Files
swift-mirror/lib/SIL/SILPrinter.cpp
Joe Groff 7d274e28a7 SIL: Add an unchecked_addr_cast instruction.
Cast an address to another address type without the silly address_to_pointer/pointer_to_address round trip.

Swift SVN r16743
2014-04-24 04:14:48 +00:00

1448 lines
44 KiB
C++

//===--- SILPrinter.cpp - Pretty-printing of SIL Code ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the logic to pretty-print SIL, Instructions, etc.
//
//===----------------------------------------------------------------------===//
#include "swift/Strings.h"
#include "swift/Basic/Demangle.h"
#include "swift/Basic/QuotedString.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILVTable.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/Types.h"
#include "swift/Basic/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/FormattedStream.h"
using namespace swift;
using namespace Demangle;
struct ID {
enum ID_Kind {
SILBasicBlock, SILUndef, SSAValue
} Kind;
unsigned Number;
int ResultNumber;
// A stable ordering of ID objects.
bool operator<(ID Other) const {
if (unsigned(Kind) < unsigned(Other.Kind))
return true;
if (Number < Other.Number)
return true;
if (ResultNumber < Other.ResultNumber)
return true;
return false;
}
};
enum SILColorKind {
SC_Type,
};
namespace {
/// RAII based coloring of SIL output.
class SILColor {
raw_ostream &OS;
enum raw_ostream::Colors Color;
public:
#define DEF_COL(NAME, RAW) case NAME: Color = raw_ostream::RAW; break;
explicit SILColor(raw_ostream &OS, SILColorKind K) : OS(OS) {
if (!OS.has_colors())
return;
switch (K) {
DEF_COL(SC_Type, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
explicit SILColor(raw_ostream &OS, ID::ID_Kind K) : OS(OS) {
if (!OS.has_colors())
return;
switch (K) {
DEF_COL(ID::SILUndef, RED)
DEF_COL(ID::SILBasicBlock, GREEN)
DEF_COL(ID::SSAValue, MAGENTA)
}
OS.resetColor();
OS.changeColor(Color);
}
~SILColor() {
if (!OS.has_colors())
return;
// FIXME: instead of resetColor(), we can look into
// capturing the current active color and restoring it.
OS.resetColor();
}
#undef DEF_COL
};
}
static raw_ostream &operator<<(raw_ostream &OS, ID i) {
SILColor C(OS, i.Kind);
switch (i.Kind) {
case ID::SILUndef: OS << "undef"; return OS;
case ID::SILBasicBlock: OS << "bb"; break;
case ID::SSAValue: OS << '%'; break;
}
OS << i.Number;
if (i.ResultNumber != -1)
OS << '#' << i.ResultNumber;
return OS;
}
/// IDAndType - Used when a client wants to print something like "%0 : $Int".
struct IDAndType {
ID id;
SILType Ty;
};
static raw_ostream &operator<<(raw_ostream &OS, IDAndType i) {
SILColor C(OS, SC_Type);
return OS << i.id << " : " << i.Ty;
}
/// Return the fully qualified dotted path for DeclContext.
static void printFullContext(const DeclContext *Context, raw_ostream &Buffer) {
if (!Context)
return;
switch (Context->getContextKind()) {
case DeclContextKind::Module:
if (Context == cast<Module>(Context)->Ctx.TheBuiltinModule)
Buffer << cast<Module>(Context)->Name << ".";
return;
case DeclContextKind::FileUnit:
// Ignore the file; just print the module.
printFullContext(Context->getParent(), Buffer);
return;
case DeclContextKind::Initializer:
// FIXME
Buffer << "<initializer>";
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME
Buffer << "<anonymous function>";
return;
case DeclContextKind::NominalTypeDecl: {
const NominalTypeDecl *Nominal = cast<NominalTypeDecl>(Context);
printFullContext(Nominal->getDeclContext(), Buffer);
Buffer << Nominal->getName() << ".";
return;
}
case DeclContextKind::ExtensionDecl: {
Type Ty = cast<ExtensionDecl>(Context)->getExtendedType();
TypeBase *Base = Ty->getCanonicalType().getPointer();
const NominalTypeDecl *ExtNominal = 0;
switch (Base->getKind()) {
default:
llvm_unreachable("unhandled context kind in SILPrint!");
case TypeKind::Enum:
ExtNominal = cast<EnumType>(Base)->getDecl();
break;
case TypeKind::Struct:
ExtNominal = cast<StructType>(Base)->getDecl();
break;
case TypeKind::Class:
ExtNominal = cast<ClassType>(Base)->getDecl();
break;
case TypeKind::BoundGenericEnum:
ExtNominal = cast<BoundGenericEnumType>(Base)->getDecl();
break;
case TypeKind::BoundGenericStruct:
ExtNominal = cast<BoundGenericStructType>(Base)->getDecl();
break;
case TypeKind::BoundGenericClass:
ExtNominal = cast<BoundGenericClassType>(Base)->getDecl();
break;
}
printFullContext(ExtNominal->getDeclContext(), Buffer);
Buffer << ExtNominal->getName() << ".";
return;
}
case DeclContextKind::TopLevelCodeDecl:
llvm_unreachable("unhandled context kind in SILPrint!");
case DeclContextKind::AbstractFunctionDecl:
// FIXME
Buffer << "<abstract function>";
return;
}
llvm_unreachable("bad decl context");
}
/// SILDeclRef uses sigil "#" and prints the fully qualified dotted path.
void SILDeclRef::print(raw_ostream &OS) const {
OS << "#";
if (isNull()) {
OS << "<null>";
return;
}
bool isDot = true;
if (!hasDecl()) {
OS << "<anonymous function>";
} else if (kind == SILDeclRef::Kind::Func) {
auto *FD = cast<FuncDecl>(getDecl());
ValueDecl *decl = FD;
const char *Suffix;
switch (FD->getAccessorKind()) {
case AccessorKind::IsWillSet:
case AccessorKind::IsDidSet: assert(0 && "Shouldn't reach here");
case AccessorKind::NotAccessor:
Suffix = "";
isDot = false;
break;
case AccessorKind::IsGetter:
Suffix = "!getter";
decl = FD->getAccessorStorageDecl();
break;
case AccessorKind::IsSetter:
Suffix = "!setter";
decl = FD->getAccessorStorageDecl();
break;
}
printFullContext(decl->getDeclContext(), OS);
assert(decl->hasName());
if (decl->isOperator())
OS << '"' << decl->getName() << '"' << Suffix;
else
OS << decl->getName() << Suffix;
} else {
printFullContext(getDecl()->getDeclContext(), OS);
OS << getDecl()->getName();
}
switch (kind) {
case SILDeclRef::Kind::Func:
break;
case SILDeclRef::Kind::Allocator:
OS << "!allocator";
break;
case SILDeclRef::Kind::Initializer:
OS << "!initializer";
break;
case SILDeclRef::Kind::EnumElement:
OS << "!enumelt";
break;
case SILDeclRef::Kind::Destroyer:
OS << "!destroyer";
break;
case SILDeclRef::Kind::Deallocator:
OS << "!deallocator";
break;
case SILDeclRef::Kind::IVarInitializer:
OS << "!ivarinitializer";
break;
case SILDeclRef::Kind::IVarDestroyer:
OS << "!ivardestroyer";
break;
case SILDeclRef::Kind::GlobalAccessor:
OS << "!globalaccessor";
break;
case SILDeclRef::Kind::DefaultArgGenerator:
OS << "!defaultarg" << "." << defaultArgIndex;
break;
}
if (uncurryLevel != 0)
OS << (isDot ? '.' : '!') << uncurryLevel;
if (isForeign)
OS << ((isDot || uncurryLevel != 0) ? '.' : '!') << "foreign";
}
void SILDeclRef::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
static void print(raw_ostream &OS, SILValueCategory category) {
switch (category) {
case SILValueCategory::Object: return;
case SILValueCategory::Address: OS << '*'; return;
case SILValueCategory::LocalStorage: OS << "*@local_storage "; return;
}
llvm_unreachable("bad value category!");
}
void SILType::print(raw_ostream &OS) const {
SILColor C(OS, SC_Type);
OS << '$';
// Potentially add a leading sigil for the value category.
::print(OS, getCategory());
// For the Self archetype of a protocol, print @sil_self protocol.
if (auto archetypeTy = getSwiftRValueType()->getAs<ArchetypeType>()) {
if (auto proto = archetypeTy->getSelfProtocol()) {
OS << "@sil_self ";
proto->getDeclaredType()->print(OS);
return;
}
}
// Print other types as their Swift representation.
getSwiftRValueType().print(OS);
}
void SILType::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
namespace {
/// SILPrinter class - This holds the internal implementation details of
/// printing SIL structures.
class SILPrinter : public SILVisitor<SILPrinter> {
llvm::formatted_raw_ostream OS;
SILValue subjectValue;
bool Verbose;
llvm::DenseMap<const SILBasicBlock *, unsigned> BlocksToIDMap;
llvm::DenseMap<const ValueBase*, unsigned> ValueToIDMap;
public:
SILPrinter(raw_ostream &OS, bool V = false) : OS(OS), Verbose(V) {
}
ID getID(const SILBasicBlock *B);
ID getID(SILValue V);
IDAndType getIDAndType(SILValue V) {
return { getID(V), V.getType() };
}
//===--------------------------------------------------------------------===//
// Big entrypoints.
void print(const SILFunction *F) {
interleave(*F,
[&](const SILBasicBlock &B) { print(&B); },
[&] { OS << '\n'; });
}
void print(const SILBasicBlock *BB) {
OS << getID(BB);
if (!BB->bbarg_empty()) {
OS << '(';
for (auto I = BB->bbarg_begin(), E = BB->bbarg_end(); I != E; ++I) {
if (I != BB->bbarg_begin()) OS << ", ";
OS << getIDAndType(*I);
}
OS << ')';
}
OS << ":";
if (!BB->pred_empty()) {
OS.PadToColumn(50);
OS << "// Preds:";
// Display the predecessors ids sorted to give a stable use order in the
// printer's output. This makes diffing large sections of SIL
// significantly easier.
llvm::SmallVector<ID, 32> PredIDs;
for (auto *BBI : BB->getPreds())
PredIDs.push_back(getID(BBI));
std::sort(PredIDs.begin(), PredIDs.end());
for (auto Id : PredIDs)
OS << ' ' << Id;
}
OS << '\n';
for (const SILInstruction &I : *BB)
print(&I);
}
//===--------------------------------------------------------------------===//
// SILInstruction Printing Logic
void print(SILValue V) {
if (auto *FRI = dyn_cast<FunctionRefInst>(V))
OS << " // function_ref "
<< demangleSymbolAsString(FRI->getReferencedFunction()->getName())
<< "\n";
OS << " ";
// Print result.
if (V->hasValue()) {
ID Name = getID(V);
Name.ResultNumber = -1; // Don't print subresult number.
OS << Name << " = ";
}
// Print the value.
visit(V);
// Print users, or id for valueless instructions.
bool printedSlashes = false;
if (!V->hasValue()) {
OS.PadToColumn(50);
OS << "// id: " << getID(V);
printedSlashes = true;
} else if (!V->use_empty()) {
OS.PadToColumn(50);
OS << "// user";
if (std::next(V->use_begin()) != V->use_end())
OS << 's';
OS << ": ";
// Display the user ids sorted to give a stable use order in the printer's
// output. This makes diffing large sections of SIL significantly easier.
llvm::SmallVector<ID, 32> UserIDs;
for (auto *Op : V->getUses())
UserIDs.push_back(getID(Op->getUser()));
std::sort(UserIDs.begin(), UserIDs.end());
interleave(UserIDs.begin(), UserIDs.end(),
[&] (ID id) { OS << id; },
[&] { OS << ", "; });
printedSlashes = true;
}
// Print SIL location.
if (Verbose) {
if (SILInstruction *I = dyn_cast<SILInstruction>(V)) {
SILLocation L = I->getLoc();
SILModule &M = I->getModule();
if (!L.isNull()) {
if (!printedSlashes) {
OS.PadToColumn(50);
OS << "//";
}
OS << " ";
// To minimize output, only print the line and column number for
// everything but the first instruction.
L.getSourceLoc().printLineAndColumn(OS, M.getASTContext().SourceMgr);
// Print the type of location.
switch (L.getKind()) {
case SILLocation::NoneKind :
assert(L.isAutoGenerated() && "This kind shouldn't be printed.");
break;
case SILLocation::RegularKind :
break;
case SILLocation::ReturnKind :
OS << ":return"; break;
case SILLocation::ImplicitReturnKind :
OS << ":imp_return"; break;
case SILLocation::InlinedKind :
OS << ":inlined"; break;
case SILLocation::MandatoryInlinedKind :
OS << ":minlined"; break;
case SILLocation::CleanupKind :
OS << ":cleanup"; break;
case SILLocation::ArtificialUnreachableKind :
OS << ":art_unreach"; break;
case SILLocation::SILFileKind :
OS << ":sil"; break;
}
if (L.isAutoGenerated())
OS << ":auto_gen";
if (L.isInPrologue())
OS << ":in_prologue";
}
if (L.isNull()) {
if (!printedSlashes) {
OS.PadToColumn(50);
OS << "//";
}
if (L.isInTopLevel())
OS << " top_level";
else if (L.isAutoGenerated())
OS << " auto_gen";
else
OS << " no_loc";
}
}
}
OS << '\n';
}
void printInContext(SILValue V) {
subjectValue = V;
auto sortByID = [&](SILValue a, SILValue b) {
return getID(a).Number < getID(b).Number;
};
if (auto *I = dyn_cast<SILInstruction>(V)) {
auto operands = map<SmallVector<SILValue,4>>(I->getAllOperands(),
[](Operand const &o) {
return o.get();
});
std::sort(operands.begin(), operands.end(), sortByID);
for (auto &operand : operands) {
OS << " ";
print(operand);
}
}
OS << "-> ";
print(V);
auto users = map<SmallVector<SILValue,4>>(V->getUses(),
[](Operand *o) {
return o->getUser();
});
std::sort(users.begin(), users.end(), sortByID);
for (auto &user : users) {
OS << " ";
print(user);
}
}
void visitSILArgument(SILArgument *A) {
// This should really only happen during debugging.
OS << "argument of " << getID(A->getParent()) << " : ";
A->getType().print(OS);
}
void visitSILUndef(SILUndef *A) {
// This should really only happen during debugging.
OS << "undef<";
A->getType().print(OS);
OS << ">";
}
void visitAllocStackInst(AllocStackInst *AVI) {
OS << "alloc_stack " << AVI->getElementType();
if (VarDecl *vd = AVI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitAllocRefInst(AllocRefInst *ARI) {
OS << "alloc_ref ";
if (ARI->isObjC())
OS << "[objc] ";
OS << ARI->getType();
}
void visitAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
OS << "alloc_ref_dynamic ";
if (ARDI->isObjC())
OS << "[objc] ";
OS << getIDAndType(ARDI->getOperand());
OS << ", " << ARDI->getType();
}
void visitAllocBoxInst(AllocBoxInst *ABI) {
OS << "alloc_box " << ABI->getElementType();
if (VarDecl *vd = ABI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitAllocArrayInst(AllocArrayInst *AAI) {
OS << "alloc_array " << AAI->getElementType()
<< ", " << getIDAndType(AAI->getNumElements());
}
void printSubstitutions(ArrayRef<Substitution> Subs) {
if (Subs.empty())
return;
OS << '<';
interleave(Subs,
[&](const Substitution &s) {
s.Replacement->print(OS);
},
[&] { OS << ", "; });
OS << '>';
}
void visitApplyInst(ApplyInst *AI) {
OS << "apply ";
if (AI->isTransparent())
OS << "[transparent] ";
OS << getID(AI->getCallee());
printSubstitutions(AI->getSubstitutions());
OS << '(';
interleave(AI->getArguments(),
[&](const SILValue &arg) { OS << getID(arg); },
[&] { OS << ", "; });
OS << ") : " << AI->getCallee().getType();
}
void visitPartialApplyInst(PartialApplyInst *CI) {
OS << "partial_apply ";
OS << getID(CI->getCallee());
printSubstitutions(CI->getSubstitutions());
OS << '(';
interleave(CI->getArguments(),
[&](const SILValue &arg) { OS << getID(arg); },
[&] { OS << ", "; });
OS << ") : " << CI->getCallee().getType();
}
void visitFunctionRefInst(FunctionRefInst *FRI) {
OS << "function_ref ";
FRI->getReferencedFunction()->printName(OS);
OS << " : " << FRI->getType();
}
void visitBuiltinFunctionRefInst(BuiltinFunctionRefInst *BFI) {
OS << "builtin_function_ref "
<< QuotedString(BFI->getName().str()) << " : " << BFI->getType();
}
void visitGlobalAddrInst(GlobalAddrInst *GAI) {
OS << "global_addr #" << GAI->getGlobal()->getName()
<< " : " << GAI->getType();
}
void visitSILGlobalAddrInst(SILGlobalAddrInst *GAI) {
OS << "sil_global_addr ";
GAI->getReferencedGlobal()->printName(OS);
OS << " : " << GAI->getType();
}
void visitIntegerLiteralInst(IntegerLiteralInst *ILI) {
const auto &lit = ILI->getValue();
OS << "integer_literal " << ILI->getType() << ", " << lit;
}
void visitFloatLiteralInst(FloatLiteralInst *FLI) {
OS << "float_literal " << FLI->getType() << ", 0x";
APInt bits = FLI->getBits();
OS << bits.toString(16, /*Signed*/ false);
llvm::SmallString<12> decimal;
FLI->getValue().toString(decimal);
OS << " // " << decimal;
}
static StringRef getStringEncodingName(StringLiteralInst::Encoding kind) {
switch (kind) {
case StringLiteralInst::Encoding::UTF8: return "utf8 ";
case StringLiteralInst::Encoding::UTF16: return "utf16 ";
}
llvm_unreachable("bad string literal encoding");
}
void visitStringLiteralInst(StringLiteralInst *SLI) {
OS << "string_literal " << getStringEncodingName(SLI->getEncoding())
<< QuotedString(SLI->getValue());
}
void visitLoadInst(LoadInst *LI) {
OS << "load " << getIDAndType(LI->getOperand());
}
void visitStoreInst(StoreInst *SI) {
OS << "store " << getID(SI->getSrc()) << " to "
<< getIDAndType(SI->getDest());
}
void visitAssignInst(AssignInst *AI) {
OS << "assign " << getID(AI->getSrc()) << " to "
<< getIDAndType(AI->getDest());
}
void visitMarkUninitializedInst(MarkUninitializedInst *MU) {
OS << "mark_uninitialized ";
switch (MU->getKind()) {
case MarkUninitializedInst::Var: OS << "[var] "; break;
case MarkUninitializedInst::RootSelf: OS << "[rootself] "; break;
case MarkUninitializedInst::DerivedSelf: OS << "[derivedself] "; break;
case MarkUninitializedInst::DerivedSelfOnly:
OS << "[derivedselfonly] ";
break;
case MarkUninitializedInst::DelegatingSelf: OS << "[delegatingself] ";break;
}
OS << getIDAndType(MU->getOperand());
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
OS << "mark_function_escape ";
interleave(MFE->getElements(),
[&](SILValue Var) {
OS << getIDAndType(Var);
},
[&] { OS << ", "; });
}
void visitDebugValueInst(DebugValueInst *DVI) {
OS << "debug_value " << getIDAndType(DVI->getOperand());
if (VarDecl *vd = DVI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitDebugValueAddrInst(DebugValueAddrInst *DVAI) {
OS << "debug_value_addr " << getIDAndType(DVAI->getOperand());
if (VarDecl *vd = DVAI->getDecl())
OS << " // " << (vd->isLet() ? "let " : "var ") << vd->getName();
}
void visitLoadWeakInst(LoadWeakInst *LI) {
OS << "load_weak ";
if (LI->isTake())
OS << "[take] ";
OS << getIDAndType(LI->getOperand());
}
void visitStoreWeakInst(StoreWeakInst *SI) {
OS << "store_weak " << getID(SI->getSrc()) << " to ";
if (SI->isInitializationOfDest())
OS << "[initialization] ";
OS << getIDAndType(SI->getDest());
}
void visitCopyAddrInst(CopyAddrInst *CI) {
OS << "copy_addr ";
if (CI->isTakeOfSrc())
OS << "[take] ";
OS << getID(CI->getSrc()) << " to ";
if (CI->isInitializationOfDest())
OS << "[initialization] ";
OS << getIDAndType(CI->getDest());
}
void printUncheckedConversionInst(ConversionInst *CI, SILValue operand,
StringRef name) {
OS << name << " " << getIDAndType(operand) << " to " << CI->getType();
}
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
OS << "unconditional_checked_cast "
<< getCheckedCastKindName(CI->getCastKind())
<< ' ' << getIDAndType(CI->getOperand())
<< " to " << CI->getType();
}
void visitCheckedCastBranchInst(CheckedCastBranchInst *CI) {
OS << "checked_cast_br "
<< getCheckedCastKindName(CI->getCastKind()) << ' '
<< getIDAndType(CI->getOperand())
<< " to " << CI->getCastType() << ", "
<< getID(CI->getSuccessBB()) << ", " << getID(CI->getFailureBB());
}
void visitConvertFunctionInst(ConvertFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "convert_function");
}
void visitUpcastInst(UpcastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "upcast");
}
void visitAddressToPointerInst(AddressToPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "address_to_pointer");
}
void visitPointerToAddressInst(PointerToAddressInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "pointer_to_address");
}
void visitUncheckedRefCastInst(UncheckedRefCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "unchecked_ref_cast");
}
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "unchecked_addr_cast");
}
void visitRefToRawPointerInst(RefToRawPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_raw_pointer");
}
void visitRawPointerToRefInst(RawPointerToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "raw_pointer_to_ref");
}
void visitRefToUnownedInst(RefToUnownedInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_unowned");
}
void visitUnownedToRefInst(UnownedToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "unowned_to_ref");
}
void visitRefToUnmanagedInst(RefToUnmanagedInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "ref_to_unmanaged");
}
void visitUnmanagedToRefInst(UnmanagedToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(), "unmanaged_to_ref");
}
void visitThinToThickFunctionInst(ThinToThickFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"thin_to_thick_function");
}
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"thick_to_objc_metatype");
}
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"objc_to_thick_metatype");
}
void visitUpcastExistentialRefInst(UpcastExistentialRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand(),"upcast_existential_ref");
}
void visitIsNonnullInst(IsNonnullInst *I) {
OS << "is_nonnull " << getIDAndType(I->getOperand());
}
void visitRetainValueInst(RetainValueInst *I) {
OS << "retain_value " << getIDAndType(I->getOperand());
}
void visitReleaseValueInst(ReleaseValueInst *I) {
OS << "release_value " << getIDAndType(I->getOperand());
}
void visitAutoreleaseValueInst(AutoreleaseValueInst *I) {
OS << "autorelease_value " << getIDAndType(I->getOperand());
}
void visitStructInst(StructInst *SI) {
OS << "struct " << SI->getType() << " (";
interleave(SI->getElements(),
[&](const SILValue &V) { OS << getIDAndType(V); },
[&] { OS << ", "; });
OS << ')';
}
void visitTupleInst(TupleInst *TI) {
OS << "tuple ";
// Check to see if the type of the tuple can be inferred accurately from the
// elements.
bool SimpleType = true;
for (auto &Elt : TI->getType().castTo<TupleType>()->getFields()) {
if (Elt.hasName() || Elt.isVararg() || Elt.hasInit()) {
SimpleType = false;
break;
}
}
// If the type is simple, just print the tuple elements.
if (SimpleType) {
OS << '(';
interleave(TI->getElements(),
[&](const SILValue &V){ OS << getIDAndType(V); },
[&] { OS << ", "; });
OS << ')';
} else {
// Otherwise, print the type, then each value.
OS << TI->getType() << " (";
interleave(TI->getElements(),
[&](const SILValue &V){ OS << getID(V); },
[&] { OS << ", "; });
OS << ')';
}
}
void visitEnumInst(EnumInst *UI) {
OS << "enum " << UI->getType() << ", "
<< SILDeclRef(UI->getElement(), SILDeclRef::Kind::EnumElement);
if (UI->hasOperand()) {
OS << ", " << getIDAndType(UI->getOperand());
}
}
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *UDAI) {
OS << "init_enum_data_addr "
<< getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *UDAI) {
OS << "unchecked_enum_data "
<< getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *UDAI) {
OS << "unchecked_take_enum_data_addr "
<< getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
OS << "inject_enum_addr "
<< getIDAndType(IUAI->getOperand()) << ", "
<< SILDeclRef(IUAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitTupleExtractInst(TupleExtractInst *EI) {
OS << "tuple_extract " << getIDAndType(EI->getOperand()) << ", "
<< EI->getFieldNo();
}
void visitTupleElementAddrInst(TupleElementAddrInst *EI) {
OS << "tuple_element_addr " << getIDAndType(EI->getOperand()) << ", "
<< EI->getFieldNo();
}
void visitStructExtractInst(StructExtractInst *EI) {
OS << "struct_extract " << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), OS);
OS << EI->getField()->getName().get();
}
void visitStructElementAddrInst(StructElementAddrInst *EI) {
OS << "struct_element_addr " << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), OS);
OS << EI->getField()->getName().get();
}
void visitRefElementAddrInst(RefElementAddrInst *EI) {
OS << "ref_element_addr " << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), OS);
OS << EI->getField()->getName().get();
}
void printMethodInst(MethodInst *I, SILValue Operand, StringRef Name) {
OS << Name << " ";
if (I->isVolatile())
OS << "[volatile] ";
OS << getIDAndType(Operand) << ", ";
I->getMember().print(OS);
}
void visitClassMethodInst(ClassMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "class_method");
OS << " : " << AMI->getMember().getDecl()->getType() << " , ";
OS << AMI->getType();
}
void visitSuperMethodInst(SuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "super_method");
OS << " : " << AMI->getMember().getDecl()->getType() << " , ";
OS << AMI->getType();
}
void visitWitnessMethodInst(WitnessMethodInst *AMI) {
OS << "witness_method ";
if (AMI->isVolatile())
OS << "[volatile] ";
AMI->getLookupType().print(OS);
OS << ", ";
AMI->getMember().print(OS);
OS << " : " << AMI->getType(0);
}
void visitProtocolMethodInst(ProtocolMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand(), "protocol_method");
OS << " : " << AMI->getMember().getDecl()->getType() << ", ";
OS << AMI->getType();
}
void visitDynamicMethodInst(DynamicMethodInst *DMI) {
printMethodInst(DMI, DMI->getOperand(), "dynamic_method");
OS << " : " << DMI->getMember().getDecl()->getType() << ", ";
OS << DMI->getType();
}
void visitProjectExistentialInst(ProjectExistentialInst *PI) {
OS << "project_existential " << getIDAndType(PI->getOperand())
<< " to " << PI->getType();
}
void visitProjectExistentialRefInst(ProjectExistentialRefInst *PI) {
OS << "project_existential_ref " << getIDAndType(PI->getOperand())
<< " to " << PI->getType();
}
void visitOpenExistentialInst(OpenExistentialInst *OI) {
OS << "open_existential " << getIDAndType(OI->getOperand())
<< " to " << OI->getType();
}
void visitOpenExistentialRefInst(OpenExistentialRefInst *OI) {
OS << "open_existential_ref " << getIDAndType(OI->getOperand())
<< " to " << OI->getType();
}
void visitInitExistentialInst(InitExistentialInst *AEI) {
OS << "init_existential " << getIDAndType(AEI->getOperand()) << ", ";
AEI->getConcreteType().print(OS);
}
void visitInitExistentialRefInst(InitExistentialRefInst *AEI) {
OS << "init_existential_ref " << getIDAndType(AEI->getOperand()) << ", ";
AEI->getType().print(OS);
}
void visitUpcastExistentialInst(UpcastExistentialInst *UEI) {
OS << "upcast_existential ";
if (UEI->isTakeOfSrc())
OS << "[take] ";
OS << getIDAndType(UEI->getSrcExistential())
<< " to " << getIDAndType(UEI->getDestExistential());
}
void visitDeinitExistentialInst(DeinitExistentialInst *DEI) {
OS << "deinit_existential " << getIDAndType(DEI->getOperand());
}
void visitProjectBlockStorageInst(ProjectBlockStorageInst *PBSI) {
OS << "project_block_storage " << getIDAndType(PBSI->getOperand());
}
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *IBSHI) {
OS << "init_block_storage_header " << getIDAndType(IBSHI->getBlockStorage())
<< ", invoke " << getIDAndType(IBSHI->getInvokeFunction())
<< ", type " << IBSHI->getType();
}
void visitValueMetatypeInst(ValueMetatypeInst *MI) {
OS << "value_metatype " << MI->getType() << ", "
<< getIDAndType(MI->getOperand());
}
void visitExistentialMetatypeInst(ExistentialMetatypeInst *MI) {
OS << "existential_metatype " << MI->getType() << ", "
<< getIDAndType(MI->getOperand());
}
void visitMetatypeInst(MetatypeInst *MI) {
OS << "metatype " << MI->getType();
}
void visitFixLifetimeInst(FixLifetimeInst *RI) {
OS << "fix_lifetime " << getIDAndType(RI->getOperand());
}
void visitCopyBlockInst(CopyBlockInst *RI) {
OS << "copy_block " << getIDAndType(RI->getOperand());
}
void visitStrongRetainInst(StrongRetainInst *RI) {
OS << "strong_retain " << getIDAndType(RI->getOperand());
}
void visitStrongRetainAutoreleasedInst(StrongRetainAutoreleasedInst *RI) {
OS << "strong_retain_autoreleased " << getIDAndType(RI->getOperand());
}
void visitStrongReleaseInst(StrongReleaseInst *RI) {
OS << "strong_release " << getIDAndType(RI->getOperand());
}
void visitStrongRetainUnownedInst(StrongRetainUnownedInst *RI) {
OS << "strong_retain_unowned " << getIDAndType(RI->getOperand());
}
void visitUnownedRetainInst(UnownedRetainInst *RI) {
OS << "unowned_retain " << getIDAndType(RI->getOperand());
}
void visitUnownedReleaseInst(UnownedReleaseInst *RI) {
OS << "unowned_release " << getIDAndType(RI->getOperand());
}
void visitDeallocStackInst(DeallocStackInst *DI) {
OS << "dealloc_stack " << getIDAndType(DI->getOperand());
}
void visitDeallocRefInst(DeallocRefInst *DI) {
OS << "dealloc_ref " << getIDAndType(DI->getOperand());
}
void visitDeallocBoxInst(DeallocBoxInst *DI) {
OS << "dealloc_box " << DI->getElementType() << ", "
<< getIDAndType(DI->getOperand());
}
void visitDestroyAddrInst(DestroyAddrInst *DI) {
OS << "destroy_addr " << getIDAndType(DI->getOperand());
}
void visitCondFailInst(CondFailInst *FI) {
OS << "cond_fail " << getIDAndType(FI->getOperand());
}
void visitIndexAddrInst(IndexAddrInst *IAI) {
OS << "index_addr " << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitIndexRawPointerInst(IndexRawPointerInst *IAI) {
OS << "index_raw_pointer " << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitUnreachableInst(UnreachableInst *UI) {
OS << "unreachable";
}
void visitReturnInst(ReturnInst *RI) {
OS << "return " << getIDAndType(RI->getOperand());
}
void visitAutoreleaseReturnInst(AutoreleaseReturnInst *RI) {
OS << "autorelease_return " << getIDAndType(RI->getOperand());
}
void visitSwitchIntInst(SwitchIntInst *SII) {
OS << "switch_int " << getIDAndType(SII->getOperand());
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
APInt value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
OS << ", case " << value << ": " << getID(dest);
}
if (SII->hasDefault())
OS << ", default " << getID(SII->getDefaultBB());
}
void printSwitchEnumInst(SwitchEnumInstBase *SOI) {
OS << getIDAndType(SOI->getOperand());
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
OS << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << getID(dest);
}
if (SOI->hasDefault())
OS << ", default " << getID(SOI->getDefaultBB());
}
void visitSwitchEnumInst(SwitchEnumInst *SOI) {
OS << "switch_enum ";
printSwitchEnumInst(SOI);
}
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *SOI){
OS << "switch_enum_addr ";
printSwitchEnumInst(SOI);
}
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
OS << "dynamic_method_br " << getIDAndType(DMBI->getOperand()) << ", ";
DMBI->getMember().print(OS);
OS << ", " << getID(DMBI->getHasMethodBB()) << ", "
<< getID(DMBI->getNoMethodBB());
}
void printBranchArgs(OperandValueArrayRef args) {
if (args.empty()) return;
OS << '(';
interleave(args,
[&](SILValue v) { OS << getIDAndType(v); },
[&] { OS << ", "; });
OS << ')';
}
void visitBranchInst(BranchInst *UBI) {
OS << "br " << getID(UBI->getDestBB());
printBranchArgs(UBI->getArgs());
}
void visitCondBranchInst(CondBranchInst *CBI) {
OS << "cond_br " << getID(CBI->getCondition()) << ", "
<< getID(CBI->getTrueBB());
printBranchArgs(CBI->getTrueArgs());
OS << ", " << getID(CBI->getFalseBB());
printBranchArgs(CBI->getFalseArgs());
}
};
} // end anonymous namespace
ID SILPrinter::getID(const SILBasicBlock *Block) {
// Lazily initialize the Blocks-to-IDs mapping.
if (BlocksToIDMap.empty()) {
unsigned idx = 0;
for (const SILBasicBlock &B : *Block->getParent())
BlocksToIDMap[&B] = idx++;
}
ID R = { ID::SILBasicBlock, BlocksToIDMap[Block], -1 };
return R;
}
ID SILPrinter::getID(SILValue V) {
if (isa<SILUndef>(V))
return { ID::SILUndef, 0, 0 };
// Lazily initialize the instruction -> ID mapping.
if (ValueToIDMap.empty()) {
const SILBasicBlock *ParentBB;
if (const SILInstruction *I = dyn_cast<SILInstruction>(V))
ParentBB = I->getParent();
else
ParentBB = cast<SILArgument>(V)->getParent();
// Keep the values in ValueToIDMap with a +1 bias so that lookups will get
// 0 for invalid numbers.
unsigned idx = 0;
for (auto &BB : *ParentBB->getParent()) {
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
ValueToIDMap[*I] = ++idx;
for (auto &I : BB) {
ValueToIDMap[&I] = ++idx;
}
}
}
int ResultNumber = -1;
if (V.getDef()->getTypes().size() > 1)
ResultNumber = V.getResultNumber();
ID R = { ID::SSAValue, ValueToIDMap[V.getDef()]-1, ResultNumber };
return R;
}
void SILBasicBlock::printAsOperand(raw_ostream &OS, bool PrintType) {
OS << SILPrinter(OS).getID(this);
}
//===----------------------------------------------------------------------===//
// Printing for SILInstruction, SILBasicBlock, SILFunction, and SILModule
//===----------------------------------------------------------------------===//
void SILValue::dump() const {
print(llvm::errs());
}
void SILValue::print(raw_ostream &OS) const {
SILPrinter(OS).print(*this);
}
void ValueBase::dump() const {
print(llvm::errs());
}
void ValueBase::print(raw_ostream &OS) const {
SILPrinter(OS).print(this);
}
/// Pretty-print the SILBasicBlock to errs.
void SILBasicBlock::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILBasicBlock to the designated stream.
void SILBasicBlock::print(raw_ostream &OS) const {
SILPrinter(OS).print(this);
}
/// Pretty-print the SILFunction to errs.
void SILFunction::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
// This is out of line so the debugger can find it.
void SILFunction::dump() const {
dump(false);
}
static StringRef getLinkageString(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return "public ";
case SILLinkage::Hidden: return "hidden ";
case SILLinkage::Shared: return "shared ";
case SILLinkage::Private: return "private ";
case SILLinkage::PublicExternal: return "public_external ";
case SILLinkage::HiddenExternal: return "hidden_external ";
}
llvm_unreachable("bad linkage");
}
static void printLinkage(llvm::raw_ostream &OS, SILLinkage linkage,
bool isDefinition) {
if ((isDefinition && linkage == SILLinkage::DefaultForDefinition) ||
(!isDefinition && linkage == SILLinkage::DefaultForDeclaration))
return;
OS << getLinkageString(linkage);
}
/// Pretty-print the SILFunction to the designated stream.
void SILFunction::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbolAsString(getName()) << '\n';
OS << "sil ";
printLinkage(OS, getLinkage(), isDefinition());
if (isTransparent())
OS << "[transparent] ";
if (isGlobalInit())
OS << "[global_init] ";
printName(OS);
OS << " : $";
// Print the type by substituting our context parameters for the dependent
// parameters.
{
PrintOptions withContextGenericParams;
withContextGenericParams.ContextGenericParams = ContextGenericParams;
LoweredType->print(OS, withContextGenericParams);
}
if (!isExternalDeclaration()) {
OS << " {\n";
SILPrinter(OS, Verbose).print(this);
OS << "}";
}
OS << "\n\n";
}
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void SILFunction::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print a global variable to the designated stream.
void SILGlobalVariable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbolAsString(getName()) << '\n';
OS << "sil_global ";
printLinkage(OS, getLinkage(), isDefinition());
printName(OS);
OS << " : " << LoweredType;
OS << "\n\n";
}
void SILGlobalVariable::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
void SILGlobalVariable::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print the SILModule to errs.
void SILModule::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILModule to the designated stream.
void SILModule::print(llvm::raw_ostream &OS, bool Verbose,
Module *M) const {
OS << "sil_stage ";
switch (Stage) {
case SILStage::Raw:
OS << "raw";
break;
case SILStage::Canonical:
OS << "canonical";
break;
}
OS << "\n\nimport Builtin\nimport " << STDLIB_NAME << "\n\n";
// Compute the list of emitted functions, whose AST Decls we do not need to
// print.
llvm::DenseSet<const Decl*> emittedFunctions;
for (const SILFunction &f : *this)
if (f.hasLocation())
emittedFunctions.insert(f.getLocation().getAsASTNode<Decl>());
// Print the declarations and types from the origin module.
if (M) {
PrintOptions Options;
Options.FunctionDefinitions = false;
Options.TypeDefinitions = true;
Options.VarInitializers = true;
Options.SkipImplicit = true;
Options.ExplodePatternBindingDecls = true;
SmallVector<Decl *, 32> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if ((isa<ValueDecl>(D) || isa<OperatorDecl>(D)) &&
!emittedFunctions.count(D) &&
!D->isImplicit()) {
D->print(OS, Options);
OS << "\n\n";
}
}
}
for (const SILGlobalVariable &g : getSILGlobals())
g.print(OS, Verbose);
for (const SILFunction &f : *this)
f.print(OS, Verbose);
for (const SILVTable &vt : getVTables())
vt.print(OS, Verbose);
for (const SILWitnessTable &wt : getWitnessTables())
wt.print(OS, Verbose);
OS << "\n\n";
}
void ValueBase::dumpInContext() const {
printInContext(llvm::errs());
}
void ValueBase::printInContext(llvm::raw_ostream &OS) const {
SILPrinter(OS).printInContext(this);
}
void SILVTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_vtable " << getClass()->getName() << " {\n";
for (auto &entry : getEntries()) {
OS << " ";
entry.first.print(OS);
OS << ": " << entry.second->getName()
<< "\t// " << demangleSymbolAsString(entry.second->getName()) << "\n";
}
OS << "}\n\n";
}
void SILVTable::dump() const {
print(llvm::errs());
}
void SILWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_witness_table ";
printLinkage(OS, getLinkage(), /*isDefinition*/ isDefinition());
getConformance()->printName(OS);
if (isDeclaration()) {
OS << "\n\n";
return;
}
OS << " {\n";
for (auto &witness : getEntries()) {
OS << " ";
switch (witness.getKind()) {
case Invalid:
llvm_unreachable("invalid witness?!");
case Method: {
// method #declref: @function
auto &methodWitness = witness.getMethodWitness();
OS << "method ";
methodWitness.Requirement.print(OS);
OS << ": ";
methodWitness.Witness->printName(OS);
OS << "\t// "
<< demangleSymbolAsString(methodWitness.Witness->getName());
break;
}
case AssociatedType: {
// associated_type AssociatedTypeName: ConformingType
auto &assocWitness = witness.getAssociatedTypeWitness();
OS << "associated_type ";
OS << assocWitness.Requirement->getName() << ": ";
assocWitness.Witness->print(OS);
break;
}
case AssociatedTypeProtocol: {
// associated_type_protocol (AssociatedTypeName: Protocol): <conformance>
auto &assocProtoWitness = witness.getAssociatedTypeProtocolWitness();
OS << "associated_type_protocol ("
<< assocProtoWitness.Requirement->getName() << ": "
<< assocProtoWitness.Protocol->getName() << "): ";
if (assocProtoWitness.Witness)
assocProtoWitness.Witness->printName(OS);
else
OS << "dependent";
break;
}
case BaseProtocol: {
// base_protocol Protocol: <conformance>
auto &baseProtoWitness = witness.getBaseProtocolWitness();
OS << "base_protocol "
<< baseProtoWitness.Requirement->getName() << ": ";
baseProtoWitness.Witness->printName(OS);
}
}
OS << '\n';
}
OS << "}\n\n";
}
void SILWitnessTable::dump() const {
print(llvm::errs());
}