeProtos.size(); j != je; ++j) {
|
|
auto proto = archetypeProtos[j];
|
|
if (!requiresProtocolWitnessTable(proto))
|
|
continue;
|
|
|
|
auto &protoI = IGF.IGM.getProtocolInfo(proto);
|
|
auto &confI = protoI.getConformance(IGF.IGM, replType, replTI, proto,
|
|
*sub.Conformance[j]);
|
|
|
|
llvm::Value *wtable = confI.getTable(IGF);
|
|
out.push_back(wtable);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class EmitPolymorphicArguments : public PolymorphicConvention {
|
|
IRGenFunction &IGF;
|
|
public:
|
|
EmitPolymorphicArguments(IRGenFunction &IGF,
|
|
CanSILFunctionType polyFn)
|
|
: PolymorphicConvention(polyFn, *IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF) {}
|
|
|
|
void emit(CanType substInputType, ArrayRef<Substitution> subs,
|
|
Explosion &out);
|
|
|
|
private:
|
|
void emitSource(CanType substInputType, Explosion &out) {
|
|
switch (getSourceKind()) {
|
|
case SourceKind::None: return;
|
|
case SourceKind::ClassPointer: return;
|
|
case SourceKind::Metadata: return;
|
|
case SourceKind::GenericLValueMetadata: {
|
|
out.add(IGF.emitTypeMetadataRef(substInputType));
|
|
return;
|
|
}
|
|
case SourceKind::WitnessSelf:
|
|
// The 'Self' argument(s) are added as a special case in
|
|
// EmitPolymorphicArguments::emit.
|
|
return;
|
|
case SourceKind::WitnessExtraData:
|
|
// The 'Self' argument(s) are added implicitly from ExtraData of the
|
|
// function value.
|
|
return;
|
|
}
|
|
llvm_unreachable("bad source kind!");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Pass all the arguments necessary for the given function.
|
|
void irgen::emitPolymorphicArguments(IRGenFunction &IGF,
|
|
CanSILFunctionType origFnType,
|
|
CanSILFunctionType substFnType,
|
|
ArrayRef<Substitution> subs,
|
|
Explosion &out) {
|
|
// Grab the apparent 'self' type. If there isn't a 'self' type,
|
|
// we're not going to try to access this anyway.
|
|
CanType substInputType;
|
|
if (!substFnType->getInterfaceParameters().empty()) {
|
|
auto selfParam = substFnType->getInterfaceParameters().back();
|
|
substInputType = selfParam.getType();
|
|
// If the parameter is a direct metatype parameter, this is a static method
|
|
// of the instance type. We can assume this because:
|
|
// - metatypes cannot directly conform to protocols
|
|
// - even if they could, they would conform as a value type 'self' and thus
|
|
// be passed indirectly as an @in or @inout parameter.
|
|
if (auto meta = dyn_cast<MetatypeType>(substInputType)) {
|
|
if (!selfParam.isIndirect())
|
|
substInputType = meta.getInstanceType();
|
|
}
|
|
}
|
|
emitPolymorphicArgumentsWithInput(IGF, origFnType, substInputType, subs, out);
|
|
}
|
|
|
|
static void emitPolymorphicArgumentsWithInput(IRGenFunction &IGF,
|
|
CanSILFunctionType origFnType,
|
|
CanType substInputType,
|
|
ArrayRef<Substitution> subs,
|
|
Explosion &out) {
|
|
EmitPolymorphicArguments(IGF, origFnType).emit(substInputType, subs, out);
|
|
}
|
|
|
|
void EmitPolymorphicArguments::emit(CanType substInputType,
|
|
ArrayRef<Substitution> subs,
|
|
Explosion &out) {
|
|
emitSource(substInputType, out);
|
|
|
|
// For now, treat all archetypes independently.
|
|
// FIXME: Later, we'll want to emit only the minimal set of archetypes,
|
|
// because non-primary archetypes (which correspond to associated types)
|
|
// will have their witness tables embedded in the witness table corresponding
|
|
// to their parent.
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// The substitutions should be in the same order.
|
|
const Substitution &sub = subs.front();
|
|
subs = subs.slice(1);
|
|
|
|
CanType argType = sub.Replacement->getCanonicalType();
|
|
|
|
// If same-type constraints have eliminated the genericity of this
|
|
// parameter, it doesn't need an independent metadata parameter.
|
|
auto type = getRepresentativeArchetype(depTy);
|
|
assert(type && "no potential archetype for dependent type?!");
|
|
auto arch = type.dyn_cast<ArchetypeType*>();
|
|
if (!arch)
|
|
continue;
|
|
|
|
// Add the metadata reference unless it's fulfilled.
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, nullptr))) {
|
|
out.add(IGF.emitTypeMetadataRef(argType));
|
|
}
|
|
|
|
// Nothing else to do if there aren't any protocols to witness.
|
|
auto protocols = arch->getConformsTo();
|
|
if (protocols.empty())
|
|
continue;
|
|
|
|
auto &argTI = IGF.getTypeInfoForUnlowered(argType);
|
|
|
|
// Add witness tables for each of the required protocols.
|
|
for (unsigned i = 0, e = protocols.size(); i != e; ++i) {
|
|
auto protocol = protocols[i];
|
|
|
|
// Skip this if the protocol doesn't require a witness table.
|
|
if (!requiresProtocolWitnessTable(protocol))
|
|
continue;
|
|
|
|
// Skip this if it's fulfilled by the source.
|
|
if (Fulfillments.count(FulfillmentKey(depTy, protocol)))
|
|
continue;
|
|
|
|
// If the target is an archetype, go to the type info.
|
|
if (auto archetype = dyn_cast<ArchetypeType>(argType)) {
|
|
auto &archTI = getArchetypeInfo(IGF, archetype,
|
|
IGF.getTypeInfoForLowered(archetype));
|
|
|
|
ProtocolPath path(IGF.IGM, archTI.getProtocols(), protocol);
|
|
auto wtable = archTI.getWitnessTable(IGF, archetype,
|
|
path.getOriginIndex());
|
|
wtable = path.apply(IGF, wtable);
|
|
out.add(wtable);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, go to the conformances.
|
|
auto &protoI = IGF.IGM.getProtocolInfo(protocol);
|
|
auto &confI = protoI.getConformance(IGF.IGM, argType, argTI, protocol,
|
|
*sub.Conformance[i]);
|
|
llvm::Value *wtable = confI.getTable(IGF);
|
|
out.add(wtable);
|
|
}
|
|
}
|
|
assert(subs.empty()
|
|
&& "did not use all substitutions?!");
|
|
|
|
// For a witness call, add the Self argument metadata arguments last.
|
|
if (getSourceKind() == SourceKind::WitnessSelf) {
|
|
auto self = IGF.emitTypeMetadataRef(substInputType);
|
|
out.add(self);
|
|
// TODO: Should also provide the protocol witness table,
|
|
// for default implementations.
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A class for expanding a polymorphic signature.
|
|
class ExpandPolymorphicSignature : public PolymorphicConvention {
|
|
IRGenModule &IGM;
|
|
public:
|
|
ExpandPolymorphicSignature(IRGenModule &IGM, CanSILFunctionType fn)
|
|
: PolymorphicConvention(fn, *IGM.SILMod->getSwiftModule()), IGM(IGM) {}
|
|
|
|
void expand(SmallVectorImpl<llvm::Type*> &out) {
|
|
addSource(out);
|
|
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Only emit parameters for independent parameters that haven't been
|
|
// constrained to concrete types.
|
|
auto representative = getRepresentativeArchetype(depTy);
|
|
assert(representative && "no representative archetype for param?!");
|
|
auto arch = representative.dyn_cast<ArchetypeType*>();
|
|
if (!arch)
|
|
continue;
|
|
|
|
// Pass the type argument if not fulfilled.
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, nullptr)))
|
|
out.push_back(IGM.TypeMetadataPtrTy);
|
|
|
|
// Pass each signature requirement that needs a witness table
|
|
// separately (unless fulfilled).
|
|
for (auto protocol : arch->getConformsTo()) {
|
|
if (!requiresProtocolWitnessTable(protocol))
|
|
continue;
|
|
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, protocol)))
|
|
out.push_back(IGM.WitnessTablePtrTy);
|
|
}
|
|
}
|
|
|
|
// For a witness method, add the 'self' parameter.
|
|
if (getSourceKind() == SourceKind::WitnessSelf) {
|
|
out.push_back(IGM.TypeMetadataPtrTy);
|
|
// TODO: Should also provide the protocol witness table,
|
|
// for default implementations.
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Add signature elements for the source metadata.
|
|
void addSource(SmallVectorImpl<llvm::Type*> &out) {
|
|
switch (getSourceKind()) {
|
|
case SourceKind::None: return;
|
|
case SourceKind::ClassPointer: return; // already accounted for
|
|
case SourceKind::Metadata: return; // already accounted for
|
|
case SourceKind::GenericLValueMetadata:
|
|
return out.push_back(IGM.TypeMetadataPtrTy);
|
|
case SourceKind::WitnessSelf:
|
|
return; // handled as a special case in expand()
|
|
case SourceKind::WitnessExtraData:
|
|
return; // added implicitly as ExtraData
|
|
}
|
|
llvm_unreachable("bad source kind");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Given a generic signature, add the argument types required in order to call it.
|
|
void irgen::expandPolymorphicSignature(IRGenModule &IGM,
|
|
CanSILFunctionType polyFn,
|
|
SmallVectorImpl<llvm::Type*> &out) {
|
|
ExpandPolymorphicSignature(IGM, polyFn).expand(out);
|
|
}
|
|
|
|
/// Retrieve the protocol witness table for a conformance.
|
|
static llvm::Value *getProtocolWitnessTable(IRGenFunction &IGF,
|
|
SILType srcType,
|
|
const TypeInfo &srcTI,
|
|
ProtocolEntry protoEntry,
|
|
ProtocolConformance *conformance) {
|
|
auto proto = protoEntry.getProtocol();
|
|
assert(requiresProtocolWitnessTable(proto)
|
|
&& "protocol does not have witness tables?!");
|
|
|
|
// If the source type is an archetype, look at what's locally bound.
|
|
if (auto archetype = srcType.getAs<ArchetypeType>()) {
|
|
assert(!conformance
|
|
&& "should not have concrete conformance info for archetype");
|
|
auto &archTI = getArchetypeInfo(IGF, archetype, srcTI);
|
|
ProtocolPath path(IGF.IGM, archTI.getProtocols(), proto);
|
|
llvm::Value *rootTable = archTI.getWitnessTable(IGF, archetype,
|
|
path.getOriginIndex());
|
|
return path.apply(IGF, rootTable);
|
|
}
|
|
|
|
// All other source types should be concrete enough that we have conformance
|
|
// info for them.
|
|
assert(conformance && "no conformance for concrete type?!");
|
|
auto &protoI = protoEntry.getInfo();
|
|
const ConformanceInfo &conformanceI
|
|
= protoI.getConformance(IGF.IGM, srcType.getSwiftRValueType(),
|
|
srcTI, proto, *conformance);
|
|
return conformanceI.getTable(IGF);
|
|
}
|
|
|
|
/// Emit protocol witness table pointers for the given protocol conformances,
|
|
/// passing each emitted witness table index into the given function body.
|
|
static void forEachProtocolWitnessTable(IRGenFunction &IGF,
|
|
SILType srcType, SILType destType,
|
|
ArrayRef<ProtocolEntry> protocols,
|
|
ArrayRef<ProtocolConformance*> conformances,
|
|
std::function<void (unsigned, llvm::Value*)> body) {
|
|
// Collect the conformances that need witness tables.
|
|
SmallVector<ProtocolDecl*, 2> destProtocols;
|
|
destType.getSwiftRValueType().getAnyExistentialTypeProtocols(destProtocols);
|
|
|
|
SmallVector<ProtocolConformance*, 2> witnessConformances;
|
|
assert(destProtocols.size() == conformances.size() &&
|
|
"mismatched protocol conformances");
|
|
for (unsigned i = 0, size = destProtocols.size(); i < size; ++i)
|
|
if (requiresProtocolWitnessTable(destProtocols[i]))
|
|
witnessConformances.push_back(conformances[i]);
|
|
|
|
assert(protocols.size() == witnessConformances.size() &&
|
|
"mismatched protocol conformances");
|
|
|
|
auto &srcTI = IGF.getTypeInfo(srcType);
|
|
for (unsigned i = 0, e = protocols.size(); i < e; ++i) {
|
|
auto table = getProtocolWitnessTable(IGF, srcType, srcTI,
|
|
protocols[i], witnessConformances[i]);
|
|
body(i, table);
|
|
}
|
|
}
|
|
|
|
/// Emit an existential container initialization by copying the value and
|
|
/// witness tables from an existential container of a more specific type.
|
|
void irgen::emitOpaqueExistentialContainerUpcast(IRGenFunction &IGF,
|
|
Address dest, SILType destType,
|
|
Address src, SILType srcType,
|
|
bool isTakeOfSrc) {
|
|
assert(destType.isExistentialType());
|
|
assert(!destType.isClassExistentialType());
|
|
assert(srcType.isExistentialType());
|
|
assert(!srcType.isClassExistentialType());
|
|
auto &destTI = IGF.getTypeInfo(destType).as<OpaqueExistentialTypeInfo>();
|
|
auto &srcTI = IGF.getTypeInfo(srcType).as<OpaqueExistentialTypeInfo>();
|
|
|
|
auto destLayout = destTI.getLayout();
|
|
auto srcLayout = srcTI.getLayout();
|
|
|
|
ArrayRef<ProtocolEntry> destEntries = destTI.getProtocols();
|
|
|
|
// Take the data out of the other buffer.
|
|
// UpcastExistential never implies a transformation of the *value*,
|
|
// just of the *witnesses*.
|
|
Address destBuffer = destLayout.projectExistentialBuffer(IGF, dest);
|
|
Address srcBuffer = srcLayout.projectExistentialBuffer(IGF, src);
|
|
llvm::Value *srcMetadata = srcLayout.loadMetadataRef(IGF, src);
|
|
if (isTakeOfSrc) {
|
|
// If we can take the source, we can just memcpy the buffer.
|
|
IGF.emitMemCpy(destBuffer, srcBuffer, getFixedBufferSize(IGF.IGM));
|
|
} else {
|
|
// Otherwise, we have to do a copy-initialization of the buffer.
|
|
emitInitializeBufferWithCopyOfBufferCall(IGF, srcMetadata,
|
|
destBuffer, srcBuffer);
|
|
}
|
|
|
|
// Copy the metadata as well.
|
|
Address destMetadataRef = destLayout.projectMetadataRef(IGF, dest);
|
|
IGF.Builder.CreateStore(srcMetadata, destMetadataRef);
|
|
|
|
// Okay, the buffer on dest has been meaningfully filled in.
|
|
// Fill in the witnesses.
|
|
|
|
// If we're erasing *all* protocols, we're done.
|
|
if (destEntries.empty())
|
|
return;
|
|
|
|
// Okay, so we're erasing to a non-trivial set of protocols.
|
|
|
|
// First, find all the destination tables. We can't write these
|
|
// into dest immediately because later fetches of protocols might
|
|
// give us trouble.
|
|
SmallVector<llvm::Value*, 4> destTables;
|
|
for (auto &entry : destEntries) {
|
|
auto table = srcTI.findWitnessTable(IGF, src, entry.getProtocol());
|
|
destTables.push_back(table);
|
|
}
|
|
|
|
// Now write those into the destination.
|
|
for (unsigned i = 0, e = destTables.size(); i != e; ++i) {
|
|
Address destSlot = destLayout.projectWitnessTable(IGF, dest, i);
|
|
IGF.Builder.CreateStore(destTables[i], destSlot);
|
|
}
|
|
}
|
|
|
|
void irgen::emitClassExistentialContainerUpcast(IRGenFunction &IGF,
|
|
Explosion &dest,
|
|
SILType destType,
|
|
Explosion &src,
|
|
SILType srcType) {
|
|
assert(destType.isClassExistentialType());
|
|
assert(srcType.isClassExistentialType());
|
|
auto &destTI = IGF.getTypeInfo(destType).as<ClassExistentialTypeInfo>();
|
|
auto &srcTI = IGF.getTypeInfo(srcType).as<ClassExistentialTypeInfo>();
|
|
|
|
ArrayRef<llvm::Value*> srcTables;
|
|
llvm::Value *instance;
|
|
std::tie(srcTables, instance) = srcTI.getWitnessTablesAndValue(src);
|
|
|
|
// Add the instance.
|
|
dest.add(instance);
|
|
|
|
// Find the destination tables and add them to the destination.
|
|
ArrayRef<ProtocolEntry> destEntries = destTI.getProtocols();
|
|
SmallVector<llvm::Value*, 4> destTables;
|
|
for (auto &entry : destEntries) {
|
|
auto table = srcTI.findWitnessTable(IGF, srcTables, entry.getProtocol());
|
|
dest.add(table);
|
|
}
|
|
}
|
|
|
|
/// "Deinitialize" an existential container whose contained value is allocated
|
|
/// but uninitialized, by deallocating the buffer owned by the container if any.
|
|
void irgen::emitOpaqueExistentialContainerDeinit(IRGenFunction &IGF,
|
|
Address container,
|
|
SILType type) {
|
|
assert(type.isExistentialType());
|
|
assert(!type.isClassExistentialType());
|
|
auto &ti = IGF.getTypeInfo(type).as<OpaqueExistentialTypeInfo>();
|
|
auto layout = ti.getLayout();
|
|
|
|
llvm::Value *metadata = layout.loadMetadataRef(IGF, container);
|
|
Address buffer = layout.projectExistentialBuffer(IGF, container);
|
|
emitDeallocateBufferCall(IGF, metadata, buffer);
|
|
}
|
|
|
|
/// Emit a class existential container from a class instance value
|
|
/// as an explosion.
|
|
void irgen::emitClassExistentialContainer(IRGenFunction &IGF,
|
|
Explosion &out,
|
|
SILType outType,
|
|
llvm::Value *instance,
|
|
SILType instanceType,
|
|
ArrayRef<ProtocolConformance*> conformances) {
|
|
assert(outType.isClassExistentialType() &&
|
|
"creating a non-class existential type");
|
|
|
|
auto &destTI = IGF.getTypeInfo(outType).as<ClassExistentialTypeInfo>();
|
|
|
|
// Cast the instance pointer to an opaque refcounted pointer.
|
|
llvm::Value *opaqueInstance
|
|
= IGF.Builder.CreateBitCast(instance, IGF.IGM.UnknownRefCountedPtrTy);
|
|
out.add(opaqueInstance);
|
|
|
|
// Emit the witness table pointers.
|
|
forEachProtocolWitnessTable(IGF, instanceType, outType,
|
|
destTI.getProtocols(),
|
|
conformances,
|
|
[&](unsigned i, llvm::Value *ptable) {
|
|
out.add(ptable);
|
|
});
|
|
}
|
|
|
|
/// Emit an existential container initialization operation for a concrete type.
|
|
/// Returns the address of the uninitialized buffer for the concrete value.
|
|
Address irgen::emitOpaqueExistentialContainerInit(IRGenFunction &IGF,
|
|
Address dest,
|
|
SILType destType,
|
|
SILType srcType,
|
|
ArrayRef<ProtocolConformance*> conformances) {
|
|
assert(!destType.isClassExistentialType() &&
|
|
"initializing a class existential container as opaque");
|
|
auto &destTI = IGF.getTypeInfo(destType).as<OpaqueExistentialTypeInfo>();
|
|
auto &srcTI = IGF.getTypeInfo(srcType);
|
|
OpaqueExistentialLayout destLayout = destTI.getLayout();
|
|
assert(destTI.getProtocols().size() == conformances.size());
|
|
|
|
assert(!srcType.isExistentialType() &&
|
|
"existential-to-existential erasure should be done with "
|
|
"upcast_existential");
|
|
|
|
// First, write out the metadata.
|
|
llvm::Value *metadata = IGF.emitTypeMetadataRef(srcType);
|
|
IGF.Builder.CreateStore(metadata, destLayout.projectMetadataRef(IGF, dest));
|
|
|
|
// Compute basic layout information about the type. If we have a
|
|
// concrete type, we need to know how it packs into a fixed-size
|
|
// buffer. If we don't, we need a value witness table.
|
|
FixedPacking packing;
|
|
bool needValueWitnessToAllocate;
|
|
if (!isa<FixedTypeInfo>(srcTI)) {
|
|
packing = (FixedPacking) -1;
|
|
needValueWitnessToAllocate = true;
|
|
} else {
|
|
packing = srcTI.getFixedPacking(IGF.IGM);
|
|
needValueWitnessToAllocate = false;
|
|
}
|
|
|
|
// Next, write the protocol witness tables.
|
|
forEachProtocolWitnessTable(IGF, srcType, destType,
|
|
destTI.getProtocols(), conformances,
|
|
[&](unsigned i, llvm::Value *ptable) {
|
|
Address ptableSlot = destLayout.projectWitnessTable(IGF, dest, i);
|
|
IGF.Builder.CreateStore(ptable, ptableSlot);
|
|
});
|
|
|
|
// Finally, evaluate into the buffer.
|
|
|
|
// Project down to the destination fixed-size buffer.
|
|
Address buffer = destLayout.projectExistentialBuffer(IGF, dest);
|
|
|
|
// If the type is provably empty, we're done.
|
|
if (srcTI.isKnownEmpty()) {
|
|
assert(packing == FixedPacking::OffsetZero);
|
|
return buffer;
|
|
}
|
|
|
|
// Otherwise, allocate if necessary.
|
|
|
|
if (needValueWitnessToAllocate) {
|
|
// If we're using a witness-table to do this, we need to emit a
|
|
// value-witness call to allocate the fixed-size buffer.
|
|
return Address(emitAllocateBufferCall(IGF, metadata, buffer),
|
|
Alignment(1));
|
|
} else {
|
|
// Otherwise, allocate using what we know statically about the type.
|
|
return emitAllocateBuffer(IGF, srcType.getSwiftRValueType(),
|
|
srcTI, packing, buffer);
|
|
}
|
|
}
|
|
|
|
static void getWitnessMethodValue(IRGenFunction &IGF,
|
|
AbstractFunctionDecl *fn,
|
|
ProtocolDecl *fnProto,
|
|
llvm::Value *wtable,
|
|
llvm::Value *metadata,
|
|
Explosion &out) {
|
|
// Find the actual witness.
|
|
auto &fnProtoInfo = IGF.IGM.getProtocolInfo(fnProto);
|
|
auto index = fnProtoInfo.getWitnessEntry(fn).getFunctionIndex();
|
|
llvm::Value *witness = emitLoadOfOpaqueWitness(IGF, wtable, index);
|
|
|
|
// Cast the witness pointer to i8*.
|
|
witness = IGF.Builder.CreateBitCast(witness, IGF.IGM.Int8PtrTy);
|
|
|
|
// Build the value.
|
|
out.add(witness);
|
|
if (metadata)
|
|
out.add(metadata);
|
|
}
|
|
|
|
void
|
|
irgen::emitWitnessMethodValue(IRGenFunction &IGF,
|
|
SILType baseTy,
|
|
SILDeclRef member,
|
|
ProtocolConformance *conformance,
|
|
Explosion &out) {
|
|
auto fn = cast<AbstractFunctionDecl>(member.getDecl());
|
|
|
|
// The protocol we're calling on.
|
|
ProtocolDecl *fnProto = cast<ProtocolDecl>(fn->getDeclContext());
|
|
|
|
// Find the witness table.
|
|
auto &baseTI = IGF.getTypeInfo(baseTy);
|
|
llvm::Value *wtable = getProtocolWitnessTable(IGF, baseTy, baseTI,
|
|
ProtocolEntry(fnProto, IGF.IGM.getProtocolInfo(fnProto)),
|
|
conformance); // FIXME conformance for concrete type
|
|
|
|
// Build the value.
|
|
getWitnessMethodValue(IGF, fn, fnProto, wtable, nullptr, out);
|
|
}
|
|
|
|
llvm::Value *
|
|
irgen::emitTypeMetadataRefForArchetype(IRGenFunction &IGF,
|
|
Address addr,
|
|
SILType type) {
|
|
auto archetype = type.castTo<ArchetypeType>();
|
|
|
|
// Acquire the archetype's static metadata.
|
|
llvm::Value *metadata = IGF.getLocalTypeData(archetype,
|
|
LocalTypeData::Metatype);
|
|
|
|
// Call the 'typeof' value witness.
|
|
return emitTypeofCall(IGF, metadata, addr.getAddress());
|
|
}
|
|
|
|
/// Extract the method pointer and metadata from a protocol witness table
|
|
/// as a function value.
|
|
void
|
|
irgen::emitOpaqueProtocolMethodValue(IRGenFunction &IGF,
|
|
Address existAddr,
|
|
SILType baseTy,
|
|
SILDeclRef member,
|
|
Explosion &out) {
|
|
assert(baseTy.isExistentialType());
|
|
assert(!baseTy.isClassExistentialType() &&
|
|
"emitting class existential as opaque existential");
|
|
// The protocol we're calling on.
|
|
// TODO: support protocol compositions here.
|
|
auto &baseTI = IGF.getTypeInfo(baseTy).as<OpaqueExistentialTypeInfo>();
|
|
|
|
// The function we're going to call.
|
|
// FIXME: Support getters and setters (and curried entry points?)
|
|
assert(member.kind == SILDeclRef::Kind::Func
|
|
&& "getters and setters not yet supported");
|
|
auto fn = cast<AbstractFunctionDecl>(member.getDecl());
|
|
ProtocolDecl *fnProto = cast<ProtocolDecl>(fn->getDeclContext());
|
|
|
|
// Load the witness table.
|
|
llvm::Value *wtable = baseTI.findWitnessTable(IGF, existAddr, fnProto);
|
|
|
|
// Load the metadata.
|
|
auto existLayout = baseTI.getLayout();
|
|
llvm::Value *metadata = existLayout.loadMetadataRef(IGF, existAddr);
|
|
|
|
// Build the value.
|
|
getWitnessMethodValue(IGF, fn, fnProto, wtable, metadata, out);
|
|
}
|
|
|
|
/// Extract the method pointer and metadata from a class existential
|
|
/// container's protocol witness table as a function value.
|
|
void irgen::emitClassProtocolMethodValue(IRGenFunction &IGF,
|
|
Explosion &in,
|
|
SILType baseTy,
|
|
SILDeclRef member,
|
|
Explosion &out) {
|
|
assert(baseTy.isClassExistentialType());
|
|
|
|
// The protocol we're calling on.
|
|
auto &baseTI = IGF.getTypeInfo(baseTy).as<ClassExistentialTypeInfo>();
|
|
ArrayRef<llvm::Value *> witnesses;
|
|
llvm::Value *object;
|
|
std::tie(witnesses, object) = baseTI.getWitnessTablesAndValue(in);
|
|
|
|
// The function we're going to call.
|
|
// FIXME: Support getters and setters (and curried entry points?)
|
|
assert(member.kind == SILDeclRef::Kind::Func
|
|
&& "getters and setters not yet supported");
|
|
auto fn = cast<AbstractFunctionDecl>(member.getDecl());
|
|
ProtocolDecl *fnProto = cast<ProtocolDecl>(fn->getDeclContext());
|
|
|
|
// Load the witness table.
|
|
llvm::Value *wtable = baseTI.findWitnessTable(IGF, witnesses, fnProto);
|
|
|
|
// TODO: Load the metadata from the class reference. This is redundant,
|
|
// but for simplicity in bringing up @cc(witness_method) we always provide
|
|
// a metadata argument.
|
|
llvm::Value *metadata = emitTypeMetadataRefForOpaqueHeapObject(IGF, object);
|
|
|
|
// Build the value.
|
|
getWitnessMethodValue(IGF, fn, fnProto, wtable, metadata, out);
|
|
}
|
|
|
|
llvm::Value *
|
|
irgen::emitTypeMetadataRefForOpaqueExistential(IRGenFunction &IGF, Address addr,
|
|
SILType type) {
|
|
return emitTypeMetadataRefForOpaqueExistential(IGF, addr,
|
|
type.getSwiftRValueType());
|
|
}
|
|
|
|
llvm::Value *
|
|
irgen::emitTypeMetadataRefForClassExistential(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
SILType type) {
|
|
return emitTypeMetadataRefForClassExistential(IGF, value,
|
|
type.getSwiftRValueType());
|
|
}
|
|
|
|
llvm::Value *
|
|
irgen::emitTypeMetadataRefForOpaqueExistential(IRGenFunction &IGF, Address addr,
|
|
CanType type) {
|
|
assert(type.isExistentialType());
|
|
assert(!type->isClassExistentialType());
|
|
auto &baseTI = IGF.getTypeInfoForLowered(type).as<OpaqueExistentialTypeInfo>();
|
|
|
|
// Get the static metadata.
|
|
auto existLayout = baseTI.getLayout();
|
|
llvm::Value *metadata = existLayout.loadMetadataRef(IGF, addr);
|
|
|
|
// Project the buffer and apply the 'typeof' value witness.
|
|
Address buffer = existLayout.projectExistentialBuffer(IGF, addr);
|
|
llvm::Value *object = emitProjectBufferCall(IGF, metadata, buffer);
|
|
return emitTypeofCall(IGF, metadata, object);
|
|
}
|
|
|
|
llvm::Value *
|
|
irgen::emitTypeMetadataRefForClassExistential(IRGenFunction &IGF,
|
|
Explosion &value,
|
|
CanType type) {
|
|
assert(type->isClassExistentialType());
|
|
auto &baseTI = IGF.getTypeInfoForLowered(type).as<ClassExistentialTypeInfo>();
|
|
|
|
// Extract the class instance pointer.
|
|
llvm::Value *instance = baseTI.getValue(IGF, value);
|
|
// Get the type metadata.
|
|
return emitTypeMetadataRefForOpaqueHeapObject(IGF, instance);
|
|
}
|
|
|
|
/// Emit a projection from an existential container to its concrete value
|
|
/// buffer with the type metadata for the contained value.
|
|
///
|
|
/// \param openedArchetype When non-null, the opened archetype
|
|
/// that captures the details of this existential.
|
|
static std::pair<Address, llvm::Value*>
|
|
emitIndirectExistentialProjectionWithMetadata(IRGenFunction &IGF,
|
|
Address base,
|
|
SILType baseTy,
|
|
CanArchetypeType openedArchetype){
|
|
assert(baseTy.isExistentialType());
|
|
if (baseTy.isClassExistentialType()) {
|
|
auto &baseTI = IGF.getTypeInfo(baseTy).as<ClassExistentialTypeInfo>();
|
|
auto valueAddr = baseTI.projectValue(IGF, base);
|
|
auto value = IGF.Builder.CreateLoad(valueAddr);
|
|
auto metadata = emitTypeMetadataRefForOpaqueHeapObject(IGF, value);
|
|
|
|
// If we are projecting into an opened archetype, capture the
|
|
// witness tables.
|
|
if (openedArchetype) {
|
|
SmallVector<llvm::Value *, 4> wtables;
|
|
for (unsigned i = 0, n = baseTI.getNumProtocols(); i != n; ++i) {
|
|
auto wtableAddr = baseTI.projectWitnessTable(IGF, base, i);
|
|
wtables.push_back(IGF.Builder.CreateLoad(wtableAddr));
|
|
}
|
|
|
|
IGF.bindArchetype(openedArchetype, metadata, wtables);
|
|
}
|
|
|
|
return {valueAddr, metadata};
|
|
} else {
|
|
auto &baseTI = IGF.getTypeInfo(baseTy).as<OpaqueExistentialTypeInfo>();
|
|
auto layout = baseTI.getLayout();
|
|
|
|
llvm::Value *metadata = layout.loadMetadataRef(IGF, base);
|
|
Address buffer = layout.projectExistentialBuffer(IGF, base);
|
|
llvm::Value *object = emitProjectBufferCall(IGF, metadata, buffer);
|
|
|
|
// If we are projecting into an opened archetype, capture the
|
|
// witness tables.
|
|
if (openedArchetype) {
|
|
SmallVector<llvm::Value *, 4> wtables;
|
|
for (unsigned i = 0, n = layout.getNumTables(); i != n; ++i) {
|
|
wtables.push_back(layout.loadWitnessTable(IGF, base, i));
|
|
}
|
|
IGF.bindArchetype(openedArchetype, metadata, wtables);
|
|
}
|
|
|
|
return {Address(object, Alignment(1)), metadata};
|
|
}
|
|
}
|
|
|
|
/// Emit a projection from an existential container to its concrete value
|
|
/// buffer.
|
|
Address irgen::emitOpaqueExistentialProjection(IRGenFunction &IGF,
|
|
Address base,
|
|
SILType baseTy,
|
|
CanArchetypeType openedArchetype)
|
|
{
|
|
return emitIndirectExistentialProjectionWithMetadata(IGF, base, baseTy,
|
|
openedArchetype)
|
|
.first;
|
|
}
|
|
|
|
/// Extract the instance pointer from a class existential value.
|
|
llvm::Value *
|
|
irgen::emitClassExistentialProjection(IRGenFunction &IGF,
|
|
Explosion &base,
|
|
SILType baseTy,
|
|
CanArchetypeType openedArchetype) {
|
|
assert(baseTy.isClassExistentialType());
|
|
auto &baseTI = IGF.getTypeInfo(baseTy).as<ClassExistentialTypeInfo>();
|
|
|
|
if (!openedArchetype)
|
|
return baseTI.getValue(IGF, base);
|
|
|
|
// Capture the metadata and witness tables from this existential
|
|
// into the given archetype.
|
|
ArrayRef<llvm::Value*> wtables;
|
|
llvm::Value *value;
|
|
std::tie(wtables, value) = baseTI.getWitnessTablesAndValue(base);
|
|
auto metadata = emitTypeMetadataRefForOpaqueHeapObject(IGF, value);
|
|
IGF.bindArchetype(openedArchetype, metadata, wtables);
|
|
|
|
return value;
|
|
}
|
|
|
|
static Address
|
|
emitOpaqueDowncast(IRGenFunction &IGF,
|
|
Address value,
|
|
llvm::Value *srcMetadata,
|
|
SILType destType,
|
|
CheckedCastMode mode) {
|
|
llvm::Value *addr = IGF.Builder.CreateBitCast(value.getAddress(),
|
|
IGF.IGM.OpaquePtrTy);
|
|
|
|
srcMetadata = IGF.Builder.CreateBitCast(srcMetadata, IGF.IGM.Int8PtrTy);
|
|
llvm::Value *destMetadata = IGF.emitTypeMetadataRef(destType);
|
|
destMetadata = IGF.Builder.CreateBitCast(destMetadata, IGF.IGM.Int8PtrTy);
|
|
|
|
llvm::Value *castFn;
|
|
switch (mode) {
|
|
case CheckedCastMode::Unconditional:
|
|
castFn = IGF.IGM.getDynamicCastIndirectUnconditionalFn();
|
|
break;
|
|
case CheckedCastMode::Conditional:
|
|
castFn = IGF.IGM.getDynamicCastIndirectFn();
|
|
break;
|
|
}
|
|
|
|
auto *call = IGF.Builder.CreateCall3(castFn, addr, srcMetadata, destMetadata);
|
|
// FIXME: Eventually, we may want to throw.
|
|
call->setDoesNotThrow();
|
|
|
|
// Convert the cast address to the destination type.
|
|
auto &destTI = IGF.getTypeInfo(destType);
|
|
llvm::Value *ptr = IGF.Builder.CreateBitCast(call,
|
|
destTI.StorageType->getPointerTo());
|
|
return destTI.getAddressForPointer(ptr);
|
|
}
|
|
|
|
/// Emit a checked cast of a metatype.
|
|
llvm::Value *irgen::emitMetatypeDowncast(IRGenFunction &IGF,
|
|
llvm::Value *metatype,
|
|
CanMetatypeType toMetatype,
|
|
CheckedCastMode mode) {
|
|
// Pick a runtime entry point and target metadata based on what kind of
|
|
// representation we're casting.
|
|
llvm::Value *castFn;
|
|
llvm::Value *toMetadata;
|
|
|
|
switch (toMetatype->getRepresentation()) {
|
|
case MetatypeRepresentation::Thick: {
|
|
// Get the Swift metadata for the type we're checking.
|
|
toMetadata = IGF.emitTypeMetadataRef(toMetatype.getInstanceType());
|
|
switch (mode) {
|
|
case CheckedCastMode::Unconditional:
|
|
castFn = IGF.IGM.getDynamicCastMetatypeUnconditionalFn();
|
|
break;
|
|
case CheckedCastMode::Conditional:
|
|
castFn = IGF.IGM.getDynamicCastMetatypeFn();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MetatypeRepresentation::ObjC: {
|
|
// Get the ObjC metadata for the type we're checking.
|
|
toMetadata = emitClassHeapMetadataRef(IGF, toMetatype.getInstanceType());
|
|
switch (mode) {
|
|
case CheckedCastMode::Unconditional:
|
|
castFn = IGF.IGM.getDynamicCastObjCClassMetatypeUnconditionalFn();
|
|
break;
|
|
case CheckedCastMode::Conditional:
|
|
castFn = IGF.IGM.getDynamicCastObjCClassMetatypeFn();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MetatypeRepresentation::Thin:
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
auto call = IGF.Builder.CreateCall2(castFn, metatype, toMetadata);
|
|
call->setDoesNotThrow();
|
|
return call;
|
|
}
|
|
|
|
/// Emit a checked cast of an opaque archetype.
|
|
Address irgen::emitOpaqueArchetypeDowncast(IRGenFunction &IGF,
|
|
Address value,
|
|
SILType srcType,
|
|
SILType destType,
|
|
CheckedCastMode mode) {
|
|
llvm::Value *srcMetadata = IGF.emitTypeMetadataRef(srcType);
|
|
return emitOpaqueDowncast(IGF, value, srcMetadata, destType, mode);
|
|
}
|
|
|
|
/// Emit a checked unconditional cast of an opaque existential container's
|
|
/// contained value.
|
|
Address irgen::emitIndirectExistentialDowncast(IRGenFunction &IGF,
|
|
Address container,
|
|
SILType srcType,
|
|
SILType destType,
|
|
CheckedCastMode mode) {
|
|
assert(srcType.isExistentialType());
|
|
|
|
// Project the value pointer and source type metadata out of the existential
|
|
// container.
|
|
Address value;
|
|
llvm::Value *srcMetadata;
|
|
std::tie(value, srcMetadata)
|
|
= emitIndirectExistentialProjectionWithMetadata(IGF, container, srcType,
|
|
CanArchetypeType());
|
|
|
|
return emitOpaqueDowncast(IGF, value, srcMetadata, destType, mode);
|
|
}
|
|
|
|
/// Emit a Protocol* value referencing an ObjC protocol.
|
|
static llvm::Value *emitReferenceToObjCProtocol(IRGenFunction &IGF,
|
|
ProtocolDecl *proto) {
|
|
assert(proto->isObjC() && "not an objc protocol");
|
|
|
|
// Get the address of the global variable the protocol reference gets
|
|
// indirected through.
|
|
llvm::Constant *protocolRefAddr
|
|
= IGF.IGM.getAddrOfObjCProtocolRef(proto, NotForDefinition);
|
|
|
|
// Load the protocol reference.
|
|
Address addr(protocolRefAddr, IGF.IGM.getPointerAlignment());
|
|
return IGF.Builder.CreateLoad(addr);
|
|
}
|
|
|
|
/// Emit a checked cast to an Objective-C protocol or protocol composition.
|
|
llvm::Value *irgen::emitObjCExistentialDowncast(IRGenFunction &IGF,
|
|
llvm::Value *orig,
|
|
SILType srcType,
|
|
SILType destType,
|
|
CheckedCastMode mode) {
|
|
orig = IGF.Builder.CreateBitCast(orig, IGF.IGM.ObjCPtrTy);
|
|
SmallVector<ProtocolDecl*, 4> protos;
|
|
destType.getSwiftRValueType().getAnyExistentialTypeProtocols(protos);
|
|
|
|
// Get references to the ObjC Protocol* values for each protocol.
|
|
Address protoRefsBuf = IGF.createAlloca(llvm::ArrayType::get(IGF.IGM.Int8PtrTy,
|
|
protos.size()),
|
|
IGF.IGM.getPointerAlignment(),
|
|
"objc_protocols");
|
|
protoRefsBuf = IGF.Builder.CreateBitCast(protoRefsBuf,
|
|
IGF.IGM.Int8PtrPtrTy);
|
|
|
|
unsigned index = 0;
|
|
for (auto proto : protos) {
|
|
Address protoRefSlot = IGF.Builder.CreateConstArrayGEP(protoRefsBuf, index,
|
|
IGF.IGM.getPointerSize());
|
|
auto protoRef = emitReferenceToObjCProtocol(IGF, proto);
|
|
IGF.Builder.CreateStore(protoRef, protoRefSlot);
|
|
++index;
|
|
}
|
|
|
|
// Perform the cast.
|
|
llvm::Value *castFn;
|
|
switch (mode) {
|
|
case CheckedCastMode::Unconditional:
|
|
castFn = IGF.IGM.getDynamicCastObjCProtocolUnconditionalFn();
|
|
break;
|
|
case CheckedCastMode::Conditional:
|
|
castFn = IGF.IGM.getDynamicCastObjCProtocolConditionalFn();
|
|
break;
|
|
}
|
|
|
|
return IGF.Builder.CreateCall3(castFn, orig,
|
|
IGF.IGM.getSize(Size(protos.size())),
|
|
protoRefsBuf.getAddress());
|
|
}
|
|
|
|
bool irgen::requiresProtocolWitnessTable(ProtocolDecl *protocol) {
|
|
return !protocol->isObjC();
|
|
}
|