mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is due to MayHaveSideEffects encompassing ref count effects and a myriad of other effects. If/when we separate the two concepts (which is cleaner IMHO), the flag will no longer be necessary. Swift SVN r16807
595 lines
22 KiB
C++
595 lines
22 KiB
C++
//===-------------- AliasAnalysis.cpp - SIL Alias Analysis ----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-aa"
|
|
#include "swift/SILAnalysis/AliasAnalysis.h"
|
|
#include "swift/SILAnalysis/ValueTracking.h"
|
|
#include "swift/SILPasses/Utils/Local.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace swift;
|
|
|
|
#ifndef NDEBUG
|
|
/// This is meant to be used during AA bring up. If AA has been brought up, feel
|
|
/// free to remove this.
|
|
static llvm::cl::opt<bool>
|
|
DisableAliasAnalysis("disable-aa", llvm::cl::init(false),
|
|
llvm::cl::Hidden,
|
|
llvm::cl::desc("Always return most conservative AA "
|
|
"result."));
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
|
|
AliasAnalysis::AliasResult R) {
|
|
switch (R) {
|
|
case AliasAnalysis::AliasResult::NoAlias:
|
|
return OS << "NoAlias";
|
|
case AliasAnalysis::AliasResult::MayAlias:
|
|
return OS << "MayAlias";
|
|
case AliasAnalysis::AliasResult::MustAlias:
|
|
return OS << "MustAlias";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unequal Base Object AA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return true if the given SILArgument is an argument to the first BB of a
|
|
/// function.
|
|
static bool isFunctionArgument(SILValue V) {
|
|
auto *Arg = dyn_cast<SILArgument>(V);
|
|
if (!Arg)
|
|
return false;
|
|
return Arg->isFunctionArg();
|
|
}
|
|
|
|
/// A no alias argument is an argument that is an address type of the entry
|
|
/// basic block of a function.
|
|
static bool isNoAliasArgument(SILValue V) {
|
|
return isFunctionArgument(V) && V.getType().isAddress();
|
|
}
|
|
|
|
/// Return true if V is an object that at compile time can be uniquely
|
|
/// identified.
|
|
static bool isIdentifiableObject(SILValue V) {
|
|
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
|
|
return true;
|
|
if (isNoAliasArgument(V))
|
|
return true;
|
|
if (isa<GlobalAddrInst>(V) || isa<SILGlobalAddrInst>(V))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Is this a literal which we know can not refer to a global object?
|
|
///
|
|
/// FIXME: function_ref?, builtin_function_ref?
|
|
static bool isLocalLiteral(SILValue V) {
|
|
switch (V->getKind()) {
|
|
case ValueKind::IntegerLiteralInst:
|
|
case ValueKind::FloatLiteralInst:
|
|
case ValueKind::StringLiteralInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Is this a value that can be unambiguously identified as being defined at the
|
|
/// function level.
|
|
static bool isIdentifiedFunctionLocal(SILValue V) {
|
|
return isa<AllocationInst>(*V) || isNoAliasArgument(V) || isLocalLiteral(V);
|
|
}
|
|
|
|
/// Returns true if V is a function argument that is not an address implying
|
|
/// that we do not have the gaurantee that it will not alias anything inside the
|
|
/// function.
|
|
static bool isAliasingFunctionArgument(SILValue V) {
|
|
return isFunctionArgument(V) && !V.getType().isAddress();
|
|
}
|
|
|
|
/// Returns true if V is an apply inst that may read or write to memory.
|
|
static bool isReadWriteApplyInst(SILValue V) {
|
|
// Attempt to convert the ValueBase inside of V to an ApplyInst.
|
|
auto *AI = dyn_cast<ApplyInst>(V);
|
|
|
|
// If we fail, bail...
|
|
if (!AI)
|
|
return false;
|
|
|
|
// If we succeed, check if AI's callee is a builtin that is not read none.
|
|
auto *BI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
|
|
return !BI || !isReadNone(BI);
|
|
}
|
|
|
|
/// Return true if the pointer is one which would have been considered an escape
|
|
/// by isNonEscapingLocalObject.
|
|
static bool isEscapeSource(SILValue V) {
|
|
if (isReadWriteApplyInst(V))
|
|
return true;
|
|
|
|
if (isAliasingFunctionArgument(V))
|
|
return true;
|
|
|
|
// The LoadInst case works since valueMayBeCaptured always assumes stores are
|
|
// escapes.
|
|
if (isa<LoadInst>(*V))
|
|
return true;
|
|
|
|
// We could not prove anything, be conservative and return false.
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if we can prove that the two input SILValues which do not equal
|
|
/// can not alias.
|
|
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
|
|
assert(O1 != O2 && "This function should only be called on unequal values.");
|
|
|
|
// If O1 and O2 do not equal and they are both values that can be statically
|
|
// and uniquely identified, they can not alias.
|
|
if (isIdentifiableObject(O1) && isIdentifiableObject(O2)) {
|
|
DEBUG(llvm::dbgs() << " Found two unequal identified "
|
|
"objects.\n");
|
|
return true;
|
|
}
|
|
|
|
// Function arguments can't alias with things that are known to be
|
|
// unambigously identified at the function level.
|
|
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
|
|
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
|
|
DEBUG(llvm::dbgs() << " Found unequal function arg and "
|
|
"identified function local!\n");
|
|
return true;
|
|
}
|
|
|
|
// If one pointer is the result of an apply or load and the other is a
|
|
// non-escaping local object within the same function, then we know the object
|
|
// couldn't escape to a point where the call could return it.
|
|
if ((isEscapeSource(O1) && isNonEscapingLocalObject(O2)) ||
|
|
(isEscapeSource(O2) && isNonEscapingLocalObject(O1))) {
|
|
DEBUG(llvm::dbgs() << " Found unequal escape source and non "
|
|
"escaping local object!\n");
|
|
return true;
|
|
}
|
|
|
|
// We failed to prove that the two objects are different.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Projection Address AA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if every projection in V1Path and V2Path equal. Returns false
|
|
/// otherwise.
|
|
static bool projectionListsEqual(llvm::SmallVectorImpl<Projection> &V1Path,
|
|
llvm::SmallVectorImpl<Projection> &V2Path) {
|
|
if (V1Path.size() != V2Path.size())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = V1Path.size(); i != e; ++i)
|
|
if (V1Path[i] != V2Path[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
|
|
/// another pointer. We know that V1 is a GEP, but we don't know anything about
|
|
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
|
|
static
|
|
AliasAnalysis::AliasResult
|
|
aliasAddressProjection(AliasAnalysis &AA, SILValue V1, SILValue V2, SILValue O1,
|
|
SILValue O2) {
|
|
|
|
// If V2 is also a gep instruction with a must-alias or not-aliasing base
|
|
// pointer, figure out if the indices of the GEPs tell us anything about the
|
|
// derived pointers.
|
|
if (Projection::isAddressProjection(V2)) {
|
|
// Do the base pointers alias?
|
|
AliasAnalysis::AliasResult BaseAlias = AA.alias(O1, O2);
|
|
|
|
// If we get a NoAlias or a MayAlias, then there is nothing we can do here
|
|
// so just return the base alias value.
|
|
if (BaseAlias != AliasAnalysis::AliasResult::MustAlias)
|
|
return BaseAlias;
|
|
|
|
// Otherwise, we have a MustAlias result. Since the base pointers alias each
|
|
// other exactly, see if computing offsets from the common pointer tells us
|
|
// about the relation of the resulting pointer.
|
|
llvm::SmallVector<Projection, 4> V1Path, V2Path;
|
|
bool Result = findAddressProjectionPathBetweenValues(O1, V1, V1Path);
|
|
Result &= findAddressProjectionPathBetweenValues(O1, V2, V2Path);
|
|
|
|
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
|
|
// what the base pointer of the two values are. Be conservative and return
|
|
// MayAlias.
|
|
//
|
|
// FIXME: The only way this should happen realistically is if there are
|
|
// casts in between two projection instructions. getUnderlyingObject will
|
|
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
|
|
// solutions are to make address projections variadic (something on the wee
|
|
// horizon) or enable Projection to represent a cast as a special sort of
|
|
// projection.
|
|
if (!Result)
|
|
return AliasAnalysis::AliasResult::MayAlias;
|
|
|
|
// If all of the projections are equal, the two GEPs must be the same.
|
|
if (projectionListsEqual(V1Path, V2Path))
|
|
return AliasAnalysis::AliasResult::MustAlias;
|
|
}
|
|
|
|
// We failed to prove anything. Be conservative and return MayAlias.
|
|
return AliasAnalysis::AliasResult::MayAlias;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TBAA
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief return True if the aggregate type \p Aggregate contains the type
|
|
/// \p Record.
|
|
static bool aggregateContainsRecord(NominalTypeDecl *Aggregate, Type Record,
|
|
SILModule &Mod) {
|
|
CanType CanRecordType = Record->getCanonicalType();
|
|
llvm::SmallVector<NominalTypeDecl *, 8> Worklist;
|
|
Worklist.push_back(Aggregate);
|
|
while (!Worklist.empty()) {
|
|
NominalTypeDecl *T = Worklist.back();
|
|
Worklist.pop_back();
|
|
for (auto Var : T->getStoredProperties()) {
|
|
// The record type could be generic. In here we find the the substituted
|
|
// record type.
|
|
Type RecTy =
|
|
T->getType()->getTypeOfMember(Mod.getSwiftModule(), Var, nullptr);
|
|
CanType CanRecTy = RecTy->getCanonicalType();
|
|
|
|
// Is this the record we were looking for ?
|
|
if (CanRecTy == CanRecordType)
|
|
return true;
|
|
|
|
// If the record is a nominal type add it to the worklist.
|
|
if (auto D = CanRecTy->getNominalOrBoundGenericNominal()) {
|
|
Worklist.push_back(D);
|
|
continue;
|
|
}
|
|
|
|
// We don't handle unbound generic typed records.
|
|
if (hasUnboundGenericTypes(CanRecTy))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Could not find the record in the aggregate.
|
|
return false;
|
|
}
|
|
|
|
/// \brief return True if the types \p T1 and \p T2 may alias.
|
|
/// See the TBAA section in the SIL reference manual.
|
|
static bool typesMayAlias(SILType T1, SILType T2, SILModule &Mod) {
|
|
if (T1 == T2)
|
|
return true;
|
|
|
|
// We only operate on address types.
|
|
if(!T1.isAddress() || !T2.isAddress())
|
|
return true;
|
|
|
|
CanType CT1 = T1.getSwiftRValueType();
|
|
CanType CT2 = T2.getSwiftRValueType();
|
|
|
|
bool IsObjPtr1 = isa<BuiltinNativeObjectType>(CT1);
|
|
bool IsRawPtr1 = isa<BuiltinRawPointerType>(CT1);
|
|
NominalTypeDecl *AsNominal1 = CT1.getNominalOrBoundGenericNominal();
|
|
ClassDecl *AsClass1 = CT1.getClassOrBoundGenericClass();
|
|
StructDecl *AsStruct1 = CT1.getStructOrBoundGenericStruct();
|
|
EnumDecl *AsEnum1 = CT1.getEnumOrBoundGenericEnum();
|
|
|
|
bool IsObjPtr2 = isa<BuiltinNativeObjectType>(CT2);
|
|
bool IsRawPtr2 = isa<BuiltinRawPointerType>(CT2);
|
|
NominalTypeDecl *AsNominal2 = CT2.getNominalOrBoundGenericNominal();
|
|
ClassDecl *AsClass2 = CT2.getClassOrBoundGenericClass();
|
|
StructDecl *AsStruct2 = CT2.getStructOrBoundGenericStruct();
|
|
EnumDecl *AsEnum2 = CT2.getEnumOrBoundGenericEnum();
|
|
|
|
// Raw pointers may alias anything.
|
|
if (IsRawPtr1 || IsRawPtr2)
|
|
return true;
|
|
|
|
// If the types have unbound generic arguments then we don't know the possible
|
|
// range of the type. A type such as $Array<Int> may alias $Array<T>.
|
|
// Right now we are conservative and we assume that $UnsafePointer<T> and $Int
|
|
// may alias.
|
|
if (hasUnboundGenericTypes(CT1) || hasUnboundGenericTypes(CT2))
|
|
return true;
|
|
|
|
// Builtin.NativeObject is the root of the class hierarchy may alias classes.
|
|
if ((IsObjPtr1 && AsClass2)||
|
|
(IsObjPtr2 && AsClass1))
|
|
return true;
|
|
|
|
// If one type is an aggregate and it contains the other type then
|
|
// the record reference may alias the aggregate reference.
|
|
if ((AsNominal1 && aggregateContainsRecord(AsNominal1, CT2, Mod)) ||
|
|
(AsNominal2 && aggregateContainsRecord(AsNominal2, CT1, Mod)))
|
|
return true;
|
|
|
|
// Structs don't alias non-structs.
|
|
if (AsStruct1 || AsStruct2)
|
|
return false;
|
|
|
|
// Enums don't alias non-enums.
|
|
if (AsEnum1 || AsEnum2)
|
|
return false;
|
|
|
|
// Classes don't alias non-classes. At the moment we don't follow the
|
|
// class hierarchy so we can't tell if two classes inherit from one another.
|
|
if ((AsClass1 && !AsClass2) ||
|
|
(AsClass2 && !AsClass1))
|
|
return false;
|
|
|
|
// MayAlias.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
|
|
/// to disambiguate the two values.
|
|
AliasAnalysis::AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2) {
|
|
#ifndef NDEBUG
|
|
// If alias analysis is disabled, always return may alias.
|
|
if (DisableAliasAnalysis)
|
|
return AliasResult::MayAlias;
|
|
#endif
|
|
|
|
// If the two values equal, quickly return must alias.
|
|
if (V1 == V2)
|
|
return AliasResult::MustAlias;
|
|
|
|
DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1.getDef()
|
|
<< " V2: " << *V2.getDef());
|
|
|
|
if (!typesMayAlias(V1.getType(), V2.getType(), *Mod))
|
|
return AliasResult::NoAlias;
|
|
|
|
// Strip off any casts on V1, V2.
|
|
V1 = V1.stripCasts();
|
|
V2 = V2.stripCasts();
|
|
DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1.getDef());
|
|
DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2.getDef());
|
|
|
|
// Create a key to lookup if we have already computed an alias result for V1,
|
|
// V2. Canonicalize our cache keys so that the pointer with the lower address
|
|
// is always the first element of the pair. This ensures we do not pollute our
|
|
// cache with two entries with the same key, albeit with the key's fields
|
|
// swapped.
|
|
auto Key = V1 < V2? std::make_pair(V1, V2) : std::make_pair(V2, V1);
|
|
|
|
// If we find our key in the cache, just return the alias result.
|
|
auto Pair = AliasCache.find(Key);
|
|
if (Pair != AliasCache.end()) {
|
|
DEBUG(llvm::dbgs() << " Found value in the cache: "
|
|
<< Pair->second << "\n");
|
|
|
|
return Pair->second;
|
|
}
|
|
|
|
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
|
|
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
|
|
SILValue O1 = getUnderlyingObject(V1);
|
|
SILValue O2 = getUnderlyingObject(V2);
|
|
DEBUG(llvm::dbgs() << " Underlying V1:" << *O1.getDef());
|
|
DEBUG(llvm::dbgs() << " Underlying V2:" << *O2.getDef());
|
|
|
|
|
|
// If O1 and O2 do not equal, see if we can prove that they can not be the
|
|
// same object. If we can, return No Alias.
|
|
if (O1 != O2 && aliasUnequalObjects(O1, O2))
|
|
return AliasCache[Key] = AliasResult::NoAlias;
|
|
|
|
// Ok, either O1, O2 are the same or we could not prove anything based off of
|
|
// their inequality. Now we climb up use-def chains and attempt to do tricks
|
|
// based off of GEPs.
|
|
|
|
// First if one instruction is a gep and the other is not, canonicalize our
|
|
// inputs so that V1 always is the instruction containing the GEP.
|
|
if (!Projection::isAddressProjection(V1) &&
|
|
Projection::isAddressProjection(V2)) {
|
|
std::swap(V1, V2);
|
|
std::swap(O1, O2);
|
|
}
|
|
|
|
// If V1 is an address projection, attempt to use information from the
|
|
// aggregate type tree to disambiguate it from V2.
|
|
if (Projection::isAddressProjection(V1)) {
|
|
AliasResult Result = aliasAddressProjection(*this, V1, V2, O1, O2);
|
|
if (Result != AliasResult::MayAlias)
|
|
return AliasCache[Key] = Result;
|
|
}
|
|
|
|
|
|
// We could not prove anything. Be conservative and return that V1, V2 may
|
|
// alias.
|
|
return AliasResult::MayAlias;
|
|
}
|
|
|
|
namespace {
|
|
|
|
using MemBehavior = SILInstruction::MemoryBehavior;
|
|
|
|
/// Visitor that determines the memory behavior of an instruction relative to a
|
|
/// specific SILValue (i.e. can the instruction cause the value to be read,
|
|
/// etc.).
|
|
class MemoryBehaviorVisitor
|
|
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
|
|
|
|
/// The alias analysis for any queries we may need.
|
|
AliasAnalysis &AA;
|
|
|
|
/// The value we are attempting to discover memory behavior relative to.
|
|
SILValue V;
|
|
|
|
/// Should we treat instructions that increment ref counts as None instead of
|
|
/// MayHaveSideEffects.
|
|
bool IgnoreRefCountIncrements;
|
|
|
|
public:
|
|
MemoryBehaviorVisitor(AliasAnalysis &AA, SILValue V, bool IgnoreRefCountIncs)
|
|
: AA(AA), V(V), IgnoreRefCountIncrements(IgnoreRefCountIncs) {}
|
|
|
|
MemBehavior visitValueBase(ValueBase *V) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
MemBehavior visitSILInstruction(SILInstruction *Inst) {
|
|
// If we do not have any more information, just use the general memory
|
|
// behavior implementation.
|
|
return Inst->getMemoryBehavior();
|
|
}
|
|
|
|
MemBehavior visitStoreInst(StoreInst *SI);
|
|
MemBehavior visitApplyInst(ApplyInst *AI);
|
|
|
|
// Instructions which are none if our SILValue does not alias one of its
|
|
// arguments. If we can not prove such a thing, return the relevant memory
|
|
// behavior.
|
|
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
for (Operand &Op : I->getAllOperands()) { \
|
|
if (!AA.isNoAlias(Op.get(), V)) { \
|
|
DEBUG(llvm::dbgs() << " " #Name \
|
|
" does alias inst. Returning Normal behavior.\n"); \
|
|
return I->getMemoryBehavior(); \
|
|
} \
|
|
} \
|
|
\
|
|
DEBUG(llvm::dbgs() << " " #Name " does not alias inst. Returning " \
|
|
"None.\n"); \
|
|
return MemBehavior::None; \
|
|
}
|
|
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(LoadInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(UpcastExistentialInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
|
|
#undef OPERANDALIAS_MEMBEHAVIOR_INST
|
|
|
|
// Override simple behaviors where MayHaveSideEffects is too general and
|
|
// encompasses other behavior that is not read/write/ref count decrement
|
|
// behavior we care about.
|
|
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
|
|
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
|
|
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
|
|
#undef SIMPLE_MEMBEHAVIOR_INST
|
|
|
|
// If we are asked to treat ref count increments as being inert, return None
|
|
// for these.
|
|
//
|
|
// FIXME: Once we separate the notion of ref counts from reading/writing
|
|
// memory this will be unnecessary.
|
|
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
if (IgnoreRefCountIncrements) \
|
|
return MemBehavior::None; \
|
|
return I->getMemoryBehavior(); \
|
|
}
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainAutoreleasedInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainUnownedInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(UnownedRetainInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
|
|
#undef REFCOUNTINC_MEMBEHAVIOR_INST
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
|
|
// If the store dest cannot alias the pointer in question, then the
|
|
// specified value can not be modified by the store.
|
|
if (AA.isNoAlias(SI->getDest(), V)) {
|
|
DEBUG(llvm::dbgs() << " Store Dst does not alias inst. Returning "
|
|
"None.\n");
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
// Otherwise, a store just writes.
|
|
DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
|
|
"Returning MayWrite.\n");
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
|
|
// If the ApplyInst is from a no-read builtin it can not read or write and
|
|
// if it comes from a no-side effect builtin, it can only read.
|
|
auto *BFR = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
|
|
|
|
// If our callee is not a builtin, be conservative and return may have side
|
|
// effects.
|
|
if (!BFR) {
|
|
DEBUG(llvm::dbgs() << " Found apply we don't understand returning "
|
|
"MHSF.\n");
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
// If the builtin is read none, it does not read or write memory.
|
|
if (isReadNone(BFR)) {
|
|
DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
|
|
" None.\n");
|
|
return MemBehavior::None;
|
|
}
|
|
// If the builtin is side effect free, then it can only read memory.
|
|
if (isSideEffectFree(BFR)) {
|
|
DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
|
|
"Returning MayRead.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
// Otherwise be conservative and return that we may have side effects.
|
|
DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
|
|
"Returning MayHaveSideEffects.\n");
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
SILInstruction::MemoryBehavior
|
|
AliasAnalysis::getMemoryBehavior(SILInstruction *Inst, SILValue V,
|
|
bool IgnoreRefCountIncrements) {
|
|
DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
|
|
<< *V.getDef());
|
|
return MemoryBehaviorVisitor(*this, V, IgnoreRefCountIncrements).visit(Inst);
|
|
}
|
|
|
|
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
|
|
return new AliasAnalysis(M);
|
|
}
|