Files
swift-mirror/lib/SILGen/SILGenExpr.cpp

4878 lines
189 KiB
C++

//===--- SILGenExpr.cpp - Implements Lowering of ASTs -> SIL for Exprs ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Scope.h"
#include "swift/AST/AST.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Types.h"
#include "swift/AST/ASTWalker.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebuggerClient.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
using namespace Lowering;
void SILDebuggerClient::anchor() {}
SILGenFunction::OpaqueValueRAII::~OpaqueValueRAII() {
// Destroy the value, unless it was both uniquely referenced and consumed.
auto entry = Self.OpaqueValues.find(OpaqueValue);
if (Destroy &&
(!OpaqueValue->isUniquelyReferenced() || !entry->second.second)) {
SILValue &value = entry->second.first;
auto &lowering = Self.getTypeLowering(value.getType().getSwiftRValueType());
if (lowering.isTrivial()) {
// Nothing to do.
} else if (lowering.isAddressOnly()) {
Self.B.emitDestroyAddr(OpaqueValue, value);
} else {
lowering.emitDestroyRValue(Self.B, OpaqueValue, value);
}
}
// Remove the opaque value.
Self.OpaqueValues.erase(entry);
}
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v) {
auto &lowering = getTypeLowering(v.getType().getSwiftRValueType());
return emitManagedRetain(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
lowering.emitRetainValue(B, loc, v);
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v.getType());
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v) {
auto &lowering = getTypeLowering(v.getType());
return emitManagedBufferWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v.getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
static void destroyRValue(SILGenFunction &SGF, CleanupLocation loc,
SILValue value, const TypeLowering &valueTL) {
if (valueTL.isTrivial()) return;
if (valueTL.isAddressOnly()) {
SGF.B.emitDestroyAddr(loc, value);
} else {
valueTL.emitDestroyRValue(SGF.B, loc, value);
}
}
void SILGenFunction::emitExprInto(Expr *E, Initialization *I) {
// Handle the special case of copying an lvalue.
if (auto load = dyn_cast<LoadExpr>(E)) {
auto lv = emitLValue(load->getSubExpr());
emitCopyLValueInto(E, lv, I);
return;
}
RValue result = emitRValue(E, SGFContext(I));
if (result)
std::move(result).forwardInto(*this, I, E);
}
namespace {
class RValueEmitter
: public Lowering::ExprVisitor<RValueEmitter, RValue, SGFContext>
{
SILGenFunction &SGF;
typedef Lowering::ExprVisitor<RValueEmitter,RValue,SGFContext> super;
public:
RValueEmitter(SILGenFunction &SGF) : SGF(SGF) {}
using super::visit;
RValue visit(Expr *E) {
assert(!E->getType()->is<LValueType>() &&
!E->getType()->is<InOutType>() &&
"RValueEmitter shouldn't be called on lvalues");
return visit(E, SGFContext());
}
// These always produce lvalues.
RValue visitInOutExpr(InOutExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr());
return RValue(SGF, E, SGF.emitAddressOfLValue(E->getSubExpr(), lv));
}
RValue visitInOutConversionExpr(InOutConversionExpr *E, SGFContext C);
RValue visitApplyExpr(ApplyExpr *E, SGFContext C);
RValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *E, SGFContext C) {
llvm_unreachable("cannot appear in rvalue");
}
RValue visitDeclRefExpr(DeclRefExpr *E, SGFContext C);
RValue visitTypeExpr(TypeExpr *E, SGFContext C);
RValue visitSuperRefExpr(SuperRefExpr *E, SGFContext C);
RValue visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E,
SGFContext C);
RValue visitIntegerLiteralExpr(IntegerLiteralExpr *E, SGFContext C);
RValue visitFloatLiteralExpr(FloatLiteralExpr *E, SGFContext C);
RValue visitCharacterLiteralExpr(CharacterLiteralExpr *E, SGFContext C);
RValue emitStringLiteral(Expr *E, StringRef Str, SGFContext C,
StringLiteralExpr::Encoding encoding);
RValue visitStringLiteralExpr(StringLiteralExpr *E, SGFContext C);
RValue visitLoadExpr(LoadExpr *E, SGFContext C);
RValue visitDerivedToBaseExpr(DerivedToBaseExpr *E, SGFContext C);
RValue visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C);
RValue visitArrayUpcastConversionExpr(ArrayUpcastConversionExpr *E,
SGFContext C);
RValue visitArrayBridgedConversionExpr(ArrayBridgedConversionExpr *E,
SGFContext C);
RValue visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E, SGFContext C);
RValue visitFunctionConversionExpr(FunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *E,
SGFContext C);
RValue visitErasureExpr(ErasureExpr *E, SGFContext C);
RValue visitMetatypeErasureExpr(MetatypeErasureExpr *E, SGFContext C);
RValue visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C);
RValue visitIsaExpr(IsaExpr *E, SGFContext C);
RValue visitCoerceExpr(CoerceExpr *E, SGFContext C);
RValue visitTupleExpr(TupleExpr *E, SGFContext C);
RValue visitScalarToTupleExpr(ScalarToTupleExpr *E, SGFContext C);
RValue visitMemberRefExpr(MemberRefExpr *E, SGFContext C);
RValue visitDynamicMemberRefExpr(DynamicMemberRefExpr *E, SGFContext C);
RValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E,
SGFContext C);
RValue visitModuleExpr(ModuleExpr *E, SGFContext C);
RValue visitTupleElementExpr(TupleElementExpr *E, SGFContext C);
RValue visitSubscriptExpr(SubscriptExpr *E, SGFContext C);
RValue visitDynamicSubscriptExpr(DynamicSubscriptExpr *E,
SGFContext C);
RValue visitTupleShuffleExpr(TupleShuffleExpr *E, SGFContext C);
RValue visitNewArrayExpr(NewArrayExpr *E, SGFContext C);
RValue visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C);
RValue visitAbstractClosureExpr(AbstractClosureExpr *E, SGFContext C);
RValue visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C);
RValue visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E,
SGFContext C);
RValue visitCollectionExpr(CollectionExpr *E, SGFContext C);
RValue visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E,
SGFContext C);
RValue visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E, SGFContext C);
RValue visitLValueConversionExpr(LValueConversionExpr *E, SGFContext C);
RValue visitLValueToPointerExpr(LValueToPointerExpr *E, SGFContext C);
RValue visitIfExpr(IfExpr *E, SGFContext C);
RValue visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C);
RValue visitAssignExpr(AssignExpr *E, SGFContext C);
RValue visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C);
RValue visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C);
RValue visitForceValueExpr(ForceValueExpr *E, SGFContext C);
RValue emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C);
RValue visitOpenExistentialExpr(OpenExistentialExpr *E, SGFContext C);
RValue visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C);
RValue emitUnconditionalCheckedCast(Expr *source,
SILLocation loc,
Type destType,
CheckedCastKind castKind,
SGFContext C);
};
}
RValue RValueEmitter::visitApplyExpr(ApplyExpr *E, SGFContext C) {
return SGF.emitApplyExpr(E, C);
}
SILValue SILGenFunction::emitEmptyTuple(SILLocation loc) {
return B.createTuple(loc,
getLoweredType(TupleType::getEmpty(SGM.M.getASTContext())), {});
}
SILValue SILGenFunction::emitGlobalFunctionRef(SILLocation loc,
SILDeclRef constant,
SILConstantInfo constantInfo) {
assert(constantInfo == getConstantInfo(constant));
assert(!LocalFunctions.count(constant) &&
"emitting ref to local constant without context?!");
if (constant.hasDecl() &&
isa<BuiltinUnit>(constant.getDecl()->getDeclContext())) {
return B.createBuiltinFunctionRef(loc, constant.getDecl()->getName(),
constantInfo.getSILType());
}
// If the constant is a curry thunk we haven't emitted yet, emit it.
if (constant.isCurried) {
if (!SGM.hasFunction(constant)) {
// Non-functions can't be referenced uncurried.
FuncDecl *fd = cast<FuncDecl>(constant.getDecl());
// Getters and setters can't be referenced uncurried.
assert(!fd->isGetterOrSetter());
// FIXME: Thunks for instance methods of generics.
assert(!(fd->isInstanceMember() && isa<ProtocolDecl>(fd->getDeclContext()))
&& "currying generic method not yet supported");
// FIXME: Curry thunks for generic methods don't work right yet, so skip
// emitting thunks for them
assert(!(fd->getType()->is<AnyFunctionType>() &&
fd->getType()->castTo<AnyFunctionType>()->getResult()
->is<PolymorphicFunctionType>()));
// Reference the next uncurrying level of the function.
SILDeclRef next = SILDeclRef(fd, SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
constant.uncurryLevel + 1);
// If the function is fully uncurried and natively foreign, reference its
// foreign entry point.
if (!next.isCurried && fd->hasClangNode())
next = next.asForeign();
SGM.emitCurryThunk(constant, next, fd);
}
}
// Otherwise, if this is a foreign thunk we haven't emitted yet, emit it.
else if (constant.isForeignThunk()) {
if (!SGM.hasFunction(constant))
SGM.emitForeignThunk(constant);
}
return B.createFunctionRef(loc, SGM.getFunction(constant, NotForDefinition));
}
SILValue SILGenFunction::emitUnmanagedFunctionRef(SILLocation loc,
SILDeclRef constant) {
// If this is a reference to a local constant, grab it.
if (LocalFunctions.count(constant)) {
return LocalFunctions[constant];
}
// Otherwise, use a global FunctionRefInst.
return emitGlobalFunctionRef(loc, constant);
}
ManagedValue SILGenFunction::emitFunctionRef(SILLocation loc,
SILDeclRef constant) {
return emitFunctionRef(loc, constant, getConstantInfo(constant));
}
ManagedValue SILGenFunction::emitFunctionRef(SILLocation loc,
SILDeclRef constant,
SILConstantInfo constantInfo) {
// If this is a reference to a local constant, grab it.
if (LocalFunctions.count(constant)) {
SILValue v = LocalFunctions[constant];
return emitManagedRetain(loc, v);
}
// Otherwise, use a global FunctionRefInst.
SILValue c = emitGlobalFunctionRef(loc, constant, constantInfo);
return ManagedValue::forUnmanaged(c);
}
/// True if the global stored property requires lazy initialization.
static bool isGlobalLazilyInitialized(VarDecl *var) {
assert(!var->getDeclContext()->isLocalContext() &&
"not a global variable!");
assert(var->hasStorage() &&
"not a stored global variable!");
// Imports from C are never lazily initialized.
if (var->hasClangNode())
return false;
// Top-level global variables in the main source file and in the REPL are not
// lazily initialized.
auto sourceFileContext = dyn_cast<SourceFile>(var->getDeclContext());
if (!sourceFileContext)
return true;
return !sourceFileContext->isScriptMode();
}
static ManagedValue emitGlobalVariableRef(SILGenFunction &gen,
SILLocation loc, VarDecl *var) {
if (isGlobalLazilyInitialized(var)) {
// Call the global accessor to get the variable's address.
SILFunction *accessorFn = gen.SGM.getFunction(
SILDeclRef(var, SILDeclRef::Kind::GlobalAccessor),
NotForDefinition);
SILValue accessor = gen.B.createFunctionRef(loc, accessorFn);
auto accessorTy = accessor.getType().castTo<SILFunctionType>();
(void)accessorTy;
assert(!accessorTy->isPolymorphic()
&& "generic global variable accessors not yet implemented");
SILValue addr = gen.B.createApply(loc, accessor, accessor.getType(),
accessor.getType().castTo<SILFunctionType>()
->getInterfaceResult().getSILType(),
{}, {});
// FIXME: It'd be nice if the result of the accessor was natively an address.
addr = gen.B.createPointerToAddress(loc, addr,
gen.getLoweredType(var->getType()).getAddressType());
return ManagedValue::forLValue(addr);
}
// Global variables in main source files can be accessed directly.
// FIXME: And all global variables when lazy initialization is disabled.
SILValue addr = gen.B.createGlobalAddr(loc, var,
gen.getLoweredType(var->getType()).getAddressType());
return ManagedValue::forLValue(addr);
}
/// Emit the specified declaration as an LValue if possible, otherwise return
/// null.
ManagedValue SILGenFunction::emitLValueForDecl(SILLocation loc, VarDecl *var,
bool isDirectPropertyAccess) {
if (var->isDebuggerVar()) {
DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient();
assert(DebugClient && "Debugger variables with no debugger client");
SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient();
assert(SILDebugClient && "Debugger client doesn't support SIL");
SILValue SV = SILDebugClient->emitLValueForVariable(var, B);
return ManagedValue::forLValue(SV);
}
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(var);
if (It != VarLocs.end()) {
// If this is a mutable lvalue, return it as an LValue.
if (It->second.isAddress())
return ManagedValue::forLValue(It->second.getAddress());
// If this is an address-only 'let', return its address as an lvalue.
if (It->second.getConstant().getType().isAddress())
return ManagedValue::forLValue(It->second.getConstant());
// Otherwise, it is an RValue let.
return ManagedValue();
}
// a getter produces an rvalue unless this is a direct access to storage.
if (!var->hasStorage() ||
(!isDirectPropertyAccess && var->hasAccessorFunctions()))
return ManagedValue();
// If this is a global variable, invoke its accessor function to get its
// address.
return emitGlobalVariableRef(*this, loc, var);
}
ManagedValue SILGenFunction::
emitRValueForDecl(SILLocation loc, ConcreteDeclRef declRef, Type ncRefType,
SGFContext C) {
assert(!ncRefType->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// Don't need to write back to decls loaded as rvalues.
DisableWritebackScope scope(*this);
// If this is an decl that we have an lvalue for, produce and return it.
ValueDecl *decl = declRef.getDecl();
if (!ncRefType) ncRefType = decl->getType();
CanType refType = ncRefType->getCanonicalType();
// If this is a reference to a type, produce a metatype.
if (isa<TypeDecl>(decl)) {
assert(!declRef.isSpecialized() &&
"Cannot handle specialized type references");
assert(decl->getType()->is<MetatypeType>() &&
"type declref does not have metatype type?!");
return ManagedValue::forUnmanaged(B.createMetatype(loc,
getLoweredType(refType)));
}
// If this is a reference to a var, produce an address or value.
if (auto *var = dyn_cast<VarDecl>(decl)) {
assert(!declRef.isSpecialized() &&
"Cannot handle specialized variable references");
// If this VarDecl is represented as an address, emit it as an lvalue, then
// perform a load to get the rvalue.
if (auto Result = emitLValueForDecl(loc, var))
return emitLoad(loc, Result.getLValueAddress(), getTypeLowering(refType),
C, IsNotTake);
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(decl);
if (It != VarLocs.end()) {
// Mutable lvalue and address-only 'let's are LValues.
assert(!It->second.isAddress() &&
!It->second.getConstant().getType().isAddress() &&
"LValue cases should be handled above");
auto Result = ManagedValue::forUnmanaged(It->second.getConstant());
// If the client can't handle a +0 result, retain it to get a +1.
return C.isPlusZeroOk() ? Result : Result.copyUnmanaged(*this, loc);
}
assert(var->hasAccessorFunctions() && "Unknown rvalue case");
// Global properties have no base or subscript.
return emitGetAccessor(loc, var,
ArrayRef<Substitution>(), RValueSource(),
/*isSuper=*/false, RValue(), C);
}
// If the referenced decl isn't a VarDecl, it should be a constant of some
// sort.
// If the referenced decl is a local func with context, then the SILDeclRef
// uncurry level is one deeper (for the context vars).
bool hasLocalCaptures = false;
unsigned uncurryLevel = 0;
if (auto *fd = dyn_cast<FuncDecl>(decl)) {
hasLocalCaptures = fd->getCaptureInfo().hasLocalCaptures();
if (hasLocalCaptures)
++uncurryLevel;
}
auto silDeclRef = SILDeclRef(decl, ResilienceExpansion::Minimal, uncurryLevel);
auto constantInfo = getConstantInfo(silDeclRef);
ManagedValue result = emitFunctionRef(loc, silDeclRef, constantInfo);
// Get the lowered AST types:
// - the original type
auto origLoweredFormalType = AbstractionPattern(constantInfo.LoweredType);
if (hasLocalCaptures) {
auto formalTypeWithoutCaptures =
cast<AnyFunctionType>(constantInfo.FormalType.getResult());
origLoweredFormalType =
AbstractionPattern(
SGM.Types.getLoweredASTFunctionType(formalTypeWithoutCaptures,0));
}
// - the substituted type
auto substFormalType = cast<AnyFunctionType>(refType);
auto substLoweredFormalType =
SGM.Types.getLoweredASTFunctionType(substFormalType, 0);
// If the declaration reference is specialized, create the partial
// application.
if (declRef.isSpecialized()) {
// Substitute the function type.
auto origFnType = result.getType().castTo<SILFunctionType>();
auto substFnType = origFnType->substInterfaceGenericArgs(
SGM.M, SGM.SwiftModule,
declRef.getSubstitutions());
auto closureType = adjustFunctionType(substFnType,
FunctionType::Representation::Thick);
SILValue spec = B.createPartialApply(loc, result.forward(*this),
SILType::getPrimitiveObjectType(substFnType),
declRef.getSubstitutions(),
{ },
SILType::getPrimitiveObjectType(closureType));
result = emitManagedRValueWithCleanup(spec);
}
// Generalize if necessary.
return emitGeneralizedFunctionValue(loc, result, origLoweredFormalType,
substLoweredFormalType);
}
static AbstractionPattern getOrigFormalRValueType(Type formalStorageType) {
auto type = formalStorageType->getCanonicalType();
if (auto ref = dyn_cast<ReferenceStorageType>(type)) {
type = ref.getReferentType();
if (isa<WeakStorageType>(ref))
type = OptionalType::get(type)->getCanonicalType();
}
return AbstractionPattern(type);
}
/// Produce a singular RValue for a load from the specified property. This
/// is designed to work with RValue ManagedValue bases that are either +0 or +1.
ManagedValue SILGenFunction::
emitRValueForPropertyLoad(SILLocation loc, ManagedValue base,
bool isSuper,
VarDecl *FieldDecl,
ArrayRef<Substitution> substitutions,
bool isDirectPropertyAccess,
Type propTy, SGFContext C) {
// If this is a non-direct access to a computed property, call the getter.
if (FieldDecl->hasAccessorFunctions() && !isDirectPropertyAccess) {
// If the base is +0, and this is a non-protocol/archetype base, emit a
// retain_value to bring it to +1 since getters always take the base object
// at +1.
if (base.isPlusZeroRValueOrTrivial() &&
!base.getType().getSwiftRValueType().isExistentialType() &&
!base.getType().getSwiftRValueType()->is<ArchetypeType>())
base = base.copyUnmanaged(*this, loc);
RValueSource baseRV = prepareAccessorBaseArg(loc, base,
FieldDecl->getGetter());
return emitGetAccessor(loc, FieldDecl, substitutions,
std::move(baseRV), isSuper, RValue(), C);
}
assert(FieldDecl->hasStorage() &&
"Cannot directly access value without storage");
// For static variables, emit a reference to the global variable backing
// them.
// FIXME: This has to be dynamically looked up for classes, and
// dynamically instantiated for generics.
if (FieldDecl->isStatic()) {
auto baseMeta = base.getType().castTo<MetatypeType>().getInstanceType();
(void)baseMeta;
assert(!baseMeta->is<BoundGenericType>() &&
"generic static stored properties not implemented");
assert((baseMeta->getStructOrBoundGenericStruct() ||
baseMeta->getEnumOrBoundGenericEnum()) &&
"static stored properties for classes/protocols not implemented");
return emitRValueForDecl(loc, FieldDecl, propTy, C);
}
// If the base is a reference type, just handle this as loading the lvalue.
if (base.getType().getSwiftRValueType()->hasReferenceSemantics()) {
// TODO: Enhance emitDirectIVarLValue to work with +0 bases directly.
if (base.isPlusZeroRValueOrTrivial())
base = base.copyUnmanaged(*this, loc);
LValue LV = emitDirectIVarLValue(loc, base, FieldDecl);
return emitLoadOfLValue(loc, LV, C);
}
// rvalue MemberRefExprs are produced in two cases: when accessing a 'let'
// decl member, and when the base is a (non-lvalue) struct.
assert(base.getType().getSwiftRValueType()->getAnyNominal() &&
"The base of an rvalue MemberRefExpr should be an rvalue value");
// If the accessed field is stored, emit a StructExtract on the base.
// Check for an abstraction difference.
bool hasAbstractionChange = false;
auto substFormalType = propTy->getCanonicalType();
AbstractionPattern origFormalType;
// FIXME: This crazy 'if' condition should not be required when we have
// reliable canonical type comparisons (i.e., interfacetypes get done). For
// now, not doing this causes us to emit extra pointless copies.
if (substFormalType->is<AnyFunctionType>() ||
substFormalType->is<TupleType>() ||
substFormalType->is<AnyMetatypeType>()) {
origFormalType = getOrigFormalRValueType(FieldDecl->getType());
hasAbstractionChange = origFormalType.getAsType() != substFormalType;
}
auto &lowering = getTypeLowering(propTy);
ManagedValue Result;
if (!base.getType().isAddress()) {
// For non-address-only structs, we emit a struct_extract sequence.
SILValue Scalar = B.createStructExtract(loc, base.getValue(), FieldDecl);
Result = ManagedValue::forUnmanaged(Scalar);
if (Result.getType().is<ReferenceStorageType>()) {
// For @weak and @unowned types, convert the reference to the right
// pointer, producing a +1.
Scalar = emitConversionToSemanticRValue(loc, Scalar, lowering);
Result = emitManagedRValueWithCleanup(Scalar, lowering);
} else if (hasAbstractionChange || !C.isPlusZeroOk()) {
// If we have an abstraction change or if we have to produce a result at
// +1, then emit a RetainValue.
Result = Result.copyUnmanaged(*this, loc);
}
} else {
// For address-only sequences, the base is in memory. Emit a
// struct_element_addr to get to the field, and then load the element as an
// rvalue.
SILValue ElementPtr =
B.createStructElementAddr(loc, base.getValue(), FieldDecl);
Result = emitLoad(loc, ElementPtr, lowering,
hasAbstractionChange ? SGFContext() : C, IsNotTake);
}
// If we're accessing this member with an abstraction change, perform that
// now.
if (hasAbstractionChange)
Result = emitOrigToSubstValue(loc, Result, origFormalType,
substFormalType, C);
return Result;
}
RValue RValueEmitter::visitDeclRefExpr(DeclRefExpr *E, SGFContext C) {
auto Val = SGF.emitRValueForDecl(E, E->getDeclRef(), E->getType(), C);
return RValue(SGF, E, Val);
}
RValue RValueEmitter::visitTypeExpr(TypeExpr *E, SGFContext C) {
assert(E->getType()->is<AnyMetatypeType>() &&
"TypeExpr must have metatype type");
auto Val = SGF.B.createMetatype(E, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(Val));
}
RValue RValueEmitter::visitSuperRefExpr(SuperRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
auto Self = SGF.emitRValueForDecl(E, E->getSelf(), E->getSelf()->getType());
// Perform an upcast to convert self to the indicated super type.
auto Result = SGF.B.createUpcast(E, Self.getValue(),
SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue(Result, Self.getCleanup()));
}
RValue RValueEmitter::visitOtherConstructorDeclRefExpr(
OtherConstructorDeclRefExpr *E, SGFContext C) {
// This should always be a child of an ApplyExpr and so will be emitted by
// SILGenApply.
llvm_unreachable("unapplied reference to constructor?!");
}
RValue RValueEmitter::visitIntegerLiteralExpr(IntegerLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createIntegerLiteral(E)));
}
RValue RValueEmitter::visitFloatLiteralExpr(FloatLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createFloatLiteral(E)));
}
RValue RValueEmitter::visitCharacterLiteralExpr(CharacterLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createIntegerLiteral(E)));
}
RValue RValueEmitter::emitStringLiteral(Expr *E, StringRef Str,
SGFContext C,
StringLiteralExpr::Encoding encoding) {
uint64_t Length;
bool isASCII = true;
for (unsigned char c : Str) {
if (c > 127) {
isASCII = false;
break;
}
}
StringLiteralInst::Encoding instEncoding;
switch (encoding) {
case StringLiteralExpr::UTF8:
instEncoding = StringLiteralInst::Encoding::UTF8;
Length = Str.size();
break;
case StringLiteralExpr::UTF16: {
instEncoding = StringLiteralInst::Encoding::UTF16;
// Transcode the string to UTF16 to get its length.
SmallVector<UTF16, 128> buffer(Str.size() + 1); // +1 for ending nulls.
const UTF8 *fromPtr = (const UTF8 *) Str.data();
UTF16 *toPtr = &buffer[0];
(void)ConvertUTF8toUTF16(&fromPtr, fromPtr + Str.size(),
&toPtr, toPtr + Str.size(), strictConversion);
// The length of the transcoded string in UTF-16 code points.
Length = toPtr - &buffer[0];
break;
}
}
// The string literal provides the data.
StringLiteralInst *string = SGF.B.createStringLiteral(E, Str, instEncoding);
CanType ty = E->getType()->getCanonicalType();
// The length is lowered as an integer_literal.
auto WordTy = SILType::getBuiltinWordType(SGF.getASTContext());
auto *lengthInst = SGF.B.createIntegerLiteral(E, WordTy, Length);
// The 'isascii' bit is lowered as an integer_literal.
auto Int1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto *isASCIIInst = SGF.B.createIntegerLiteral(E, Int1Ty, isASCII);
ManagedValue EltsArray[] = {
ManagedValue::forUnmanaged(string),
ManagedValue::forUnmanaged(lengthInst),
ManagedValue::forUnmanaged(isASCIIInst)
};
ArrayRef<ManagedValue> Elts;
switch (instEncoding) {
case StringLiteralInst::Encoding::UTF16:
Elts = llvm::makeArrayRef(EltsArray).slice(0, 2);
break;
case StringLiteralInst::Encoding::UTF8:
Elts = EltsArray;
break;
}
return RValue(Elts, ty);
}
RValue RValueEmitter::visitStringLiteralExpr(StringLiteralExpr *E,
SGFContext C) {
return emitStringLiteral(E, E->getValue(), C, E->getEncoding());
}
RValue RValueEmitter::visitLoadExpr(LoadExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr());
return RValue(SGF, E, SGF.emitLoadOfLValue(E, lv, C));
}
SILValue SILGenFunction::emitTemporaryAllocation(SILLocation loc,
SILType ty) {
ty = ty.getObjectType();
auto alloc = B.createAllocStack(loc, ty);
enterDeallocStackCleanup(alloc->getContainerResult());
return alloc->getAddressResult();
}
// Return an initialization address we can emit directly into.
static SILValue getAddressForInPlaceInitialization(Initialization *I) {
if (!I) return SILValue();
SILValue address;
switch (I->kind) {
case Initialization::Kind::AddressBinding:
llvm_unreachable("can't emit into address binding");
case Initialization::Kind::LetValue:
// Emit into the buffer that 'let's produce for address-only values if
// we have it.
if (I->hasAddress())
address = I->getAddress();
break;
case Initialization::Kind::Translating:
case Initialization::Kind::Ignored:
break;
case Initialization::Kind::Tuple:
// FIXME: For a single-element tuple, we could emit into the single field.
// The tuple initialization isn't contiguous, so we can't emit directly
// into it.
break;
case Initialization::Kind::SingleBuffer:
// Emit into the buffer.
address = I->getAddress();
break;
}
// Don't emit directly into reference storage slots; these always require an
// additional semantic conversion.
if (address && !address.getType().is<ReferenceStorageType>())
return address;
return SILValue();
}
SILValue SILGenFunction::
getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C) {
// If you change this, change manageBufferForExprResult below as well.
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (SILValue address = getAddressForInPlaceInitialization(C.getEmitInto()))
return address;
// If we couldn't emit into the Initialization, emit into a temporary
// allocation.
return emitTemporaryAllocation(loc, ty.getObjectType());
}
ManagedValue SILGenFunction::
manageBufferForExprResult(SILValue buffer, const TypeLowering &bufferTL,
SGFContext C) {
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (getAddressForInPlaceInitialization(C.getEmitInto())) {
C.getEmitInto()->finishInitialization(*this);
return ManagedValue::forInContext();
}
// Add a cleanup for the temporary we allocated.
if (bufferTL.isTrivial())
return ManagedValue::forUnmanaged(buffer);
return ManagedValue(buffer, enterDestroyCleanup(buffer));
}
RValue RValueEmitter::visitDerivedToBaseExpr(DerivedToBaseExpr *E,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Derived-to-base casts in the AST might not be reflected as such
// in the SIL type system, for example, a cast from DynamicSelf
// directly to its own Self type.
auto loweredResultTy = SGF.getLoweredType(E->getType());
if (original.getType() == loweredResultTy)
return RValue(SGF, E, original);
SILValue converted = SGF.B.createUpcast(E, original.getValue(),
loweredResultTy);
return RValue(SGF, E, ManagedValue(converted, original.getCleanup()));
}
RValue RValueEmitter::
visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C) {
SILValue metaBase =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Metatype conversion casts in the AST might not be reflected as
// such in the SIL type system, for example, a cast from DynamicSelf.Type
// directly to its own Self.Type.
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
if (metaBase.getType() == loweredResultTy)
return RValue(SGF, E, ManagedValue::forUnmanaged(metaBase));
auto upcast = SGF.B.createUpcast(E, metaBase, loweredResultTy);
return RValue(SGF, E, ManagedValue::forUnmanaged(upcast));
}
RValue RValueEmitter::
visitArrayUpcastConversionExpr(ArrayUpcastConversionExpr *E,
SGFContext C) {
SILLocation loc = RegularLocation(E);
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Compute substitutions for the intrinsic call.
auto canTypeT = E->getSubExpr()->getType().getPointer()->getCanonicalType();
auto canTypeU = E->getType().getPointer()->getCanonicalType();
auto arrayT = cast<BoundGenericStructType>(canTypeT)->getGenericArgs()[0];
auto arrayU = cast<BoundGenericStructType>(canTypeU)->getGenericArgs()[0];
auto typeName = cast<BoundGenericStructType>(canTypeT)->getDecl()->getName();
// Get the intrinsic function.
FuncDecl *fn = nullptr;
if (typeName.str() == "Array") {
fn = SGF.getASTContext().getArrayUpCast(nullptr);
} else {
llvm_unreachable("unsupported array upcast kind");
}
// Compute type parameter substitutions.
SmallVector<Substitution, 2> subs;
auto polyFnType = cast<PolymorphicFunctionType>
(fn->getType()->getCanonicalType());
auto genericParams = polyFnType->getGenericParameters();
auto gp1 = genericParams[0].getAsTypeParam();
auto gp2 = genericParams[1].getAsTypeParam();
subs.push_back(Substitution{gp1->getArchetype(), arrayT, {}});
subs.push_back(Substitution{gp2->getArchetype(), arrayU, {}});
auto args = {mv};
auto emitApply = SGF.emitApplyOfLibraryIntrinsic(loc,
fn,
subs,
args,
C);
return RValue(SGF, E, emitApply);
}
RValue RValueEmitter::
visitArrayBridgedConversionExpr(ArrayBridgedConversionExpr *E,
SGFContext C) {
SILLocation loc = RegularLocation(E);
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Compute substitutions for the intrinsic call.
auto canTypeT = E->getSubExpr()->getType().getPointer()->getCanonicalType();
auto canTypeU = E->getType().getPointer()->getCanonicalType();
auto arrayT = cast<BoundGenericStructType>(canTypeT)->getGenericArgs()[0];
auto arrayU = cast<BoundGenericStructType>(canTypeU)->getGenericArgs()[0];
auto typeName = cast<BoundGenericStructType>(canTypeT)->getDecl()->getName();
// Get the intrinsic function.
FuncDecl *fn = nullptr;
auto &ctx = SGF.getASTContext();
if (typeName.str() == "Array") {
fn = E->isConditionallyBridged ?
ctx.getArrayConditionalBridgeToObjectiveC(nullptr) :
ctx.getArrayBridgeToObjectiveC(nullptr);
} else {
llvm_unreachable("unsupported array bridge kind");
}
// Compute type parameter substitutions.
SmallVector<Substitution, 2> subs;
// Fish out the conformances to _BridgedToObjectiveC and ObjectiveCType from
// the the canonical types of T and U's type arguments.
auto polyFnType = cast<PolymorphicFunctionType>
(fn->getType()->getCanonicalType());
auto genericParams = polyFnType->getGenericParameters();
auto gp1 = genericParams[0].getAsTypeParam();
auto archetype = gp1->getArchetype();
auto protocolDecls = archetype->getConformsTo();
SmallVector<ProtocolConformance *, 1> conformances;
auto dc = protocolDecls[0]->getDeclContext()->getModuleScopeContext();
auto conformance = ctx.getConformsTo(arrayT->getCanonicalType(),
protocolDecls[0])->getPointer();
conformances.push_back(conformance);
subs.push_back(Substitution{archetype,
arrayT,
ctx.AllocateCopy(conformances)});
if (auto nestedAssocType =
archetype->getNestedTypeValue(ctx.getIdentifier("ObjectiveCType"))) {
if (auto nestedArchetype =
dyn_cast<ArchetypeType>(nestedAssocType.getPointer())) {
protocolDecls = nestedArchetype->getConformsTo();
SmallVector<ProtocolConformance *, 1> nestedConformances;
dc = protocolDecls[0]->getDeclContext()->getModuleScopeContext();
auto conformance = ctx.getConformsTo(arrayU->getCanonicalType(),
protocolDecls[0])->getPointer();
nestedConformances.push_back(conformance);
subs.push_back(Substitution{nestedArchetype,
arrayU,
ctx.AllocateCopy(nestedConformances)});
}
}
auto args = {mv};
auto emitApply = SGF.emitApplyOfLibraryIntrinsic(loc,
fn,
subs,
args,
C);
return RValue(SGF, E, emitApply);
}
RValue RValueEmitter::visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E,
SGFContext C) {
ManagedValue archetype = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Replace the cleanup with a new one on the superclass value so we always use
// concrete retain/release operations.
SILValue base = SGF.B.createUpcast(E,
archetype.forward(SGF),
SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(base));
}
static void buildFuncToBlockInvokeBody(SILGenFunction &gen,
SILLocation loc,
CanSILFunctionType blockTy,
CanSILBlockStorageType blockStorageTy,
CanSILFunctionType funcTy) {
Scope scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
SILBasicBlock *entry = gen.F.begin();
// Get the captured native function value out of the block.
auto storageAddrTy = SILType::getPrimitiveAddressType(blockStorageTy);
auto storage = new (gen.SGM.M) SILArgument(storageAddrTy, entry);
auto capture = gen.B.createProjectBlockStorage(loc, storage);
auto &funcTL = gen.getTypeLowering(funcTy);
auto fn = gen.emitLoad(loc, capture, funcTL, SGFContext(), IsNotTake);
// Collect the block arguments, which may have nonstandard conventions.
assert(blockTy->getInterfaceParameters().size()
== funcTy->getInterfaceParameters().size()
&& "block and function types don't match");
SmallVector<ManagedValue, 4> args;
for (unsigned i : indices(funcTy->getInterfaceParameters())) {
auto &funcParam = funcTy->getInterfaceParameters()[i];
auto &param = blockTy->getInterfaceParameters()[i];
SILValue v = new (gen.SGM.M) SILArgument(param.getSILType(), entry);
ManagedValue mv;
switch (param.getConvention()) {
case ParameterConvention::Direct_Owned:
// Consume owned parameters at +1.
mv = gen.emitManagedRValueWithCleanup(v);
break;
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned:
// We need to independently retain the value.
mv = gen.emitManagedRetain(loc, v);
break;
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_Out:
llvm_unreachable("indirect arguments to blocks not supported");
}
args.push_back(gen.emitBridgedToNativeValue(loc, mv, AbstractCC::C,
funcParam.getType()));
}
// Call the native function.
assert(!funcTy->hasIndirectResult()
&& "block thunking func with indirect result not supported");
ManagedValue result = gen.emitMonomorphicApply(loc, fn, args,
funcTy->getSILInterfaceResult().getSwiftRValueType());
// Bridge the result back to ObjC.
result = gen.emitNativeToBridgedValue(loc, result, AbstractCC::C,
result.getType().getSwiftRValueType(),
result.getType().getSwiftRValueType(),
blockTy->getSILInterfaceResult().getSwiftRValueType());
auto resultVal = result.forward(gen);
scope.pop();
// Handle the result convention.
switch (blockTy->getInterfaceResult().getConvention()) {
case ResultConvention::UnownedInnerPointer:
case ResultConvention::Unowned:
assert(gen.getTypeLowering(resultVal.getType()).isTrivial()
&& "nontrivial result is returned unowned?!");
gen.B.createReturn(loc, resultVal);
break;
case ResultConvention::Autoreleased:
gen.B.createAutoreleaseReturn(loc, resultVal);
break;
case ResultConvention::Owned:
gen.B.createReturn(loc, resultVal);
break;
}
}
/// Bridge a native function to a block with a thunk.
static ManagedValue emitFuncToBlock(SILGenFunction &gen,
SILLocation loc,
ManagedValue fn,
CanSILFunctionType blockTy) {
// Build the invoke function signature. The block will capture the original
// function value.
auto fnTy = fn.getType().castTo<SILFunctionType>();
auto storageTy = SILBlockStorageType::get(fnTy);
// Build the invoke function type.
SmallVector<SILParameterInfo, 4> params;
params.push_back(
SILParameterInfo(storageTy, ParameterConvention::Indirect_Inout));
std::copy(blockTy->getInterfaceParameters().begin(),
blockTy->getInterfaceParameters().end(),
std::back_inserter(params));
auto invokeTy =
SILFunctionType::get(nullptr,
FunctionType::ExtInfo()
.withCallingConv(AbstractCC::C)
.withRepresentation(FunctionType::Representation::Thin),
ParameterConvention::Direct_Unowned,
params,
blockTy->getInterfaceResult(),
gen.getASTContext());
// Create the invoke function. Borrow the mangling scheme from reabstraction
// thunks, which is what we are in spirit.
auto thunk = gen.SGM.getOrCreateReabstractionThunk(loc,
nullptr,
invokeTy,
fnTy,
blockTy);
// Build it if necessary.
if (thunk->empty()) {
SILGenFunction thunkSGF(gen.SGM, *thunk);
buildFuncToBlockInvokeBody(thunkSGF, loc, blockTy, storageTy, fnTy);
}
// Form the block on the stack.
auto storageAddrTy = SILType::getPrimitiveAddressType(storageTy);
auto storage = gen.emitTemporaryAllocation(loc, storageAddrTy);
auto capture = gen.B.createProjectBlockStorage(loc, storage);
// Store the function to the block without claiming it, so that it still
// gets cleaned up in scope. Copying the block will create an independent
// reference.
gen.B.createStore(loc, fn.getValue(), capture);
auto invokeFn = gen.B.createFunctionRef(loc, thunk);
auto stackBlock = gen.B.createInitBlockStorageHeader(loc, storage, invokeFn,
SILType::getPrimitiveObjectType(blockTy));
// Copy the block so we have an independent heap object we can hand off.
auto heapBlock = gen.B.createCopyBlock(loc, stackBlock);
return gen.emitManagedRValueWithCleanup(heapBlock);
}
static void buildBlockToFuncThunkBody(SILGenFunction &gen,
SILLocation loc,
CanSILFunctionType blockTy,
CanSILFunctionType funcTy) {
// Collect the native arguments, which should all be +1.
Scope scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
assert(blockTy->getInterfaceParameters().size()
== funcTy->getInterfaceParameters().size()
&& "block and function types don't match");
SmallVector<ManagedValue, 4> args;
SILBasicBlock *entry = gen.F.begin();
for (unsigned i : indices(funcTy->getInterfaceParameters())) {
auto &param = funcTy->getInterfaceParameters()[i];
auto &blockParam = blockTy->getInterfaceParameters()[i];
auto &tl = gen.getTypeLowering(param.getSILType());
assert((tl.isTrivial()
? param.getConvention() == ParameterConvention::Direct_Unowned
: param.getConvention() == ParameterConvention::Direct_Owned)
&& "nonstandard conventions for native functions not implemented");
SILValue v = new (gen.SGM.M) SILArgument(param.getSILType(), entry);
auto mv = gen.emitManagedRValueWithCleanup(v, tl);
args.push_back(gen.emitNativeToBridgedValue(loc, mv, AbstractCC::C,
param.getType(), param.getType(),
blockParam.getType()));
}
// Add the block argument.
SILValue blockV
= new (gen.SGM.M) SILArgument(SILType::getPrimitiveObjectType(blockTy),
entry);
ManagedValue block = gen.emitManagedRValueWithCleanup(blockV);
// Call the block.
assert(!funcTy->hasIndirectResult()
&& "block thunking func with indirect result not supported");
ManagedValue result = gen.emitMonomorphicApply(loc, block, args,
funcTy->getSILInterfaceResult().getSwiftRValueType(),
/*transparent*/ false,
/*override CC*/ AbstractCC::C);
// Return the result at +1.
auto &resultTL = gen.getTypeLowering(funcTy->getSILInterfaceResult());
auto convention = funcTy->getInterfaceResult().getConvention();
assert((resultTL.isTrivial()
? convention == ResultConvention::Unowned
: convention == ResultConvention::Owned)
&& "nonstandard conventions for return not implemented");
auto r = result.forward(gen);
scope.pop();
gen.B.createReturn(loc, r);
}
/// Bridge a native function to a block with a thunk.
ManagedValue
SILGenFunction::emitBlockToFunc(SILLocation loc,
ManagedValue block,
CanSILFunctionType funcTy) {
CanSILFunctionType substFnTy;
SmallVector<Substitution, 4> subs;
// Declare the thunk.
auto blockTy = block.getType().castTo<SILFunctionType>();
auto thunkTy = buildThunkType(block, funcTy, substFnTy, subs);
auto thunk = SGM.getOrCreateReabstractionThunk(loc,
F.getContextGenericParams(),
thunkTy,
blockTy,
funcTy);
// Build it if necessary.
if (thunk->empty()) {
SILGenFunction thunkSGF(SGM, *thunk);
buildBlockToFuncThunkBody(thunkSGF, loc, blockTy, funcTy);
}
// Create it in the current function.
auto thunkValue = B.createFunctionRef(loc, thunk);
auto thunkedFn = B.createPartialApply(loc, thunkValue,
SILType::getPrimitiveObjectType(substFnTy),
subs, block.forward(*this),
SILType::getPrimitiveObjectType(funcTy));
return emitManagedRValueWithCleanup(thunkedFn);
}
RValue RValueEmitter::visitFunctionConversionExpr(FunctionConversionExpr *e,
SGFContext C)
{
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
// Break the conversion into two stages:
// - changing the signature within the representation
// - changing the representation
// First, the signature:
auto srcTy = e->getSubExpr()->getType()->castTo<FunctionType>();
CanAnyFunctionType destRepTy
= cast<FunctionType>(e->getType()->getCanonicalType());
CanAnyFunctionType destTy = CanFunctionType::get(
destRepTy.getInput(), destRepTy.getResult(),
destRepTy->getExtInfo().withRepresentation(srcTy->getRepresentation()));
// Retain the thinness of the original function type.
auto origRep = original.getType().castTo<SILFunctionType>()->getRepresentation();
if (origRep != destTy->getRepresentation())
destTy = adjustFunctionType(destTy, origRep);
SILType resultType = SGF.getLoweredType(destTy);
ManagedValue result;
if (resultType == original.getType()) {
// Don't make a conversion instruction if it's unnecessary.
result = original;
} else {
SILValue converted =
SGF.B.createConvertFunction(e, original.getValue(), resultType);
result = ManagedValue(converted, original.getCleanup());
}
// Now, the representation:
if (destRepTy != destTy) {
auto resultFTy = resultType.castTo<SILFunctionType>();
// The only currently possible representation changes are block -> thick and
// thick -> block.
switch (destRepTy->getRepresentation()) {
case AnyFunctionType::Representation::Block:
switch (resultFTy->getRepresentation()) {
case AnyFunctionType::Representation::Thin: {
// Make thick first.
auto v = SGF.B.createThinToThickFunction(e, result.getValue(),
SILType::getPrimitiveObjectType(
adjustFunctionType(resultFTy, FunctionType::Representation::Thick)));
result = ManagedValue(v, result.getCleanup());
SWIFT_FALLTHROUGH;
}
case AnyFunctionType::Representation::Thick:
// Convert to a block.
result = emitFuncToBlock(SGF, e, result,
SGF.getLoweredType(destRepTy).castTo<SILFunctionType>());
break;
case AnyFunctionType::Representation::Block:
llvm_unreachable("should not try block-to-block repr change");
}
break;
case AnyFunctionType::Representation::Thick: {
assert(resultFTy->getRepresentation()
== FunctionType::Representation::Block
&& "only block-to-thick repr changes supported");
result = SGF.emitBlockToFunc(e, result,
SGF.getLoweredType(destRepTy).castTo<SILFunctionType>());
break;
}
case AnyFunctionType::Representation::Thin:
llvm_unreachable("not supported by sema");
}
}
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *e,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
CanAnyFunctionType destTy
= cast<AnyFunctionType>(e->getType()->getCanonicalType());
SILType resultType = SGF.getLoweredType(destTy);
SILValue result = SGF.B.createConvertFunction(e,
original.forward(SGF),
resultType);
return RValue(SGF, e, SGF.emitManagedRValueWithCleanup(result));
}
static ManagedValue createUnsafeDowncast(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType resultTy) {
SILValue result = gen.B.createUncheckedRefCast(loc,
input.forward(gen),
resultTy);
return gen.emitManagedRValueWithCleanup(result);
}
RValue RValueEmitter::visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *e,
SGFContext C) {
SILType resultType = SGF.getLoweredType(e->getType());
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
ManagedValue result;
if (resultType.getSwiftRValueType().getAnyOptionalObjectType()) {
result = SGF.emitOptionalToOptional(e, original, resultType,
createUnsafeDowncast);
} else {
result = createUnsafeDowncast(SGF, e, original, resultType);
}
return RValue(SGF, e, result);
}
namespace {
/// An Initialization representing the concrete value buffer inside an
/// existential container.
class ExistentialValueInitialization : public SingleBufferInitialization {
SILValue valueAddr;
public:
ExistentialValueInitialization(SILValue valueAddr)
: valueAddr(valueAddr)
{}
SILValue getAddressOrNull() const override {
return valueAddr;
}
void finishInitialization(SILGenFunction &gen) {
// FIXME: Disable the DeinitExistential cleanup and enable the
// DestroyAddr cleanup for the existential container.
}
};
}
static RValue emitClassBoundErasure(SILGenFunction &gen, ErasureExpr *E) {
ManagedValue sub = gen.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = gen.getLoweredLoadableType(E->getType());
SILValue v;
if (E->getSubExpr()->getType()->isExistentialType())
// If the source value is already of protocol type, we can use
// upcast_existential_ref to steal the already-initialized witness tables
// and concrete value.
v = gen.B.createUpcastExistentialRef(E, sub.getValue(), resultTy);
else
// Otherwise, create a new existential container value around the class
// instance.
v = gen.B.createInitExistentialRef(E, resultTy, sub.getValue(),
E->getConformances());
return RValue(gen, E, ManagedValue(v, sub.getCleanup()));
}
static RValue emitAddressOnlyErasure(SILGenFunction &gen, ErasureExpr *E,
SGFContext C) {
// FIXME: Need to stage cleanups here. If code fails between
// InitExistential and initializing the value, clean up using
// DeinitExistential.
// Allocate the existential.
auto &existentialTL = gen.getTypeLowering(E->getType());
SILValue existential =
gen.getBufferForExprResult(E, existentialTL.getLoweredType(), C);
if (E->getSubExpr()->getType()->isExistentialType()) {
// If the source value is already of a protocol type, we can use
// upcast_existential to steal its already-initialized witness tables and
// concrete value.
ManagedValue subExistential = gen.emitRValueAsSingleValue(E->getSubExpr());
IsTake_t isTake = IsTake_t(subExistential.hasCleanup());
gen.B.createUpcastExistential(E, subExistential.getValue(), existential,
isTake);
} else {
// Otherwise, we need to initialize a new existential container from
// scratch.
// Allocate the concrete value inside the container.
SILValue valueAddr = gen.B.createInitExistential(E, existential,
gen.getLoweredType(E->getSubExpr()->getType()),
E->getConformances());
// Initialize the concrete value in-place.
InitializationPtr init(new ExistentialValueInitialization(valueAddr));
gen.emitExprInto(E->getSubExpr(), init.get());
}
return RValue(gen, E,
gen.manageBufferForExprResult(existential, existentialTL, C));
}
RValue RValueEmitter::visitErasureExpr(ErasureExpr *E, SGFContext C) {
if (E->getType()->isClassExistentialType())
return emitClassBoundErasure(SGF, E);
return emitAddressOnlyErasure(SGF, E, C);
}
RValue RValueEmitter::visitMetatypeErasureExpr(MetatypeErasureExpr *E,
SGFContext C) {
SILValue metatype =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Thicken the metatype if necessary.
if (auto metatypeTy = metatype.getType().getAs<MetatypeType>()) {
if (metatypeTy->getRepresentation() == MetatypeRepresentation::Thin) {
auto thickMetatypeTy = CanMetatypeType::get(metatypeTy.getInstanceType(),
MetatypeRepresentation::Thick);
metatype = SGF.B.createMetatype(E,
SILType::getPrimitiveObjectType(thickMetatypeTy));
}
}
assert(metatype.getType().castTo<AnyMetatypeType>()->getRepresentation()
== MetatypeRepresentation::Thick);
// FIXME: use some sort of init_existential_metatype instruction
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
auto upcast = SGF.B.createUpcast(E, metatype, loweredResultTy);
return RValue(SGF, E, ManagedValue::forUnmanaged(upcast));
}
namespace {
class CleanupUsedExistentialContainer : public Cleanup {
SILValue existential;
public:
CleanupUsedExistentialContainer(SILValue existential)
: existential(existential) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.createDeinitExistential(l, existential);
}
};
}
SILValue SILGenFunction::emitUnconditionalCheckedCast(SILLocation loc,
SILValue original,
Type origTy,
Type castTy,
CheckedCastKind kind) {
auto &origLowering = getTypeLowering(origTy);
auto &castLowering = getTypeLowering(castTy);
// Spill to a temporary if casting from loadable to address-only.
if (origLowering.isLoadable() && castLowering.isAddressOnly()) {
SILValue temp = emitTemporaryAllocation(loc, origLowering.getLoweredType());
B.createStore(loc, original, temp);
original = temp;
}
// Get the cast destination type at the least common denominator abstraction
// level.
SILType destTy = castLowering.getLoweredType();
if (origLowering.isAddressOnly())
destTy = destTy.getAddressType();
// Emit the cast.
SILValue result = B.createUnconditionalCheckedCast(loc, kind, original,
destTy);
// Load from the address if casting from address-only to loadable.
if (origLowering.isAddressOnly() && castLowering.isLoadable())
result = B.createLoad(loc, result);
return result;
}
SILValue
SILGenFunction::emitCheckedCastAbstractionChange(SILLocation loc,
SILValue original,
const TypeLowering &origTL,
ArrayRef<const TypeLowering *> castTLs) {
// If the original type is already address-only, we don't need to abstract
// further.
if (origTL.isAddressOnly()) {
return SILValue();
}
// If any of the cast-to types are address-only, spill to a temporary.
if (std::find_if(castTLs.begin(), castTLs.end(),
[](const TypeLowering *tl){ return tl->isAddressOnly(); })
!= castTLs.end()) {
SILValue temp = emitTemporaryAllocation(loc, origTL.getLoweredType());
B.createStore(loc, original, temp);
return temp;
}
// Otherwise, no abstraction change is needed.
return SILValue();
}
std::pair<SILBasicBlock*, SILBasicBlock*>
SILGenFunction::emitCheckedCastBranch(SILLocation loc,
SILValue original,
SILValue originalAbstracted,
const TypeLowering &origLowering,
const TypeLowering &castLowering,
CheckedCastKind kind) {
// Spill to a temporary if casting from loadable to address-only.
if (origLowering.isLoadable() && castLowering.isAddressOnly()) {
assert(originalAbstracted && "no abstracted value for cast");
original = originalAbstracted;
}
// Get the cast destination type at the least common denominator abstraction
// level.
SILType destTy = castLowering.getLoweredType();
if (origLowering.isAddressOnly())
destTy = destTy.getAddressType();
// Set up BBs for the cast.
auto success = createBasicBlock();
new (SGM.M) SILArgument(destTy, success);
auto failure = createBasicBlock();
// Emit the cast.
B.createCheckedCastBranch(loc, kind, original, destTy,
success, failure);
return {success, failure};
}
RValue RValueEmitter::
visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(E->getSubExpr());
SILBasicBlock *contBB = SGF.createBasicBlock();
// The optional injection intrinsics return indirectly regardless of
// whether the result is address-only, so go ahead and always emit
// to a temporary.
auto &resultTL = SGF.getTypeLowering(E->getType());
SILValue resultBuffer =
SGF.getBufferForExprResult(E, resultTL.getLoweredType(), C);
SILValue origVal = original.forward(SGF);
SILBasicBlock *success, *failure;
auto &origTL = SGF.getTypeLowering(E->getSubExpr()->getType());
auto castTy = E->getType()->getCanonicalType().getAnyOptionalObjectType();
auto &castTL = SGF.getTypeLowering(castTy);
SILValue origAbs = SGF.emitCheckedCastAbstractionChange(E, origVal,
origTL,
&castTL);
std::tie(success, failure) = SGF.emitCheckedCastBranch(E, origVal, origAbs,
origTL, castTL,
E->getCastKind());
// Handle the cast success case.
{
SGF.B.emitBlock(success);
SILValue castResult = success->bbarg_begin()[0];
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
// Load the BB argument if casting from address-only to loadable type.
if (castResult.getType().isAddress() && !castTL.isAddressOnly())
castResult = SGF.B.createLoad(E, castResult);
RValue castRV(SGF, E, castTy,
SGF.emitManagedRValueWithCleanup(castResult, castTL));
// Wrap it in an Optional.
SGF.emitInjectOptionalValueInto(E, { E->getSubExpr(), std::move(castRV) },
resultBuffer, resultTL);
SGF.B.createBranch(E, contBB);
}
// Handle the cast failure case.
{
SGF.B.emitBlock(failure);
// Destroy the original value.
destroyRValue(SGF, E, origVal, origTL);
SGF.emitInjectOptionalNothingInto(E, resultBuffer, resultTL);
SGF.B.createBranch(E, contBB);
}
SGF.B.emitBlock(contBB);
// Manage the optional buffer.
auto result = SGF.manageBufferForExprResult(resultBuffer, resultTL, C);
if (result.isInContext()) return RValue();
if (!resultTL.isAddressOnly()) {
auto resultValue = SGF.B.createLoad(E, result.forward(SGF));
result = SGF.emitManagedRValueWithCleanup(resultValue, resultTL);
}
return RValue(SGF, E, result);
}
RValue RValueEmitter::emitUnconditionalCheckedCast(Expr *source,
SILLocation loc,
Type destType,
CheckedCastKind castKind,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(source);
// Disable the original cleanup because the cast-to type is more specific and
// should have a more efficient cleanup.
SILValue originalVal = original.forward(SGF);
SILValue cast = SGF.emitUnconditionalCheckedCast(loc, originalVal,
source->getType(),
destType,
castKind);
// If casting from an opaque existential, we'll forward the concrete value,
// but the existential container husk still needs cleanup.
if (originalVal.getType().isExistentialType()
&& !originalVal.getType().isClassExistentialType())
SGF.Cleanups.pushCleanup<CleanupUsedExistentialContainer>(originalVal);
return RValue(SGF, loc, destType->getCanonicalType(),
SGF.emitManagedRValueWithCleanup(cast));
}
RValue RValueEmitter::visitIsaExpr(IsaExpr *E, SGFContext C) {
// Cast the value using a conditional cast.
ManagedValue original = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto &origTL = SGF.getTypeLowering(E->getSubExpr()->getType());
auto &castTL = SGF.getTypeLowering(E->getCastTypeLoc().getType());
SILValue origAbs = SGF.emitCheckedCastAbstractionChange(E,original.getValue(),
origTL,
&castTL);
SILBasicBlock *success, *failure;
std::tie(success, failure)
= SGF.emitCheckedCastBranch(E, original.getValue(), origAbs,
origTL, castTL,
E->getCastKind());
// Join the branches into an i1 value representing the success of the cast.
auto contBB = SGF.createBasicBlock();
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto isa = new (SGF.SGM.M) SILArgument(i1Ty, contBB);
SGF.B.emitBlock(success);
SILValue yes = SGF.B.createIntegerLiteral(E, i1Ty, 1);
SGF.B.createBranch(E, contBB, yes);
SGF.B.emitBlock(failure);
SILValue no = SGF.B.createIntegerLiteral(E, i1Ty, 0);
SGF.B.createBranch(E, contBB, no);
SGF.B.emitBlock(contBB);
// Call the _getBool library intrinsic.
ASTContext &ctx = SGF.SGM.M.getASTContext();
auto result =
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
ManagedValue::forUnmanaged(isa),
C);
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitCoerceExpr(CoerceExpr *E, SGFContext C) {
return visit(E->getSubExpr(), C);
}
static ManagedValue emitVarargs(SILGenFunction &gen,
SILLocation loc,
Type baseTy,
ArrayRef<ManagedValue> elements,
Expr *VarargsInjectionFn) {
// Reabstract the base type against the array element type.
Type arrayTy = VarargsInjectionFn->getType()->castTo<FunctionType>()
->getResult();
AbstractionPattern baseAbstraction(
arrayTy->getNominalOrBoundGenericNominal()
->getGenericParams()->getPrimaryArchetypes()[0]);
auto baseCanTy = baseTy->getCanonicalType();
auto &baseTL = gen.getTypeLowering(baseAbstraction, baseCanTy);
SILValue numEltsVal = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.F.getASTContext()),
elements.size());
AllocArrayInst *allocArray = gen.B.createAllocArray(loc,
baseTL.getLoweredType(),
numEltsVal);
// The first result is the owning NativeObject for the array.
ManagedValue objectPtr
= gen.emitManagedRValueWithCleanup(SILValue(allocArray, 0));
// The second result is a RawPointer to the base address of the array.
SILValue basePtr(allocArray, 1);
for (size_t i = 0, size = elements.size(); i < size; ++i) {
SILValue eltPtr = basePtr;
if (i != 0) {
SILValue index = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.F.getASTContext()), i);
eltPtr = gen.B.createIndexAddr(loc, basePtr, index);
}
ManagedValue v = elements[i];
v = gen.emitSubstToOrigValue(loc, v, baseAbstraction, baseCanTy);
v.forwardInto(gen, loc, eltPtr);
}
return gen.emitArrayInjectionCall(objectPtr, basePtr,
numEltsVal, VarargsInjectionFn, loc);
}
RValue RValueEmitter::visitTupleExpr(TupleExpr *E, SGFContext C) {
auto type = cast<TupleType>(E->getType()->getCanonicalType());
// If we have an Initialization, emit the tuple elements into its elements.
if (Initialization *I = C.getEmitInto()) {
if (I->canSplitIntoSubelementAddresses()) {
SmallVector<InitializationPtr, 4> subInitializationBuf;
auto subInitializations =
I->getSubInitializationsForTuple(SGF, type, subInitializationBuf,
RegularLocation(E));
assert(subInitializations.size() == E->getElements().size() &&
"initialization for tuple has wrong number of elements");
for (unsigned i = 0, size = subInitializations.size(); i < size; ++i) {
SGF.emitExprInto(E->getElements()[i], subInitializations[i].get());
}
return RValue();
}
}
RValue result(type);
for (Expr *elt : E->getElements())
result.addElement(SGF.emitRValue(elt));
return result;
}
std::tuple<ManagedValue, SILType, ArrayRef<Substitution>>
SILGenFunction::emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
ArrayRef<Substitution> subs) {
SILValue methodValue = B.createFunctionRef(loc,
SGM.getFunction(methodConstant, NotForDefinition));
SILType methodTy = methodValue.getType();
if (!subs.empty()) {
// Specialize the generic method.
methodTy = getLoweredLoadableType(
methodTy.castTo<SILFunctionType>()
->substInterfaceGenericArgs(SGM.M, SGM.SwiftModule, subs));
}
return std::make_tuple(ManagedValue::forUnmanaged(methodValue),
methodTy, subs);
}
RValue RValueEmitter::visitMemberRefExpr(MemberRefExpr *E, SGFContext C) {
// Don't need to write back to members loaded as rvalues.
DisableWritebackScope scope(SGF);
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
if (isa<TypeDecl>(E->getMember().getDecl())) {
// Emit the metatype for the associated type.
visit(E->getBase());
SILValue MT =
SGF.B.createMetatype(E, SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(MT));
}
auto FieldDecl = cast<VarDecl>(E->getMember().getDecl());
// Evaluate the base of the member reference. Since emitRValueForPropertyLoad
// works with +0 bases correctly, we ask for them to come back.
ManagedValue base = SGF.emitRValueAsSingleValue(E->getBase(),
SGFContext::AllowPlusZero);
ManagedValue res = SGF.emitRValueForPropertyLoad(E, base, E->isSuper(),
FieldDecl,
E->getMember().getSubstitutions(),
E->isDirectPropertyAccess(),
E->getType(), C);
return RValue(SGF, E, res);
}
RValue RValueEmitter::visitDynamicMemberRefExpr(DynamicMemberRefExpr *E,
SGFContext C) {
return SGF.emitDynamicMemberRefExpr(E, C);
}
RValue RValueEmitter::
visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E, SGFContext C) {
visit(E->getLHS());
return visit(E->getRHS());
}
RValue RValueEmitter::visitSubscriptExpr(SubscriptExpr *E, SGFContext C) {
// rvalue subscript expressions are produced for get-only subscript
// operations. Emit a call to the getter.
auto subscript = cast<SubscriptDecl>(E->getDecl().getDecl());
// If this is an existential or archetype subscript, 'self' is passed at +0.
SGFContext SubContext;
if (subscript->getGetter()->getImplicitSelfDecl()->
getType()->getInOutObjectType()->is<ArchetypeType>())
SubContext = SGFContext::AllowPlusZero;
// Emit the base.
ManagedValue base = SGF.emitRValueAsSingleValue(E->getBase(), SubContext);
RValueSource baseRV =
SGF.prepareAccessorBaseArg(E, base, subscript->getGetter());
// Emit the indices.
RValue subscriptRV = SGF.emitRValue(E->getIndex());
ManagedValue MV =
SGF.emitGetAccessor(E, subscript, E->getDecl().getSubstitutions(),
std::move(baseRV), E->isSuper(),
std::move(subscriptRV), C);
return RValue(SGF, E, MV);
}
RValue RValueEmitter::visitDynamicSubscriptExpr(
DynamicSubscriptExpr *E, SGFContext C) {
return SGF.emitDynamicSubscriptExpr(E, C);
}
RValue RValueEmitter::visitModuleExpr(ModuleExpr *E, SGFContext C) {
// Produce an undef value. The module value should never actually be used.
SILValue module = SILUndef::get(SGF.getLoweredLoadableType(E->getType()),
SGF.SGM.M);
return RValue(SGF, E, ManagedValue::forUnmanaged(module));
}
RValue RValueEmitter::visitTupleElementExpr(TupleElementExpr *E,
SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If our client is ok with a +0 result, then we can compute our base as +0
// and return its element that way. It would not be ok to reuse the Context's
// address buffer though, since our base value will a different type than the
// element.
SGFContext SubContext;
if (C.isPlusZeroOk())
SubContext = SGFContext::AllowPlusZero;
return visit(E->getBase(), SubContext).extractElement(E->getFieldNumber());
}
RValue RValueEmitter::visitTupleShuffleExpr(TupleShuffleExpr *E,
SGFContext C) {
/* TODO:
// If we're emitting into an initialization, we can try shuffling the
// elements of the initialization.
if (Initialization *I = C.getEmitInto()) {
emitTupleShuffleExprInto(*this, E, I);
return RValue();
}
*/
// Emit the sub-expression tuple and destructure it into elements.
SmallVector<RValue, 4> elements;
visit(E->getSubExpr()).extractElements(elements);
// Prepare a new tuple to hold the shuffled result.
RValue result(E->getType()->getCanonicalType());
auto outerFields = E->getType()->castTo<TupleType>()->getFields();
auto shuffleIndexIterator = E->getElementMapping().begin();
auto shuffleIndexEnd = E->getElementMapping().end();
unsigned callerDefaultArgIndex = 0;
for (auto &field : outerFields) {
assert(shuffleIndexIterator != shuffleIndexEnd &&
"ran out of shuffle indexes before running out of fields?!");
int shuffleIndex = *shuffleIndexIterator++;
// If the shuffle index is DefaultInitialize, we're supposed to use the
// default value.
if (shuffleIndex == TupleShuffleExpr::DefaultInitialize) {
unsigned destIndex
= shuffleIndexIterator - E->getElementMapping().begin() - 1;
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(E->getDefaultArgsOwner(),
destIndex);
auto fnRef = SGF.emitFunctionRef(E, generator);
auto resultType = field.getType()->getCanonicalType();
auto apply = SGF.emitMonomorphicApply(E, fnRef, {}, resultType,
generator.isTransparent());
result.addElement(SGF, apply, resultType, E);
continue;
}
// If the shuffle index is CallerDefaultInitialize, we're supposed to
// use the caller-provided default value. This is used only in special
// cases, e.g., __FILE__, __LINE__, and __COLUMN__.
if (shuffleIndex == TupleShuffleExpr::CallerDefaultInitialize) {
auto arg = E->getCallerDefaultArgs()[callerDefaultArgIndex++];
result.addElement(visit(arg));
continue;
}
// If the shuffle index is FirstVariadic, it is the beginning of the list of
// varargs inputs. Save this case for last.
if (shuffleIndex != TupleShuffleExpr::FirstVariadic) {
// Map from a different tuple element.
result.addElement(std::move(elements[shuffleIndex]));
continue;
}
assert(field.isVararg() && "Cannot initialize nonvariadic element");
// Okay, we have a varargs tuple element. All the remaining elements feed
// into the varargs portion of this, which is then constructed into an Array
// through an informal protocol captured by the InjectionFn in the
// TupleShuffleExpr.
assert(E->getVarargsInjectionFunction() &&
"no injection function for varargs tuple?!");
SmallVector<ManagedValue, 4> variadicValues;
while (shuffleIndexIterator != shuffleIndexEnd) {
unsigned sourceField = *shuffleIndexIterator++;
variadicValues.push_back(
std::move(elements[sourceField]).getAsSingleValue(SGF, E));
}
ManagedValue varargs = emitVarargs(SGF, E, field.getVarargBaseTy(),
variadicValues,
E->getVarargsInjectionFunction());
result.addElement(RValue(SGF, E, field.getType()->getCanonicalType(),
varargs));
break;
}
return result;
}
static void emitScalarToTupleExprInto(SILGenFunction &gen,
ScalarToTupleExpr *E,
Initialization *I) {
auto tupleType = cast<TupleType>(E->getType()->getCanonicalType());
auto outerFields = tupleType->getFields();
unsigned scalarField = E->getScalarField();
bool isScalarFieldVariadic = outerFields[scalarField].isVararg();
// Decompose the initialization.
SmallVector<InitializationPtr, 4> subInitializationBuf;
auto subInitializations = I->getSubInitializationsForTuple(gen, tupleType,
subInitializationBuf,
RegularLocation(E));
assert(subInitializations.size() == outerFields.size() &&
"initialization size does not match tuple size?!");
// If the scalar field isn't variadic, emit it into the destination field of
// the tuple.
Initialization *scalarInit = subInitializations[E->getScalarField()].get();
if (!isScalarFieldVariadic) {
gen.emitExprInto(E->getSubExpr(), scalarInit);
} else {
// Otherwise, create the vararg and store it to the vararg field.
ManagedValue scalar = gen.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue varargs = emitVarargs(gen, E, E->getSubExpr()->getType(),
scalar,E->getVarargsInjectionFunction());
varargs.forwardInto(gen, E, scalarInit->getAddress());
scalarInit->finishInitialization(gen);
}
// Emit the non-scalar fields.
for (unsigned i = 0, e = outerFields.size(); i != e; ++i) {
if (i == E->getScalarField())
continue;
// Fill the vararg field with an empty array.
if (outerFields[i].isVararg()) {
assert(i == e - 1 && "vararg isn't last?!");
ManagedValue varargs = emitVarargs(gen, E,
outerFields[i].getVarargBaseTy(),
{}, E->getVarargsInjectionFunction());
varargs.forwardInto(gen, E, subInitializations[i]->getAddress());
subInitializations[i]->finishInitialization(gen);
continue;
}
auto &element = E->getElements()[i];
// If this element comes from a default argument generator, emit a call to
// that generator in-place.
assert(outerFields[i].hasInit() &&
"no default initializer in non-scalar field of scalar-to-tuple?!");
if (auto defaultArgOwner = element.dyn_cast<ValueDecl *>()) {
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(defaultArgOwner, i);
auto fnRef = gen.emitFunctionRef(E, generator);
auto resultType = tupleType.getElementType(i);
auto apply = gen.emitMonomorphicApply(E, fnRef, {}, resultType,
generator.isTransparent());
apply.forwardInto(gen, E,
subInitializations[i].get()->getAddressOrNull());
subInitializations[i]->finishInitialization(gen);
continue;
}
// We have an caller-side default argument. Emit it in-place.
Expr *defArg = element.get<Expr *>();
gen.emitExprInto(defArg, subInitializations[i].get());
}
}
RValue RValueEmitter::visitScalarToTupleExpr(ScalarToTupleExpr *E,
SGFContext C) {
// If we're emitting into an Initialization, we can decompose the
// initialization.
if (Initialization *I = C.getEmitInto()) {
if (I->canSplitIntoSubelementAddresses()) {
emitScalarToTupleExprInto(SGF, E, I);
return RValue();
}
}
// Emit the scalar member.
RValue scalar = SGF.emitRValue(E->getSubExpr());
// Prepare a tuple rvalue to house the result.
RValue result(E->getType()->getCanonicalType());
// Create a tuple from the scalar along with any default values or varargs.
auto outerFields = E->getType()->castTo<TupleType>()->getFields();
for (unsigned i = 0, e = outerFields.size(); i != e; ++i) {
// Handle the variadic argument. If we didn't emit the scalar field yet,
// it goes into the variadic array; otherwise, the variadic array is empty.
if (outerFields[i].isVararg()) {
assert(i == e - 1 && "vararg isn't last?!");
ManagedValue varargs;
if (!scalar.isUsed())
varargs = emitVarargs(SGF, E, outerFields[i].getVarargBaseTy(),
std::move(scalar).getAsSingleValue(SGF, E),
E->getVarargsInjectionFunction());
else
varargs = emitVarargs(SGF, E, outerFields[i].getVarargBaseTy(),
{}, E->getVarargsInjectionFunction());
result.addElement(RValue(SGF, E,
outerFields[i].getType()->getCanonicalType(),
varargs));
break;
}
auto &element = E->getElements()[i];
// A null element indicates that this is the position of the scalar. Add
// the scalar here.
if (element.isNull()) {
result.addElement(std::move(scalar));
continue;
}
// If this element comes from a default argument generator, emit a call to
// that generator.
assert(outerFields[i].hasInit() &&
"no default initializer in non-scalar field of scalar-to-tuple?!");
if (auto defaultArgOwner = element.dyn_cast<ValueDecl *>()) {
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(defaultArgOwner, i);
auto fnRef = SGF.emitFunctionRef(E, generator);
auto resultType = outerFields[i].getType()->getCanonicalType();
auto apply = SGF.emitMonomorphicApply(E, fnRef, {}, resultType,
generator.isTransparent());
result.addElement(SGF, apply, resultType, E);
continue;
}
// We have an caller-side default argument. Emit it.
Expr *defArg = element.get<Expr *>();
result.addElement(visit(defArg));
}
return result;
}
RValue RValueEmitter::visitNewArrayExpr(NewArrayExpr *E, SGFContext C) {
SILValue NumElements = visit(E->getBounds()[0].Value)
.getAsSingleValue(SGF, E->getBounds()[0].Value)
.getValue();
// Allocate the array.
AllocArrayInst *AllocArray = SGF.B.createAllocArray(E,
SGF.getLoweredType(E->getElementType()),
NumElements);
ManagedValue ObjectPtr
= SGF.emitManagedRValueWithCleanup(SILValue(AllocArray, 0));
SILValue BasePtr(AllocArray, 1);
// FIXME: We need to initialize the elements of the array that are now
// allocated.
// Finally, build and return an Array instance using the object
// header/base/count.
return RValue(SGF, E,
SGF.emitArrayInjectionCall(ObjectPtr, BasePtr, NumElements,
E->getInjectionFunction(), E));
}
SILValue SILGenFunction::emitMetatypeOfValue(SILLocation loc, SILValue base) {
CanType baseTy = base.getType().getSwiftRValueType();
// For class, archetype, and protocol types, look up the dynamic metatype.
if (baseTy.isAnyExistentialType()) {
SILType metaTy = getLoweredLoadableType(CanExistentialMetatypeType::get(baseTy));
return B.createExistentialMetatype(loc, metaTy, base);
}
SILType metaTy = getLoweredLoadableType(CanMetatypeType::get(baseTy));
if (baseTy.getClassOrBoundGenericClass() || isa<ArchetypeType>(baseTy))
return B.createValueMetatype(loc, metaTy, base);
// Otherwise, ignore the base and return the static metatype.
return B.createMetatype(loc, metaTy);
}
RValue RValueEmitter::visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C) {
// Evaluate the base if present.
SILValue metatype;
auto *base = E->getBase();
// We can get the metatype for an existential or archetype without
// materializing it as a +1 value.
SGFContext Ctx;
if (base->getType()->isAnyExistentialType() ||
base->getType()->is<ArchetypeType>())
Ctx = SGFContext::AllowPlusZero;
SILValue baseVal = SGF.emitRValueAsSingleValue(base, Ctx).getValue();
metatype = SGF.emitMetatypeOfValue(E, baseVal);
return RValue(SGF, E, ManagedValue::forUnmanaged(metatype));
}
ManagedValue
SILGenFunction::emitClosureValue(SILLocation loc, SILDeclRef constant,
ArrayRef<Substitution> forwardSubs,
AnyFunctionRef TheClosure) {
// FIXME: Stash the capture args somewhere and curry them on demand rather
// than here.
assert(((constant.uncurryLevel == 1 &&
TheClosure.getCaptureInfo().hasLocalCaptures()) ||
(constant.uncurryLevel == 0 &&
!TheClosure.getCaptureInfo().hasLocalCaptures())) &&
"curried local functions not yet supported");
auto constantInfo = getConstantInfo(constant);
SILValue functionRef = emitGlobalFunctionRef(loc, constant, constantInfo);
SILType functionTy = functionRef.getType();
auto expectedType =
cast<FunctionType>(TheClosure.getType()->getCanonicalType());
// Forward substitutions from the outer scope.
auto pft = constantInfo.SILFnType;
bool wasSpecialized = false;
if (pft->isPolymorphic() && !forwardSubs.empty()) {
auto specialized = pft->substInterfaceGenericArgs(F.getModule(),
F.getModule().getSwiftModule(),
forwardSubs);
functionTy = SILType::getPrimitiveObjectType(specialized);
wasSpecialized = true;
}
if (!TheClosure.getCaptureInfo().hasLocalCaptures() && !wasSpecialized) {
auto result = ManagedValue::forUnmanaged(functionRef);
return emitGeneralizedFunctionValue(loc, result,
AbstractionPattern(expectedType), expectedType);
}
SmallVector<CaptureInfo::LocalCaptureTy, 4> captures;
TheClosure.getLocalCaptures(captures);
SmallVector<SILValue, 4> capturedArgs;
for (auto capture : captures) {
auto *vd = capture.getPointer();
switch (getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
// let declarations.
auto Entry = VarLocs[vd];
#if 0
assert(Entry.isConstant() && vd->isLet() &&
"only let decls captured by constant");
SILValue Val = Entry.getConstant();
// FIXME: This should work for both paths. partial_apply hasn't been
// taught how to work with @in address only values yet.
auto MV = ManagedValue::forUnmanaged(Entry.getConstant())
.copyUnmanaged(*this, loc);
MV.forward(*this);
MV = ManagedValue::forUnmanaged(MV.getValue());
// Use an RValue to explode Val if it is a tuple.
RValue RV(*this, loc, capture->getType()->getCanonicalType(), MV);
std::move(RV).forwardAll(*this, capturedArgs);
break;
#endif
// Non-address-only constants are passed at +1.
auto &tl = getTypeLowering(vd->getType());
if (tl.isLoadable()) {
SILValue Val;
if (Entry.isConstant()) {
assert(!Entry.getConstant().getType().isAddress());
Val = Entry.getConstant();
B.emitRetainValueOperation(loc, Val);
} else {
// If we have a mutable binding for a 'let', such as 'self' in an
// 'init' method, load it.
Val = emitLoad(loc, Entry.getAddress(), tl, SGFContext(), IsNotTake)
.forward(*this);
}
// Use an RValue to explode Val if it is a tuple.
RValue RV(*this, loc, vd->getType()->getCanonicalType(),
ManagedValue::forUnmanaged(Val));
std::move(RV).forwardAll(*this, capturedArgs);
break;
}
SILValue Val =
Entry.isConstant() ? Entry.getConstant() : Entry.getAddress();
assert(Val.getType().isAddress());
// Address only values are passed by box. This isn't great, in that a
// variable captured by multiple closures will be boxed for each one,
AllocBoxInst *allocBox = B.createAllocBox(loc,
Val.getType().getObjectType());
auto boxAddress = SILValue(allocBox, 1);
B.createCopyAddr(loc, Val, boxAddress, IsNotTake, IsInitialization);
capturedArgs.push_back(SILValue(allocBox, 0));
capturedArgs.push_back(boxAddress);
break;
}
case CaptureKind::Box: {
// LValues are captured as both the box owning the value and the
// address of the value.
assert(VarLocs.count(vd) && "no location for captured var!");
VarLoc vl = VarLocs[vd];
assert(vl.box && "no box for captured var!");
assert(vl.isAddress() && vl.getAddress() &&
"no address for captured var!");
B.createStrongRetain(loc, vl.box);
capturedArgs.push_back(vl.box);
capturedArgs.push_back(vl.getAddress());
break;
}
case CaptureKind::LocalFunction: {
// SILValue is a constant such as a local func. Pass on the reference.
ManagedValue v = emitRValueForDecl(loc, vd, vd->getType());
capturedArgs.push_back(v.forward(*this));
break;
}
case CaptureKind::GetterSetter: {
// Pass the setter and getter closure references on.
auto *Setter = cast<AbstractStorageDecl>(vd)->getSetter();
ManagedValue v = emitFunctionRef(loc, SILDeclRef(Setter,
SILDeclRef::Kind::Func));
capturedArgs.push_back(v.forward(*this));
SWIFT_FALLTHROUGH;
}
case CaptureKind::Getter: {
// Pass the getter closure reference on.
auto *Getter = cast<AbstractStorageDecl>(vd)->getGetter();
ManagedValue v = emitFunctionRef(loc, SILDeclRef(Getter,
SILDeclRef::Kind::Func));
capturedArgs.push_back(v.forward(*this));
break;
}
}
}
SILType closureTy =
SILBuilder::getPartialApplyResultType(functionRef.getType(),
capturedArgs.size(), SGM.M,
forwardSubs);
auto toClosure =
B.createPartialApply(loc, functionRef, functionTy,
forwardSubs, capturedArgs, closureTy);
auto result = emitManagedRValueWithCleanup(toClosure);
return emitGeneralizedFunctionValue(loc, result,
AbstractionPattern(expectedType),
expectedType);
}
RValue RValueEmitter::visitAbstractClosureExpr(AbstractClosureExpr *e,
SGFContext C) {
// Generate the closure function.
SGF.SGM.emitClosure(e);
// Generate the closure value (if any) for the closure expr's function
// reference.
return RValue(SGF, e, SGF.emitClosureValue(e, SILDeclRef(e),
SGF.getForwardingSubstitutions(), e));
}
// Get the __FUNCTION__ name for a declaration.
static DeclName getMagicFunctionName(DeclContext *dc) {
// For closures, use the parent name.
if (auto closure = dyn_cast<AbstractClosureExpr>(dc)) {
return getMagicFunctionName(closure->getParent());
}
if (auto absFunc = dyn_cast<AbstractFunctionDecl>(dc)) {
// If this is an accessor, use the name of the storage.
if (auto func = dyn_cast<FuncDecl>(absFunc)) {
if (auto storage = func->getAccessorStorageDecl())
return storage->getFullName();
}
return absFunc->getFullName();
}
if (auto init = dyn_cast<Initializer>(dc)) {
return getMagicFunctionName(init->getParent());
}
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
return nominal->getName();
}
if (auto tl = dyn_cast<TopLevelCodeDecl>(dc)) {
return tl->getModuleContext()->Name;
}
if (auto fu = dyn_cast<FileUnit>(dc)) {
return fu->getParentModule()->Name;
}
if (auto m = dyn_cast<Module>(dc)) {
return m->Name;
}
llvm_unreachable("unexpected __FUNCTION__ context");
}
static DeclName getMagicFunctionName(SILDeclRef ref) {
switch (ref.kind) {
case SILDeclRef::Kind::Func:
if (auto closure = ref.getAbstractClosureExpr())
return getMagicFunctionName(closure);
return getMagicFunctionName(cast<FuncDecl>(ref.getDecl()));
case SILDeclRef::Kind::Initializer:
case SILDeclRef::Kind::Allocator:
return getMagicFunctionName(cast<ConstructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::Deallocator:
case SILDeclRef::Kind::Destroyer:
return getMagicFunctionName(cast<DestructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::GlobalAccessor:
return getMagicFunctionName(cast<VarDecl>(ref.getDecl())->getDeclContext());
case SILDeclRef::Kind::DefaultArgGenerator:
return getMagicFunctionName(cast<AbstractFunctionDecl>(ref.getDecl()));
case SILDeclRef::Kind::IVarInitializer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::IVarDestroyer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::EnumElement:
return getMagicFunctionName(cast<EnumElementDecl>(ref.getDecl())
->getDeclContext());
}
}
void SILGenFunction::emitFunction(FuncDecl *fd) {
MagicFunctionName = getMagicFunctionName(fd);
Type resultTy = fd->getResultType();
emitProlog(fd, fd->getBodyParamPatterns(), resultTy);
prepareEpilog(resultTy, CleanupLocation(fd));
visit(fd->getBody());
emitEpilog(fd);
}
void SILGenFunction::emitClosure(AbstractClosureExpr *ace) {
MagicFunctionName = getMagicFunctionName(ace);
emitProlog(ace, ace->getParams(), ace->getResultType());
prepareEpilog(ace->getResultType(), CleanupLocation(ace));
if (auto *ce = dyn_cast<ClosureExpr>(ace))
visit(ce->getBody());
else {
auto *autoclosure = cast<AutoClosureExpr>(ace);
// Closure expressions implicitly return the result of their body
// expression.
emitReturnExpr(ImplicitReturnLocation(ace),
autoclosure->getSingleExpressionBody());
}
emitEpilog(ace);
}
std::pair<Optional<SILValue>, SILLocation>
SILGenFunction::emitEpilogBB(SILLocation TopLevel) {
assert(ReturnDest.getBlock() && "no epilog bb prepared?!");
SILBasicBlock *epilogBB = ReturnDest.getBlock();
SILLocation ImplicitReturnFromTopLevel =
ImplicitReturnLocation::getImplicitReturnLoc(TopLevel);
SILValue returnValue;
Optional<SILLocation> returnLoc = Nothing;
// If the current BB isn't terminated, and we require a return, then we
// are not allowed to fall off the end of the function and can't reach here.
if (NeedsReturn && B.hasValidInsertionPoint()) {
B.createUnreachable(ImplicitReturnFromTopLevel);
}
if (epilogBB->pred_empty()) {
bool hadArg = !epilogBB->bbarg_empty();
// If the epilog was not branched to at all, kill the BB and
// just emit the epilog into the current BB.
epilogBB->eraseFromParent();
// If the current bb is terminated then the epilog is just unreachable.
if (!B.hasValidInsertionPoint())
return { Nothing, TopLevel };
// We emit the epilog at the current insertion point.
assert(!hadArg && "NeedsReturn is false but epilog had argument?!");
(void)hadArg;
returnLoc = ImplicitReturnFromTopLevel;
} else if (std::next(epilogBB->pred_begin()) == epilogBB->pred_end()
&& !B.hasValidInsertionPoint()) {
// If the epilog has a single predecessor and there's no current insertion
// point to fall through from, then we can weld the epilog to that
// predecessor BB.
bool needsArg = false;
if (!epilogBB->bbarg_empty()) {
assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
needsArg = true;
}
epilogBB->eraseFromParent();
// Steal the branch argument as the return value if present.
SILBasicBlock *pred = *epilogBB->pred_begin();
BranchInst *predBranch = cast<BranchInst>(pred->getTerminator());
assert(predBranch->getArgs().size() == (needsArg ? 1 : 0)
&& "epilog predecessor arguments does not match block params");
if (needsArg)
returnValue = predBranch->getArgs()[0];
// If we are optimizing, we should use the return location from the single,
// previously processed, return statement if any.
if (predBranch->getLoc().is<ReturnLocation>()) {
returnLoc = predBranch->getLoc();
} else {
returnLoc = ImplicitReturnFromTopLevel;
}
// Kill the branch to the now-dead epilog BB.
pred->getInstList().erase(predBranch);
// Emit the epilog into its former predecessor.
B.setInsertionPoint(pred);
} else {
// Emit the epilog into the epilog bb. Its argument is the return value.
if (!epilogBB->bbarg_empty()) {
assert(epilogBB->bbarg_size() == 1 && "epilog should take 0 or 1 args");
returnValue = epilogBB->bbarg_begin()[0];
}
// If we are falling through from the current block, the return is implicit.
B.emitBlock(epilogBB, ImplicitReturnFromTopLevel);
}
// Emit top-level cleanups into the epilog block.
assert(!Cleanups.hasAnyActiveCleanups(getCleanupsDepth(),
ReturnDest.getDepth())
&& "emitting epilog in wrong scope");
auto cleanupLoc = CleanupLocation::getCleanupLocation(TopLevel);
Cleanups.emitCleanupsForReturn(cleanupLoc);
// If the return location is known to be that of an already
// processed return, use it. (This will get triggered when the
// epilog logic is simplified.)
//
// Otherwise make the ret instruction part of the cleanups.
if (!returnLoc) returnLoc = cleanupLoc;
return { returnValue, *returnLoc };
}
void SILGenFunction::emitEpilog(SILLocation TopLevel, bool AutoGen) {
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(TopLevel);
// Construct the appropriate SIL Location for the return instruction.
if (AutoGen)
TopLevel.markAutoGenerated();
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(TopLevel);
// If the epilog is unreachable, we're done.
if (!maybeReturnValue)
return;
// Otherwise, return the return value, if any.
SILValue returnValue = *maybeReturnValue;
// Return () if no return value was given.
if (!returnValue)
returnValue = emitEmptyTuple(CleanupLocation::getCleanupLocation(TopLevel));
B.createReturn(returnLoc, returnValue)
->setDebugScope(F.getDebugScope());
}
void SILGenFunction::emitDestroyingDestructor(DestructorDecl *dd) {
MagicFunctionName = getMagicFunctionName(dd);
RegularLocation Loc(dd);
if (dd->isImplicit())
Loc.markAutoGenerated();
auto cd = cast<ClassDecl>(dd->getDeclContext());
SILValue selfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Create a basic block to jump to for the implicit destruction behavior
// of releasing the elements and calling the superclass destructor.
// We won't actually emit the block until we finish with the destructor body.
prepareEpilog(Type(), CleanupLocation::getCleanupLocation(Loc));
// Emit the destructor body.
visit(dd->getBody());
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(Loc);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(Loc);
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation::getCleanupLocation(Loc);
// If we have a superclass, invoke its destructor.
SILValue resultSelfValue;
SILType objectPtrTy = SILType::getNativeObjectType(F.getASTContext());
if (cd->hasSuperclass()) {
Type superclassTy
= ArchetypeBuilder::mapTypeIntoContext(dd, cd->getSuperclass());
ClassDecl *superclass = superclassTy->getClassOrBoundGenericClass();
auto superclassDtorDecl = superclass->getDestructor();
SILDeclRef dtorConstant =
SILDeclRef(superclassDtorDecl, SILDeclRef::Kind::Destroyer);
SILType baseSILTy = getLoweredLoadableType(superclassTy);
SILValue baseSelf = B.createUpcast(Loc, selfValue, baseSILTy);
ManagedValue dtorValue;
SILType dtorTy;
ArrayRef<Substitution> subs
= superclassTy->gatherAllSubstitutions(SGM.M.getSwiftModule(), nullptr);
std::tie(dtorValue, dtorTy, subs)
= emitSiblingMethodRef(cleanupLoc, baseSelf, dtorConstant, subs);
resultSelfValue = B.createApply(cleanupLoc, dtorValue.forward(*this),
dtorTy, objectPtrTy, subs, baseSelf);
} else {
resultSelfValue = B.createUncheckedRefCast(cleanupLoc, selfValue,
objectPtrTy);
}
// Release our members.
emitClassMemberDestruction(selfValue, cd, Loc, cleanupLoc);
B.createReturn(returnLoc, resultSelfValue);
}
void SILGenFunction::emitDeallocatingDestructor(DestructorDecl *dd) {
// The deallocating destructor is always auto-generated.
RegularLocation loc(dd);
loc.markAutoGenerated();
// Emit the prolog.
auto cd = cast<ClassDecl>(dd->getDeclContext());
SILValue selfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Form a reference to the destroying destructor.
SILDeclRef dtorConstant(dd, SILDeclRef::Kind::Destroyer);
auto classTy = cd->getDeclaredTypeInContext();
ManagedValue dtorValue;
SILType dtorTy;
ArrayRef<Substitution> subs
= classTy->gatherAllSubstitutions(SGM.M.getSwiftModule(), nullptr);
std::tie(dtorValue, dtorTy, subs)
= emitSiblingMethodRef(loc, selfValue, dtorConstant, subs);
// Call the destroying destructor.
SILType objectPtrTy = SILType::getNativeObjectType(F.getASTContext());
selfValue = B.createApply(loc, dtorValue.forward(*this),
dtorTy, objectPtrTy, subs, selfValue);
// Deallocate the object.
selfValue = B.createUncheckedRefCast(loc, selfValue,
getLoweredType(classTy));
B.createDeallocRef(loc, selfValue);
// Return.
B.createReturn(loc, emitEmptyTuple(loc));
}
static SILValue emitConstructorMetatypeArg(SILGenFunction &gen,
ValueDecl *ctor) {
// In addition to the declared arguments, the constructor implicitly takes
// the metatype as its first argument, like a static function.
Type metatype = ctor->getType()->castTo<AnyFunctionType>()->getInput();
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ true, SourceLoc(),
AC.getIdentifier("$metatype"), SourceLoc(),
AC.getIdentifier("$metatype"), metatype,
ctor->getDeclContext());
return new (gen.F.getModule()) SILArgument(gen.getLoweredType(metatype),
gen.F.begin(), VD);
}
static RValue emitImplicitValueConstructorArg(SILGenFunction &gen,
SILLocation loc,
CanType ty,
DeclContext *DC) {
// Restructure tuple arguments.
if (CanTupleType tupleTy = dyn_cast<TupleType>(ty)) {
RValue tuple(ty);
for (auto fieldType : tupleTy.getElementTypes())
tuple.addElement(emitImplicitValueConstructorArg(gen, loc, fieldType, DC));
return tuple;
} else {
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ true, SourceLoc(),
AC.getIdentifier("$implicit_value"),
SourceLoc(),
AC.getIdentifier("$implicit_value"), ty, DC);
SILValue arg = new (gen.F.getModule()) SILArgument(gen.getLoweredType(ty),
gen.F.begin(), VD);
return RValue(gen, loc, ty, ManagedValue::forUnmanaged(arg));
}
}
namespace {
class ImplicitValueInitialization : public SingleBufferInitialization {
SILValue slot;
public:
ImplicitValueInitialization(SILValue slot) : slot(slot) {}
SILValue getAddressOrNull() const override {
return slot;
}
};
}
static void emitImplicitValueConstructor(SILGenFunction &gen,
ConstructorDecl *ctor) {
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
// FIXME: Handle 'self' along with the other arguments.
auto *TP = cast<TuplePattern>(ctor->getBodyParamPatterns()[1]);
auto selfTyCan = ctor->getImplicitSelfDecl()->getType()->getInOutObjectType();
SILType selfTy = gen.getLoweredType(selfTyCan);
// Emit the indirect return argument, if any.
SILValue resultSlot;
if (selfTy.isAddressOnly(gen.SGM.M)) {
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"), selfTyCan,
ctor);
resultSlot = new (gen.F.getModule()) SILArgument(selfTy, gen.F.begin(), VD);
}
// Emit the elementwise arguments.
SmallVector<RValue, 4> elements;
for (size_t i = 0, size = TP->getFields().size(); i < size; ++i) {
auto *P = cast<TypedPattern>(TP->getFields()[i].getPattern());
elements.push_back(
emitImplicitValueConstructorArg(gen, Loc,
P->getType()->getCanonicalType(), ctor));
}
emitConstructorMetatypeArg(gen, ctor);
auto *decl = selfTy.getStructOrBoundGenericStruct();
assert(decl && "not a struct?!");
// If we have an indirect return slot, initialize it in-place.
if (resultSlot) {
auto elti = elements.begin(), eltEnd = elements.end();
for (VarDecl *field : decl->getStoredProperties()) {
assert(elti != eltEnd && "number of args does not match number of fields");
(void)eltEnd;
auto fieldTy = selfTy.getFieldType(field, gen.SGM.M);
auto &fieldTL = gen.getTypeLowering(fieldTy);
SILValue slot = gen.B.createStructElementAddr(Loc, resultSlot, field,
fieldTL.getLoweredType().getAddressType());
InitializationPtr init(new ImplicitValueInitialization(slot));
std::move(*elti).forwardInto(gen, init.get(), Loc);
++elti;
}
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
gen.emitEmptyTuple(Loc));
return;
}
// Otherwise, build a struct value directly from the elements.
SmallVector<SILValue, 4> eltValues;
auto elti = elements.begin(), eltEnd = elements.end();
for (VarDecl *field : decl->getStoredProperties()) {
assert(elti != eltEnd && "number of args does not match number of fields");
(void)eltEnd;
auto fieldTy = selfTy.getFieldType(field, gen.SGM.M);
SILValue v
= std::move(*elti).forwardAsSingleStorageValue(gen, fieldTy, Loc);
eltValues.push_back(v);
++elti;
}
SILValue selfValue = gen.B.createStruct(Loc, selfTy, eltValues);
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
selfValue);
return;
}
void SILGenFunction::emitValueConstructor(ConstructorDecl *ctor) {
MagicFunctionName = getMagicFunctionName(ctor);
// If there's no body, this is the implicit elementwise constructor.
if (!ctor->getBody())
return emitImplicitValueConstructor(*this, ctor);
// True if this constructor delegates to a peer constructor with self.init().
bool isDelegating = ctor->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating;
// Get the 'self' decl and type.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
auto &lowering = getTypeLowering(selfDecl->getType()->getInOutObjectType());
SILType selfTy = lowering.getLoweredType();
(void)selfTy;
assert(!selfTy.hasReferenceSemantics() && "can't emit a ref type ctor here");
// Emit a local variable for 'self'.
// FIXME: The (potentially partially initialized) variable would need to be
// cleaned up on an error unwind.
emitLocalVariable(selfDecl);
// Mark self as being uninitialized so that DI knows where it is and how to
// check for it.
SILValue selfLV, selfBox;
{
auto &SelfVarLoc = VarLocs[selfDecl];
selfBox = SelfVarLoc.box;
auto MUKind = isDelegating ? MarkUninitializedInst::DelegatingSelf
: MarkUninitializedInst::RootSelf;
selfLV = B.createMarkUninitialized(selfDecl,SelfVarLoc.getAddress(),MUKind);
SelfVarLoc = VarLoc::getAddress(selfLV, SelfVarLoc.box);
}
// FIXME: Handle 'self' along with the other body patterns.
// Emit the prolog.
emitProlog(ctor->getBodyParamPatterns()[1],
ctor->getImplicitSelfDecl()->getType()->getInOutObjectType(),
ctor);
emitConstructorMetatypeArg(*this, ctor);
// Create a basic block to jump to for the implicit 'self' return.
// We won't emit this until after we've emitted the body.
// The epilog takes a void return because the return of 'self' is implicit.
prepareEpilog(Type(), CleanupLocation(ctor));
// If this is not a delegating constructor, emit member initializers.
if (!isDelegating) {
auto nominal = ctor->getDeclContext()->getDeclaredTypeInContext()
->getNominalOrBoundGenericNominal();
emitMemberInitializers(selfDecl, nominal);
}
// Emit the constructor body.
visit(ctor->getBody());
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(ctor);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(ctor);
// Return 'self' in the epilog.
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation::getCleanupLocation(ctor);
assert(selfBox && "self should be a mutable box");
// If 'self' is address-only, copy 'self' into the indirect return slot.
if (lowering.isAddressOnly()) {
assert(IndirectReturnAddress &&
"no indirect return for address-only ctor?!");
// We have to do a non-take copy because someone else may be using the box.
B.createCopyAddr(cleanupLoc, selfLV, IndirectReturnAddress,
IsNotTake, IsInitialization);
B.emitStrongRelease(cleanupLoc, selfBox);
B.createReturn(returnLoc, emitEmptyTuple(ctor));
return;
}
// Otherwise, load and return the final 'self' value.
SILValue selfValue = B.createLoad(cleanupLoc, selfLV);
// We have to do a retain because someone else may be using the box.
lowering.emitRetainValue(B, cleanupLoc, selfValue);
// Release the box.
B.emitStrongRelease(cleanupLoc, selfBox);
B.createReturn(returnLoc, selfValue);
}
static void emitAddressOnlyEnumConstructor(SILGenFunction &gen,
SILType enumTy,
EnumElementDecl *element) {
RegularLocation Loc(element);
Loc.markAutoGenerated();
// Emit the indirect return slot.
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"),
enumTy.getSwiftType(),
element->getDeclContext());
SILValue resultSlot
= new (gen.F.getModule()) SILArgument(enumTy, gen.F.begin(), VD);
// Emit the exploded constructor argument.
ManagedValue argValue;
if (element->hasArgumentType()) {
RValue arg = emitImplicitValueConstructorArg
(gen, Loc, element->getArgumentType()->getCanonicalType(),
element->getDeclContext());
argValue = std::move(arg).getAsSingleValue(gen, Loc);
}
emitConstructorMetatypeArg(gen, element);
// Store the data, if any.
if (element->hasArgumentType()) {
SILValue resultData = gen.B.createInitEnumDataAddr(element, resultSlot,
element, gen.getLoweredType(element->getArgumentType()).getAddressType());
argValue.forwardInto(gen, element, resultData);
}
// Apply the tag.
gen.B.createInjectEnumAddr(Loc, resultSlot, element);
gen.Cleanups.emitCleanupsForReturn(CleanupLocation::getCleanupLocation(Loc));
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
gen.emitEmptyTuple(element));
}
static void emitLoadableEnumConstructor(SILGenFunction &gen, SILType enumTy,
EnumElementDecl *element) {
RegularLocation Loc(element);
Loc.markAutoGenerated();
// Emit the exploded constructor argument.
SILValue argValue;
if (element->hasArgumentType()) {
RValue arg = emitImplicitValueConstructorArg
(gen, Loc,
element->getArgumentType()->getCanonicalType(),
element->getDeclContext());
argValue = std::move(arg).forwardAsSingleValue(gen, Loc);
}
emitConstructorMetatypeArg(gen, element);
// Create and return the enum value.
SILValue result = gen.B.createEnum(Loc, argValue, element, enumTy);
gen.Cleanups.emitCleanupsForReturn(CleanupLocation::getCleanupLocation(Loc));
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc), result);
}
void SILGenFunction::emitEnumConstructor(EnumElementDecl *element) {
Type enumTy = element->getType()->getAs<AnyFunctionType>()->getResult();
if (element->hasArgumentType())
enumTy = enumTy->getAs<AnyFunctionType>()->getResult();
auto &enumTI = getTypeLowering(enumTy);
if (enumTI.isAddressOnly()) {
return emitAddressOnlyEnumConstructor(*this, enumTI.getLoweredType(),
element);
}
return emitLoadableEnumConstructor(*this, enumTI.getLoweredType(),
element);
}
namespace {
// Unlike the ArgumentInitVisitor, this visitor generates arguments but leaves
// them destructured instead of storing them to lvalues so that the
// argument set can be easily forwarded to another function.
class ArgumentForwardVisitor
: public PatternVisitor<ArgumentForwardVisitor>
{
SILGenFunction &gen;
SmallVectorImpl<SILValue> &args;
DeclContext *DC;
public:
ArgumentForwardVisitor(SILGenFunction &gen,
SmallVectorImpl<SILValue> &args,
DeclContext *DC)
: gen(gen), args(args), DC(DC) {}
void makeArgument(Type ty, VarDecl *varDecl) {
assert(ty && "no type?!");
// Destructure tuple arguments.
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, varDecl);
} else {
SILValue arg =
new (gen.F.getModule()) SILArgument(gen.getLoweredType(ty),
gen.F.begin(), varDecl);
args.push_back(arg);
}
}
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
// FIXME: work around a bug in visiting the "self" argument of methods
if (auto NP = dyn_cast<NamedPattern>(P->getSubPattern()))
makeArgument(P->getType(), NP->getDecl());
else
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getFields())
visit(elt.getPattern());
}
void visitAnyPattern(AnyPattern *P) {
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ true, SourceLoc(),
AC.getIdentifier("_"), SourceLoc(),
// FIXME: we should probably number them.
AC.getIdentifier("_"), P->getType(), DC);
makeArgument(P->getType(), VD);
}
void visitNamedPattern(NamedPattern *P) {
makeArgument(P->getType(), P->getDecl());
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
ArrayRef<Substitution>
SILGenFunction::buildForwardingSubstitutions(GenericParamList *params) {
if (!params)
return {};
ASTContext &C = F.getASTContext();
SmallVector<Substitution, 4> subs;
// TODO: IRGen wants substitutions for secondary archetypes.
//for (auto &param : params->getNestedGenericParams()) {
// ArchetypeType *archetype = param.getAsTypeParam()->getArchetype();
for (auto archetype : params->getAllNestedArchetypes()) {
// "Check conformance" on each declared protocol to build a
// conformance map.
SmallVector<ProtocolConformance*, 2> conformances;
for (ProtocolDecl *conformsTo : archetype->getConformsTo()) {
(void)conformsTo;
conformances.push_back(nullptr);
}
// Build an identity mapping with the derived conformances.
auto replacement = SubstitutedType::get(archetype, archetype, C);
subs.push_back({archetype, replacement,
C.AllocateCopy(conformances)});
}
return C.AllocateCopy(subs);
}
bool Lowering::usesObjCAllocator(ClassDecl *theClass) {
while (true) {
// If the root class was implemented in Objective-C, use Objective-C's
// allocation methods because they may have been overridden.
if (!theClass->hasSuperclass())
return theClass->hasClangNode();
theClass = theClass->getSuperclass()->getClassOrBoundGenericClass();
}
}
void SILGenFunction::emitClassConstructorAllocator(ConstructorDecl *ctor) {
// FIXME: Hack until all delegation is dispatched.
isConvenienceInit = ctor->isConvenienceInit();
// Emit the prolog. Since we're just going to forward our args directly
// to the initializer, don't allocate local variables for them.
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
SmallVector<SILValue, 8> args;
// Forward the constructor arguments.
// FIXME: Handle 'self' along with the other body patterns.
ArgumentForwardVisitor(*this, args, ctor)
.visit(ctor->getBodyParamPatterns()[1]);
SILValue selfMetaValue = emitConstructorMetatypeArg(*this, ctor);
// Allocate the "self" value.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
SILType selfTy = getLoweredType(selfDecl->getType());
assert(selfTy.hasReferenceSemantics() &&
"can't emit a value type ctor here");
// Use alloc_ref to allocate the object.
// TODO: allow custom allocation?
// FIXME: should have a cleanup in case of exception
auto selfTypeContext = ctor->getDeclContext()->getDeclaredTypeInContext();
auto selfClassDecl =
cast<ClassDecl>(selfTypeContext->getNominalOrBoundGenericNominal());
SILValue selfValue;
// Allocate the 'self' value.
bool useObjCAllocation = usesObjCAllocator(selfClassDecl);
bool usesFactoryMethod;
switch (ctor->getInitKind()) {
case CtorInitializerKind::Convenience:
case CtorInitializerKind::Designated:
usesFactoryMethod = false;
break;
case CtorInitializerKind::ConvenienceFactory:
case CtorInitializerKind::Factory:
usesFactoryMethod = true;
break;
}
if (usesFactoryMethod) {
// If we're using an allocating initializer, the 'self' value is
// actually the metatype.
// When using Objective-C allocation, convert the metatype
// argument to an Objective-C metatype.
selfValue = selfMetaValue;
if (useObjCAllocation) {
auto metaTy = selfValue.getType().castTo<MetatypeType>();
metaTy = CanMetatypeType::get(metaTy.getInstanceType(),
MetatypeRepresentation::ObjC);
selfValue = B.createThickToObjCMetatype(Loc, selfValue,
getLoweredType(metaTy));
}
} else if (ctor->isConvenienceInit() || ctor->hasClangNode()) {
// For a convenience initializer or an initializer synthesized
// for an Objective-C class, allocate using the metatype.
SILValue allocArg = selfMetaValue;
// When using Objective-C allocation, convert the metatype
// argument to an Objective-C metatype.
if (useObjCAllocation) {
auto metaTy = allocArg.getType().castTo<MetatypeType>();
metaTy = CanMetatypeType::get(metaTy.getInstanceType(),
MetatypeRepresentation::ObjC);
allocArg = B.createThickToObjCMetatype(Loc, allocArg,
getLoweredType(metaTy));
}
selfValue = B.createAllocRefDynamic(Loc, allocArg, selfTy,
useObjCAllocation);
} else {
// For a designated initializer, we know that the static type being
// allocated is the type of the class that defines the designated
// initializer.
selfValue = B.createAllocRef(Loc, selfTy, useObjCAllocation);
}
args.push_back(selfValue);
// Call the initializer.
SILDeclRef initConstant =
SILDeclRef(ctor,
usesFactoryMethod ? SILDeclRef::Kind::Allocator
: SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isObjC=*/ctor->hasClangNode());
ManagedValue initVal;
SILType initTy;
ArrayRef<Substitution> subs;
if (ctor->hasClangNode()) {
// If the constructor was imported from Clang, we perform dynamic dispatch
// to it because we can't refer directly to the Objective-C method.
auto method = initConstant.atUncurryLevel(1);
auto objcInfo = getConstantInfo(method);
SILValue methodRef = B.createClassMethod(Loc, selfValue, initConstant,
objcInfo.getSILType());
initVal = ManagedValue::forUnmanaged(methodRef);
initTy = initVal.getType();
// Bridge arguments.
Scope scope(Cleanups, CleanupLocation::getCleanupLocation(Loc));
auto objcFnType = objcInfo.SILFnType;
unsigned idx = 0;
for (auto &arg : args) {
auto nativeTy = arg.getType().getSwiftType();// FIXME: wrong for functions
auto bridgedTy =
objcFnType->getInterfaceParameters()[idx++].getSILType().getSwiftType();
arg = emitNativeToBridgedValue(Loc,
ManagedValue::forUnmanaged(arg),
AbstractCC::ObjCMethod,
nativeTy, nativeTy,
bridgedTy).forward(*this);
}
} else {
// Otherwise, directly call the constructor.
auto forwardingSubs
= buildForwardingSubstitutions(ctor->getGenericParamsOfContext());
std::tie(initVal, initTy, subs)
= emitSiblingMethodRef(Loc, selfValue, initConstant, forwardingSubs);
}
SILValue initedSelfValue
= B.createApply(Loc, initVal.forward(*this), initTy, selfTy, subs, args,
initConstant.isTransparent());
// If we used a factory method that returns autoreleased, retain the result.
if (usesFactoryMethod &&
initTy.castTo<SILFunctionType>()->getInterfaceResult().getConvention()
== ResultConvention::Autoreleased) {
B.createStrongRetainAutoreleased(Loc, initedSelfValue);
}
// Return the initialized 'self'.
B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
initedSelfValue);
}
void SILGenFunction::emitClassConstructorInitializer(ConstructorDecl *ctor) {
MagicFunctionName = getMagicFunctionName(ctor);
// FIXME: Hack until all delegation is dispatched.
isConvenienceInit = ctor->isConvenienceInit();
assert(ctor->getBody() && "Class constructor without a body?");
// True if this constructor delegates to a peer constructor with self.init().
bool isDelegating = false;
if (!ctor->hasStubImplementation()) {
isDelegating = ctor->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating;
}
// FIXME: The (potentially partially initialized) value here would need to be
// cleaned up on a constructor failure unwinding.
// Set up the 'self' argument. If this class has a superclass, we set up
// self as a box. This allows "self reassignment" to happen in super init
// method chains, which is important for interoperating with Objective-C
// classes. We also use a box for delegating constructors, since the
// delegated-to initializer may also replace self.
//
// TODO: If we could require Objective-C classes to have an attribute to get
// this behavior, we could avoid runtime overhead here.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
auto selfTypeContext = ctor->getDeclContext()->getDeclaredTypeInContext();
auto selfClassDecl =
cast<ClassDecl>(selfTypeContext->getNominalOrBoundGenericNominal());
bool NeedsBoxForSelf = isDelegating ||
(selfClassDecl->hasSuperclass() && !ctor->hasStubImplementation());
if (NeedsBoxForSelf)
emitLocalVariable(selfDecl);
// Emit the prolog for the non-self arguments.
// FIXME: Handle self along with the other body patterns.
emitProlog(ctor->getBodyParamPatterns()[1],
TupleType::getEmpty(F.getASTContext()), ctor);
SILType selfTy = getLoweredLoadableType(selfDecl->getType());
SILValue selfArg = new (SGM.M) SILArgument(selfTy, F.begin(), selfDecl);
if (!NeedsBoxForSelf)
B.createDebugValue(selfDecl, selfArg);
bool usesObjCAllocator = Lowering::usesObjCAllocator(selfClassDecl);
if (!ctor->hasStubImplementation()) {
// If needed, mark 'self' as uninitialized so that DI knows to
// enforce its DI properties on stored properties.
MarkUninitializedInst::Kind MUKind;
if (isDelegating)
MUKind = MarkUninitializedInst::DelegatingSelf;
else if (selfClassDecl->requiresStoredPropertyInits() &&
usesObjCAllocator) {
// Stored properties will be initialized in a separate
// .cxx_construct method called by the Objective-C runtime.
assert(selfClassDecl->hasSuperclass() &&
"Cannot use ObjC allocation without a superclass");
MUKind = MarkUninitializedInst::DerivedSelfOnly;
} else if (selfClassDecl->hasSuperclass())
MUKind = MarkUninitializedInst::DerivedSelf;
else
MUKind = MarkUninitializedInst::RootSelf;
selfArg = B.createMarkUninitialized(selfDecl, selfArg, MUKind);
assert(selfTy.hasReferenceSemantics() &&
"can't emit a value type ctor here");
if (NeedsBoxForSelf) {
SILLocation prologueLoc = RegularLocation(ctor);
prologueLoc.markAsPrologue();
B.createStore(prologueLoc, selfArg, VarLocs[selfDecl].getAddress());
} else {
VarLocs[selfDecl] = VarLoc::getConstant(selfArg);
}
}
// Prepare the end of initializer location.
SILLocation endOfInitLoc = RegularLocation(ctor);
endOfInitLoc.pointToEnd();
// Create a basic block to jump to for the implicit 'self' return.
// We won't emit the block until after we've emitted the body.
prepareEpilog(Type(), CleanupLocation::getCleanupLocation(endOfInitLoc));
// Handle member initializers.
if (isDelegating) {
// A delegating initializer does not initialize instance
// variables.
} else if (ctor->hasStubImplementation()) {
// Nor does a stub implementation.
} else if (selfClassDecl->requiresStoredPropertyInits() &&
usesObjCAllocator) {
// When the class requires all stored properties to have initial
// values and we're using Objective-C's allocation, stored
// properties are initialized via the .cxx_construct method, which
// will be called by the runtime.
// Note that 'self' has been fully initialized at this point.
} else {
// Emit the member initializers.
emitMemberInitializers(selfDecl, selfClassDecl);
}
// Emit the constructor body.
visit(ctor->getBody());
// Return 'self' in the epilog.
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(ctor);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(ctor);
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation::getCleanupLocation(ctor);
// If we're using a box for self, reload the value at the end of the init
// method.
if (NeedsBoxForSelf) {
// Emit the call to super.init() right before exiting from the initializer.
if (Expr *SI = ctor->getSuperInitCall())
emitRValue(SI);
selfArg = B.createLoad(cleanupLoc, VarLocs[selfDecl].getAddress());
SILValue selfBox = VarLocs[selfDecl].box;
assert(selfBox);
// We have to do a retain because someone else may be using the box.
B.emitRetainValueOperation(cleanupLoc, selfArg);
B.emitStrongRelease(cleanupLoc, selfBox);
}
// Return the final 'self'.
B.createReturn(returnLoc, selfArg)
->setDebugScope(F.getDebugScope());
}
/// Emit a member initialization for the members described in the
/// given pattern from the given source value.
static void emitMemberInit(SILGenFunction &SGF, VarDecl *selfDecl,
Pattern *pattern, RValue &&src) {
switch (pattern->getKind()) {
case PatternKind::Paren:
return emitMemberInit(SGF, selfDecl,
cast<ParenPattern>(pattern)->getSubPattern(),
std::move(src));
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
auto fields = tuple->getFields();
SmallVector<RValue, 4> elements;
std::move(src).extractElements(elements);
for (unsigned i = 0, n = fields.size(); i != n; ++i) {
emitMemberInit(SGF, selfDecl, fields[i].getPattern(),
std::move(elements[i]));
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
// Form the lvalue referencing this member.
SILLocation loc = pattern;
ManagedValue self;
if (selfDecl->getType()->hasReferenceSemantics())
self = SGF.emitRValueForDecl(loc, selfDecl, selfDecl->getType());
else
self = SGF.emitLValueForDecl(loc, selfDecl, true);
LValue memberRef = SGF.emitDirectIVarLValue(loc, self, named->getDecl());
// Assign to it.
SGF.emitAssignToLValue(loc, std::move(src), memberRef);
return;
}
case PatternKind::Any:
return;
case PatternKind::Typed:
return emitMemberInit(SGF, selfDecl,
cast<TypedPattern>(pattern)->getSubPattern(),
std::move(src));
case PatternKind::Var:
return emitMemberInit(SGF, selfDecl,
cast<VarPattern>(pattern)->getSubPattern(),
std::move(src));
#define PATTERN(Name, Parent)
#define REFUTABLE_PATTERN(Name, Parent) case PatternKind::Name:
#include "swift/AST/PatternNodes.def"
llvm_unreachable("Refutable pattern in pattern binding");
}
}
void SILGenFunction::emitMemberInitializers(VarDecl *selfDecl,
NominalTypeDecl *nominal) {
for (auto member : nominal->getMembers()) {
// Find pattern binding declarations that have initializers.
auto pbd = dyn_cast<PatternBindingDecl>(member);
if (!pbd || pbd->isStatic()) continue;
auto init = pbd->getInit();
if (!init) continue;
// Cleanup after this initialization.
FullExpr scope(Cleanups, pbd->getPattern());
emitMemberInit(*this, selfDecl, pbd->getPattern(), emitRValue(init));
}
}
void SILGenFunction::emitIVarInitializer(SILDeclRef ivarInitializer) {
auto cd = cast<ClassDecl>(ivarInitializer.getDecl());
RegularLocation loc(cd);
loc.markAutoGenerated();
// Emit 'self', then mark it uninitialized.
auto selfDecl = cd->getDestructor()->getImplicitSelfDecl();
SILType selfTy = getLoweredLoadableType(selfDecl->getType());
SILValue selfArg = new (SGM.M) SILArgument(selfTy, F.begin(), selfDecl);
B.createDebugValue(selfDecl, selfArg);
selfArg = B.createMarkUninitialized(selfDecl, selfArg,
MarkUninitializedInst::RootSelf);
assert(selfTy.hasReferenceSemantics() && "can't emit a value type ctor here");
VarLocs[selfDecl] = VarLoc::getConstant(selfArg);
auto cleanupLoc = CleanupLocation::getCleanupLocation(loc);
prepareEpilog(TupleType::getEmpty(getASTContext()), cleanupLoc);
// Emit the initializers.
emitMemberInitializers(cd->getDestructor()->getImplicitSelfDecl(), cd);
// Return 'self'.
B.createReturn(loc, selfArg);
emitEpilog(loc);
}
void SILGenFunction::emitIVarDestroyer(SILDeclRef ivarDestroyer) {
auto cd = cast<ClassDecl>(ivarDestroyer.getDecl());
RegularLocation loc(cd);
loc.markAutoGenerated();
SILValue selfValue = emitSelfDecl(cd->getDestructor()->getImplicitSelfDecl());
auto cleanupLoc = CleanupLocation::getCleanupLocation(loc);
prepareEpilog(TupleType::getEmpty(getASTContext()), cleanupLoc);
emitClassMemberDestruction(selfValue, cd, loc, cleanupLoc);
B.createReturn(loc, emitEmptyTuple(loc));
emitEpilog(loc);
}
void SILGenFunction::emitClassMemberDestruction(SILValue selfValue,
ClassDecl *cd,
RegularLocation loc,
CleanupLocation cleanupLoc) {
for (VarDecl *vd : cd->getStoredProperties()) {
const TypeLowering &ti = getTypeLowering(vd->getType());
if (!ti.isTrivial()) {
SILValue addr = B.createRefElementAddr(loc, selfValue, vd,
ti.getLoweredType().getAddressType());
B.emitDestroyAddr(cleanupLoc, addr);
}
}
}
static void forwardCaptureArgs(SILGenFunction &gen,
SmallVectorImpl<SILValue> &args,
CaptureInfo::LocalCaptureTy capture) {
ASTContext &c = gen.getASTContext();
auto addSILArgument = [&](SILType t) {
args.push_back(new (gen.SGM.M) SILArgument(t, gen.F.begin()));
};
auto *vd = capture.getPointer();
switch (getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant:
if (!gen.getTypeLowering(vd->getType()).isAddressOnly()) {
addSILArgument(gen.getLoweredType(vd->getType()));
break;
}
SWIFT_FALLTHROUGH;
case CaptureKind::Box: {
SILType ty = gen.getLoweredType(vd->getType()->getRValueType())
.getAddressType();
// Forward the captured owning NativeObject.
addSILArgument(SILType::getNativeObjectType(c));
// Forward the captured value address.
addSILArgument(ty);
break;
}
case CaptureKind::LocalFunction:
// Forward the captured value.
addSILArgument(gen.getLoweredType(vd->getType()));
break;
case CaptureKind::GetterSetter: {
// Forward the captured setter.
Type setTy = cast<AbstractStorageDecl>(vd)->getSetter()->getType();
addSILArgument(gen.getLoweredType(setTy));
SWIFT_FALLTHROUGH;
}
case CaptureKind::Getter: {
// Forward the captured getter.
Type getTy = cast<AbstractStorageDecl>(vd)->getGetter()->getType();
addSILArgument(gen.getLoweredType(getTy));
break;
}
}
}
static SILValue getNextUncurryLevelRef(SILGenFunction &gen,
SILLocation loc,
SILDeclRef next,
ArrayRef<SILValue> curriedArgs) {
// For a foreign function, reference the native thunk.
if (next.isForeign)
return gen.emitGlobalFunctionRef(loc, next.asForeign(false));
// For the fully-uncurried reference to a native class method, emit the
// dynamic dispatch.
if (!next.isCurried
&& !next.isForeign
&& next.kind == SILDeclRef::Kind::Func
&& next.hasDecl() && isa<ClassDecl>(next.getDecl()->getDeclContext())) {
SILValue thisArg = curriedArgs.back();
return gen.B.createClassMethod(loc, thisArg, next,
gen.SGM.getConstantType(next));
}
return gen.emitGlobalFunctionRef(loc, next);
}
void SILGenFunction::emitCurryThunk(FuncDecl *fd,
SILDeclRef from, SILDeclRef to) {
SmallVector<SILValue, 8> curriedArgs;
unsigned paramCount = from.uncurryLevel + 1;
// Forward implicit closure context arguments.
bool hasCaptures = fd->getCaptureInfo().hasLocalCaptures();
if (hasCaptures)
--paramCount;
// Forward the curried formal arguments.
auto forwardedPatterns = fd->getBodyParamPatterns().slice(0, paramCount);
ArgumentForwardVisitor forwarder(*this, curriedArgs, fd);
for (auto *paramPattern : reversed(forwardedPatterns))
forwarder.visit(paramPattern);
// Forward captures.
if (hasCaptures) {
SmallVector<CaptureInfo::LocalCaptureTy, 4> LocalCaptures;
fd->getLocalCaptures(LocalCaptures);
for (auto capture : LocalCaptures)
forwardCaptureArgs(*this, curriedArgs, capture);
}
SILValue toFn = getNextUncurryLevelRef(*this, fd, to, curriedArgs);
SILType resultTy
= SGM.getConstantType(from).castTo<SILFunctionType>()
->getInterfaceResult().getSILType();
resultTy = F.mapTypeIntoContext(resultTy);
auto toTy = toFn.getType();
// Forward archetypes and specialize if the function is generic.
ArrayRef<Substitution> subs;
if (auto gp = getConstantInfo(to).ContextGenericParams) {
auto toFnTy = toFn.getType().castTo<SILFunctionType>();
subs = buildForwardingSubstitutions(gp);
toTy = getLoweredLoadableType(
toFnTy->substInterfaceGenericArgs(SGM.M, SGM.SwiftModule, subs));
}
// Partially apply the next uncurry level and return the result closure.
auto closureTy =
SILBuilder::getPartialApplyResultType(toFn.getType(), curriedArgs.size(),
SGM.M, subs);
SILInstruction *toClosure =
B.createPartialApply(fd, toFn, toTy, subs, curriedArgs, closureTy);
if (resultTy != closureTy)
toClosure = B.createConvertFunction(fd, toClosure, resultTy);
B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(fd), toClosure);
}
static SILValue
getThunkedForeignFunctionRef(SILGenFunction &gen,
SILLocation loc,
SILDeclRef foreign,
ArrayRef<SILValue> args) {
assert(!foreign.isCurried
&& "should not thunk calling convention when curried");
// Produce a class_method when thunking ObjC methods.
auto foreignTy = gen.SGM.getConstantType(foreign);
if (foreignTy.castTo<SILFunctionType>()->getAbstractCC() == AbstractCC::ObjCMethod) {
SILValue thisArg = args.back();
return gen.B.createClassMethod(loc, thisArg, foreign,
gen.SGM.getConstantType(foreign),
/*volatile*/ true);
}
// Otherwise, emit a function_ref.
return gen.emitGlobalFunctionRef(loc, foreign);
}
void SILGenFunction::emitForeignThunk(SILDeclRef thunk) {
// FIXME: native-to-foreign thunk
assert(!thunk.isForeign && "native to foreign thunk not implemented");
// Wrap the function in its original form.
auto fd = cast<FuncDecl>(thunk.getDecl());
// Forward the arguments.
// FIXME: For native-to-foreign thunks, use emitObjCThunkArguments to retain
// inputs according to the foreign convention.
auto forwardedPatterns = fd->getBodyParamPatterns();
SmallVector<SILValue, 8> args;
ArgumentForwardVisitor forwarder(*this, args, fd);
for (auto *paramPattern : reversed(forwardedPatterns))
forwarder.visit(paramPattern);
SILValue result;
{
CleanupLocation cleanupLoc(fd);
Scope scope(Cleanups, fd);
SILDeclRef original = thunk.asForeign(!thunk.isForeign);
auto originalInfo = getConstantInfo(original);
auto originalFnTy = originalInfo.getSILType().castTo<SILFunctionType>();
// Bridge all the arguments, which should be at +1 now.
SmallVector<ManagedValue, 8> managedArgs;
for (unsigned i : indices(args)) {
auto arg = args[i];
auto mv = emitManagedRValueWithCleanup(arg);
auto origArg = originalFnTy->getInterfaceParameters()[i].getSILType();
managedArgs.push_back(emitNativeToBridgedValue(fd, mv, AbstractCC::C,
mv.getSwiftType(),
mv.getSwiftType(),
origArg.getSwiftRValueType()));
}
// Call the original.
auto fn = getThunkedForeignFunctionRef(*this, fd, original,
args);
result = emitMonomorphicApply(fd, ManagedValue::forUnmanaged(fn),
managedArgs,
fd->getBodyResultType()->getCanonicalType())
.forward(*this);
}
// FIXME: use correct convention for native-to-foreign return
B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(fd), result);
}
void SILGenFunction::emitGeneratorFunction(SILDeclRef function, Expr *value) {
MagicFunctionName = getMagicFunctionName(function);
RegularLocation Loc(value);
Loc.markAutoGenerated();
emitProlog({ }, value->getType(), function.getDecl()->getDeclContext());
prepareEpilog(value->getType(), CleanupLocation::getCleanupLocation(Loc));
emitReturnExpr(Loc, value);
emitEpilog(Loc);
}
void SILGenFunction::emitLazyGlobalInitializer(PatternBindingDecl *binding) {
{
Scope scope(Cleanups, binding);
// Emit the initialization sequence.
visit(binding);
}
// Return void.
auto ret = emitEmptyTuple(binding);
B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(binding), ret);
}
void SILGenFunction::emitGlobalAccessor(VarDecl *global,
FuncDecl *builtinOnceDecl,
SILGlobalVariable *onceToken,
SILFunction *onceFunc) {
// Emit a reference to Builtin.once.
SILDeclRef builtinOnceConstant(builtinOnceDecl, SILDeclRef::Kind::Func);
auto builtinOnceSILTy = SGM.Types.getConstantType(builtinOnceConstant);
auto builtinOnce = B.createBuiltinFunctionRef(global,
builtinOnceDecl->getName(),
builtinOnceSILTy);
SILType rawPointerSILTy
= getLoweredLoadableType(getASTContext().TheRawPointerType);
// Emit a reference to the global token.
SILValue onceTokenAddr = B.createSILGlobalAddr(global, onceToken);
onceTokenAddr = B.createAddressToPointer(global, onceTokenAddr,
rawPointerSILTy);
// Emit a reference to the function to execute once, then thicken
// that reference as Builtin.once expects.
SILValue onceFuncRef = B.createFunctionRef(global, onceFunc);
auto onceFuncThickTy
= adjustFunctionType(onceFunc->getLoweredFunctionType(),
FunctionType::Representation::Thick);
auto onceFuncThickSILTy = SILType::getPrimitiveObjectType(onceFuncThickTy);
onceFuncRef = B.createThinToThickFunction(global, onceFuncRef,
onceFuncThickSILTy);
// Call Builtin.once.
SILValue onceArgs[] = {onceTokenAddr, onceFuncRef};
auto resultTy = builtinOnceSILTy.castTo<SILFunctionType>()
->getInterfaceResult().getSILType();
B.createApply(global, builtinOnce, builtinOnceSILTy, resultTy,
{}, onceArgs);
// Return the address of the global variable.
// FIXME: It'd be nice to be able to return a SIL address directly.
SILValue addr = B.createGlobalAddr(global, global,
getLoweredType(global->getType()).getAddressType());
addr = B.createAddressToPointer(global, addr, rawPointerSILTy);
B.createReturn(global, addr);
}
RValue RValueEmitter::
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
static StringRef
getMagicFunctionString(SILGenFunction &gen) {
assert(gen.MagicFunctionName
&& "asking for __FUNCTION__ but we don't have a function name?!");
{
llvm::raw_string_ostream os(gen.MagicFunctionString);
gen.MagicFunctionName.printPretty(os);
}
return gen.MagicFunctionString;
}
RValue RValueEmitter::
visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E, SGFContext C) {
ASTContext &Ctx = SGF.SGM.M.getASTContext();
SILType Ty = SGF.getLoweredLoadableType(E->getType());
SourceLoc Loc;
// If "overrideLocationForMagicIdentifiers" is set, then we use it as the
// location point for these magic identifiers.
if (SGF.overrideLocationForMagicIdentifiers.isValid())
Loc = SGF.overrideLocationForMagicIdentifiers;
else
Loc = E->getStartLoc();
switch (E->getKind()) {
case MagicIdentifierLiteralExpr::File: {
unsigned BufferID = Ctx.SourceMgr.findBufferContainingLoc(Loc);
StringRef Value =
Ctx.SourceMgr->getMemoryBuffer(BufferID)->getBufferIdentifier();
return emitStringLiteral(E, Value, C, E->getStringEncoding());
}
case MagicIdentifierLiteralExpr::Function: {
StringRef Value = getMagicFunctionString(SGF);
return emitStringLiteral(E, Value, C, E->getStringEncoding());
}
case MagicIdentifierLiteralExpr::Line: {
unsigned Value = Ctx.SourceMgr.getLineAndColumn(Loc).first;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
case MagicIdentifierLiteralExpr::Column: {
unsigned Value = Ctx.SourceMgr.getLineAndColumn(Loc).second;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
}
}
RValue RValueEmitter::visitCollectionExpr(CollectionExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::visitRebindSelfInConstructorExpr(
RebindSelfInConstructorExpr *E, SGFContext C) {
auto selfDecl = E->getSelf();
auto selfTy = selfDecl->getType()->getInOutObjectType();
bool isSuper = !E->getSubExpr()->getType()->isEqual(selfTy);
// Emit the subexpression.
ManagedValue newSelf = SGF.emitRValueAsSingleValue(E->getSubExpr());
// If we called a superclass constructor, cast down to the subclass.
if (isSuper) {
assert(newSelf.getType().isObject() &&
newSelf.getType().hasReferenceSemantics() &&
"delegating ctor type mismatch for non-reference type?!");
CleanupHandle newSelfCleanup = newSelf.getCleanup();
SILValue newSelfValue;
auto destTy = SGF.getLoweredLoadableType(E->getSelf()->getType());
// Assume that the returned 'self' is the appropriate subclass
// type (or a derived class thereof). Only Objective-C classes can
// violate this assumption.
newSelfValue = SGF.B.createUncheckedRefCast(E, newSelf.getValue(),
destTy);
newSelf = ManagedValue(newSelfValue, newSelfCleanup);
}
// We know that self is a box, so get its address.
SILValue selfAddr = SGF.emitLValueForDecl(E, selfDecl).getLValueAddress();
newSelf.assignInto(SGF, E, selfAddr);
// If we are using Objective-C allocation, the caller can return
// nil. When this happens with an explicitly-written super.init or
// self.init invocation, return early if we did get nil.
auto classDecl = selfTy->getClassOrBoundGenericClass();
if (classDecl && !E->getSubExpr()->isImplicit() &&
usesObjCAllocator(classDecl)) {
// Check whether the new self is null.
SILValue isNonnullSelf = SGF.B.createIsNonnull(E, newSelf.getValue());
Condition cond = SGF.emitCondition(isNonnullSelf, E,
/*hasFalseCode=*/false,
/*invertValue=*/true,
{ });
// If self is null, branch to the epilog.
cond.enterTrue(SGF.B);
SGF.Cleanups.emitBranchAndCleanups(SGF.ReturnDest, E, { });
cond.exitTrue(SGF.B);
cond.complete(SGF.B);
}
return SGF.emitEmptyTupleRValue(E);
}
RValue RValueEmitter::visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E,
SGFContext C) {
// Create a buffer for the result. Abstraction difference will
// force this to be returned indirectly from
// _injectValueIntoOptional anyway, so there's not much point
// avoiding that.
auto &optTL = SGF.getTypeLowering(E->getType());
SILValue optAddr = SGF.getBufferForExprResult(E, optTL.getLoweredType(), C);
SGF.emitInjectOptionalValueInto(E, E->getSubExpr(), optAddr, optTL);
ManagedValue result = SGF.manageBufferForExprResult(optAddr, optTL, C);
if (result.isInContext()) return RValue();
// If we're not address-only, the caller will expect a non-address value.
if (!optTL.isAddressOnly()) {
auto optValue = optTL.emitLoadOfCopy(SGF.B, E, result.forward(SGF), IsTake);
result = SGF.emitManagedRValueWithCleanup(optValue, optTL);
}
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitLValueConversionExpr(LValueConversionExpr *E,
SGFContext C) {
llvm_unreachable("should only appear in lvalue contexts");
}
RValue RValueEmitter::visitLValueToPointerExpr(LValueToPointerExpr *E,
SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr());
SILValue address = SGF.emitAddressOfLValue(E->getSubExpr(), lv)
.getUnmanagedValue();
// TODO: Reabstract the lvalue to match the abstraction level expected by
// the inout address conversion's InOutType. For now, just report cases where
// we would need a reabstraction as unsupported.
SILType abstractedTy
= SGF.getLoweredType(AbstractionPattern(E->getAbstractionPatternType()),
E->getSubExpr()->getType()->getLValueOrInOutObjectType());
if (address.getType().getObjectType() != abstractedTy)
SGF.SGM.diagnose(E, diag::not_implemented,
"abstraction difference in inout conversion");
SILValue ptr = SGF.B.createAddressToPointer(E, address,
SILType::getRawPointerType(SGF.getASTContext()));
return RValue(SGF, E, ManagedValue::forUnmanaged(ptr));
}
RValue RValueEmitter::visitInOutConversionExpr(InOutConversionExpr *E,
SGFContext C) {
// Disable nested writeback scopes for any calls evaluated in the
// subexpression.
InOutConversionScope scope(SGF);
return visit(E->getSubExpr());
}
namespace {
/// An Initialization representing the result of an address-only ternary.
class TernaryInitialization : public SingleBufferInitialization {
SILValue valueAddr;
public:
TernaryInitialization(SILValue valueAddr)
: valueAddr(valueAddr)
{}
SILValue getAddressOrNull() const override {
return valueAddr;
}
void finishInitialization(SILGenFunction &gen) {
}
};
}
RValue RValueEmitter::visitIfExpr(IfExpr *E, SGFContext C) {
auto &lowering = SGF.getTypeLowering(E->getType());
if (lowering.isLoadable()) {
// If the result is loadable, emit each branch and forward its result
// into the destination block argument.
// FIXME: We could avoid imploding and reexploding tuples here.
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false,
SGF.getLoweredType(E->getType()));
cond.enterTrue(SGF.B);
SILValue trueValue;
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
trueValue = visit(TE).forwardAsSingleValue(SGF, TE);
}
cond.exitTrue(SGF.B, trueValue);
cond.enterFalse(SGF.B);
SILValue falseValue;
{
auto EE = E->getElseExpr();
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);
}
cond.exitFalse(SGF.B, falseValue);
SILBasicBlock *cont = cond.complete(SGF.B);
assert(cont && "no continuation block for if expr?!");
SILValue result = cont->bbarg_begin()[0];
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(result));
} else {
// If the result is address-only, emit the result into a common stack buffer
// that dominates both branches.
SILValue resultAddr = SGF.getBufferForExprResult(
E, lowering.getLoweredType(), C);
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false);
cond.enterTrue(SGF.B);
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
TernaryInitialization init(resultAddr);
SGF.emitExprInto(TE, &init);
}
cond.exitTrue(SGF.B);
cond.enterFalse(SGF.B);
{
auto EE = E->getElseExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(EE));
TernaryInitialization init(resultAddr);
SGF.emitExprInto(EE, &init);
}
cond.exitFalse(SGF.B);
cond.complete(SGF.B);
return RValue(SGF, E,
SGF.manageBufferForExprResult(resultAddr, lowering, C));
}
}
RValue RValueEmitter::visitDefaultValueExpr(DefaultValueExpr *E, SGFContext C) {
return visit(E->getSubExpr(), C);
}
//
// Bridging
//
static ManagedValue emitBridgeStringToNSString(SILGenFunction &gen,
SILLocation loc,
ManagedValue str) {
// func _convertStringToNSString(String) -> NSString
SILValue stringToNSStringFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getStringToNSStringFn());
SILValue nsstr = gen.B.createApply(loc, stringToNSStringFn,
stringToNSStringFn.getType(),
gen.getLoweredType(gen.SGM.Types.getNSStringType()),
{}, str.forward(gen));
return gen.emitManagedRValueWithCleanup(nsstr);
}
static ManagedValue emitBridgeNSStringToString(SILGenFunction &gen,
SILLocation loc,
ManagedValue nsstr) {
// func _convertNSStringToString(NSString) -> String
SILValue nsstringToStringFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getNSStringToStringFn());
SILValue str = gen.B.createApply(loc, nsstringToStringFn,
nsstringToStringFn.getType(),
gen.getLoweredType(gen.SGM.Types.getStringType()),
{}, nsstr.forward(gen));
return gen.emitManagedRValueWithCleanup(str);
}
static ManagedValue emitBridgeAnyObjectArrayToNSArray(SILGenFunction &gen,
SILLocation loc,
ManagedValue arr) {
// func _convertAnyObjectArrayToNSArray(inout AnyObjectArray) -> NSArray
SILValue arrayToNSArrayFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getAnyObjectArrayToNSArrayFn());
SILValue nsarr = gen.B.createApply(loc, arrayToNSArrayFn,
arrayToNSArrayFn.getType(),
gen.getLoweredType(
gen.SGM.Types.getNSArrayType()),
{}, arr.getValue());
return gen.emitManagedRValueWithCleanup(nsarr);
}
static ManagedValue emitBridgeNSArrayToAnyObjectArray(SILGenFunction &gen,
SILLocation loc,
ManagedValue nsarr) {
// func _convertNSArrayToAnyObjectArray(NSArray, [inout] AnyObjectArray) -> ()
SILValue nsarrayToAnyObjectArrayFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getNSArrayToAnyObjectArrayFn());
SILValue arr = gen.B.createApply(loc, nsarrayToAnyObjectArrayFn,
nsarrayToAnyObjectArrayFn.getType(),
gen.SGM.getLoweredType(
gen.SGM.Types.getAnyObjectArrayType()),
{}, {nsarr.forward(gen)});
return gen.emitManagedRValueWithCleanup(arr);
}
static ManagedValue emitBridgeBoolToObjCBool(SILGenFunction &gen,
SILLocation loc,
ManagedValue swiftBool) {
// func _convertBoolToObjCBool(Bool) -> ObjCBool
SILValue boolToObjCBoolFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getBoolToObjCBoolFn());
SILType resultTy =gen.getLoweredLoadableType(gen.SGM.Types.getObjCBoolType());
SILValue result = gen.B.createApply(loc, boolToObjCBoolFn,
boolToObjCBoolFn.getType(),
resultTy, {}, swiftBool.forward(gen));
return gen.emitManagedRValueWithCleanup(result);
}
static ManagedValue emitBridgeObjCBoolToBool(SILGenFunction &gen,
SILLocation loc,
ManagedValue objcBool) {
// func _convertObjCBoolToBool(ObjCBool) -> Bool
SILValue objcBoolToBoolFn
= gen.emitGlobalFunctionRef(loc, gen.SGM.getObjCBoolToBoolFn());
SILType resultTy = gen.getLoweredLoadableType(gen.SGM.Types.getBoolType());
SILValue result = gen.B.createApply(loc, objcBoolToBoolFn,
objcBoolToBoolFn.getType(),
resultTy, {}, objcBool.forward(gen));
return gen.emitManagedRValueWithCleanup(result);
}
/// Emit an optional-to-optional transformation.
ManagedValue
SILGenFunction::emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType resultTy,
const ValueTransform &transformValue) {
auto isNotPresentBB = createBasicBlock();
auto isPresentBB = createBasicBlock();
auto contBB = createBasicBlock();
// Create a temporary for the output optional.
auto &resultTL = getTypeLowering(resultTy);
auto resultTemp = emitTemporaryAllocation(loc, resultTy);
// Materialize the input.
SILValue inputTemp;
if (input.getType().isAddress()) {
inputTemp = input.forward(*this);
} else {
inputTemp = emitTemporaryAllocation(loc, input.getType());
input.forwardInto(*this, loc, inputTemp);
}
// Branch on whether the input is optional.
auto isPresent = emitDoesOptionalHaveValue(loc, inputTemp);
B.createCondBranch(loc, isPresent, isPresentBB, isNotPresentBB);
// If it's present, apply the recursive transformation to the value.
B.emitBlock(isPresentBB);
{
// Don't allow cleanups to escape the conditional block.
FullExpr presentScope(Cleanups, CleanupLocation::getCleanupLocation(loc));
CanType resultValueTy =
resultTy.getSwiftRValueType().getAnyOptionalObjectType();
assert(resultValueTy);
SILType loweredResultValueTy = getLoweredType(resultValueTy);
// Pull the value out. This will load if the value is not address-only.
auto &inputTL = getTypeLowering(input.getType());
auto inputValue = emitGetOptionalValueFrom(loc,
ManagedValue::forUnmanaged(inputTemp),
inputTL,
SGFContext());
// Transform it.
auto resultValue = transformValue(*this, loc, inputValue,
loweredResultValueTy);
// Inject that into the result type.
RValueSource resultValueRV(loc, RValue(resultValue, resultValueTy));
emitInjectOptionalValueInto(loc, std::move(resultValueRV),
resultTemp, resultTL);
}
B.createBranch(loc, contBB);
// If it's not present, inject 'nothing' into the result.
B.emitBlock(isNotPresentBB);
{
emitInjectOptionalNothingInto(loc, resultTemp, resultTL);
}
B.createBranch(loc, contBB);
// Continue.
B.emitBlock(contBB);
if (resultTL.isAddressOnly()) {
return emitManagedBufferWithCleanup(resultTemp, resultTL);
} else {
return emitLoad(loc, resultTemp, resultTL, SGFContext(), IsTake);
}
}
static bool isCPointerType(SILGenFunction &gen,
CanType ty) {
auto nom = ty->getNominalOrBoundGenericNominal();
return nom == gen.SGM.Types.getCMutablePointerDecl()
|| nom == gen.SGM.Types.getObjCMutablePointerDecl()
|| nom == gen.SGM.Types.getCConstPointerDecl();
}
static bool isUnsafePointerType(SILGenFunction &gen,
CanType ty) {
return ty->getNominalOrBoundGenericNominal()
== gen.SGM.Types.getUnsafePointerDecl();
}
namespace {
// A cleanup that emits a fix_lifetime instruction on a value.
class FixLifetimeCleanup : public Cleanup {
SILValue value;
public:
FixLifetimeCleanup(SILValue value) : value(value) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitFixLifetime(l, value);
}
};
}
static ManagedValue emitBridgeCPointerToUnsafePointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v) {
// C*Pointer types in Swift contain a strong reference field we need to
// lifetime-extend for the duration of the bridge call.
{
auto copy = v.copyUnmanaged(gen, loc);
gen.Cleanups.pushCleanup<FixLifetimeCleanup>(copy.getValue());
}
// func convertC*PointerToUnsafePointer<T>(C*Pointer<T>) -> UnsafePointer<T>
SILValue cToUnsafePointer;
auto nativeNom = v.getType().getNominalOrBoundGenericNominal();
if (nativeNom == gen.SGM.Types.getCMutablePointerDecl())
cToUnsafePointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getCMutablePointerToUnsafePointerFn());
else if (nativeNom == gen.SGM.Types.getCConstPointerDecl())
cToUnsafePointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getCConstPointerToUnsafePointerFn());
else if (nativeNom == gen.SGM.Types.getObjCMutablePointerDecl())
cToUnsafePointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getObjCMutablePointerToUnsafePointerFn());
else
llvm_unreachable("unhandled C pointer type");
auto subs = v.getType().castTo<BoundGenericType>()
->getSubstitutions(gen.SGM.M.getSwiftModule(), nullptr);
assert(subs.size() == 1 && "more than one substitution for pointer type?!");
auto unsafePtrTy = BoundGenericType::get(gen.SGM.Types.getUnsafePointerDecl(),
Type(), subs[0].Replacement)
->getCanonicalType();
ParameterConvention convention = gen.getTypeLowering(v.getType()).isTrivial()
? ParameterConvention::Direct_Unowned
: ParameterConvention::Direct_Owned;
auto substFnTy = SILFunctionType::get(nullptr,
AnyFunctionType::ExtInfo()
.withRepresentation(FunctionType::Representation::Thin),
ParameterConvention::Direct_Unowned,
SILParameterInfo(v.getType().getSwiftRValueType(),
convention),
SILResultInfo(unsafePtrTy,
ResultConvention::Unowned),
gen.getASTContext());
auto ptr = gen.B.createApply(loc, cToUnsafePointer,
SILType::getPrimitiveObjectType(substFnTy),
SILType::getPrimitiveObjectType(unsafePtrTy),
subs,
v.forward(gen),
/*transparent*/ true);
return ManagedValue::forUnmanaged(ptr);
}
static ManagedValue
emitBridgeCVoidPointerToCOpaquePointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v,
SILDeclRef conversionFn) {
// C*Pointer types in Swift contain a strong reference field we need to
// lifetime-extend for the duration of the bridge call.
{
auto copy = v.copyUnmanaged(gen, loc);
gen.Cleanups.pushCleanup<FixLifetimeCleanup>(copy.getValue());
}
SILValue conversionFnRef
= gen.emitGlobalFunctionRef(loc, conversionFn);
SILType resultTy =gen.getLoweredLoadableType(
gen.SGM.Types.getCOpaquePointerType());
SILValue result = gen.B.createApply(loc, conversionFnRef,
conversionFnRef.getType(),
resultTy, {}, v.forward(gen));
return gen.emitManagedRValueWithCleanup(result);
}
static ManagedValue
emitBridgeCMutableVoidPointerToCOpaquePointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v) {
return emitBridgeCVoidPointerToCOpaquePointer(gen, loc, v,
gen.SGM.getCMutableVoidPointerToCOpaquePointerFn());
}
static ManagedValue
emitBridgeCConstVoidPointerToCOpaquePointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v) {
return emitBridgeCVoidPointerToCOpaquePointer(gen, loc, v,
gen.SGM.getCConstVoidPointerToCOpaquePointerFn());
}
static ManagedValue
emitBridgeCOpaquePointerToCVoidPointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v,
SILDeclRef conversionFn,
CanType resultTy) {
SILValue conversionFnRef
= gen.emitGlobalFunctionRef(loc, conversionFn);
SILValue result = gen.B.createApply(loc, conversionFnRef,
conversionFnRef.getType(),
SILType::getPrimitiveObjectType(resultTy),
{}, v.forward(gen));
return gen.emitManagedRValueWithCleanup(result);
}
static ManagedValue
emitBridgeCOpaquePointerToCMutableVoidPointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v) {
return emitBridgeCOpaquePointerToCVoidPointer(gen, loc, v,
gen.SGM.getCOpaquePointerToCMutableVoidPointerFn(),
gen.SGM.Types.getCMutableVoidPointerType());
}
static ManagedValue
emitBridgeCOpaquePointerToCConstVoidPointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v) {
return emitBridgeCOpaquePointerToCVoidPointer(gen, loc, v,
gen.SGM.getCOpaquePointerToCConstVoidPointerFn(),
gen.SGM.Types.getCConstVoidPointerType());
}
static ManagedValue emitBridgeUnsafePointerToCPointer(SILGenFunction &gen,
SILLocation loc,
ManagedValue v,
CanType nativeTy) {
// func _convertUnsafePointerToC*Pointer<T>(UnsafePointer<T>) -> C*Pointer<T>
SILValue unsafeToCPointer;
auto nativeNom = nativeTy->getNominalOrBoundGenericNominal();
if (nativeNom == gen.SGM.Types.getCMutablePointerDecl())
unsafeToCPointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getUnsafePointerToCMutablePointerFn());
else if (nativeNom == gen.SGM.Types.getCConstPointerDecl())
unsafeToCPointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getUnsafePointerToCConstPointerFn());
else if (nativeNom == gen.SGM.Types.getObjCMutablePointerDecl())
unsafeToCPointer = gen.emitGlobalFunctionRef(loc,
gen.SGM.getUnsafePointerToObjCMutablePointerFn());
else
llvm_unreachable("unhandled C pointer type");
auto subs = v.getType().castTo<BoundGenericType>()
->getSubstitutions(gen.SGM.M.getSwiftModule(), nullptr);
assert(subs.size() == 1 && "more than one substitution for pointer type?!");
ResultConvention convention = gen.getTypeLowering(nativeTy).isTrivial()
? ResultConvention::Unowned
: ResultConvention::Owned;
auto substFnTy = SILFunctionType::get(nullptr,
AnyFunctionType::ExtInfo()
.withRepresentation(FunctionType::Representation::Thin),
ParameterConvention::Direct_Unowned,
SILParameterInfo(v.getType().getSwiftRValueType(),
ParameterConvention::Direct_Unowned),
SILResultInfo(nativeTy, convention),
gen.getASTContext());
auto ptr = gen.B.createApply(loc, unsafeToCPointer,
SILType::getPrimitiveObjectType(substFnTy),
SILType::getPrimitiveObjectType(nativeTy),
subs,
v.forward(gen),
/*transparent*/ true);
return gen.emitManagedRValueWithCleanup(ptr);
}
static ManagedValue emitNativeToCBridgedValue(SILGenFunction &gen,
SILLocation loc,
ManagedValue v,
SILType bridgedTy) {
CanType loweredBridgedTy = bridgedTy.getSwiftRValueType();
CanType loweredNativeTy = v.getType().getSwiftRValueType();
if (loweredNativeTy == loweredBridgedTy)
return v;
if (loweredNativeTy.getAnyOptionalObjectType()) {
return gen.emitOptionalToOptional(loc, v, bridgedTy,
emitNativeToCBridgedValue);
}
// If the input is a native type with a bridged mapping, convert it.
#define BRIDGE_TYPE(BridgedModule,BridgedType, NativeModule,NativeType,Opt) \
if (loweredNativeTy == gen.SGM.Types.get##NativeType##Type() \
&& loweredBridgedTy == gen.SGM.Types.get##BridgedType##Type()) { \
return emitBridge##NativeType##To##BridgedType(gen, loc, v); \
}
#include "swift/SIL/BridgedTypes.def"
// Bridge thick to Objective-C metatypes.
if (auto bridgedMetaTy = dyn_cast<AnyMetatypeType>(loweredBridgedTy)) {
if (bridgedMetaTy->getRepresentation() == MetatypeRepresentation::ObjC) {
SILValue native = gen.B.emitThickToObjCMetatype(loc, v.getValue(),
SILType::getPrimitiveObjectType(loweredBridgedTy));
return ManagedValue(native, v.getCleanup());
}
}
// Bridge C*Pointer types to UnsafePointer.
if (isUnsafePointerType(gen, loweredBridgedTy)
&& isCPointerType(gen, loweredNativeTy)) {
return emitBridgeCPointerToUnsafePointer(gen, loc, v);
}
// Bridge native functions to blocks.
auto bridgedFTy = dyn_cast<SILFunctionType>(loweredBridgedTy);
if (bridgedFTy
&& bridgedFTy->getRepresentation() == FunctionType::Representation::Block){
auto nativeFTy = cast<SILFunctionType>(loweredNativeTy);
if (nativeFTy->getRepresentation() != FunctionType::Representation::Block)
return emitFuncToBlock(gen, loc, v, bridgedFTy);
}
return v;
}
ManagedValue SILGenFunction::emitNativeToBridgedValue(SILLocation loc,
ManagedValue v,
AbstractCC destCC,
CanType origNativeTy,
CanType substNativeTy,
CanType loweredBridgedTy){
switch (destCC) {
case AbstractCC::Freestanding:
case AbstractCC::Method:
case AbstractCC::WitnessMethod:
// No additional bridging needed for native functions.
return v;
case AbstractCC::C:
case AbstractCC::ObjCMethod:
return emitNativeToCBridgedValue(*this, loc, v,
SILType::getPrimitiveObjectType(loweredBridgedTy));
}
llvm_unreachable("bad CC");
}
static ManagedValue emitCBridgedToNativeValue(SILGenFunction &gen,
SILLocation loc,
ManagedValue v,
SILType nativeTy) {
CanType loweredNativeTy = nativeTy.getSwiftRValueType();
CanType loweredBridgedTy = v.getType().getSwiftRValueType();
if (loweredNativeTy == loweredBridgedTy)
return v;
if (loweredNativeTy.getAnyOptionalObjectType()) {
return gen.emitOptionalToOptional(loc, v, nativeTy,
emitCBridgedToNativeValue);
}
// If the output is a bridged type, convert it back to a native type.
#define BRIDGE_TYPE(BridgedModule,BridgedType, NativeModule,NativeType,Opt) \
if (loweredNativeTy == gen.SGM.Types.get##NativeType##Type() && \
loweredBridgedTy == gen.SGM.Types.get##BridgedType##Type()) { \
return emitBridge##BridgedType##To##NativeType(gen, loc, v); \
}
#include "swift/SIL/BridgedTypes.def"
// Bridge Objective-C to thick metatypes.
if (auto bridgedMetaTy = dyn_cast<AnyMetatypeType>(loweredBridgedTy)){
if (bridgedMetaTy->getRepresentation() == MetatypeRepresentation::ObjC) {
SILValue native = gen.B.emitObjCToThickMetatype(loc, v.getValue(),
gen.getLoweredType(loweredNativeTy));
return ManagedValue(native, v.getCleanup());
}
}
// Bridge UnsafePointer types back to C*Pointer.
if (isUnsafePointerType(gen, loweredBridgedTy)
&& isCPointerType(gen, loweredNativeTy)) {
return emitBridgeUnsafePointerToCPointer(gen, loc, v, loweredNativeTy);
}
// Bridge blocks back into native function types.
auto bridgedFTy = dyn_cast<SILFunctionType>(loweredBridgedTy);
if (bridgedFTy
&& bridgedFTy->getRepresentation() == FunctionType::Representation::Block){
auto nativeFTy = cast<SILFunctionType>(loweredNativeTy);
if (nativeFTy->getRepresentation() != FunctionType::Representation::Block)
return gen.emitBlockToFunc(loc, v, nativeFTy);
}
return v;
}
ManagedValue SILGenFunction::emitBridgedToNativeValue(SILLocation loc,
ManagedValue v,
AbstractCC srcCC,
CanType nativeTy) {
switch (srcCC) {
case AbstractCC::Freestanding:
case AbstractCC::Method:
case AbstractCC::WitnessMethod:
// No additional bridging needed for native functions.
return v;
case AbstractCC::C:
case AbstractCC::ObjCMethod:
return emitCBridgedToNativeValue(*this, loc, v, getLoweredType(nativeTy));
}
llvm_unreachable("bad CC");
}
RValue SILGenFunction::emitEmptyTupleRValue(SILLocation loc) {
return RValue(CanType(TupleType::getEmpty(F.getASTContext())));
}
/// Destructure (potentially) recursive assignments into tuple expressions
/// down to their scalar stores.
static void emitAssignExprRecursive(AssignExpr *S, RValue &&Src,
Expr *Dest, SILGenFunction &Gen) {
// If the destination is a tuple, recursively destructure.
if (auto *TE = dyn_cast<TupleExpr>(Dest)) {
SmallVector<RValue, 4> elements;
std::move(Src).extractElements(elements);
unsigned EltNo = 0;
for (Expr *DestElem : TE->getElements()) {
emitAssignExprRecursive(S,
std::move(elements[EltNo++]),
DestElem, Gen);
}
return;
}
// If the destination is '_', do nothing.
if (isa<DiscardAssignmentExpr>(Dest))
return;
// Otherwise, emit the scalar assignment.
LValue DstLV = Gen.emitLValue(Dest);
Gen.emitAssignToLValue(S, std::move(Src), DstLV);
}
RValue RValueEmitter::visitAssignExpr(AssignExpr *E, SGFContext C) {
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
// Handle lvalue-to-lvalue assignments with a high-level copy_addr instruction
// if possible.
if (auto *LE = dyn_cast<LoadExpr>(E->getSrc())) {
if (!isa<TupleExpr>(E->getDest())
&& E->getDest()->getType()->isEqual(LE->getSubExpr()->getType())) {
auto SrcLV = SGF.emitLValue(cast<LoadExpr>(E->getSrc())->getSubExpr());
SGF.emitAssignLValueToLValue(E, SrcLV, SGF.emitLValue(E->getDest()));
return SGF.emitEmptyTupleRValue(E);
}
}
// Handle tuple destinations by destructuring them if present.
emitAssignExprRecursive(E, visit(E->getSrc()), E->getDest(), SGF);
return SGF.emitEmptyTupleRValue(E);
}
RValue RValueEmitter::visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C) {
assert(E->getDepth() < SGF.BindOptionalFailureDests.size());
auto failureDest =
SGF.BindOptionalFailureDests[SGF.BindOptionalFailureDests.size()
- E->getDepth() - 1];
// Create a temporary of type Optional<T>.
auto &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
auto temp = SGF.emitTemporary(E, optTL);
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), temp.get());
SILValue addr = temp->getAddress();
// Check whether the optional has a value.
SILBasicBlock *hasValueBB = SGF.createBasicBlock();
SILBasicBlock *hasNoValueBB = SGF.createBasicBlock();
SILValue hasValue = SGF.emitDoesOptionalHaveValue(E, addr);
SGF.B.createCondBranch(E, hasValue, hasValueBB, hasNoValueBB);
// If not, thread out through a bunch of cleanups.
SGF.B.emitBlock(hasNoValueBB);
SGF.Cleanups.emitBranchAndCleanups(failureDest, E);
// If so, get that value as the result of our expression.
SGF.B.emitBlock(hasValueBB);
auto optValue = temp->getManagedAddress();
auto resultValue = SGF.emitGetOptionalValueFrom(E, optValue, optTL, C);
return RValue(SGF, E, resultValue);
}
namespace {
/// A RAII object to save and restore BindOptionalFailureDest.
class RestoreOptionalFailureDest {
SILGenFunction &SGF;
#ifndef NDEBUG
unsigned Depth;
#endif
public:
RestoreOptionalFailureDest(SILGenFunction &SGF, JumpDest &&dest)
: SGF(SGF)
#ifndef NDEBUG
, Depth(SGF.BindOptionalFailureDests.size())
#endif
{
SGF.BindOptionalFailureDests.push_back(std::move(dest));
}
~RestoreOptionalFailureDest() {
assert(SGF.BindOptionalFailureDests.size() == Depth + 1);
SGF.BindOptionalFailureDests.pop_back();
}
};
}
RValue RValueEmitter::visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C) {
// Allocate a temporary for the Optional<T> if we didn't get one
// from the context. This needs to happen outside of the cleanups
// scope we're about to push.
auto &optTL = SGF.getTypeLowering(E->getType());
std::unique_ptr<TemporaryInitialization> optTemp;
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext = optInit && optInit->canForwardInBranch();
if (!usingProvidedContext) {
optTemp = SGF.emitTemporary(E, optTL);
optInit = optTemp.get();
}
// Enter a cleanups scope.
FullExpr scope(SGF.Cleanups, E);
// Install a new optional-failure destination just outside of the
// cleanups scope.
SILBasicBlock *failureBB = SGF.createBasicBlock();
RestoreOptionalFailureDest restoreFailureDest(SGF,
JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(), E));
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), optInit);
// We fell out of the normal result, which generated a T? as either
// a scalar in subResult or directly into optInit.
// This concludes the conditional scope.
scope.pop();
// Branch to the continuation block.
SILBasicBlock *contBB = SGF.createBasicBlock();
SGF.B.createBranch(E, contBB);
// If control branched to the failure block, inject .None into the
// result type.
SGF.B.emitBlock(failureBB);
// FIXME: reset optInit here?
SILValue resultAddr = optInit->getAddressOrNull();
assert(resultAddr || optInit->kind == Initialization::Kind::Ignored);
if (resultAddr) {
SGF.emitInjectOptionalNothingInto(E, resultAddr, optTL);
}
// FIXME: finish optInit within a conditional scope.
SGF.B.createBranch(E, contBB);
// Emit the continuation block.
SGF.B.emitBlock(contBB);
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
assert(optTemp);
auto result = optTemp->getManagedAddress();
if (!optTL.isAddressOnly()) {
auto optValue = SGF.B.createLoad(E, result.forward(SGF));
result = SGF.emitManagedRValueWithCleanup(optValue, optTL);
}
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitForceValueExpr(ForceValueExpr *E, SGFContext C) {
return emitForceValue(E, E->getSubExpr(), 0, C);
}
/// Emit an expression in a forced context.
///
/// \param loc - the location that is causing the force
/// \param E - the forced expression
/// \param numOptionalEvaluations - the number of enclosing
/// OptionalEvaluationExprs that we've opened.
RValue RValueEmitter::emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C) {
auto valueType = E->getType()->getAnyOptionalObjectType();
assert(valueType);
E = E->getSemanticsProvidingExpr();
// If the subexpression is a conditional checked cast, emit an unconditional
// cast, which drastically simplifies the generated SIL for something like:
//
// (x as Foo)!
if (auto checkedCast = dyn_cast<ConditionalCheckedCastExpr>(E)) {
return emitUnconditionalCheckedCast(checkedCast->getSubExpr(),
loc, valueType,
checkedCast->getCastKind(),
C);
}
// If the subexpression is a monadic optional operation, peephole
// the emission of the operation.
// force down into the operation.
if (auto eval = dyn_cast<OptionalEvaluationExpr>(E)) {
CleanupLocation cleanupLoc = CleanupLocation::getCleanupLocation(loc);
SILBasicBlock *failureBB;
JumpDest failureDest(cleanupLoc);
// Set up an optional-failure scope (which cannot actually return).
// We can just borrow the enclosing one if we're in a nested context.
if (numOptionalEvaluations) {
failureBB = nullptr; // remember that we did this
failureDest = SGF.BindOptionalFailureDests.back();
} else {
failureBB = SGF.createBasicBlock();
failureDest = JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(),
cleanupLoc);
}
RestoreOptionalFailureDest restoreFailureDest(SGF, std::move(failureDest));
RValue result = emitForceValue(loc, eval->getSubExpr(),
numOptionalEvaluations + 1, C);
// Emit the failure destination, but only if actually used.
if (failureBB->pred_empty()) {
failureBB->eraseFromParent();
} else {
SILBuilder failureBuilder(failureBB);
auto boolTy = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto trueV = failureBuilder.createIntegerLiteral(loc, boolTy, 1);
failureBuilder.createCondFail(loc, trueV);
failureBuilder.createUnreachable(loc);
}
return result;
}
// Handle injections.
if (auto injection = dyn_cast<InjectIntoOptionalExpr>(E)) {
auto subexpr = injection->getSubExpr()->getSemanticsProvidingExpr();
// An injection of a bind is the idiom for a conversion between
// optional types (e.g. ImplicitlyUnwrappedOptional<T> -> Optional<T>).
// Handle it specially to avoid unnecessary control flow.
if (auto bindOptional = dyn_cast<BindOptionalExpr>(subexpr)) {
if (bindOptional->getDepth() < numOptionalEvaluations) {
return emitForceValue(loc, bindOptional->getSubExpr(),
numOptionalEvaluations, C);
}
}
// Otherwise, just emit the injected value directly into the result.
return SGF.emitRValue(injection->getSubExpr(), C);
}
// Otherwise, emit the value into memory and use the optional intrinsic.
const TypeLowering &optTL = SGF.getTypeLowering(E->getType());
auto optTemp = SGF.emitTemporary(E, optTL);
SGF.emitExprInto(E, optTemp.get());
ManagedValue V =
SGF.emitGetOptionalValueFrom(loc, optTemp->getManagedAddress(), optTL, C);
return RValue(SGF, loc, valueType->getCanonicalType(), V);
}
RValue RValueEmitter::visitOpenExistentialExpr(OpenExistentialExpr *E,
SGFContext C) {
// Emit the existential value.
ManagedValue existentialValue
= SGF.emitRValueAsSingleValue(E->getExistentialValue());
// Open the existential value into the opened archetype value.
SILValue archetypeValue;
if (existentialValue.getValue().getType().isAddress()) {
archetypeValue = SGF.B.createOpenExistential(
E, existentialValue.forward(SGF),
SGF.getLoweredType(E->getOpaqueValue()->getType()));
} else {
assert(existentialValue.getValue().getType().isObject());
archetypeValue = SGF.B.createOpenExistentialRef(
E, existentialValue.forward(SGF),
SGF.getLoweredType(E->getOpaqueValue()->getType()));
}
// Register the opaque value for the projected existential.
SILGenFunction::OpaqueValueRAII opaqueValueRAII(SGF, E->getOpaqueValue(),
archetypeValue,
/*destroy=*/false);
return visit(E->getSubExpr(), C);
}
RValue RValueEmitter::visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C) {
assert(SGF.OpaqueValues.count(E) && "Didn't bind OpaqueValueExpr");
auto &entry = SGF.OpaqueValues[E];
// If the opaque value is uniquely referenced, we can just return the
// value with a cleanup. There is no need to retain it separately.
if (E->isUniquelyReferenced()) {
assert(!entry.second &&"Uniquely-referenced opaque value already consumed");
entry.second = true;
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(entry.first));
}
// Retain the value.
entry.second = true;
return RValue(SGF, E, SGF.emitManagedRetain(E, entry.first));
}
RValue SILGenFunction::emitRValue(Expr *E, SGFContext C) {
return RValueEmitter(*this).visit(E, C);
}
void SILGenFunction::emitIgnoredExpr(Expr *E) {
FullExpr scope(Cleanups, CleanupLocation(E));
// Evaluate the expression as an lvalue or rvalue, discarding the result.
if (E->getType()->is<LValueType>()) {
emitLValue(E);
} else {
// If it is convenient to avoid loading the result, don't bother.
emitRValue(E, SGFContext::AllowPlusZero);
}
}
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue SILGenFunction::emitRValueAsSingleValue(Expr *E, SGFContext C) {
return emitRValue(E, C).getAsSingleValue(*this, E);
}