Files
swift-mirror/lib/Sema/CSApply.cpp
Joe Pamer a17cec6cb2 Some test and diagnostic cleanup:
- Mine conjunction constraints for constraint failure data. (rdar://problem/16833763)
- Rather than crash, add a diagnostic to signify a missing user constraint. (rdar://problem/16747055) I don't have a deterministic repro for this to include as a test, but users hit it from time to time, I'd like to address this issue holistically, and we're hoping that the new diagnostic will help us collect isolated repros.
- As promised, remove the temporary "compiler_submit_version" build configuration predicate in time for WWDC. (rdar://problem/16380797)

Swift SVN r17705
2014-05-08 18:46:08 +00:00

4833 lines
188 KiB
C++

//===--- CSApply.cpp - Constraint Application -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements application of a solution to a constraint
// system to a particular expression, resulting in a
// fully-type-checked expression.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/Parse/Lexer.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
using namespace constraints;
/// \brief Retrieve the fixed type for the given type variable.
Type Solution::getFixedType(TypeVariableType *typeVar) const {
auto knownBinding = typeBindings.find(typeVar);
assert(knownBinding != typeBindings.end());
return knownBinding->second;
}
Type Solution::computeSubstitutions(Type origType, DeclContext *dc,
Type openedType,
SmallVectorImpl<Substitution> &substitutions) const {
auto &tc = getConstraintSystem().getTypeChecker();
auto &ctx = tc.Context;
// Gather the substitutions from archetypes to concrete types, found
// by identifying all of the type variables in the original type
// FIXME: It's unfortunate that we're using archetypes here, but we don't
// have another way to map from type variables back to dependent types (yet);
TypeSubstitutionMap typeSubstitutions;
auto type = openedType.transform([&](Type type) -> Type {
if (auto tv = dyn_cast<TypeVariableType>(type.getPointer())) {
auto archetype = tv->getImpl().getArchetype();
auto simplified = getFixedType(tv);
typeSubstitutions[archetype] = simplified;
return SubstitutedType::get(archetype, simplified,
tc.Context);
}
return type;
});
auto currentModule = getConstraintSystem().DC->getParentModule();
SmallVector<ProtocolConformance *, 4> currentConformances;
ArrayRef<Requirement> requirements;
if (auto genericFn = origType->getAs<GenericFunctionType>()) {
requirements = genericFn->getRequirements();
} else {
requirements = dc->getDeclaredTypeOfContext()->getAnyNominal()
->getGenericRequirements();
}
for (const auto &req : requirements) {
// Drop requirements for parameters that have been constrained away to
// concrete types.
auto firstArchetype
= ArchetypeBuilder::mapTypeIntoContext(dc, req.getFirstType())
->getAs<ArchetypeType>();
if (!firstArchetype)
continue;
switch (req.getKind()) {
case RequirementKind::Conformance:
// If this is a protocol conformance requirement, get the conformance
// and record it.
if (auto protoType = req.getSecondType()->getAs<ProtocolType>()) {
assert(firstArchetype
== substitutions.back().Archetype && "Archetype out-of-sync");
ProtocolConformance *conformance = nullptr;
Type replacement = substitutions.back().Replacement;
bool conforms = tc.conformsToProtocol(replacement,
protoType->getDecl(),
getConstraintSystem().DC,
&conformance);
assert((conforms ||
replacement->isExistentialType() ||
replacement->is<GenericTypeParamType>()) &&
"Constraint system missed a conformance?");
(void)conforms;
assert(conformance ||
replacement->isExistentialType() ||
replacement->is<ArchetypeType>() ||
replacement->is<GenericTypeParamType>());
currentConformances.push_back(conformance);
break;
}
break;
case RequirementKind::SameType:
// Same-type requirements aren't recorded in substitutions.
break;
case RequirementKind::WitnessMarker:
// Flush the current conformances.
if (!substitutions.empty()) {
substitutions.back().Conformance
= ctx.AllocateCopy(currentConformances);
currentConformances.clear();
}
// Each value witness marker starts a new substitution.
substitutions.push_back(Substitution());
substitutions.back().Archetype = firstArchetype;
substitutions.back().Replacement =
tc.substType(currentModule, substitutions.back().Archetype,
typeSubstitutions);
break;
}
}
// Flush the final conformances.
if (!substitutions.empty()) {
substitutions.back().Conformance = ctx.AllocateCopy(currentConformances);
currentConformances.clear();
}
return type;
}
/// \brief Find a particular named function witness for a type that conforms to
/// the given protocol.
///
/// \param tc The type check we're using.
///
/// \param dc The context in which we need a witness.
///
/// \param type The type whose witness to find.
///
/// \param proto The protocol to which the type conforms.
///
/// \param name The name of the requirement.
///
/// \param diag The diagnostic to emit if the protocol definition doesn't
/// have a requirement with the given name.
///
/// \returns The named witness.
static FuncDecl *findNamedWitness(TypeChecker &tc, DeclContext *dc,
Type type, ProtocolDecl *proto,
Identifier name,
Diag<> diag) {
// Find the named requirement.
FuncDecl *requirement = nullptr;
for (auto member : proto->getMembers()) {
auto fd = dyn_cast<FuncDecl>(member);
if (!fd || !fd->hasName())
continue;
if (fd->getName() == name) {
requirement = fd;
break;
}
}
if (!requirement || requirement->isInvalid()) {
tc.diagnose(proto->getLoc(), diag);
return nullptr;
}
// Find the member used to satisfy the named requirement.
ProtocolConformance *conformance = 0;
bool conforms = tc.conformsToProtocol(type, proto, dc, &conformance);
if (!conforms)
return nullptr;
// For an archetype, just return the requirement from the protocol. There
// are no protocol conformance tables.
if (type->is<ArchetypeType>()) {
return requirement;
}
assert(conformance && "Missing conformance information");
// FIXME: Dropping substitutions here.
return cast<FuncDecl>(conformance->getWitness(requirement, &tc).getDecl());
}
/// Adjust the given type to become the self type when referring to
/// the given member.
static Type adjustSelfTypeForMember(Type baseTy, ValueDecl *member,
bool IsDirectPropertyAccess,
DeclContext *UseDC) {
auto baseObjectTy = baseTy->getLValueOrInOutObjectType();
if (auto func = dyn_cast<AbstractFunctionDecl>(member)) {
// If 'self' is an inout type, turn the base type into an lvalue
// type with the same qualifiers.
auto selfTy = func->getType()->getAs<AnyFunctionType>()->getInput();
if (selfTy->is<InOutType>()) {
// Unless we're looking at a nonmutating existential member. In which
// case, the member will be modeled as an inout but ExistentialMemberRef
// and ArchetypeMemberRef want to take the base as an rvalue.
if (auto *fd = dyn_cast<FuncDecl>(func))
if (!fd->isMutating() &&
(baseObjectTy->isExistentialType() ||
baseObjectTy->is<ArchetypeType>()))
return baseObjectTy;
return InOutType::get(baseObjectTy);
}
// Otherwise, return the rvalue type.
return baseObjectTy;
}
// If the base of the access is mutable, then we may be invoking a getter or
// setter and the base needs to be mutable.
if (auto *VD = dyn_cast<VarDecl>(member)) {
if (VD->hasAccessorFunctions() && baseTy->is<InOutType>() &&
!IsDirectPropertyAccess)
return InOutType::get(baseObjectTy);
// If the member is immutable in this context, the base is always an
// unqualified baseObjectTy.
if (!VD->isSettable(UseDC))
return baseObjectTy;
}
// If the base of the subscript is mutable, then we may be invoking a mutable
// getter or setter.
if (isa<SubscriptDecl>(member) && !baseTy->hasReferenceSemantics() &&
baseTy->is<InOutType>())
return InOutType::get(baseObjectTy);
// Accesses to non-function members in value types are done through an @lvalue
// type.
if (baseTy->is<InOutType>())
return LValueType::get(baseObjectTy);
// Accesses to members in values of reference type (classes, metatypes) are
// always done through a the reference to self. Accesses to value types with
// a non-mutable self are also done through the base type.
return baseTy;
}
/// Return true if a MemberReferenceExpr with the specified base and member in
/// the specified DeclContext should be implicitly marked as
/// "isDirectPropertyAccess".
static bool isImplicitDirectMemberReference(Expr *base, VarDecl *member,
DeclContext *DC) {
// Properties that have storage and accessors are frequently accessed through
// accessors. However, in the init and destructor methods for the type
// immediately containing the property, accesses are done direct.
if (auto *AFD_DC = dyn_cast<AbstractFunctionDecl>(DC))
if (member->hasStorage() &&
// In a ctor or dtor.
(isa<ConstructorDecl>(AFD_DC) || isa<DestructorDecl>(AFD_DC)) &&
// Ctor or dtor are for immediate class, not a derived class.
AFD_DC->getParent()->getDeclaredTypeOfContext()->getCanonicalType() ==
member->getDeclContext()->getDeclaredTypeOfContext()->getCanonicalType() &&
// Is a "self.property" reference.
isa<DeclRefExpr>(base) &&
AFD_DC->getImplicitSelfDecl() == cast<DeclRefExpr>(base)->getDecl()) {
// Access this directly instead of going through (e.g.) observing or
// trivial accessors.
return true;
}
// If the value is always directly accessed from this context, do it.
return member->isUseFromContextDirect(DC);
}
namespace {
/// \brief Rewrites an expression by applying the solution of a constraint
/// system to that expression.
class ExprRewriter : public ExprVisitor<ExprRewriter, Expr *> {
public:
ConstraintSystem &cs;
DeclContext *dc;
const Solution &solution;
private:
/// \brief Coerce the given tuple to another tuple type.
///
/// \param expr The expression we're converting.
///
/// \param fromTuple The tuple type we're converting from, which is the same
/// as \c expr->getType().
///
/// \param toTuple The tuple type we're converting to.
///
/// \param locator Locator describing where this tuple conversion occurs.
///
/// \param sources The sources of each of the elements to be used in the
/// resulting tuple, as provided by \c computeTupleShuffle.
///
/// \param variadicArgs The source indices that are mapped to the variadic
/// parameter of the resulting tuple, as provided by \c computeTupleShuffle.
Expr *coerceTupleToTuple(Expr *expr, TupleType *fromTuple,
TupleType *toTuple,
ConstraintLocatorBuilder locator,
SmallVectorImpl<int> &sources,
SmallVectorImpl<unsigned> &variadicArgs);
/// \brief Coerce the given scalar value to the given tuple type.
///
/// \param expr The expression to be coerced.
/// \param toTuple The tuple type to which the expression will be coerced.
/// \param toScalarIdx The index of the scalar field within the tuple type
/// \c toType.
/// \param locator Locator describing where this conversion occurs.
///
/// \returns The coerced expression, whose type will be equivalent to
/// \c toTuple.
Expr *coerceScalarToTuple(Expr *expr, TupleType *toTuple,
int toScalarIdx,
ConstraintLocatorBuilder locator);
/// \brief Coerce the given value to existential type.
///
/// \param expr The expression to be coerced.
/// \param toType The tupe to which the expression will be coerced.
/// \param locator Locator describing where this conversion occurs.
///
/// \return The coerced expression, whose type will be equivalent to
/// \c toType.
Expr *coerceExistential(Expr *expr, Type toType,
ConstraintLocatorBuilder locator);
/// \brief Coerce the given value to an existential metatype type.
///
/// \param expr The expression to be coerced.
/// \param toType The tupe to which the expression will be coerced.
/// \param locator Locator describing where this conversion occurs.
///
/// \return The coerced expression, whose type will be equivalent to
/// \c toType.
Expr *coerceExistentialMetatype(Expr *expr, Type toType,
ConstraintLocatorBuilder locator);
/// \brief Coerce the expression to another type via a user-defined
/// conversion.
///
/// \param expr The expression to be coerced.
/// \param toType The tupe to which the expression will be coerced.
/// \param locator Locator describing where this conversion occurs.
///
/// \return The coerced expression, whose type will be equivalent to
/// \c toType.
Expr *coerceViaUserConversion(Expr *expr, Type toType,
ConstraintLocatorBuilder locator);
/// \brief Coerce an expression of (possibly unchecked) optional
/// type to have a different (possibly unchecked) optional type.
Expr *coerceOptionalToOptional(Expr *expr, Type toType,
ConstraintLocatorBuilder locator);
/// \brief Coerce an expression of implicitly unwrapped optional type to its
/// underlying value type, in the correct way for an implicit
/// look-through.
Expr *coerceImplicitlyUnwrappedOptionalToValue(Expr *expr, Type objTy,
ConstraintLocatorBuilder locator);
public:
/// \brief Build a reference to the given declaration.
Expr *buildDeclRef(ValueDecl *decl, SourceLoc loc, Type openedType,
ConstraintLocatorBuilder locator,
bool specialized, bool implicit,
bool isDirectPropertyAccess) {
// Determine the declaration selected for this overloaded reference.
auto &ctx = cs.getASTContext();
// If this is a member of a nominal type, build a reference to the
// member with an implied base type.
if (decl->getDeclContext()->isTypeContext() && isa<FuncDecl>(decl)) {
assert(isa<FuncDecl>(decl) && "Can only refer to functions here");
assert(cast<FuncDecl>(decl)->isOperator() && "Must be an operator");
auto openedFnType = openedType->castTo<FunctionType>();
auto baseTy = simplifyType(openedFnType->getInput())
->getRValueInstanceType();
Expr *base = TypeExpr::createImplicitHack(loc, baseTy, ctx);
return buildMemberRef(base, openedType, SourceLoc(), decl,
loc, openedFnType->getResult(),
locator, implicit, isDirectPropertyAccess);
}
// If this is a declaration with generic function type, build a
// specialized reference to it.
if (auto genericFn
= decl->getInterfaceType()->getAs<GenericFunctionType>()) {
auto dc = decl->getPotentialGenericDeclContext();
SmallVector<Substitution, 4> substitutions;
auto type = solution.computeSubstitutions(genericFn, dc, openedType,
substitutions);
return new (ctx) DeclRefExpr(ConcreteDeclRef(ctx, decl, substitutions),
loc, implicit, isDirectPropertyAccess,
type);
}
auto type = simplifyType(openedType);
return new (ctx) DeclRefExpr(decl, loc, implicit, isDirectPropertyAccess,
type);
}
/// Describes an opened existential that has not yet been closed.
struct OpenedExistential {
/// The existential value being opened.
Expr *ExistentialValue;
/// The opaque value (of archetype type) stored within the
/// existential.
OpaqueValueExpr *OpaqueValue;
};
/// A mapping from archetype types that resulted from opening an
/// existential to the opened existential. This mapping captures
/// only those existentials that have been opened, but for which
/// we have not yet created an \c OpenExistentialExpr.
llvm::SmallDenseMap<ArchetypeType *, OpenedExistential> OpenedExistentials;
/// Open an existential value into a new, opaque value of
/// archetype type.
///
/// \param base An expression of existential type whose value will
/// be opened.
///
/// \returns A pair (expr, type) that provides a reference to the value
/// stored within the expression or its metatype (if the base was a
/// metatype) and the new archetype that describes the dynamic type stored
/// within the existential.
std::tuple<Expr *, ArchetypeType *>
openExistentialReference(Expr *base) {
auto &tc = cs.getTypeChecker();
base = tc.coerceToRValue(base);
auto baseTy = base->getType()->getRValueType();
bool isMetatype = false;
if (auto metaTy = baseTy->getAs<AnyMetatypeType>()) {
isMetatype = true;
baseTy = metaTy->getInstanceType();
}
assert(baseTy->isAnyExistentialType() && "Type must be existential");
// Create the archetype.
SmallVector<ProtocolDecl *, 4> protocols;
auto &ctx = tc.Context;
baseTy->getAnyExistentialTypeProtocols(protocols);
auto archetype = ArchetypeType::getOpened(baseTy);
// Create the opaque opened value. If we started with a
// metatype, it's a metatype.
Type opaqueType = archetype;
if (isMetatype)
opaqueType = MetatypeType::get(archetype);
auto archetypeVal = new (ctx) OpaqueValueExpr(base->getLoc(), opaqueType);
archetypeVal->setUniquelyReferenced(true);
// Record this opened existential.
OpenedExistentials[archetype] = { base, archetypeVal };
return std::make_tuple(archetypeVal, archetype);
}
/// Is the given function a constructor of a class or protocol?
/// Such functions are subject to DynamicSelf manipulations.
///
/// We want to avoid taking the DynamicSelf paths for other
/// constructors for two reasons:
/// - it's an unnecessary cost
/// - optionality preservation has a problem with constructors on
/// optional types
static bool isPolymorphicConstructor(AbstractFunctionDecl *fn) {
if (!isa<ConstructorDecl>(fn))
return false;
DeclContext *parent = fn->getParent();
if (auto extension = dyn_cast<ExtensionDecl>(parent))
parent = extension->getExtendedType()->getAnyNominal();
return (isa<ClassDecl>(parent) || isa<ProtocolDecl>(parent));
}
/// \brief Build a new member reference with the given base and member.
Expr *buildMemberRef(Expr *base, Type openedFullType, SourceLoc dotLoc,
ValueDecl *member, SourceLoc memberLoc,
Type openedType, ConstraintLocatorBuilder locator,
bool Implicit, bool IsDirectPropertyAccess) {
auto &tc = cs.getTypeChecker();
auto &context = tc.Context;
bool isSuper = base->isSuperExpr();
Type baseTy = base->getType()->getRValueType();
// Explicit member accesses are permitted to implicitly look
// through ImplicitlyUnwrappedOptional<T>.
if (!Implicit) {
if (auto objTy = cs.lookThroughImplicitlyUnwrappedOptionalType(baseTy)) {
base = coerceImplicitlyUnwrappedOptionalToValue(base, objTy, locator);
if (!base) return nullptr;
baseTy = objTy;
}
}
// Figure out the actual base type, and whether we have an instance of
// that type or its metatype.
bool baseIsInstance = true;
if (auto baseMeta = baseTy->getAs<AnyMetatypeType>()) {
baseIsInstance = false;
baseTy = baseMeta->getInstanceType();
}
// Produce a reference to the member, the type of the container it
// resides in, and the type produced by the reference itself.
Type containerTy;
ConcreteDeclRef memberRef;
Type refTy;
Type dynamicSelfFnType;
if (openedFullType->hasTypeVariable()) {
// We require substitutions. Figure out what they are.
// Figure out the declaration context where we'll get the generic
// parameters.
auto dc = member->getPotentialGenericDeclContext();
// Build a reference to the generic member.
SmallVector<Substitution, 4> substitutions;
refTy = solution.computeSubstitutions(member->getInterfaceType(),
dc,
openedFullType,
substitutions);
memberRef = ConcreteDeclRef(context, member, substitutions);
if (auto openedFullFnType = openedFullType->getAs<FunctionType>()) {
auto openedBaseType = openedFullFnType->getInput()
->getRValueInstanceType();
containerTy = solution.simplifyType(tc, openedBaseType);
}
} else {
// No substitutions required; the declaration reference is simple.
containerTy = member->getDeclContext()->getDeclaredTypeOfContext();
memberRef = member;
refTy = tc.getUnopenedTypeOfReference(member, Type(), dc,
/*wantInterfaceType=*/true);
}
// If this is a method whose result type is dynamic Self, or a
// construction, replace the result type with the actual object type.
if (auto func = dyn_cast<AbstractFunctionDecl>(member)) {
if ((isa<FuncDecl>(func) && cast<FuncDecl>(func)->hasDynamicSelf()) ||
isPolymorphicConstructor(func)) {
// For a DynamicSelf method on an existential, open up the
// existential.
if (func->getExtensionType()->is<ProtocolType>() &&
baseTy->isAnyExistentialType()) {
std::tie(base, baseTy) = openExistentialReference(base);
containerTy = baseTy;
openedType = openedType->replaceCovariantResultType(
baseTy,
func->getNumParamPatterns()-1);
// The member reference is a specialized declaration
// reference that replaces the Self of the protocol with
// the existential type; change it to refer to the opened
// archetype type.
// FIXME: We should do this before we create the
// specialized declaration reference, but that requires
// redundant hasDynamicSelf checking.
auto oldSubstitutions = memberRef.getSubstitutions();
SmallVector<Substitution, 4> newSubstitutions(
oldSubstitutions.begin(),
oldSubstitutions.end());
auto &selfSubst = newSubstitutions.front();
assert(selfSubst.Archetype->getSelfProtocol() &&
"Not the Self archetype for a protocol?");
selfSubst.Replacement = baseTy;
unsigned numConformances = selfSubst.Conformance.size();
auto newConformances
= context.Allocate<ProtocolConformance *>(numConformances);
std::fill(newConformances.begin(), newConformances.end(), nullptr);
selfSubst.Conformance = newConformances;
memberRef = ConcreteDeclRef(context, memberRef.getDecl(),
newSubstitutions);
}
refTy = refTy->replaceCovariantResultType(containerTy,
func->getNumParamPatterns());
dynamicSelfFnType = refTy->replaceCovariantResultType(
baseTy,
func->getNumParamPatterns());
// If the type after replacing DynamicSelf with the provided base
// type is no different, we don't need to perform a conversion here.
if (refTy->isEqual(dynamicSelfFnType))
dynamicSelfFnType = nullptr;
}
}
// If we're referring to the member of a module, it's just a simple
// reference.
if (baseTy->is<ModuleType>()) {
assert(!IsDirectPropertyAccess &&
"Direct property access doesn't make sense for this");
assert(!dynamicSelfFnType && "No reference type to convert to");
Expr *ref = new (context) DeclRefExpr(memberRef, memberLoc, Implicit);
ref->setType(refTy);
return new (context) DotSyntaxBaseIgnoredExpr(base, dotLoc, ref);
}
// Otherwise, we're referring to a member of a type.
// Is it an archetype or existential member?
bool isArchetypeOrExistentialRef
= isa<ProtocolDecl>(member->getDeclContext()) &&
(baseTy->is<ArchetypeType>() || baseTy->isAnyExistentialType());
// If we are referring to an optional member of a protocol.
if (isArchetypeOrExistentialRef && member->getAttrs().isOptional()) {
auto proto =tc.getProtocol(memberLoc, KnownProtocolKind::AnyObject);
if (!proto)
return nullptr;
baseTy = proto->getDeclaredType();
}
// References to properties with accessors and storage usually go
// through the accessors, but sometimes are direct.
if (auto *VD = dyn_cast<VarDecl>(member))
IsDirectPropertyAccess |= isImplicitDirectMemberReference(base, VD, dc);
if (baseIsInstance) {
// Convert the base to the appropriate container type, turning it
// into an lvalue if required.
Type selfTy;
if (isArchetypeOrExistentialRef)
selfTy = baseTy;
else
selfTy = containerTy;
// If the base is already an lvalue with the right base type, we can
// pass it as an inout qualified type.
if (selfTy->isEqual(baseTy) && !selfTy->hasReferenceSemantics())
if (base->getType()->is<LValueType>())
selfTy = InOutType::get(selfTy);
base = coerceObjectArgumentToType(
base, selfTy, member, IsDirectPropertyAccess,
locator.withPathElement(ConstraintLocator::MemberRefBase));
} else {
// Convert the base to an rvalue of the appropriate metatype.
base = coerceToType(base,
MetatypeType::get(isArchetypeOrExistentialRef
? baseTy
: containerTy),
locator.withPathElement(
ConstraintLocator::MemberRefBase));
if (!base)
return nullptr;
base = tc.coerceToRValue(base);
}
assert(base && "Unable to convert base?");
// Handle archetype and existential references.
if (isArchetypeOrExistentialRef) {
assert(!IsDirectPropertyAccess &&
"Direct property access doesn't make sense for this");
assert(!dynamicSelfFnType &&
"Archetype/existential DynamicSelf with extra conversion");
Expr *ref;
if (member->getAttrs().isOptional()) {
base = tc.coerceToRValue(base);
if (!base) return nullptr;
ref = new (context) DynamicMemberRefExpr(base, dotLoc, memberRef,
memberLoc);
} else {
assert(!dynamicSelfFnType && "Converted type doesn't make sense here");
ref = new (context) MemberRefExpr(base, dotLoc, memberRef,
memberLoc, Implicit,
IsDirectPropertyAccess);
cast<MemberRefExpr>(ref)->setIsSuper(isSuper);
}
ref->setImplicit(Implicit);
ref->setType(simplifyType(openedType));
return ref;
}
// For types and properties, build member references.
if (isa<TypeDecl>(member) || isa<VarDecl>(member)) {
assert(!dynamicSelfFnType && "Converted type doesn't make sense here");
auto result
= new (context) MemberRefExpr(base, dotLoc, memberRef,
memberLoc, Implicit,
IsDirectPropertyAccess);
result->setIsSuper(isSuper);
// Skip the synthesized 'self' input type of the opened type.
result->setType(simplifyType(openedType));
return result;
}
assert(!IsDirectPropertyAccess &&
"Direct property access doesn't make sense for this");
// Handle all other references.
Expr *ref = new (context) DeclRefExpr(memberRef, memberLoc, Implicit);
ref->setType(refTy);
// If the reference needs to be converted, do so now.
if (dynamicSelfFnType) {
ref = new (context) CovariantFunctionConversionExpr(ref,
dynamicSelfFnType);
}
ApplyExpr *apply;
if (isa<ConstructorDecl>(member)) {
// FIXME: Provide type annotation.
apply = new (context) ConstructorRefCallExpr(ref, base);
} else if (!baseIsInstance && member->isInstanceMember()) {
// Reference to an unbound instance method.
return new (context) DotSyntaxBaseIgnoredExpr(base, dotLoc, ref);
} else {
assert((!baseIsInstance || member->isInstanceMember()) &&
"can't call a static method on an instance");
apply = new (context) DotSyntaxCallExpr(ref, dotLoc, base);
}
return finishApply(apply, openedType, nullptr);
}
/// \brief Build a new dynamic member reference with the given base and
/// member.
Expr *buildDynamicMemberRef(Expr *base, SourceLoc dotLoc, ValueDecl *member,
SourceLoc memberLoc, Type openedType,
ConstraintLocatorBuilder locator) {
auto &context = cs.getASTContext();
// If we're specializing a polymorphic function, compute the set of
// substitutions and form the member reference.
Optional<ConcreteDeclRef> memberRef(member);
if (auto func = dyn_cast<FuncDecl>(member)) {
auto resultTy = func->getType()->castTo<AnyFunctionType>()->getResult();
(void)resultTy;
assert(!resultTy->is<PolymorphicFunctionType>() &&
"Polymorphic function type slipped through");
}
// The base must always be an rvalue.
base = cs.getTypeChecker().coerceToRValue(base);
if (!base) return nullptr;
if (auto objTy = cs.lookThroughImplicitlyUnwrappedOptionalType(base->getType())) {
base = coerceImplicitlyUnwrappedOptionalToValue(base, objTy, locator);
if (!base) return nullptr;
}
auto result = new (context) DynamicMemberRefExpr(base, dotLoc, *memberRef,
memberLoc);
result->setType(simplifyType(openedType));
return result;
}
/// \brief Describes either a type or the name of a type to be resolved.
typedef llvm::PointerUnion<Identifier, Type> TypeOrName;
/// \brief Convert the given literal expression via a protocol pair.
///
/// This routine handles the two-step literal conversion process used
/// by integer, float, character, extended grapheme cluster, and string
/// literals. The first step uses \c builtinProtocol while the second
/// step uses \c protocol.
///
/// \param literal The literal expression.
///
/// \param type The literal type. This type conforms to \c protocol,
/// and may also conform to \c builtinProtocol.
///
/// \param openedType The literal type as it was opened in the type system.
///
/// \param protocol The protocol that describes the literal requirement.
///
/// \param literalType Either the name of the associated type in
/// \c protocol that describes the argument type of the conversion function
/// (\c literalFuncName) or the argument type itself.
///
/// \param literalFuncName The name of the conversion function requirement
/// in \c protocol.
///
/// \param builtinProtocol The "builtin" form of the protocol, which
/// always takes builtin types and can only be properly implemented
/// by standard library types. If \c type does not conform to this
/// protocol, it's literal type will.
///
/// \param builtinLiteralType Either the name of the associated type in
/// \c builtinProtocol that describes the argument type of the builtin
/// conversion function (\c builtinLiteralFuncName) or the argument type
/// itself.
///
/// \param builtinLiteralFuncName The name of the conversion function
/// requirement in \c builtinProtocol.
///
/// \param isBuiltinArgType Function that determines whether the given
/// type is acceptable as the argument type for the builtin conversion.
///
/// \param brokenProtocolDiag The diagnostic to emit if the protocol
/// is broken.
///
/// \param brokenBuiltinProtocolDiag The diagnostic to emit if the builtin
/// protocol is broken.
///
/// \returns the converted literal expression.
Expr *convertLiteral(Expr *literal,
Type type,
Type openedType,
ProtocolDecl *protocol,
TypeOrName literalType,
Identifier literalFuncName,
ProtocolDecl *builtinProtocol,
TypeOrName builtinLiteralType,
Identifier builtinLiteralFuncName,
bool (*isBuiltinArgType)(Type),
Diag<> brokenProtocolDiag,
Diag<> brokenBuiltinProtocolDiag);
/// \brief Finish a function application by performing the appropriate
/// conversions on the function and argument expressions and setting
/// the resulting type.
///
/// \param apply The function application to finish type-checking, which
/// may be a newly-built expression.
///
/// \param openedType The "opened" type this expression had during
/// type checking, which will be used to specialize the resulting,
/// type-checked expression appropriately.
///
/// \param locator The locator for the original expression.
Expr *finishApply(ApplyExpr *apply, Type openedType,
ConstraintLocatorBuilder locator);
private:
/// \brief Retrieve the overload choice associated with the given
/// locator.
SelectedOverload getOverloadChoice(ConstraintLocator *locator) {
return *getOverloadChoiceIfAvailable(locator);
}
/// \brief Retrieve the overload choice associated with the given
/// locator.
Optional<SelectedOverload>
getOverloadChoiceIfAvailable(ConstraintLocator *locator) {
auto known = solution.overloadChoices.find(locator);
if (known != solution.overloadChoices.end())
return known->second;
return Nothing;
}
/// \brief Simplify the given type by substituting all occurrences of
/// type variables for their fixed types.
Type simplifyType(Type type) {
return solution.simplifyType(cs.getTypeChecker(), type);
}
public:
/// \brief Coerce the given expression to the given type.
///
/// This operation cannot fail.
///
/// \param expr The expression to coerce.
/// \param toType The type to coerce the expression to.
/// \param locator Locator used to describe where in this expression we are.
///
/// \returns the coerced expression, which will have type \c ToType.
Expr *coerceToType(Expr *expr, Type toType,
ConstraintLocatorBuilder locator);
/// \brief Coerce the given expression (which is the argument to a call) to
/// the given parameter type.
///
/// This operation cannot fail.
///
/// \param arg The argument expression.
/// \param paramType The parameter type.
/// \param locator Locator used to describe where in this expression we are.
///
/// \returns the coerced expression, which will have type \c ToType.
Expr *coerceCallArguments(Expr *arg, Type paramType,
ConstraintLocatorBuilder locator);
/// \brief Coerce the given object argument (e.g., for the base of a
/// member expression) to the given type.
///
/// \param expr The expression to coerce.
///
/// \param baseTy The base type
///
/// \param member The member being accessed.
///
/// \param IsDirectPropertyAccess True if this is a direct access to
/// computed properties that have storage.
///
/// \param locator Locator used to describe where in this expression we are.
Expr *coerceObjectArgumentToType(Expr *expr,
Type baseTy, ValueDecl *member,
bool IsDirectPropertyAccess,
ConstraintLocatorBuilder locator);
private:
/// \brief Build a new subscript.
///
/// \param base The base of the subscript.
/// \param index The index of the subscript.
/// \param locator The locator used to refer to the subscript.
Expr *buildSubscript(Expr *base, Expr *index,
ConstraintLocatorBuilder locator) {
// Determine the declaration selected for this subscript operation.
auto selected = getOverloadChoice(
cs.getConstraintLocator(
locator.withPathElement(
ConstraintLocator::SubscriptMember)));
auto choice = selected.choice;
auto subscript = cast<SubscriptDecl>(choice.getDecl());
auto &tc = cs.getTypeChecker();
auto baseTy = base->getType()->getRValueType();
// Check whether the base is 'super'.
bool isSuper = base->isSuperExpr();
// Handle accesses that implicitly look through ImplicitlyUnwrappedOptional<T>.
if (auto objTy = cs.lookThroughImplicitlyUnwrappedOptionalType(baseTy)) {
base = coerceImplicitlyUnwrappedOptionalToValue(base, objTy, locator);
if (!base) return nullptr;
}
// Figure out the index and result types.
auto containerTy
= subscript->getDeclContext()->getDeclaredTypeOfContext();
auto subscriptTy = simplifyType(selected.openedType);
auto indexTy = subscriptTy->castTo<AnyFunctionType>()->getInput();
auto resultTy = subscriptTy->castTo<AnyFunctionType>()->getResult();
// Coerce the index argument.
if (cs.getASTContext().LangOpts.StrictKeywordArguments) {
index = coerceCallArguments(index, indexTy,
locator.withPathElement(
ConstraintLocator::SubscriptIndex));
} else {
index = coerceToType(index, indexTy,
locator.withPathElement(
ConstraintLocator::SubscriptIndex));
}
if (!index)
return nullptr;
// Form the subscript expression.
// Handle dynamic lookup.
if (selected.choice.getKind() == OverloadChoiceKind::DeclViaDynamic ||
subscript->getAttrs().isOptional()) {
// If we've found an optional method in a protocol, the base type is
// AnyObject.
if (selected.choice.getKind() != OverloadChoiceKind::DeclViaDynamic) {
auto proto = tc.getProtocol(index->getStartLoc(),
KnownProtocolKind::AnyObject);
if (!proto)
return nullptr;
baseTy = proto->getDeclaredType();
}
base = coerceObjectArgumentToType(base, baseTy, subscript, false,
locator);
if (!base)
return nullptr;
auto subscriptExpr = new (tc.Context) DynamicSubscriptExpr(base,
index,
subscript);
subscriptExpr->setType(resultTy);
return subscriptExpr;
}
// Handle subscripting of generics.
if (subscript->getDeclContext()->isGenericContext()) {
auto dc = subscript->getDeclContext();
// Compute the substitutions used to reference the subscript.
SmallVector<Substitution, 4> substitutions;
solution.computeSubstitutions(subscript->getInterfaceType(),
dc,
selected.openedFullType,
substitutions);
// Convert the base.
auto openedFullFnType = selected.openedFullType->castTo<FunctionType>();
auto openedBaseType = openedFullFnType->getInput();
containerTy = solution.simplifyType(tc, openedBaseType);
base = coerceObjectArgumentToType(base, containerTy, subscript, false,
locator);
locator.withPathElement(ConstraintLocator::MemberRefBase);
if (!base)
return nullptr;
// Form the generic subscript expression.
auto subscriptExpr
= new (tc.Context) SubscriptExpr(base, index,
ConcreteDeclRef(tc.Context,
subscript,
substitutions));
subscriptExpr->setType(resultTy);
subscriptExpr->setIsSuper(isSuper);
return subscriptExpr;
}
Type selfTy = containerTy;
if (selfTy->isEqual(baseTy) && !selfTy->hasReferenceSemantics())
if (base->getType()->is<LValueType>())
selfTy = InOutType::get(selfTy);
// Coerce the base to the container type.
base = coerceObjectArgumentToType(base, selfTy, subscript, false,
locator);
if (!base)
return nullptr;
// Form a normal subscript.
auto *subscriptExpr
= new (tc.Context) SubscriptExpr(base, index, subscript);
subscriptExpr->setType(resultTy);
subscriptExpr->setIsSuper(isSuper);
return subscriptExpr;
}
/// \brief Build a new reference to another constructor.
Expr *buildOtherConstructorRef(Type openedFullType,
ConstructorDecl *ctor, SourceLoc loc,
bool implicit) {
auto &tc = cs.getTypeChecker();
auto &ctx = tc.Context;
// Compute the concrete reference.
ConcreteDeclRef ref;
Type resultTy;
if (ctor->getInterfaceType()->is<GenericFunctionType>()) {
// Compute the reference to the generic constructor.
SmallVector<Substitution, 4> substitutions;
resultTy = solution.computeSubstitutions(
ctor->getInterfaceType(),
ctor,
openedFullType,
substitutions);
ref = ConcreteDeclRef(ctx, ctor, substitutions);
// The constructor was opened with the allocating type, not the
// initializer type. Map the former into the latter.
auto resultFnTy = resultTy->castTo<FunctionType>();
auto selfTy = resultFnTy->getInput()->getRValueInstanceType();
if (!selfTy->hasReferenceSemantics())
selfTy = InOutType::get(selfTy);
resultTy = FunctionType::get(selfTy, resultFnTy->getResult(),
resultFnTy->getExtInfo());
} else {
ref = ConcreteDeclRef(ctor);
resultTy = ctor->getInitializerType();
}
// Build the constructor reference.
Expr *refExpr = new (ctx) OtherConstructorDeclRefExpr(ref, loc, implicit,
resultTy);
return refExpr;
}
TypeAliasDecl *MaxIntegerTypeDecl = nullptr;
TypeAliasDecl *MaxFloatTypeDecl = nullptr;
public:
ExprRewriter(ConstraintSystem &cs, const Solution &solution)
: cs(cs), dc(cs.DC), solution(solution) { }
ConstraintSystem &getConstraintSystem() const { return cs; }
/// \brief Simplify the expression type and return the expression.
///
/// This routine is used for 'simple' expressions that only need their
/// types simplified, with no further computation.
Expr *simplifyExprType(Expr *expr) {
auto toType = simplifyType(expr->getType());
expr->setType(toType);
return expr;
}
Expr *visitErrorExpr(ErrorExpr *expr) {
// Do nothing with error expressions.
return expr;
}
Expr *handleIntegerLiteralExpr(LiteralExpr *expr) {
auto &tc = cs.getTypeChecker();
ProtocolDecl *protocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::IntegerLiteralConvertible);
ProtocolDecl *builtinProtocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::_BuiltinIntegerLiteralConvertible);
// For type-sugar reasons, prefer the spelling of the default literal
// type.
auto type = simplifyType(expr->getType());
if (auto defaultType = tc.getDefaultType(protocol, dc)) {
if (defaultType->isEqual(type))
type = defaultType;
}
if (auto floatProtocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::FloatLiteralConvertible)) {
if (auto defaultFloatType = tc.getDefaultType(floatProtocol, dc)) {
if (defaultFloatType->isEqual(type))
type = defaultFloatType;
}
}
// Find the maximum-sized builtin integer type.
if(!MaxIntegerTypeDecl) {
UnqualifiedLookup lookup(tc.Context.Id_MaxBuiltinIntegerType,
tc.getStdlibModule(dc),
&tc);
MaxIntegerTypeDecl =
dyn_cast_or_null<TypeAliasDecl>(lookup.getSingleTypeResult());
}
if (!MaxIntegerTypeDecl ||
!MaxIntegerTypeDecl->getUnderlyingType()->is<BuiltinIntegerType>()) {
tc.diagnose(expr->getLoc(), diag::no_MaxBuiltinIntegerType_found);
return nullptr;
}
auto maxType = MaxIntegerTypeDecl->getUnderlyingType();
return convertLiteral(
expr,
type,
expr->getType(),
protocol,
tc.Context.Id_IntegerLiteralType,
tc.Context.Id_ConvertFromIntegerLiteral,
builtinProtocol,
maxType,
tc.Context.Id_ConvertFromBuiltinIntegerLiteral,
nullptr,
diag::integer_literal_broken_proto,
diag::builtin_integer_literal_broken_proto);
}
Expr *visitIntegerLiteralExpr(IntegerLiteralExpr *expr) {
return handleIntegerLiteralExpr(expr);
}
Expr *visitFloatLiteralExpr(FloatLiteralExpr *expr) {
auto &tc = cs.getTypeChecker();
ProtocolDecl *protocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::FloatLiteralConvertible);
ProtocolDecl *builtinProtocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::_BuiltinFloatLiteralConvertible);
// For type-sugar reasons, prefer the spelling of the default literal
// type.
auto type = simplifyType(expr->getType());
if (auto defaultType = tc.getDefaultType(protocol, dc)) {
if (defaultType->isEqual(type))
type = defaultType;
}
// Find the maximum-sized builtin float type.
// FIXME: Cache name lookup.
if (!MaxFloatTypeDecl) {
UnqualifiedLookup lookup(tc.Context.Id_MaxBuiltinFloatType,
tc.getStdlibModule(dc),
&tc);
MaxFloatTypeDecl =
dyn_cast_or_null<TypeAliasDecl>(lookup.getSingleTypeResult());
}
if (!MaxFloatTypeDecl ||
!MaxFloatTypeDecl->getUnderlyingType()->is<BuiltinFloatType>()) {
tc.diagnose(expr->getLoc(), diag::no_MaxBuiltinFloatType_found);
return nullptr;
}
auto maxType = MaxFloatTypeDecl->getUnderlyingType();
return convertLiteral(
expr,
type,
expr->getType(),
protocol,
tc.Context.Id_FloatLiteralType,
tc.Context.Id_ConvertFromFloatLiteral,
builtinProtocol,
maxType,
tc.Context.Id_ConvertFromBuiltinFloatLiteral,
nullptr,
diag::float_literal_broken_proto,
diag::builtin_float_literal_broken_proto);
}
Expr *visitCharacterLiteralExpr(CharacterLiteralExpr *expr) {
auto &tc = cs.getTypeChecker();
ProtocolDecl *protocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::CharacterLiteralConvertible);
ProtocolDecl *builtinProtocol
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::_BuiltinCharacterLiteralConvertible);
// For type-sugar reasons, prefer the spelling of the default literal
// type.
auto type = simplifyType(expr->getType());
if (auto defaultType = tc.getDefaultType(protocol, dc)) {
if (defaultType->isEqual(type))
type = defaultType;
}
return convertLiteral(
expr,
type,
expr->getType(),
protocol,
tc.Context.Id_CharacterLiteralType,
tc.Context.Id_ConvertFromCharacterLiteral,
builtinProtocol,
Type(BuiltinIntegerType::get(32, tc.Context)),
tc.Context.Id_ConvertFromBuiltinCharacterLiteral,
[] (Type type) -> bool {
if (auto builtinInt = type->getAs<BuiltinIntegerType>()) {
return builtinInt->isFixedWidth(32);
}
return false;
},
diag::character_literal_broken_proto,
diag::builtin_character_literal_broken_proto);
}
Expr *handleStringLiteralExpr(LiteralExpr *expr) {
auto stringLiteral = dyn_cast<StringLiteralExpr>(expr);
auto magicLiteral = dyn_cast<MagicIdentifierLiteralExpr>(expr);
assert(bool(stringLiteral) != bool(magicLiteral) &&
"literal must be either a string literal or a magic literal");
auto type = simplifyType(expr->getType());
auto &tc = cs.getTypeChecker();
bool isStringLiteral = true;
ProtocolDecl *protocol = tc.getProtocol(
expr->getLoc(), KnownProtocolKind::StringLiteralConvertible);
if (!tc.conformsToProtocol(type, protocol, cs.DC)) {
// If the type does not conform to StringLiteralConvertible, it should
// be ExtendedGraphemeClusterLiteralConvertible.
protocol = tc.getProtocol(
expr->getLoc(),
KnownProtocolKind::ExtendedGraphemeClusterLiteralConvertible);
isStringLiteral = false;
}
assert(tc.conformsToProtocol(type, protocol, cs.DC));
// For type-sugar reasons, prefer the spelling of the default literal
// type.
if (auto defaultType = tc.getDefaultType(protocol, dc)) {
if (defaultType->isEqual(type))
type = defaultType;
}
// Add the first element (
SmallVector<TupleTypeElt, 3> elements;
elements.push_back(TupleTypeElt(tc.Context.TheRawPointerType));
/*
TupleTypeElt(BuiltinIntegerType::getWordType(tc.Context)),
TupleTypeElt(BuiltinIntegerType::get(1, tc.Context))
*/
ProtocolDecl *builtinProtocol;
Identifier literalFuncName;
Identifier builtinLiteralFuncName;
Diag<> brokenProtocolDiag;
Diag<> brokenBuiltinProtocolDiag;
if (isStringLiteral) {
literalFuncName = tc.Context.Id_ConvertFromStringLiteral;
// If the type can handle UTF-16 string literals, prefer them.
builtinProtocol = tc.getProtocol(
expr->getLoc(),
KnownProtocolKind::_BuiltinUTF16StringLiteralConvertible);
if (tc.conformsToProtocol(type, builtinProtocol, cs.DC)) {
builtinLiteralFuncName =
tc.Context.Id_ConvertFromBuiltinUTF16StringLiteral;
elements.push_back(
TupleTypeElt(BuiltinIntegerType::getWordType(tc.Context),
tc.Context.getIdentifier("numberOfCodeUnits")));
if (stringLiteral)
stringLiteral->setEncoding(StringLiteralExpr::UTF16);
else
magicLiteral->setStringEncoding(StringLiteralExpr::UTF16);
} else {
// Otherwise, fall back to UTF-8.
builtinProtocol = tc.getProtocol(
expr->getLoc(),
KnownProtocolKind::_BuiltinStringLiteralConvertible);
builtinLiteralFuncName =
tc.Context.Id_ConvertFromBuiltinStringLiteral;
elements.push_back(
TupleTypeElt(BuiltinIntegerType::getWordType(tc.Context),
tc.Context.getIdentifier("byteSize")));
elements.push_back(
TupleTypeElt(BuiltinIntegerType::get(1, tc.Context),
tc.Context.getIdentifier("isASCII")));
if (stringLiteral)
stringLiteral->setEncoding(StringLiteralExpr::UTF8);
else
magicLiteral->setStringEncoding(StringLiteralExpr::UTF8);
}
brokenProtocolDiag = diag::string_literal_broken_proto;
brokenBuiltinProtocolDiag = diag::builtin_string_literal_broken_proto;
} else {
literalFuncName =
tc.Context.Id_ConvertFromExtendedGraphemeClusterLiteral;
builtinLiteralFuncName =
tc.Context.Id_ConvertFromBuiltinExtendedGraphemeClusterLiteral;
builtinProtocol = tc.getProtocol(
expr->getLoc(),
KnownProtocolKind::_BuiltinExtendedGraphemeClusterLiteralConvertible);
elements.push_back(
TupleTypeElt(BuiltinIntegerType::getWordType(tc.Context),
tc.Context.getIdentifier("byteSize")));
elements.push_back(
TupleTypeElt(BuiltinIntegerType::get(1, tc.Context),
tc.Context.getIdentifier("isASCII")));
brokenProtocolDiag =
diag::extended_grapheme_cluster_literal_broken_proto;
brokenBuiltinProtocolDiag =
diag::builtin_extended_grapheme_cluster_literal_broken_proto;
}
return convertLiteral(expr,
type,
expr->getType(),
protocol,
tc.Context.Id_StringLiteralType,
literalFuncName,
builtinProtocol,
TupleType::get(elements, tc.Context),
builtinLiteralFuncName,
nullptr,
brokenProtocolDiag,
brokenBuiltinProtocolDiag);
}
Expr *visitStringLiteralExpr(StringLiteralExpr *expr) {
return handleStringLiteralExpr(expr);
}
Expr *
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
// Figure out the string type we're converting to.
auto openedType = expr->getType();
auto type = simplifyType(openedType);
expr->setType(type);
// Find the string interpolation protocol we need.
auto &tc = cs.getTypeChecker();
auto interpolationProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::StringInterpolationConvertible);
assert(interpolationProto && "Missing string interpolation protocol?");
// FIXME: Cache name,
auto name = tc.Context.Id_ConvertFromStringInterpolation;
auto member = findNamedWitness(tc, dc, type, interpolationProto, name,
diag::interpolation_broken_proto);
if (!member)
return nullptr;
// Build a reference to the convertFromStringInterpolation member.
// FIXME: This location info is bogus.
auto typeRef = TypeExpr::createImplicitHack(expr->getStartLoc(),
type, tc.Context);
Expr *memberRef = new (tc.Context) MemberRefExpr(typeRef,
expr->getStartLoc(),
member,
expr->getStartLoc(),
/*Implicit=*/true);
bool failed = tc.typeCheckExpressionShallow(memberRef, cs.DC);
assert(!failed && "Could not reference string interpolation witness");
(void)failed;
// Create a tuple containing all of the coerced segments.
SmallVector<Expr *, 4> segments;
unsigned index = 0;
ConstraintLocatorBuilder locatorBuilder(cs.getConstraintLocator(expr));
for (auto segment : expr->getSegments()) {
segment = coerceToType(segment, type,
locatorBuilder.withPathElement(
LocatorPathElt::getInterpolationArgument(
index++)));
if (!segment)
return nullptr;
segments.push_back(segment);
}
Expr *argument = nullptr;
if (segments.size() == 1)
argument = segments.front();
else {
SmallVector<TupleTypeElt, 4> tupleElements(segments.size(),
TupleTypeElt(type));
argument = TupleExpr::create(tc.Context,
expr->getStartLoc(),
segments,
{ },
{ },
expr->getStartLoc(),
/*hasTrailingClosure=*/false,
/*Implicit=*/true,
TupleType::get(tupleElements,tc.Context));
}
// Call the convertFromStringInterpolation member with the arguments.
ApplyExpr *apply = new (tc.Context) CallExpr(memberRef, argument,
/*Implicit=*/true);
expr->setSemanticExpr(finishApply(apply, openedType, locatorBuilder));
return expr;
}
Expr *visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *expr) {
switch (expr->getKind()) {
case MagicIdentifierLiteralExpr::File:
case MagicIdentifierLiteralExpr::Function:
return handleStringLiteralExpr(expr);
case MagicIdentifierLiteralExpr::Line:
case MagicIdentifierLiteralExpr::Column:
return handleIntegerLiteralExpr(expr);
}
}
/// \brief Retrieve the type of a reference to the given declaration.
Type getTypeOfDeclReference(ValueDecl *decl, bool isSpecialized) {
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
// Resolve the reference to this type declaration in our
// current context.
auto type = cs.getTypeChecker().resolveTypeInContext(typeDecl, dc,
isSpecialized);
if (!type)
return nullptr;
// Refer to the metatype of this type.
return MetatypeType::get(type);
}
return cs.TC.getUnopenedTypeOfReference(decl, Type(), dc,
/*wantInterfaceType=*/true);
}
Expr *visitDeclRefExpr(DeclRefExpr *expr) {
auto locator = cs.getConstraintLocator(expr);
// Find the overload choice used for this declaration reference.
auto selected = getOverloadChoice(locator);
auto choice = selected.choice;
auto decl = choice.getDecl();
// FIXME: Cannibalize the existing DeclRefExpr rather than allocating a
// new one?
return buildDeclRef(decl, expr->getLoc(), selected.openedFullType,
locator, expr->isSpecialized(), expr->isImplicit(),
expr->isDirectPropertyAccess());
}
Expr *visitSuperRefExpr(SuperRefExpr *expr) {
simplifyExprType(expr);
return expr;
}
Expr *visitTypeExpr(TypeExpr *expr) {
auto toType = simplifyType(expr->getTypeLoc().getType());
expr->getTypeLoc().setType(toType, /*validated=*/true);
expr->setType(MetatypeType::get(toType));
return expr;
}
Expr *visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *expr) {
expr->setType(expr->getDecl()->getInitializerType());
return expr;
}
Expr *visitUnresolvedConstructorExpr(UnresolvedConstructorExpr *expr) {
// Resolve the callee to the constructor declaration selected.
auto selected = getOverloadChoice(
cs.getConstraintLocator(
expr,
ConstraintLocator::ConstructorMember));
auto choice = selected.choice;
auto *ctor = cast<ConstructorDecl>(choice.getDecl());
auto arg = expr->getSubExpr()->getSemanticsProvidingExpr();
auto &tc = cs.getTypeChecker();
// If the subexpression is a metatype, build a direct reference to the
// constructor.
if (arg->getType()->is<AnyMetatypeType>()) {
return buildMemberRef(expr->getSubExpr(),
selected.openedFullType,
expr->getDotLoc(),
ctor,
expr->getConstructorLoc(),
expr->getType(),
ConstraintLocatorBuilder(
cs.getConstraintLocator(expr)),
expr->isImplicit(),
/*IsDirectPropertyAccess=*/false);
}
// The subexpression must be either 'self' or 'super'.
if (!arg->isSuperExpr()) {
// 'super' references have already been fully checked; handle the
// 'self' case below.
bool diagnoseBadInitRef = true;
if (auto dre = dyn_cast<DeclRefExpr>(arg)) {
if (dre->getDecl()->getName() == cs.getASTContext().Id_self) {
// We have a reference to 'self'.
diagnoseBadInitRef = false;
// Make sure the reference to 'self' occurs within an initializer.
if (!dyn_cast_or_null<ConstructorDecl>(
cs.DC->getInnermostMethodContext())) {
tc.diagnose(expr->getDotLoc(),
diag::init_delegation_outside_initializer);
}
}
}
// If we need to diagnose this as a bad reference to an initializer,
// do so now.
if (diagnoseBadInitRef) {
// Determine whether 'super' would have made sense as a base.
bool hasSuper = false;
if (auto func = cs.DC->getInnermostMethodContext()) {
if (auto nominalType
= func->getDeclContext()->getDeclaredTypeOfContext()) {
if (auto classDecl = nominalType->getClassOrBoundGenericClass()) {
hasSuper = classDecl->hasSuperclass();
}
}
}
tc.diagnose(expr->getDotLoc(), diag::bad_init_ref_base, hasSuper);
}
}
// Build a partial application of the initializer.
Expr *ctorRef = buildOtherConstructorRef(selected.openedFullType,
ctor, expr->getConstructorLoc(),
expr->isImplicit());
auto *call
= new (cs.getASTContext()) DotSyntaxCallExpr(ctorRef,
expr->getDotLoc(),
expr->getSubExpr());
return finishApply(call, expr->getType(),
ConstraintLocatorBuilder(
cs.getConstraintLocator(expr)));
}
Expr *visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
return simplifyExprType(expr);
}
Expr *visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
// Determine the declaration selected for this overloaded reference.
auto locator = cs.getConstraintLocator(expr);
auto selected = getOverloadChoice(locator);
auto choice = selected.choice;
auto decl = choice.getDecl();
return buildDeclRef(decl, expr->getLoc(), selected.openedFullType,
locator, expr->isSpecialized(), expr->isImplicit(),
/*isDirectPropertyAccess*/false);
}
Expr *visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *expr) {
auto selected = getOverloadChoice(
cs.getConstraintLocator(expr,
ConstraintLocator::Member));
return buildMemberRef(expr->getBase(),
selected.openedFullType,
expr->getDotLoc(),
selected.choice.getDecl(), expr->getMemberLoc(),
selected.openedType,
cs.getConstraintLocator(expr),
expr->isImplicit(), /*direct ivar*/false);
}
Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
// FIXME: We should have generated an overload set from this, in which
// case we can emit a typo-correction error here but recover well.
return nullptr;
}
Expr *visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
// Our specializations should have resolved the subexpr to the right type.
if (auto DRE = dyn_cast<DeclRefExpr>(expr->getSubExpr())) {
assert(DRE->getGenericArgs().empty() ||
DRE->getGenericArgs().size() == expr->getUnresolvedParams().size());
if (DRE->getGenericArgs().empty()) {
SmallVector<TypeRepr *, 8> GenArgs;
for (auto TL : expr->getUnresolvedParams())
GenArgs.push_back(TL.getTypeRepr());
DRE->setGenericArgs(GenArgs);
}
}
return expr->getSubExpr();
}
Expr *visitMemberRefExpr(MemberRefExpr *expr) {
auto selected = getOverloadChoice(
cs.getConstraintLocator(expr,
ConstraintLocator::Member));
return buildMemberRef(expr->getBase(),
selected.openedFullType,
expr->getDotLoc(),
selected.choice.getDecl(), expr->getNameLoc(),
selected.openedType,
cs.getConstraintLocator(expr),
expr->isImplicit(),
expr->isDirectPropertyAccess());
}
Expr *visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
auto selected = getOverloadChoice(
cs.getConstraintLocator(expr,
ConstraintLocator::Member));
return buildDynamicMemberRef(expr->getBase(), expr->getDotLoc(),
selected.choice.getDecl(),
expr->getNameLoc(),
selected.openedType,
cs.getConstraintLocator(expr));
}
Expr *visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
// Dig out the type of the base, which will be the result
// type of this expression.
Type baseTy = simplifyType(expr->getType())->getRValueType();
auto &tc = cs.getTypeChecker();
// Find the selected member.
auto selected = getOverloadChoice(
cs.getConstraintLocator(
expr, ConstraintLocator::UnresolvedMember));
auto member = selected.choice.getDecl();
// The base expression is simply the metatype of the base type.
// FIXME: This location info is bogus.
auto base = TypeExpr::createImplicitHack(expr->getDotLoc(),
baseTy, tc.Context);
// Build the member reference.
auto result = buildMemberRef(base,
selected.openedFullType,
expr->getDotLoc(), member,
expr->getNameLoc(),
selected.openedType,
cs.getConstraintLocator(expr),
expr->isImplicit(), /*direct ivar*/false);
if (!result)
return nullptr;
// If there was an argument, apply it.
if (auto arg = expr->getArgument()) {
ApplyExpr *apply = new (tc.Context) CallExpr(result, arg,
/*Implicit=*/false);
result = finishApply(apply, Type(), cs.getConstraintLocator(expr));
}
return result;
}
private:
struct MemberPartialApplication {
unsigned level : 31;
// Selector for the partial_application_of_method_invalid diagnostic
// message.
enum : unsigned {
Struct,
Enum,
Archetype,
Protocol
};
unsigned kind : 3;
};
// A map used to track partial applications of methods to require that they
// be fully applied. Partial applications of value types would capture
// 'self' as an inout and hide any mutation of 'self', which is surprising.
llvm::SmallDenseMap<Expr*, MemberPartialApplication, 2>
InvalidPartialApplications;
Expr *applyMemberRefExpr(Expr *expr,
Expr *base,
SourceLoc dotLoc,
SourceLoc nameLoc,
bool implicit) {
// Determine the declaration selected for this overloaded reference.
auto selected = getOverloadChoice(
cs.getConstraintLocator(
expr,
ConstraintLocator::MemberRefBase));
switch (selected.choice.getKind()) {
case OverloadChoiceKind::Decl: {
auto member = buildMemberRef(base,
selected.openedFullType,
dotLoc,
selected.choice.getDecl(),
nameLoc,
selected.openedType,
cs.getConstraintLocator(expr),
implicit, /*direct ivar*/false);
// If this is an application of a value type method, arrange for us to
// check that it gets fully applied.
FuncDecl *fn = nullptr;
Optional<unsigned> kind;
if (auto apply = dyn_cast<ApplyExpr>(member)) {
auto selfTy = apply->getArg()->getType()->getRValueType();
auto fnDeclRef = dyn_cast<DeclRefExpr>(apply->getFn());
if (!fnDeclRef)
goto not_value_type_member;
fn = dyn_cast<FuncDecl>(fnDeclRef->getDecl());
if (selfTy->getStructOrBoundGenericStruct())
kind = MemberPartialApplication::Struct;
else if (selfTy->getEnumOrBoundGenericEnum())
kind = MemberPartialApplication::Enum;
else
goto not_value_type_member;
} else if (auto pmRef = dyn_cast<MemberRefExpr>(member)) {
auto baseTy = pmRef->getBase()->getType();
if (baseTy->hasReferenceSemantics())
goto not_value_type_member;
if (baseTy->isAnyExistentialType()) {
kind = MemberPartialApplication::Protocol;
} else if (isa<FuncDecl>(pmRef->getMember().getDecl()))
kind = MemberPartialApplication::Archetype;
else
goto not_value_type_member;
fn = dyn_cast<FuncDecl>(pmRef->getMember().getDecl());
}
if (!fn)
goto not_value_type_member;
if (fn->isInstanceMember())
InvalidPartialApplications.insert({
member,
// We need to apply all of the non-self argument clauses.
{fn->getNaturalArgumentCount() - 1, kind.getValue() },
});
not_value_type_member:
return member;
}
case OverloadChoiceKind::DeclViaDynamic:
return buildDynamicMemberRef(base, dotLoc,
selected.choice.getDecl(),
nameLoc,
selected.openedType,
cs.getConstraintLocator(expr));
case OverloadChoiceKind::TupleIndex: {
auto baseTy = base->getType()->getRValueType();
if (auto objTy = cs.lookThroughImplicitlyUnwrappedOptionalType(baseTy)) {
base = coerceImplicitlyUnwrappedOptionalToValue(base, objTy,
cs.getConstraintLocator(base));
if (!base) return nullptr;
}
return new (cs.getASTContext()) TupleElementExpr(
base,
dotLoc,
selected.choice.getTupleIndex(),
nameLoc,
simplifyType(expr->getType()));
}
case OverloadChoiceKind::BaseType: {
// FIXME: Losing ".0" sugar here.
return base;
}
case OverloadChoiceKind::TypeDecl:
llvm_unreachable("Nonsensical overload choice");
}
}
public:
Expr *visitUnresolvedSelectorExpr(UnresolvedSelectorExpr *expr) {
return applyMemberRefExpr(expr, expr->getBase(), expr->getDotLoc(),
expr->getNameRange().Start,
expr->isImplicit());
llvm_unreachable("not implemented");
}
Expr *visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
return applyMemberRefExpr(expr, expr->getBase(), expr->getDotLoc(),
expr->getNameLoc(), expr->isImplicit());
}
Expr *visitSequenceExpr(SequenceExpr *expr) {
llvm_unreachable("Expression wasn't parsed?");
}
Expr *visitIdentityExpr(IdentityExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr;
}
Expr *visitParenExpr(ParenExpr *expr) {
auto &ctx = cs.getASTContext();
if (ctx.LangOpts.StrictKeywordArguments)
expr->setType(ParenType::get(ctx, expr->getSubExpr()->getType()));
else
expr->setType(expr->getSubExpr()->getType());
return expr;
}
Expr *visitTupleExpr(TupleExpr *expr) {
return simplifyExprType(expr);
}
Expr *visitSubscriptExpr(SubscriptExpr *expr) {
return buildSubscript(expr->getBase(), expr->getIndex(),
cs.getConstraintLocator(expr));
}
Expr *visitArrayExpr(ArrayExpr *expr) {
Type openedType = expr->getType();
Type arrayTy = simplifyType(openedType);
auto &tc = cs.getTypeChecker();
ProtocolDecl *arrayProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ArrayLiteralConvertible);
assert(arrayProto && "type-checked array literal w/o protocol?!");
ProtocolConformance *conformance = nullptr;
bool conforms = tc.conformsToProtocol(arrayTy, arrayProto,
cs.DC, &conformance);
(void)conforms;
assert(conforms && "Type does not conform to protocol?");
// Call the witness that builds the array literal.
// FIXME: callWitness() may end up re-doing some work we already did
// to convert the array literal elements to the element type. It would
// be nicer to re-use them.
// FIXME: Cache the name.
// FIXME: This location info is bogus.
Expr *typeRef = TypeExpr::createImplicitHack(expr->getLoc(),
arrayTy, tc.Context);
auto name = tc.Context.Id_ConvertFromArrayLiteral;
auto arg = expr->getSubExpr();
Expr *result = tc.callWitness(typeRef, dc, arrayProto, conformance,
name, arg, diag::array_protocol_broken);
if (!result)
return nullptr;
expr->setSemanticExpr(result);
expr->setType(arrayTy);
return expr;
}
Expr *visitDictionaryExpr(DictionaryExpr *expr) {
Type openedType = expr->getType();
Type dictionaryTy = simplifyType(openedType);
auto &tc = cs.getTypeChecker();
ProtocolDecl *dictionaryProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::DictionaryLiteralConvertible);
ProtocolConformance *conformance = nullptr;
bool conforms = tc.conformsToProtocol(dictionaryTy, dictionaryProto,
cs.DC, &conformance);
if (!conforms)
return nullptr;
// Call the witness that builds the dictionary literal.
// FIXME: callWitness() may end up re-doing some work we already did
// to convert the dictionary literal elements to the (key, value) tuple.
// It would be nicer to re-use them.
// FIXME: Cache the name.
// FIXME: This location info is bogus.
Expr *typeRef = TypeExpr::createImplicitHack(expr->getLoc(),
dictionaryTy, tc.Context);
auto name = tc.Context.Id_ConvertFromDictionaryLiteral;
auto arg = expr->getSubExpr();
Expr *result = tc.callWitness(typeRef, dc, dictionaryProto,
conformance, name, arg,
diag::dictionary_protocol_broken);
if (!result)
return nullptr;
expr->setSemanticExpr(result);
expr->setType(dictionaryTy);
return expr;
}
Expr *visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
return buildSubscript(expr->getBase(), expr->getIndex(),
cs.getConstraintLocator(expr));
}
Expr *visitTupleElementExpr(TupleElementExpr *expr) {
// Handle accesses that implicitly look through ImplicitlyUnwrappedOptional<T>.
auto base = expr->getBase();
auto baseTy = base->getType()->getRValueType();
if (auto objTy = cs.lookThroughImplicitlyUnwrappedOptionalType(baseTy)) {
base = coerceImplicitlyUnwrappedOptionalToValue(base, objTy,
cs.getConstraintLocator(base));
if (!base) return nullptr;
expr->setBase(base);
}
simplifyExprType(expr);
return expr;
}
Expr *visitClosureExpr(ClosureExpr *expr) {
llvm_unreachable("Handled by the walker directly");
}
Expr *visitAutoClosureExpr(AutoClosureExpr *expr) {
llvm_unreachable("Already type-checked");
}
Expr *visitModuleExpr(ModuleExpr *expr) { return expr; }
Expr *visitInOutExpr(InOutExpr *expr) {
auto &C = cs.getASTContext();
// Determine the disjunction choice.
auto locator = cs.getConstraintLocator(expr,
ConstraintLocator::InOutConversion);
// The order of the disjunction choices.
enum InOutConversion : unsigned {
InOut,
AddressConversion,
WritebackConversion,
Last_Conversion = WritebackConversion,
};
unsigned choice = solution.getDisjunctionChoice(locator);
assert(choice <= InOutConversion::Last_Conversion
&& "inout conversion kinds are not synced with disjunction "
"constraint system");
auto StartLoc = expr->getSubExpr()->getStartLoc();
auto buildInOutConversionExpr = [&](const SelectedOverload &choice,
Type resultTy,
Expr *lvExpr) -> Expr * {
auto inout = new (C) InOutExpr(lvExpr->getLoc(), lvExpr,
InOutType::get(lvExpr->getType()->getLValueOrInOutObjectType()),
/*implicit*/ true);
// Build up a call to the method.
auto &C = cs.getASTContext();
// FIXME: Bogus location info.
auto resultMeta = TypeExpr::createImplicitHack(StartLoc, resultTy, C);
auto memberRef = buildMemberRef(resultMeta, choice.openedFullType,
StartLoc, choice.choice.getDecl(),
StartLoc, choice.openedType,
ConstraintLocatorBuilder(locator),
/*implicit*/ true,
/*directPropertyAccess*/ false);
auto methodTy = memberRef->getType()->castTo<AnyFunctionType>();
ApplyExpr *call
= new (C) CallExpr(memberRef, inout, /*implicit*/ true);
call->setType(methodTy->getResult());
Expr *conversion = finishApply(call, choice.openedType,
ConstraintLocatorBuilder(locator));
conversion = coerceToType(conversion, resultTy,
ConstraintLocatorBuilder(locator));
// Wrap the call in an InOutConversion node to mark its special
// writeback semantics.
return new (C) InOutConversionExpr(expr->getLoc(), conversion);
};
auto lvTy = expr->getSubExpr()->getType()->castTo<LValueType>();
switch (InOutConversion(choice)) {
case InOut: {
// The type is simply inout.
// Compute the type of the inout expression.
expr->setType(InOutType::get(lvTy->getObjectType()));
return expr;
}
case AddressConversion: {
auto resultTy = simplifyType(expr->getType());
// Find the conversion method we chose.
auto choice = getOverloadChoice(locator);
// Use it to convert the lvalue.
return buildInOutConversionExpr(choice, resultTy,
expr->getSubExpr());
}
case WritebackConversion: {
auto resultTy = simplifyType(expr->getType());
// Find the conversion methods we chose.
auto conversionChoice = getOverloadChoice(cs.getConstraintLocator(expr,
ConstraintLocator::WritebackConversion));
auto getChoice = getOverloadChoice(cs.getConstraintLocator(expr,
ConstraintLocator::WritebackConversionGet));
auto setChoice = getOverloadChoice(cs.getConstraintLocator(expr,
ConstraintLocator::WritebackConversionSet));
// Build the LValueConversion through the get/set pair.
auto &C = cs.getASTContext();
// FIXME: Bogus location info.
auto resultMeta = TypeExpr::createImplicitHack(StartLoc, resultTy, C);
Expr *getMemberRef =buildMemberRef(resultMeta, getChoice.openedFullType,
StartLoc, getChoice.choice.getDecl(),
StartLoc, getChoice.openedType,
ConstraintLocatorBuilder(locator),
/*implicit*/ true,
/*directPropertyAccess*/ false);
auto writebackTy = getMemberRef->getType()
->castTo<AnyFunctionType>()->getResult();
Expr *setMemberRef =buildMemberRef(resultMeta, setChoice.openedFullType,
StartLoc, setChoice.choice.getDecl(),
StartLoc, setChoice.openedType,
ConstraintLocatorBuilder(locator),
/*implicit*/ true,
/*directPropertyAccess*/ false);
auto lvConversion = new (C) LValueConversionExpr(expr->getSubExpr(),
LValueType::get(writebackTy),
getMemberRef,
setMemberRef);
// Convert the converted lvalue.
return buildInOutConversionExpr(conversionChoice, resultTy,
lvConversion);
}
}
}
Expr *visitNewArrayExpr(NewArrayExpr *expr) {
auto &tc = cs.getTypeChecker();
// Convert the subexpression to an array bound.
auto outerBoundLocator
= cs.getConstraintLocator(expr->getBounds()[0].Value);
auto outerBound = solution.convertToArrayBound(expr->getBounds()[0].Value,
outerBoundLocator);
if (!outerBound)
return nullptr;
expr->getBounds()[0].Value = outerBound;
// Dig out the element type of the new array expression.
auto resultType = simplifyType(expr->getType());
auto elementType = resultType->castTo<BoundGenericType>()
->getGenericArgs()[0];
expr->setElementType(elementType);
// Make sure that the result type is a slice type, even if
// canonicalization mapped it down to Array<T>.
auto sliceType = dyn_cast<ArraySliceType>(resultType.getPointer());
if (!sliceType) {
resultType = tc.getArraySliceType(expr->getLoc(), elementType);
if (!resultType)
return nullptr;
sliceType = cast<ArraySliceType>(resultType.getPointer());
}
expr->setType(resultType);
// Find the appropriate injection function.
Expr* injectionFn = tc.buildArrayInjectionFnRef(dc, sliceType,
expr->getBounds()[0].Value->getType(),
expr->getNewLoc());
if (!injectionFn)
return nullptr;
expr->setInjectionFunction(injectionFn);
// If we gave an explicit construction closure, it should have
// IndexType -> ElementType type.
if (expr->hasConstructionFunction()) {
// FIXME: Assume the index type is DefaultIntegerLiteralType for now.
auto intProto =
tc.getProtocol(expr->getConstructionFunction()->getLoc(),
KnownProtocolKind::IntegerLiteralConvertible);
Type intTy = tc.getDefaultType(intProto, dc);
Type constructionTy = FunctionType::get(intTy, elementType);
auto constructionFn = expr->getConstructionFunction();
auto locator = cs.getConstraintLocator(
expr,
ConstraintLocator::NewArrayConstructor);
constructionFn = solution.coerceToType(constructionFn, constructionTy,
locator);
if (!constructionFn)
return nullptr;
expr->setConstructionFunction(constructionFn);
} else {
// If the element type is default constructible, form a partial
// application of it.
auto selected = getOverloadChoice(cs.getConstraintLocator(expr,
ConstraintLocator::NewArrayElement));
auto baseElementType = elementType;
while (auto sliceTy =
dyn_cast<ArraySliceType>(baseElementType.getPointer()))
baseElementType = sliceTy->getBaseType();
Expr *ctor = tc.buildRefExpr(selected.choice.getDecl(), dc,
SourceLoc(), /*implicit*/ true);
Expr *metaty = TypeExpr::createImplicit(baseElementType, tc.Context);
Expr *applyExpr = new(tc.Context) ConstructorRefCallExpr(ctor, metaty);
if (tc.typeCheckExpression(applyExpr, dc, Type(), /*discarded*/ false))
llvm_unreachable("should not fail");
expr->setConstructionFunction(applyExpr);
}
return expr;
}
Expr *visitDynamicTypeExpr(DynamicTypeExpr *expr) {
auto &tc = cs.getTypeChecker();
Expr *base = expr->getBase();
base = tc.coerceToRValue(base);
if (!base) return nullptr;
expr->setBase(base);
return simplifyExprType(expr);
}
Expr *visitOpaqueValueExpr(OpaqueValueExpr *expr) {
return expr;
}
Expr *visitDefaultValueExpr(DefaultValueExpr *expr) {
llvm_unreachable("Already type-checked");
}
Expr *visitApplyExpr(ApplyExpr *expr) {
auto result = finishApply(expr, expr->getType(),
ConstraintLocatorBuilder(
cs.getConstraintLocator(expr)));
// See if this application advanced a partial value type application.
auto foundApplication = InvalidPartialApplications.find(
expr->getFn()->getSemanticsProvidingExpr());
if (foundApplication != InvalidPartialApplications.end()) {
unsigned level = foundApplication->second.level;
assert(level > 0);
InvalidPartialApplications.erase(foundApplication);
if (level > 1)
InvalidPartialApplications.insert({
result, {
level - 1,
foundApplication->second.kind
}
});
}
return result;
}
Expr *visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
return expr;
}
Expr *visitIfExpr(IfExpr *expr) {
auto resultTy = simplifyType(expr->getType());
expr->setType(resultTy);
// Convert the condition to a logic value.
auto cond
= solution.convertToLogicValue(expr->getCondExpr(),
cs.getConstraintLocator(expr));
if (!cond) {
cond->setType(ErrorType::get(cs.getASTContext()));
} else {
expr->setCondExpr(cond);
}
// Coerce the then/else branches to the common type.
expr->setThenExpr(coerceToType(expr->getThenExpr(), resultTy,
ConstraintLocatorBuilder(
cs.getConstraintLocator(expr))
.withPathElement(
ConstraintLocator::IfThen)));
expr->setElseExpr(coerceToType(expr->getElseExpr(), resultTy,
ConstraintLocatorBuilder(
cs.getConstraintLocator(expr))
.withPathElement(
ConstraintLocator::IfElse)));
return expr;
}
Expr *visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
llvm_unreachable("Already type-checked");
}
Expr *visitIsaExpr(IsaExpr *expr) {
// Turn the subexpression into an rvalue.
auto &tc = cs.getTypeChecker();
auto sub = tc.coerceToRValue(expr->getSubExpr());
if (!sub)
return nullptr;
expr->setSubExpr(sub);
// Set the type we checked against.
auto toType = simplifyType(expr->getCastTypeLoc().getType());
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto fromType = sub->getType();
auto castKind = tc.typeCheckCheckedCast(
fromType, toType, cs.DC,
expr->getLoc(),
sub->getSourceRange(),
expr->getCastTypeLoc().getSourceRange(),
[&](Type commonTy) -> bool {
return tc.convertToType(sub, commonTy, cs.DC);
});
switch (castKind) {
case CheckedCastKind::Unresolved:
// Invalid type check.
return nullptr;
case CheckedCastKind::Coercion:
// Check is trivially true.
tc.diagnose(expr->getLoc(), diag::isa_is_always_true,
expr->getSubExpr()->getType(),
expr->getCastTypeLoc().getType());
expr->setCastKind(castKind);
break;
case CheckedCastKind::Downcast:
case CheckedCastKind::SuperToArchetype:
case CheckedCastKind::ArchetypeToArchetype:
case CheckedCastKind::ArchetypeToConcrete:
case CheckedCastKind::ExistentialToArchetype:
case CheckedCastKind::ExistentialToConcrete:
case CheckedCastKind::ConcreteToArchetype:
case CheckedCastKind::ConcreteToUnrelatedExistential:
// Valid checks.
expr->setCastKind(castKind);
break;
}
// SIL-generation magically turns this into a Bool; make sure it can.
if (!cs.getASTContext().getGetBoolDecl(&cs.getTypeChecker())) {
tc.diagnose(expr->getLoc(), diag::bool_intrinsics_not_found);
// Continue anyway.
}
return expr;
}
Expr *visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
// Simplify the type we're casting to.
auto toType = simplifyType(expr->getCastTypeLoc().getType());
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
// The subexpression is always an rvalue.
auto &tc = cs.getTypeChecker();
auto sub = tc.coerceToRValue(expr->getSubExpr());
if (!sub)
return nullptr;
expr->setSubExpr(sub);
auto fromType = sub->getType();
auto castKind = tc.typeCheckCheckedCast(
fromType, toType, cs.DC,
expr->getLoc(),
sub->getSourceRange(),
expr->getCastTypeLoc().getSourceRange(),
[&](Type commonTy) -> bool {
return tc.convertToType(sub, commonTy,
cs.DC);
});
switch (castKind) {
/// Invalid cast.
case CheckedCastKind::Unresolved:
return nullptr;
case CheckedCastKind::Coercion: {
// This is a coercion. Convert the subexpression.
bool failed = tc.convertToType(sub, toType, cs.DC);
(void)failed;
assert(!failed && "Not convertible?");
// Transmute the checked cast into a coercion expression.
Expr *result = new (tc.Context) CoerceExpr(sub, expr->getLoc(),
expr->getCastTypeLoc());
// The result type is the type we're converting to.
result->setType(toType);
return result;
}
// Valid casts.
case CheckedCastKind::Downcast:
case CheckedCastKind::SuperToArchetype:
case CheckedCastKind::ArchetypeToArchetype:
case CheckedCastKind::ArchetypeToConcrete:
case CheckedCastKind::ExistentialToArchetype:
case CheckedCastKind::ExistentialToConcrete:
case CheckedCastKind::ConcreteToArchetype:
case CheckedCastKind::ConcreteToUnrelatedExistential:
expr->setCastKind(castKind);
break;
}
// Allow for casts from AnyObject to a briged type.
if (tc.isBridgedDynamicConversion(cs.DC, fromType, toType)) {
auto bridgedType = tc.getBridgedType(cs.DC, toType);
if (!bridgedType.isNull()) {
sub->setType(bridgedType);
sub = tc.coerceToRValue(expr->getSubExpr());
if (!sub)
return nullptr;
expr->setSubExpr(sub);
expr->getCastTypeLoc().setType(bridgedType,
true);
expr->setType(tc.getOptionalType(expr->getLoc(),
bridgedType));
auto optionalStringType = tc.getOptionalType(expr->getLoc(),
toType);
auto OSTLoc = TypeLoc::withoutLoc(optionalStringType);
auto wrappedExpr =
new (tc.Context)
ConditionalCheckedCastExpr(expr,
expr->getLoc(),
OSTLoc);
return visitConditionalCheckedCastExpr(wrappedExpr);
}
}
Type finalResultType = simplifyType(expr->getType());
// Handle optional operands or optional results.
// FIXME: some of this work needs to be delayed until runtime to
// properly account for archetypes dynamically being optional
// types. For example, if we're casting T to NSView?, that
// should succeed if T=NSObject? and its value is actually nil.
/// A helper function to plumb a stack of optional types.
auto plumbOptionals = [](Type type, SmallVectorImpl<Type> &optionals) {
while (auto valueType = type->getAnyOptionalObjectType()) {
optionals.push_back(type);
type = valueType;
}
return type;
};
Expr *subExpr = expr->getSubExpr();
Type srcType = subExpr->getType();
// There's nothing special to do if the operand isn't optional.
SmallVector<Type, 4> srcOptionals;
srcType = plumbOptionals(srcType, srcOptionals);
if (srcOptionals.empty()) {
expr->setType(finalResultType);
return expr;
}
SmallVector<Type, 4> destOptionals;
auto destValueType = plumbOptionals(finalResultType, destOptionals);
// This is a checked cast, so the result type will always have
// at least one level of optional, which should become the type
// of the checked-cast expression.
assert(!destOptionals.empty() &&
"result of checked cast is not an optional type");
expr->setType(destOptionals.back());
// The result type (without the final optional) is a subtype of
// the operand type, so it will never have a higher depth.
assert(destOptionals.size() - 1 <= srcOptionals.size());
// The outermost N levels of optionals on the operand must all
// be present or the cast fails. The innermost M levels of
// optionals on the operand are reflected in the requested
// destination type, so we should map these nils into the result.
unsigned numRequiredOptionals =
srcOptionals.size() - (destOptionals.size() - 1);
// The number of OptionalEvaluationExprs between the point of the
// inner cast and the enclosing OptionalEvaluationExpr (exclusive)
// which represents failure for the entire operation.
unsigned failureDepth = destOptionals.size() - 1;
// Drill down on the operand until it's non-optional.
SourceLoc fakeQuestionLoc = subExpr->getEndLoc();
for (unsigned i : indices(srcOptionals)) {
// As we move into the range of mapped optionals, start
// lowering the depth.
unsigned depth = failureDepth;
if (i >= numRequiredOptionals) {
depth -= (i - numRequiredOptionals) + 1;
}
Type valueType =
(i + 1 == srcOptionals.size() ? srcType : srcOptionals[i+1]);
subExpr = new (tc.Context) BindOptionalExpr(subExpr, fakeQuestionLoc,
depth, valueType);
subExpr->setImplicit(true);
}
expr->setSubExpr(subExpr);
// If we're casting to an optional type, we need to capture the
// final M bindings.
Expr *result = expr;
if (destOptionals.size() > 1) {
// If the innermost cast fails, the entire expression fails. To
// get this behavior, we have to bind and then re-inject the result.
// (SILGen should know how to peephole this.)
result = new (tc.Context) BindOptionalExpr(result, expr->getEndLoc(),
failureDepth, destValueType);
result->setImplicit(true);
for (unsigned i = destOptionals.size(); i != 0; --i) {
Type destType = destOptionals[i-1];
result = new (tc.Context) InjectIntoOptionalExpr(result, destType);
result = new (tc.Context) OptionalEvaluationExpr(result, destType);
}
// Otherwise, we just need to capture the failure-depth binding.
} else {
result = new (tc.Context) OptionalEvaluationExpr(result,
finalResultType);
}
return result;
}
Expr *visitCoerceExpr(CoerceExpr *expr) {
return expr;
}
Expr *visitAssignExpr(AssignExpr *expr) {
llvm_unreachable("Handled by ExprWalker");
}
Expr *visitAssignExpr(AssignExpr *expr, ConstraintLocator *srcLocator) {
// Compute the type to which the source must be converted to allow
// assignment to the destination.
//
// FIXME: This is also computed when the constraint system is set up.
auto destTy = cs.computeAssignDestType(expr->getDest(), expr->getLoc());
if (!destTy)
return nullptr;
// Convert the source to the simplified destination type.
Expr *src = solution.coerceToType(expr->getSrc(),
destTy,
srcLocator);
if (!src)
return nullptr;
expr->setSrc(src);
return expr;
}
Expr *visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
return simplifyExprType(expr);
}
Expr *visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
llvm_unreachable("should have been eliminated during name binding");
}
Expr *visitBindOptionalExpr(BindOptionalExpr *expr) {
Type valueType = simplifyType(expr->getType());
Type optType =
cs.getTypeChecker().getOptionalType(expr->getQuestionLoc(), valueType);
if (!optType) return nullptr;
Expr *subExpr = coerceToType(expr->getSubExpr(), optType,
cs.getConstraintLocator(expr));
if (!subExpr) return nullptr;
// Complain if the sub-expression was converted to T? via the
// inject-into-optional implicit conversion.
//
// It should be the case that that's always the last conversion applied.
if (isa<InjectIntoOptionalExpr>(subExpr)) {
cs.getTypeChecker().diagnose(subExpr->getLoc(),
diag::binding_injected_optional,
expr->getSubExpr()->getType()->getRValueType())
.highlight(subExpr->getSourceRange())
.fixItRemove(expr->getQuestionLoc());
}
expr->setSubExpr(subExpr);
expr->setType(valueType);
return expr;
}
Expr *visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
Type optType = simplifyType(expr->getType());
Expr *subExpr = coerceToType(expr->getSubExpr(), optType,
cs.getConstraintLocator(expr));
if (!subExpr) return nullptr;
expr->setSubExpr(subExpr);
expr->setType(optType);
return expr;
}
/// Whether this type is AnyObject or an implicit lvalue thereof.
bool isDynamicLookupType(Type type) {
// Check whether we have a protocol type.
auto protoTy = type->getAs<ProtocolType>();
if (!protoTy)
return false;
// Check whether this is AnyObject.
return protoTy->getDecl()->isSpecificProtocol(
KnownProtocolKind::AnyObject);
}
Expr *visitForceValueExpr(ForceValueExpr *expr) {
Type valueType = simplifyType(expr->getType());
auto &tc = cs.getTypeChecker();
// Choice #0 is forcing a T? to T.
// Choice #1 is forcing an AnyObject or AnyObject? to a class type.
unsigned disjChoice =
solution.getDisjunctionChoice(cs.getConstraintLocator(expr));
bool isAnyObjectDowncast = (disjChoice != 0);
// If the subexpression is of AnyObject type, introduce a conditional
// cast to the value type. This cast produces a value of optional type.
Expr *subExpr = expr->getSubExpr();
if (isAnyObjectDowncast) {
// Coerce the subexpression to an rvalue.
subExpr = tc.coerceToRValue(subExpr);
if (!subExpr) return nullptr;
// If the operand is AnyObject?, force it.
if (auto operandValueType =
subExpr->getType()->getAnyOptionalObjectType()) {
subExpr = new (tc.Context) ForceValueExpr(subExpr,
expr->getExclaimLoc());
subExpr->setType(operandValueType);
subExpr->setImplicit(true);
}
// At this point, we should have an AnyObject.
assert(isDynamicLookupType(subExpr->getType()));
// Create a conditional checked cast to the value type, e.g., x as T.
bool isArchetype = valueType->is<ArchetypeType>();
auto cast = new (tc.Context) ConditionalCheckedCastExpr(
subExpr,
SourceLoc(),
TypeLoc::withoutLoc(valueType));
cast->setImplicit(true);
cast->setType(OptionalType::get(valueType));
cast->setCastKind(isArchetype? CheckedCastKind::ExistentialToArchetype
: CheckedCastKind::ExistentialToConcrete);
subExpr = cast;
} else {
Type optType = OptionalType::get(valueType);
// Coerce the subexpression to the appropriate optional type.
subExpr = coerceToType(subExpr, optType,
cs.getConstraintLocator(expr));
if (!subExpr) return nullptr;
// Complain if the sub-expression was converted to T? via the
// inject-into-optional implicit conversion.
//
// It should be the case that that's always the last conversion applied.
if (isa<InjectIntoOptionalExpr>(subExpr)) {
tc.diagnose(subExpr->getLoc(), diag::forcing_injected_optional,
expr->getSubExpr()->getType()->getRValueType())
.highlight(subExpr->getSourceRange())
.fixItRemove(expr->getExclaimLoc());
}
}
expr->setSubExpr(subExpr);
expr->setType(valueType);
return expr;
}
Expr *visitOpenExistentialExpr(OpenExistentialExpr *expr) {
llvm_unreachable("Already type-checked");
}
Expr *visitInOutConversionExpr(InOutConversionExpr *expr) {
llvm_unreachable("Already type-checked");
}
void finalize() {
// Check that all value type methods were fully applied.
auto &tc = cs.getTypeChecker();
for (auto &unapplied : InvalidPartialApplications) {
tc.diagnose(unapplied.first->getLoc(),
diag::partial_application_of_method_invalid,
unapplied.second.kind);
}
// We should have complained above if there were any
// existentials that haven't been closed yet.
assert((OpenedExistentials.empty() ||
!InvalidPartialApplications.empty()) &&
"Opened existentials have not been closed");
}
};
}
/// \brief Given a constraint locator, find the owner of default arguments for
/// that tuple, i.e., a FuncDecl.
static AbstractFunctionDecl *
findDefaultArgsOwner(ConstraintSystem &cs, const Solution &solution,
ConstraintLocator *locator) {
if (locator->getPath().empty() || !locator->getAnchor())
return nullptr;
// If the locator points to a function application, find the function itself.
if (locator->getPath().back().getKind() == ConstraintLocator::ApplyArgument) {
assert(locator->getPath().back().getNewSummaryFlags() == 0 &&
"ApplyArgument adds no flags");
SmallVector<LocatorPathElt, 4> newPath;
newPath.append(locator->getPath().begin(), locator->getPath().end()-1);
unsigned newFlags = locator->getSummaryFlags();
// If we have an interpolation argument, dig out the constructor if we
// can.
// FIXME: This representation is actually quite awful
if (newPath.size() == 1 &&
newPath[0].getKind() == ConstraintLocator::InterpolationArgument) {
newPath.push_back(ConstraintLocator::ConstructorMember);
locator = cs.getConstraintLocator(locator->getAnchor(), newPath, newFlags);
auto known = solution.overloadChoices.find(locator);
if (known != solution.overloadChoices.end()) {
auto &choice = known->second.choice;
if (choice.getKind() == OverloadChoiceKind::Decl)
return cast<AbstractFunctionDecl>(choice.getDecl());
}
return nullptr;
} else {
newPath.push_back(ConstraintLocator::ApplyFunction);
}
assert(newPath.back().getNewSummaryFlags() == 0 &&
"added element that changes the flags?");
locator = cs.getConstraintLocator(locator->getAnchor(), newPath, newFlags);
}
// Simplify the locator.
SourceRange range1, range2;
locator = simplifyLocator(cs, locator, range1, range2);
// If we didn't map down to a specific expression, we can't handle a default
// argument.
if (!locator->getAnchor() || !locator->getPath().empty())
return nullptr;
if (auto resolved
= resolveLocatorToDecl(cs, locator,
[&](ConstraintLocator *locator) -> Optional<OverloadChoice> {
auto known = solution.overloadChoices.find(locator);
if (known == solution.overloadChoices.end()) {
return Nothing;
}
return known->second.choice;
})) {
return cast<AbstractFunctionDecl>(resolved.getDecl());
}
return nullptr;
}
/// Produce the caller-side default argument for this default argument, or
/// null if the default argument will be provided by the callee.
static Expr *getCallerDefaultArg(TypeChecker &tc, DeclContext *dc,
SourceLoc loc, AbstractFunctionDecl *&owner,
unsigned index) {
auto defArg = owner->getDefaultArg(index);
MagicIdentifierLiteralExpr::Kind magicKind;
switch (defArg.first) {
case DefaultArgumentKind::None:
llvm_unreachable("No default argument here?");
case DefaultArgumentKind::Normal:
return nullptr;
case DefaultArgumentKind::Inherited:
// Update the owner to reflect inheritance here.
owner = owner->getOverriddenDecl();
return getCallerDefaultArg(tc, dc, loc, owner, index);
case DefaultArgumentKind::Column:
magicKind = MagicIdentifierLiteralExpr::Column;
break;
case DefaultArgumentKind::File:
magicKind = MagicIdentifierLiteralExpr::File;
break;
case DefaultArgumentKind::Line:
magicKind = MagicIdentifierLiteralExpr::Line;
break;
case DefaultArgumentKind::Function:
magicKind = MagicIdentifierLiteralExpr::Function;
break;
}
// Create the default argument, which is a converted magic identifier
// literal expression.
Expr *init = new (tc.Context) MagicIdentifierLiteralExpr(magicKind, loc,
/*Implicit=*/true);
bool invalid = tc.typeCheckExpression(init, dc, defArg.second,
/*discardedExpr=*/false);
assert(!invalid && "conversion cannot fail");
(void)invalid;
return init;
}
/// Rebuild the ParenTypes for the given expression, whose underlying expression
/// should be set to the given type.
static Type rebuildParenType(ASTContext &ctx, Expr *expr, Type type) {
if (auto paren = dyn_cast<ParenExpr>(expr)) {
type = rebuildParenType(ctx, paren->getSubExpr(), type);
if (ctx.LangOpts.StrictKeywordArguments)
paren->setType(ParenType::get(ctx, type));
else
paren->setType(type);
return paren->getType();
}
if (auto ident = dyn_cast<IdentityExpr>(expr)) {
type = rebuildParenType(ctx, ident->getSubExpr(), type);
ident->setType(type);
return ident->getType();
}
return type;
}
Expr *ExprRewriter::coerceTupleToTuple(Expr *expr, TupleType *fromTuple,
TupleType *toTuple,
ConstraintLocatorBuilder locator,
SmallVectorImpl<int> &sources,
SmallVectorImpl<unsigned> &variadicArgs){
auto &tc = cs.getTypeChecker();
// Capture the tuple expression, if there is one.
Expr *innerExpr = expr;
while (auto paren = dyn_cast<IdentityExpr>(innerExpr))
innerExpr = paren->getSubExpr();
TupleExpr *fromTupleExpr = dyn_cast<TupleExpr>(innerExpr);
/// Check each of the tuple elements in the destination.
bool hasVarArg = false;
bool anythingShuffled = false;
bool hasInits = false;
SmallVector<TupleTypeElt, 4> toSugarFields;
SmallVector<TupleTypeElt, 4> fromTupleExprFields(
fromTuple->getFields().size());
SmallVector<Expr *, 2> callerDefaultArgs;
AbstractFunctionDecl *defaultArgsOwner = nullptr;
for (unsigned i = 0, n = toTuple->getFields().size(); i != n; ++i) {
const auto &toElt = toTuple->getFields()[i];
auto toEltType = toElt.getType();
// If we're default-initializing this member, there's nothing to do.
if (sources[i] == TupleShuffleExpr::DefaultInitialize) {
// Dig out the owner of the default arguments.
if (!defaultArgsOwner) {
defaultArgsOwner
= findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator));
assert(defaultArgsOwner && "Missing default arguments owner?");
} else {
assert(findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator))
== defaultArgsOwner);
}
anythingShuffled = true;
hasInits = true;
toSugarFields.push_back(toElt);
// Create a caller-side default argument, if we need one.
if (auto defArg = getCallerDefaultArg(tc, dc, expr->getLoc(),
defaultArgsOwner, i)) {
callerDefaultArgs.push_back(defArg);
sources[i] = TupleShuffleExpr::CallerDefaultInitialize;
}
continue;
}
// If this is the variadic argument, note it.
if (sources[i] == TupleShuffleExpr::FirstVariadic) {
assert(i == n-1 && "Vararg not at the end?");
toSugarFields.push_back(toElt);
hasVarArg = true;
anythingShuffled = true;
continue;
}
// If the source and destination index are different, we'll be shuffling.
if ((unsigned)sources[i] != i) {
anythingShuffled = true;
}
// We're matching one element to another. If the types already
// match, there's nothing to do.
const auto &fromElt = fromTuple->getFields()[sources[i]];
auto fromEltType = fromElt.getType();
if (fromEltType->isEqual(toEltType)) {
// Get the sugared type directly from the tuple expression, if there
// is one.
if (fromTupleExpr)
fromEltType = fromTupleExpr->getElement(sources[i])->getType();
toSugarFields.push_back(TupleTypeElt(fromEltType,
toElt.getName(),
toElt.getDefaultArgKind(),
toElt.isVararg()));
fromTupleExprFields[sources[i]] = fromElt;
hasInits |= toElt.hasInit();
continue;
}
// We need to convert the source element to the destination type.
if (!fromTupleExpr) {
// FIXME: Lame! We can't express this in the AST.
tc.diagnose(expr->getLoc(),
diag::tuple_conversion_not_expressible,
fromTuple, toTuple);
return nullptr;
}
// Actually convert the source element.
auto convertedElt
= coerceToType(fromTupleExpr->getElement(sources[i]), toEltType,
locator.withPathElement(
LocatorPathElt::getTupleElement(sources[i])));
if (!convertedElt)
return nullptr;
fromTupleExpr->setElement(sources[i], convertedElt);
// Record the sugared field name.
toSugarFields.push_back(TupleTypeElt(convertedElt->getType(),
toElt.getName(),
toElt.getDefaultArgKind(),
toElt.isVararg()));
fromTupleExprFields[sources[i]] = TupleTypeElt(convertedElt->getType(),
fromElt.getName(),
fromElt.getDefaultArgKind(),
fromElt.isVararg());
hasInits |= toElt.hasInit();
}
// Convert all of the variadic arguments to the destination type.
Expr *injectionFn = nullptr;
if (hasVarArg) {
Type toEltType = toTuple->getFields().back().getVarargBaseTy();
for (int fromFieldIdx : variadicArgs) {
const auto &fromElt = fromTuple->getFields()[fromFieldIdx];
Type fromEltType = fromElt.getType();
// If the source and destination types match, there's nothing to do.
if (toEltType->isEqual(fromEltType)) {
sources.push_back(fromFieldIdx);
fromTupleExprFields[fromFieldIdx] = fromElt;
continue;
}
// We need to convert the source element to the destination type.
if (!fromTupleExpr) {
// FIXME: Lame! We can't express this in the AST.
tc.diagnose(expr->getLoc(),
diag::tuple_conversion_not_expressible,
fromTuple, toTuple);
return nullptr;
}
// Actually convert the source element.
auto convertedElt = coerceToType(
fromTupleExpr->getElement(fromFieldIdx),
toEltType,
locator.withPathElement(
LocatorPathElt::getTupleElement(fromFieldIdx)));
if (!convertedElt)
return nullptr;
fromTupleExpr->setElement(fromFieldIdx, convertedElt);
sources.push_back(fromFieldIdx);
fromTupleExprFields[fromFieldIdx] = TupleTypeElt(
convertedElt->getType(),
fromElt.getName(),
fromElt.getDefaultArgKind(),
fromElt.isVararg());
}
// Find the appropriate injection function.
ArraySliceType *sliceType
= cast<ArraySliceType>(
toTuple->getFields().back().getType().getPointer());
Type boundType = BuiltinIntegerType::getWordType(tc.Context);
injectionFn = tc.buildArrayInjectionFnRef(dc,
sliceType, boundType,
expr->getStartLoc());
if (!injectionFn)
return nullptr;
}
// Compute the updated 'from' tuple type, since we may have
// performed some conversions in place.
Type fromTupleType = TupleType::get(fromTupleExprFields, tc.Context);
if (fromTupleExpr) {
fromTupleExpr->setType(fromTupleType);
// Update the types of parentheses around the tuple expression.
rebuildParenType(cs.getASTContext(), expr, fromTupleType);
}
// Compute the re-sugared tuple type.
Type toSugarType = hasInits? toTuple
: TupleType::get(toSugarFields, tc.Context);
// If we don't have to shuffle anything, we're done.
if (!anythingShuffled && fromTupleExpr) {
fromTupleExpr->setType(toSugarType);
// Update the types of parentheses around the tuple expression.
rebuildParenType(cs.getASTContext(), expr, toSugarType);
return expr;
}
// Create the tuple shuffle.
ArrayRef<int> mapping = tc.Context.AllocateCopy(sources);
auto callerDefaultArgsCopy = tc.Context.AllocateCopy(callerDefaultArgs);
auto shuffle = new (tc.Context) TupleShuffleExpr(expr, mapping,
defaultArgsOwner,
callerDefaultArgsCopy,
toSugarType);
shuffle->setVarargsInjectionFunction(injectionFn);
return shuffle;
}
Expr *ExprRewriter::coerceScalarToTuple(Expr *expr, TupleType *toTuple,
int toScalarIdx,
ConstraintLocatorBuilder locator) {
auto &tc = solution.getConstraintSystem().getTypeChecker();
// If the destination type is variadic, compute the injection function to use.
Expr *injectionFn = nullptr;
const auto &lastField = toTuple->getFields().back();
if (lastField.isVararg()) {
// Find the appropriate injection function.
ArraySliceType *sliceType
= cast<ArraySliceType>(lastField.getType().getPointer());
Type boundType = BuiltinIntegerType::getWordType(tc.Context);
injectionFn = tc.buildArrayInjectionFnRef(dc,
sliceType, boundType,
expr->getStartLoc());
if (!injectionFn)
return nullptr;
}
// If we're initializing the varargs list, use its base type.
const auto &field = toTuple->getFields()[toScalarIdx];
Type toScalarType;
if (field.isVararg())
toScalarType = field.getVarargBaseTy();
else
toScalarType = field.getType();
// Coerce the expression to the type to the scalar type.
expr = coerceToType(expr, toScalarType,
locator.withPathElement(
ConstraintLocator::ScalarToTuple));
if (!expr)
return nullptr;
// Preserve the sugar of the scalar field.
// FIXME: This doesn't work if the type has default values because they fail
// to canonicalize.
SmallVector<TupleTypeElt, 4> sugarFields;
bool hasInit = false;
int i = 0;
for (auto &field : toTuple->getFields()) {
if (field.hasInit()) {
hasInit = true;
break;
}
if (i == toScalarIdx) {
if (field.isVararg()) {
assert(expr->getType()->isEqual(field.getVarargBaseTy()) &&
"scalar field is not equivalent to dest vararg field?!");
sugarFields.push_back(TupleTypeElt(field.getType(),
field.getName(),
field.getDefaultArgKind(),
true));
}
else {
assert(expr->getType()->isEqual(field.getType()) &&
"scalar field is not equivalent to dest tuple field?!");
sugarFields.push_back(TupleTypeElt(expr->getType(),
field.getName()));
}
// Record the
} else {
sugarFields.push_back(field);
}
++i;
}
// Compute the elements of the resulting tuple.
SmallVector<ScalarToTupleExpr::Element, 4> elements;
AbstractFunctionDecl *defaultArgsOwner = nullptr;
i = 0;
for (auto &field : toTuple->getFields()) {
// Use a null entry to indicate that this is the scalar field.
if (i == toScalarIdx) {
elements.push_back(ScalarToTupleExpr::Element());
++i;
continue;
}
if (field.isVararg()) {
++i;
continue;
}
assert(field.hasInit() && "Expected a default argument");
// Dig out the owner of the default arguments.
if (!defaultArgsOwner) {
defaultArgsOwner
= findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator));
assert(defaultArgsOwner && "Missing default arguments owner?");
} else {
assert(findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator))
== defaultArgsOwner);
}
// Create a caller-side default argument, if we need one.
if (auto defArg = getCallerDefaultArg(tc, dc, expr->getLoc(),
defaultArgsOwner, i)) {
// Record the caller-side default argument expression.
// FIXME: Do we need to record what this was synthesized from?
elements.push_back(defArg);
} else {
// Record the owner of the default argument.
elements.push_back(defaultArgsOwner);
}
++i;
}
Type destSugarTy = hasInit? toTuple
: TupleType::get(sugarFields, tc.Context);
return new (tc.Context) ScalarToTupleExpr(expr, destSugarTy,
tc.Context.AllocateCopy(elements),
injectionFn);
}
/// Collect the conformances for all the protocols of an existential type.
static ArrayRef<ProtocolConformance*>
collectExistentialConformances(TypeChecker &tc, Type fromType, Type toType,
DeclContext *DC) {
SmallVector<ProtocolDecl *, 4> protocols;
toType->getAnyExistentialTypeProtocols(protocols);
SmallVector<ProtocolConformance *, 4> conformances;
for (auto proto : protocols) {
ProtocolConformance *conformance = nullptr;
bool conforms = tc.conformsToProtocol(fromType, proto, DC, &conformance);
assert(conforms && "Type does not conform to protocol?");
(void)conforms;
conformances.push_back(conformance);
}
return tc.Context.AllocateCopy(conformances);
}
Expr *ExprRewriter::coerceExistential(Expr *expr, Type toType,
ConstraintLocatorBuilder locator) {
auto &tc = solution.getConstraintSystem().getTypeChecker();
Type fromType = expr->getType();
if (tc.isBridgedDynamicConversion(cs.DC, toType, fromType)) {
// Need to coerce to the briged type.
auto bridgedType = tc.getBridgedType(cs.DC, fromType);
if (!bridgedType.isNull() &&
// Protect against "no-op" conversions. If the bridged type points back
// to itself, the constraint solver won't have a conversion handy to
// coerce to a user conversion, so we'll should avoid creating a new
// expression node.
(bridgedType.getPointer() != fromType.getPointer()) &&
(bridgedType.getPointer() != toType.getPointer())) {
expr = coerceViaUserConversion(expr, bridgedType, locator);
fromType = bridgedType;
}
}
auto conformances =
collectExistentialConformances(tc, fromType, toType, cs.DC);
return new (tc.Context) ErasureExpr(expr, toType, conformances);
}
Expr *ExprRewriter::coerceExistentialMetatype(Expr *expr, Type toType,
ConstraintLocatorBuilder locator) {
auto &tc = solution.getConstraintSystem().getTypeChecker();
Type fromType = expr->getType();
Type fromInstanceType = fromType->castTo<AnyMetatypeType>()->getInstanceType();
Type toInstanceType =
toType->castTo<ExistentialMetatypeType>()->getInstanceType();
auto conformances =
collectExistentialConformances(tc, fromInstanceType, toInstanceType, cs.DC);
return new (tc.Context) MetatypeErasureExpr(expr, toType, conformances);
}
Expr *ExprRewriter::coerceViaUserConversion(Expr *expr, Type toType,
ConstraintLocatorBuilder locator) {
auto &tc = solution.getConstraintSystem().getTypeChecker();
// Determine the locator that corresponds to the conversion member.
auto storedLocator
= cs.getConstraintLocator(
locator.withPathElement(ConstraintLocator::ConversionMember));
auto knownOverload = solution.overloadChoices.find(storedLocator);
if (knownOverload != solution.overloadChoices.end()) {
auto selected = knownOverload->second;
// FIXME: Location information is suspect throughout.
// Form a reference to the conversion member.
auto memberRef = buildMemberRef(expr,
selected.openedFullType,
expr->getStartLoc(),
selected.choice.getDecl(),
expr->getEndLoc(),
selected.openedType,
locator,
/*Implicit=*/true, /*direct ivar*/false);
// Form an empty tuple.
Expr *args = TupleExpr::createEmpty(tc.Context,
expr->getStartLoc(),
expr->getEndLoc(),
/*Implicit=*/true);
// Call the conversion function with an empty tuple.
ApplyExpr *apply = new (tc.Context) CallExpr(memberRef, args,
/*Implicit=*/true);
auto openedType = selected.openedType->castTo<FunctionType>()->getResult();
expr = finishApply(apply, openedType,
ConstraintLocatorBuilder(
cs.getConstraintLocator(apply)));
if (!expr)
return nullptr;
return coerceToType(expr, toType, locator);
}
// If there was no conversion member, look for a constructor member.
// This is only used for handling interpolated string literals, where
// we allow construction or conversion.
storedLocator
= cs.getConstraintLocator(
locator.withPathElement(ConstraintLocator::ConstructorMember));
knownOverload = solution.overloadChoices.find(storedLocator);
// Could not find a user conversion.
if(knownOverload == solution.overloadChoices.end()) {
tc.diagnose(expr->getLoc(), diag::could_not_find_user_conversion,
expr->getType(), toType);
return nullptr;
}
auto selected = knownOverload->second;
// FIXME: Location information is suspect throughout.
// Form a reference to the constructor.
// Form a reference to the constructor or enum declaration.
// FIXME: Bogus location info.
Expr *typeBase = TypeExpr::createImplicitHack(expr->getStartLoc(), toType,
tc.Context);
Expr *declRef = buildMemberRef(typeBase,
selected.openedFullType,
expr->getStartLoc(),
selected.choice.getDecl(),
expr->getStartLoc(),
selected.openedType,
storedLocator,
/*Implicit=*/true, /*direct ivar*/false);
// FIXME: Lack of openedType here is an issue.
ApplyExpr *apply = new (tc.Context) CallExpr(declRef, expr,
/*Implicit=*/true);
expr = finishApply(apply, toType, locator);
if (!expr)
return nullptr;
return coerceToType(expr, toType, locator);
}
Expr *ExprRewriter::coerceOptionalToOptional(Expr *expr, Type toType,
ConstraintLocatorBuilder locator) {
auto &tc = cs.getTypeChecker();
Type fromType = expr->getType();
auto fromGenericType = fromType->castTo<BoundGenericType>();
auto toGenericType = toType->castTo<BoundGenericType>();
assert(fromGenericType->getDecl()->classifyAsOptionalType());
assert(toGenericType->getDecl()->classifyAsOptionalType());
tc.requireOptionalIntrinsics(expr->getLoc());
Type fromValueType = fromGenericType->getGenericArgs()[0];
Type toValueType = toGenericType->getGenericArgs()[0];
expr = new (tc.Context) BindOptionalExpr(expr, expr->getSourceRange().End,
/*depth*/ 0, fromValueType);
expr->setImplicit(true);
expr = coerceToType(expr, toValueType, locator);
if (!expr) return nullptr;
expr = new (tc.Context) InjectIntoOptionalExpr(expr, toType);
expr = new (tc.Context) OptionalEvaluationExpr(expr, toType);
expr->setImplicit(true);
return expr;
}
Expr *ExprRewriter::coerceImplicitlyUnwrappedOptionalToValue(Expr *expr, Type objTy,
ConstraintLocatorBuilder locator) {
// Coerce to an r-value.
auto rvalueTy = expr->getType()->getRValueType();
assert(rvalueTy->getImplicitlyUnwrappedOptionalObjectType()->isEqual(objTy));
if (cs.getTypeChecker().requireOptionalIntrinsics(expr->getLoc()))
return nullptr;
expr = coerceToType(expr, rvalueTy, /*bogus?*/ locator);
if (!expr) return nullptr;
expr = new (cs.getTypeChecker().Context) ForceValueExpr(expr, expr->getEndLoc());
expr->setType(objTy);
expr->setImplicit();
return expr;
}
Expr *ExprRewriter::coerceCallArguments(Expr *arg, Type paramType,
ConstraintLocatorBuilder locator) {
// If the types match exactly, there's nothing to do.
// FIXME: This is propping up string literals, but it feels wrong.
if (arg->getType()->isEqual(paramType))
return arg;
// Determine the parameter bindings.
MatchCallArgumentListener listener;
TupleTypeElt paramScalar;
ArrayRef<TupleTypeElt> paramTuple = decomposeArgParamType(paramType,
paramScalar);
TupleTypeElt argScalar;
ArrayRef<TupleTypeElt> argTupleElts = decomposeArgParamType(arg->getType(),
argScalar);
SmallVector<ParamBinding, 4> parameterBindings;
bool failed = constraints::matchCallArguments(argTupleElts, paramTuple,
/*allowFixes=*/false, listener,
parameterBindings);
assert(!failed && "Call arguments did not match up?");
(void)failed;
// We should either have parentheses or a tuple.
TupleExpr *argTuple = dyn_cast<TupleExpr>(arg);
ParenExpr *argParen = dyn_cast<ParenExpr>(arg);
// FIXME: Eventually, we want to enforce that we have either argTuple or
// argParen here.
// Local function to extract the ith argument expression, which papers
// over some of the weirdness with tuples vs. parentheses.
auto getArg = [&](unsigned i) -> Expr * {
if (argTuple)
return argTuple->getElements()[i];
assert(i == 0 && "Scalar only has a single argument");
if (argParen)
return argParen->getSubExpr();
return arg;
};
// Local function to extract the ith argument label, which papers over some
// of the weirdndess with tuples vs. parentheses.
auto getArgLabel = [&](unsigned i) -> Identifier {
if (argTuple)
return argTuple->getElementName(i);
assert(i == 0 && "Scalar only has a single argument");
return Identifier();
};
// Local function to produce a locator to refer to the ith element of the
// argument tuple.
auto getArgLocator = [&](unsigned argIdx, unsigned paramIdx)
-> ConstraintLocatorBuilder {
return locator.withPathElement(
LocatorPathElt::getApplyArgToParam(argIdx, paramIdx));
};
// Local function to set the ith argument of the argument.
auto setArgElement = [&](unsigned i, Expr *e) {
if (argTuple) {
argTuple->setElement(i, e);
return;
}
assert(i == 0 && "Scalar with more than one argument?");
if (argParen) {
argParen->setSubExpr(e);
return;
}
arg = e;
};
auto &tc = getConstraintSystem().getTypeChecker();
bool anythingShuffled = false;
SmallVector<TupleTypeElt, 4> toSugarFields;
SmallVector<TupleTypeElt, 4> fromTupleExprFields(
argTuple? argTuple->getNumElements() : 1);
SmallVector<ScalarToTupleExpr::Element, 4> scalarToTupleElements;
SmallVector<Expr *, 2> callerDefaultArgs;
AbstractFunctionDecl *defaultArgsOwner = nullptr;
Expr *injectionFn = nullptr;
SmallVector<int, 4> sources;
for (unsigned paramIdx = 0, numParams = parameterBindings.size();
paramIdx != numParams; ++paramIdx) {
// Extract the parameter.
const auto &param = paramTuple[paramIdx];
// Handle variadic parameters.
if (param.isVararg()) {
// FIXME: TupleShuffleExpr cannot handle variadics anywhere other than
// at the end.
if (paramIdx != numParams-1) {
tc.diagnose(arg->getLoc(), diag::tuple_conversion_not_expressible,
arg->getType(), paramType);
return nullptr;
}
// Find the appropriate injection function.
ArraySliceType *sliceType
= cast<ArraySliceType>(param.getType().getPointer());
Type boundType = BuiltinIntegerType::getWordType(tc.Context);
injectionFn = tc.buildArrayInjectionFnRef(cs.DC,
sliceType, boundType,
arg->getStartLoc());
if (!injectionFn)
return nullptr;
// Record this parameter.
toSugarFields.push_back(param);
anythingShuffled = true;
sources.push_back(TupleShuffleExpr::FirstVariadic);
// Convert the arguments.
auto paramBaseType = param.getVarargBaseTy();
for (auto argIdx : parameterBindings[paramIdx]) {
auto arg = getArg(argIdx);
auto argType = arg->getType();
sources.push_back(argIdx);
// If the argument type exactly matches, this just works.
if (argType->isEqual(paramBaseType)) {
fromTupleExprFields[argIdx] = TupleTypeElt(argType,
getArgLabel(argIdx));
scalarToTupleElements.push_back(ScalarToTupleExpr::Element());
continue;
}
// FIXME: If we're not converting directly from a tuple expression,
// we can't express this. LAME!
if (!argTuple && numParams > 1) {
tc.diagnose(arg->getLoc(),
diag::tuple_conversion_not_expressible,
arg->getType(), paramType);
return nullptr;
}
// Convert the argument.
auto convertedArg = coerceToType(arg, paramBaseType,
getArgLocator(argIdx, paramIdx));
if (!convertedArg)
return nullptr;
// Add the converted argument.
setArgElement(argIdx, convertedArg);
fromTupleExprFields[argIdx] = TupleTypeElt(convertedArg->getType(),
getArgLabel(argIdx));
scalarToTupleElements.push_back(ScalarToTupleExpr::Element());
}
continue;
}
// If we are using a default argument, handle it now.
if (parameterBindings[paramIdx].empty()) {
// Dig out the owner of the default arguments.
if (!defaultArgsOwner) {
defaultArgsOwner
= findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator));
assert(defaultArgsOwner && "Missing default arguments owner?");
} else {
assert(findDefaultArgsOwner(cs, solution,
cs.getConstraintLocator(locator))
== defaultArgsOwner);
}
// Note that we'll be doing a shuffle involving default arguments.
anythingShuffled = true;
toSugarFields.push_back(param);
// Create a caller-side default argument, if we need one.
if (auto defArg = getCallerDefaultArg(tc, dc, arg->getLoc(),
defaultArgsOwner, paramIdx)) {
callerDefaultArgs.push_back(defArg);
sources.push_back(TupleShuffleExpr::CallerDefaultInitialize);
scalarToTupleElements.push_back(defArg);
} else {
sources.push_back(TupleShuffleExpr::DefaultInitialize);
scalarToTupleElements.push_back(defaultArgsOwner);
}
continue;
}
// Extract the argument used to initialize this parameter.
assert(parameterBindings[paramIdx].size() == 1);
unsigned argIdx = parameterBindings[paramIdx].front();
auto arg = getArg(argIdx);
auto argType = arg->getType();
// If the argument and parameter indices differ, or if the names differ,
// this is a shuffle.
sources.push_back(argIdx);
if (argIdx != paramIdx || getArgLabel(argIdx) != param.getName()) {
anythingShuffled = true;
}
scalarToTupleElements.push_back(ScalarToTupleExpr::Element());
// If the types exactly match, this is easy.
auto paramType = param.getType();
if (argType->isEqual(paramType)) {
toSugarFields.push_back(TupleTypeElt(argType, param.getName()));
fromTupleExprFields[argIdx] = TupleTypeElt(paramType, param.getName());
continue;
}
// Convert the argument.
auto convertedArg = coerceToType(arg, paramType, getArgLocator(argIdx,
paramIdx));
if (!convertedArg)
return nullptr;
// Add the converted argument.
setArgElement(argIdx, convertedArg);
fromTupleExprFields[argIdx] = TupleTypeElt(convertedArg->getType(),
getArgLabel(argIdx));
toSugarFields.push_back(TupleTypeElt(argType, param.getName()));
}
// Compute the updated 'from' tuple type, since we may have
// performed some conversions in place.
Type argTupleType = TupleType::get(fromTupleExprFields, tc.Context);
if (argTuple) {
argTuple->setType(anythingShuffled? argTupleType : paramType);
} else {
arg->setType(anythingShuffled? argTupleType : paramType);
}
// If we don't have to shuffle anything, we're done.
if (!anythingShuffled)
return arg;
// If we came from a scalar, create a scalar-to-tuple conversion.
if (!argTuple) {
auto elements = tc.Context.AllocateCopy(scalarToTupleElements);
return new (tc.Context) ScalarToTupleExpr(arg, paramType, elements,
injectionFn);
}
// Create the tuple shuffle.
ArrayRef<int> mapping = tc.Context.AllocateCopy(sources);
auto callerDefaultArgsCopy = tc.Context.AllocateCopy(callerDefaultArgs);
auto shuffle = new (tc.Context) TupleShuffleExpr(arg, mapping,
defaultArgsOwner,
callerDefaultArgsCopy,
paramType);
shuffle->setVarargsInjectionFunction(injectionFn);
return shuffle;
}
Expr *ExprRewriter::coerceToType(Expr *expr, Type toType,
ConstraintLocatorBuilder locator) {
auto &tc = cs.getTypeChecker();
// The type we're converting from.
Type fromType = expr->getType();
// If the types are already equivalent, we don't have to do anything.
if (fromType->isEqual(toType))
return expr;
// If the solver recorded what we should do here, just do it immediately.
auto knownRestriction = solution.ConstraintRestrictions.find(
{ fromType->getCanonicalType(),
toType->getCanonicalType() });
if (knownRestriction != solution.ConstraintRestrictions.end()) {
switch (knownRestriction->second) {
case ConversionRestrictionKind::TupleToTuple: {
auto fromTuple = expr->getType()->castTo<TupleType>();
auto toTuple = toType->castTo<TupleType>();
SmallVector<int, 4> sources;
SmallVector<unsigned, 4> variadicArgs;
bool failed = computeTupleShuffle(fromTuple, toTuple, sources,
variadicArgs,
hasMandatoryTupleLabels(expr));
assert(!failed && "Couldn't convert tuple to tuple?");
(void)failed;
return coerceTupleToTuple(expr, fromTuple, toTuple, locator, sources,
variadicArgs);
}
case ConversionRestrictionKind::ScalarToTuple: {
auto toTuple = toType->castTo<TupleType>();
return coerceScalarToTuple(expr, toTuple,
toTuple->getFieldForScalarInit(), locator);
}
case ConversionRestrictionKind::TupleToScalar: {
// If this was a single-element tuple expression, reach into that
// subexpression.
// FIXME: This is a hack to deal with @lvalue-ness issues. It loses
// source information.
if (auto fromTupleExpr = dyn_cast<TupleExpr>(expr)) {
if (fromTupleExpr->getNumElements() == 1) {
return coerceToType(fromTupleExpr->getElement(0), toType,
locator.withPathElement(
LocatorPathElt::getTupleElement(0)));
}
}
// Extract the element.
auto fromTuple = fromType->castTo<TupleType>();
expr = new (cs.getASTContext()) TupleElementExpr(
expr,
expr->getLoc(),
0,
expr->getLoc(),
fromTuple->getElementType(0));
expr->setImplicit(true);
// Coerce the element to the expected type.
return coerceToType(expr, toType,
locator.withPathElement(
LocatorPathElt::getTupleElement(0)));
}
case ConversionRestrictionKind::DeepEquality:
llvm_unreachable("Equality handled above");
case ConversionRestrictionKind::Superclass: {
// Coercion from archetype to its (concrete) superclass.
if (auto fromArchetype = fromType->getAs<ArchetypeType>()) {
expr = new (tc.Context) ArchetypeToSuperExpr(
expr,
fromArchetype->getSuperclass());
// If we are done succeeded, use the coerced result.
if (expr->getType()->isEqual(toType)) {
return expr;
}
fromType = expr->getType();
}
// Coercion from subclass to superclass.
return new (tc.Context) DerivedToBaseExpr(expr, toType);
}
case ConversionRestrictionKind::LValueToRValue: {
// Load from the lvalue.
expr = new (tc.Context) LoadExpr(expr, fromType->getRValueType());
// Coerce the result.
return coerceToType(expr, toType, locator);
}
case ConversionRestrictionKind::Existential:
return coerceExistential(expr, toType, locator);
case ConversionRestrictionKind::ValueToOptional: {
auto toGenericType = toType->castTo<BoundGenericType>();
assert(toGenericType->getDecl()->classifyAsOptionalType());
tc.requireOptionalIntrinsics(expr->getLoc());
Type valueType = toGenericType->getGenericArgs()[0];
expr = coerceToType(expr, valueType, locator);
if (!expr) return nullptr;
return new (tc.Context) InjectIntoOptionalExpr(expr, toType);
}
case ConversionRestrictionKind::OptionalToImplicitlyUnwrappedOptional:
case ConversionRestrictionKind::ImplicitlyUnwrappedOptionalToOptional:
case ConversionRestrictionKind::OptionalToOptional:
return coerceOptionalToOptional(expr, toType, locator);
case ConversionRestrictionKind::ForceUnchecked: {
auto valueTy = fromType->getImplicitlyUnwrappedOptionalObjectType();
assert(valueTy);
expr = coerceImplicitlyUnwrappedOptionalToValue(expr, valueTy, locator);
if (!expr) return nullptr;
return coerceToType(expr, toType, locator);
}
case ConversionRestrictionKind::ArrayBridged: {
auto bridgedArrayConversion = new (tc.Context)
ArrayBridgedConversionExpr(expr, toType);
bridgedArrayConversion->setType(toType);
// For a conversion from Array<T> to Array<U>, check if T conforms to the
// _ConditionallyBridgedToObjectiveC protocol.
auto desugaredArray = fromType.getPointer()->getDesugaredType();
auto baseType = cs.getBaseTypeForArrayType(desugaredArray);
if (tc.isConditionallyBridgedType(dc, baseType)) {
bridgedArrayConversion->isConditionallyBridged = true;
}
return bridgedArrayConversion;
}
case ConversionRestrictionKind::ArrayUpcast: {
auto arrayConversion = new (tc.Context)
ArrayUpcastConversionExpr(expr, toType);
arrayConversion->setType(toType);
return arrayConversion;
}
case ConversionRestrictionKind::User:
return coerceViaUserConversion(expr, toType, locator);
}
}
// Tuple-to-scalar conversion.
// FIXME: Will go away when tuple labels go away.
if (auto fromTuple = fromType->getAs<TupleType>()) {
if (fromTuple->getNumElements() == 1 &&
!fromTuple->getFields()[0].isVararg() &&
!toType->is<TupleType>()) {
expr = new (cs.getASTContext()) TupleElementExpr(
expr,
expr->getLoc(),
0,
expr->getLoc(),
fromTuple->getElementType(0));
expr->setImplicit(true);
}
}
// Coercions from an lvalue: load or perform implicit address-of. We perform
// these coercions first because they are often the first step in a multi-step
// coercion.
if (auto fromLValue = fromType->getAs<LValueType>()) {
if (auto *toIO = toType->getAs<InOutType>()) {
(void)toIO;
// In an @assignment operator like "++i", the operand is converted from
// an implicit lvalue to an inout argument.
assert(toIO->getObjectType()->isEqual(fromLValue->getObjectType()));
return new (tc.Context) InOutExpr(expr->getStartLoc(), expr,
toType, /*isImplicit*/true);
}
// If we're actually turning this into an lvalue tuple element, don't
// load.
bool performLoad = true;
if (auto toTuple = toType->getAs<TupleType>()) {
int scalarIdx = toTuple->getFieldForScalarInit();
if (scalarIdx >= 0 &&
toTuple->getElementType(scalarIdx)->is<InOutType>())
performLoad = false;
}
if (performLoad) {
// Load from the lvalue.
expr = new (tc.Context) LoadExpr(expr, fromLValue->getObjectType());
// Coerce the result.
return coerceToType(expr, toType, locator);
}
}
// Coercions to tuple type.
if (auto toTuple = toType->getAs<TupleType>()) {
// Coerce from a tuple to a tuple.
if (auto fromTuple = fromType->getAs<TupleType>()) {
SmallVector<int, 4> sources;
SmallVector<unsigned, 4> variadicArgs;
if (!computeTupleShuffle(fromTuple, toTuple, sources, variadicArgs,
hasMandatoryTupleLabels(expr))) {
return coerceTupleToTuple(expr, fromTuple, toTuple,
locator, sources, variadicArgs);
}
}
// Coerce scalar to tuple.
int toScalarIdx = toTuple->getFieldForScalarInit();
if (toScalarIdx != -1) {
return coerceScalarToTuple(expr, toTuple, toScalarIdx, locator);
}
}
// Coercion from a subclass to a superclass.
if (fromType->mayHaveSuperclass() &&
toType->getClassOrBoundGenericClass()) {
for (auto fromSuperClass = tc.getSuperClassOf(fromType);
fromSuperClass;
fromSuperClass = tc.getSuperClassOf(fromSuperClass)) {
if (fromSuperClass->isEqual(toType)) {
// Coercion from archetype to its (concrete) superclass.
if (auto fromArchetype = fromType->getAs<ArchetypeType>()) {
expr = new (tc.Context) ArchetypeToSuperExpr(
expr,
fromArchetype->getSuperclass());
// If we succeeded, use the coerced result.
if (expr->getType()->isEqual(toType))
return expr;
}
// Coercion from subclass to superclass.
expr = new (tc.Context) DerivedToBaseExpr(expr, toType);
return expr;
}
}
}
// Coercions to function type.
if (auto toFunc = toType->getAs<FunctionType>()) {
// Coercion to an autoclosure type produces an implicit closure.
// FIXME: The type checker is more lenient, and allows @auto_closures to
// be subtypes of non-@auto_closures, which is bogus.
if (toFunc->isAutoClosure()) {
// Convert the value to the expected result type of the function.
expr = coerceToType(expr, toFunc->getResult(),
locator.withPathElement(ConstraintLocator::Load));
// We'll set discriminator values on all the autoclosures in a
// later pass.
auto discriminator = AutoClosureExpr::InvalidDiscriminator;
auto Closure = new (tc.Context) AutoClosureExpr(expr, toType,
discriminator, dc);
Pattern *pattern = TuplePattern::create(tc.Context, expr->getLoc(),
ArrayRef<TuplePatternElt>(),
expr->getLoc());
pattern->setType(TupleType::getEmpty(tc.Context));
Closure->setParams(pattern);
// Compute the capture list, now that we have analyzed the expression.
tc.computeCaptures(Closure);
return Closure;
}
// Coercion from one function type to another.
auto fromFunc = fromType->getAs<FunctionType>();
if (fromFunc) {
return new (tc.Context) FunctionConversionExpr(expr, toType);
}
}
// Coercions from a type to an existential type.
if (toType->isExistentialType()) {
return coerceExistential(expr, toType, locator);
}
// Coercions to an existential metatype.
if (toType->is<ExistentialMetatypeType>()) {
return coerceExistentialMetatype(expr, toType, locator);
}
// Coercion to Optional<T>.
if (auto toGenericType = toType->getAs<BoundGenericType>()) {
if (toGenericType->getDecl()->classifyAsOptionalType()) {
tc.requireOptionalIntrinsics(expr->getLoc());
Type valueType = toGenericType->getGenericArgs()[0];
expr = coerceToType(expr, valueType, locator);
if (!expr) return nullptr;
return new (tc.Context) InjectIntoOptionalExpr(expr, toType);
}
}
// Coerce via conversion function or constructor.
if (fromType->getNominalOrBoundGenericNominal()||
fromType->is<ArchetypeType>() ||
toType->getNominalOrBoundGenericNominal() ||
toType->is<ArchetypeType>()) {
return coerceViaUserConversion(expr, toType, locator);
}
// Coercion from one metatype to another.
if (fromType->is<MetatypeType>()) {
auto toMeta = toType->castTo<MetatypeType>();
return new (tc.Context) MetatypeConversionExpr(expr, toMeta);
}
llvm_unreachable("Unhandled coercion");
}
Expr *
ExprRewriter::coerceObjectArgumentToType(Expr *expr,
Type baseTy, ValueDecl *member,
bool IsDirectPropertyAccess,
ConstraintLocatorBuilder locator) {
Type toType = adjustSelfTypeForMember(baseTy, member, IsDirectPropertyAccess,
dc);
// If our expression already has the right type, we're done.
Type fromType = expr->getType();
if (fromType->isEqual(toType))
return expr;
// If we're coercing to an rvalue type, just do it.
if (!toType->is<InOutType>())
return coerceToType(expr, toType, locator);
assert(fromType->is<LValueType>() && "Can only convert lvalues to inout");
auto &ctx = cs.getTypeChecker().Context;
// Use InOutExpr to convert it to an explicit inout argument for the
// receiver.
return new (ctx) InOutExpr(expr->getStartLoc(), expr,
toType, /*isImplicit*/true);
}
Expr *ExprRewriter::convertLiteral(Expr *literal,
Type type,
Type openedType,
ProtocolDecl *protocol,
TypeOrName literalType,
Identifier literalFuncName,
ProtocolDecl *builtinProtocol,
TypeOrName builtinLiteralType,
Identifier builtinLiteralFuncName,
bool (*isBuiltinArgType)(Type),
Diag<> brokenProtocolDiag,
Diag<> brokenBuiltinProtocolDiag) {
auto &tc = cs.getTypeChecker();
// Check whether this literal type conforms to the builtin protocol.
ProtocolConformance *builtinConformance = nullptr;
if (tc.conformsToProtocol(type, builtinProtocol, cs.DC, &builtinConformance)){
// Find the builtin argument type we'll use.
Type argType;
if (builtinLiteralType.is<Type>())
argType = builtinLiteralType.get<Type>();
else
argType = tc.getWitnessType(type, builtinProtocol,
builtinConformance,
builtinLiteralType.get<Identifier>(),
brokenBuiltinProtocolDiag);
if (!argType)
return nullptr;
// Make sure it's of an appropriate builtin type.
if (isBuiltinArgType && !isBuiltinArgType(argType)) {
tc.diagnose(builtinProtocol->getLoc(), brokenBuiltinProtocolDiag);
return nullptr;
}
// The literal expression has this type.
literal->setType(argType);
// Call the builtin conversion operation.
// FIXME: Bogus location info.
Expr *base = TypeExpr::createImplicitHack(literal->getLoc(), type,
tc.Context);
Expr *result = tc.callWitness(base, dc,
builtinProtocol, builtinConformance,
builtinLiteralFuncName,
literal,
brokenBuiltinProtocolDiag);
if (result)
result->setType(type);
return result;
}
// This literal type must conform to the (non-builtin) protocol.
assert(protocol && "requirements should have stopped recursion");
ProtocolConformance *conformance = nullptr;
bool conforms = tc.conformsToProtocol(type, protocol, cs.DC, &conformance);
assert(conforms && "must conform to literal protocol");
(void)conforms;
// Figure out the (non-builtin) argument type.
Type argType;
if (literalType.is<Type>())
argType = literalType.get<Type>();
else
argType = tc.getWitnessType(type, protocol, conformance,
literalType.get<Identifier>(),
brokenProtocolDiag);
if (!argType)
return nullptr;
// Convert the literal to the non-builtin argument type via the
// builtin protocol, first.
// FIXME: Do we need an opened type here?
literal = convertLiteral(literal, argType, argType, nullptr, Identifier(),
Identifier(), builtinProtocol,
builtinLiteralType, builtinLiteralFuncName,
isBuiltinArgType, brokenProtocolDiag,
brokenBuiltinProtocolDiag);
if (!literal)
return nullptr;
// Convert the resulting expression to the final literal type.
// FIXME: Bogus location info.
Expr *base = TypeExpr::createImplicitHack(literal->getLoc(), type,
tc.Context);
literal = tc.callWitness(base, dc,
protocol, conformance, literalFuncName,
literal, brokenProtocolDiag);
if (literal)
literal->setType(type);
return literal;
}
Expr *ExprRewriter::finishApply(ApplyExpr *apply, Type openedType,
ConstraintLocatorBuilder locator) {
TypeChecker &tc = cs.getTypeChecker();
auto fn = apply->getFn();
// The function is always an rvalue.
fn = tc.coerceToRValue(fn);
assert(fn && "Rvalue conversion failed?");
if (!fn)
return nullptr;
// Handle applications that implicitly look through ImplicitlyUnwrappedOptional<T>.
if (auto fnTy = cs.lookThroughImplicitlyUnwrappedOptionalType(fn->getType())) {
fn = coerceImplicitlyUnwrappedOptionalToValue(fn, fnTy, locator);
if (!fn) return nullptr;
}
// If we're applying a function that resulted from a covariant
// function conversion, strip off that conversion.
// FIXME: It would be nicer if we could build the ASTs properly in the
// first shot.
Type covariantResultType;
if (auto covariant = dyn_cast<CovariantFunctionConversionExpr>(fn)) {
// Strip off one layer of application from the covariant result.
covariantResultType
= covariant->getType()->castTo<AnyFunctionType>()->getResult();
// Use the subexpression as the function.
fn = covariant->getSubExpr();
}
apply->setFn(fn);
// Check whether the argument is 'super'.
bool isSuper = apply->getArg()->isSuperExpr();
// For function application, convert the argument to the input type of
// the function.
if (auto fnType = fn->getType()->getAs<FunctionType>()) {
auto origArg = apply->getArg();
Expr *arg;
if (tc.Context.LangOpts.StrictKeywordArguments) {
arg = coerceCallArguments(origArg, fnType->getInput(),
locator.withPathElement(
ConstraintLocator::ApplyArgument));
} else {
arg = coerceToType(origArg, fnType->getInput(),
locator.withPathElement(
ConstraintLocator::ApplyArgument));
}
if (!arg) {
return nullptr;
}
apply->setArg(arg);
apply->setType(fnType->getResult());
apply->setIsSuper(isSuper);
assert(!apply->getType()->is<PolymorphicFunctionType>() &&
"Polymorphic function type slipped through");
Expr *result = tc.substituteInputSugarTypeForResult(apply);
// If the result is an archetype from an opened existential, erase
// the existential and create the OpenExistentialExpr.
// FIXME: This is a localized form of a much more general rule for
// placement of open existential expressions. It only works for
// DynamicSelf.
OptionalTypeKind optKind;
auto resultTy = result->getType();
if (auto optValueTy = resultTy->getAnyOptionalObjectType(optKind)) {
resultTy = optValueTy;
}
if (auto archetypeTy = resultTy->getAs<ArchetypeType>()) {
auto opened = OpenedExistentials.find(archetypeTy);
if (opened != OpenedExistentials.end()) {
// Erase the archetype to its corresponding existential:
auto openedTy = archetypeTy->getOpenedExistentialType();
// - Drill down to the optional value (if necessary).
if (optKind) {
result = new (tc.Context) BindOptionalExpr(result,
result->getEndLoc(),
0, archetypeTy);
result->setImplicit(true);
}
// - Coerce to an existential value.
result = coerceToType(result, openedTy, locator);
if (!result)
return result;
// - Bind up the result back up as an optional (if necessary).
if (optKind) {
Type optOpenedTy = OptionalType::get(optKind, openedTy);
result = new (tc.Context) InjectIntoOptionalExpr(result, optOpenedTy);
result = new (tc.Context) OptionalEvaluationExpr(result, optOpenedTy);
}
// Create the expression that opens the existential.
result = new (tc.Context) OpenExistentialExpr(
opened->second.ExistentialValue,
opened->second.OpaqueValue,
result);
// Remove this from the set of opened existentials.
OpenedExistentials.erase(opened);
}
}
// If we have a covariant result type, perform the conversion now.
if (covariantResultType) {
if (covariantResultType->is<FunctionType>())
result = new (tc.Context) CovariantFunctionConversionExpr(
result,
covariantResultType);
else
result = new (tc.Context) CovariantReturnConversionExpr(
result,
covariantResultType);
}
return result;
}
// We have a type constructor.
auto metaTy = fn->getType()->castTo<AnyMetatypeType>();
auto ty = metaTy->getInstanceType();
// If we're "constructing" a tuple type, it's simply a conversion.
if (auto tupleTy = ty->getAs<TupleType>()) {
// FIXME: Need an AST to represent this properly.
return coerceToType(apply->getArg(), tupleTy, locator);
}
// We're constructing a value of nominal type. Look for the constructor or
// enum element to use.
assert(ty->getNominalOrBoundGenericNominal() || ty->is<DynamicSelfType>() ||
ty->is<ArchetypeType>() || ty->isExistentialType());
auto selected = getOverloadChoiceIfAvailable(
cs.getConstraintLocator(
locator.withPathElement(
ConstraintLocator::ConstructorMember)));
// We have the constructor.
auto choice = selected->choice;
auto decl = choice.getDecl();
// Consider the constructor decl reference expr 'implicit', but the
// constructor call expr itself has the apply's 'implicitness'.
Expr *declRef = buildMemberRef(fn,
selected->openedFullType,
/*DotLoc=*/SourceLoc(),
decl, fn->getEndLoc(),
selected->openedType, locator,
/*Implicit=*/true, /*direct ivar*/false);
declRef->setImplicit(apply->isImplicit());
apply->setFn(declRef);
// If we're constructing a class object, either the metatype must be
// statically derived (rather than an arbitrary value of metatype type) or
// the referenced constructor must be abstract.
if ((ty->getClassOrBoundGenericClass() || ty->is<DynamicSelfType>()) &&
!fn->isStaticallyDerivedMetatype() &&
!cast<ConstructorDecl>(decl)->isRequired()) {
tc.diagnose(apply->getLoc(), diag::dynamic_construct_class, ty)
.highlight(fn->getSourceRange());
auto ctor = cast<ConstructorDecl>(decl);
// FIXME: Better description of the initializer than just it's type.
if (ctor->isImplicit())
tc.diagnose(decl, diag::note_nonrequired_implicit_initializer,
ctor->getArgumentType());
else
tc.diagnose(decl, diag::note_nonrequired_initializer);
} else if (isa<ConstructorDecl>(decl) && ty->isExistentialType() &&
fn->isStaticallyDerivedMetatype()) {
tc.diagnose(apply->getLoc(), diag::static_construct_existential, ty)
.highlight(fn->getSourceRange());
}
// Tail-recur to actually call the constructor.
return finishApply(apply, openedType, locator);
}
/// Diagnose a relabel-tuple
///
/// \returns true if we successfully diagnosed the issue.
static bool diagnoseRelabel(TypeChecker &tc, Expr *expr,
ArrayRef<Identifier> newNames,
bool isSubscript) {
auto tuple = dyn_cast<TupleExpr>(expr);
if (!tuple) {
if (newNames[0].empty()) {
// This is probably a conversion from a value of labeled tuple type to
// a scalar.
// FIXME: We want this issue to disappear completely when single-element
// labelled tuples go away.
if (auto tupleTy = expr->getType()->getRValueType()->getAs<TupleType>()) {
int scalarFieldIdx = tupleTy->getFieldForScalarInit();
if (scalarFieldIdx >= 0) {
auto &field = tupleTy->getFields()[scalarFieldIdx];
if (field.hasName()) {
llvm::SmallString<16> str;
str = ".";
str += field.getName().str();
auto insertLoc = Lexer::getLocForEndOfToken(tc.Context.SourceMgr,
expr->getEndLoc());
tc.diagnose(expr->getStartLoc(),
diag::extra_named_single_element_tuple,
field.getName().str())
.fixItInsert(insertLoc, str);
return true;
}
}
}
// We don't know what to do with this.
return false;
}
// This is a scalar-to-tuple conversion. Add the name. We "know"
// that we're inside a ParenExpr, because ParenExprs are required
// by the syntax and locator resolution looks through on level of
// them.
// Look through the paren expression, if there is one.
if (auto parenExpr = dyn_cast<ParenExpr>(expr))
expr = parenExpr->getSubExpr();
llvm::SmallString<16> str;
str += newNames[0].str();
str += ": ";
tc.diagnose(expr->getStartLoc(), diag::missing_argument_labels, false,
str.substr(0, str.size()-1), isSubscript)
.fixItInsert(expr->getStartLoc(), str);
return true;
}
// Figure out how many extraneous, missing, and wrong labels are in
// the call.
unsigned numExtra = 0, numMissing = 0, numWrong = 0;
unsigned n = std::max(tuple->getNumElements(), (unsigned)newNames.size());
llvm::SmallString<16> missingBuffer;
llvm::SmallString<16> extraBuffer;
for (unsigned i = 0; i != n; ++i) {
Identifier oldName;
if (i < tuple->getNumElements())
oldName = tuple->getElementName(i);
Identifier newName;
if (i < newNames.size())
newName = newNames[i];
if (oldName == newName)
continue;
if (oldName.empty()) {
++numMissing;
missingBuffer += newName.str();
missingBuffer += ":";
} else if (newName.empty()) {
++numExtra;
extraBuffer += oldName.str();
extraBuffer += ':';
} else
++numWrong;
}
// Emit the diagnostic.
assert(numMissing > 0 || numExtra > 0 || numWrong > 0);
Optional<InFlightDiagnostic> diagOpt;
// If we had any wrong labels, or we have both missing and extra labels,
// emit the catch-all "wrong labels" diagnostic.
bool plural = (numMissing + numExtra + numWrong) > 1;
llvm::SmallString<16> haveBuffer; // note: diagOpt has references to this
llvm::SmallString<16> expectedBuffer; // note: diagOpt has references to this
if (numWrong > 0 || (numMissing > 0 && numExtra > 0)) {
for(unsigned i = 0, n = tuple->getNumElements(); i != n; ++i) {
auto haveName = tuple->getElementName(i);
if (haveName.empty())
haveBuffer += '_';
else
haveBuffer += haveName.str();
haveBuffer += ':';
}
for (auto expected : newNames) {
if (expected.empty())
expectedBuffer += '_';
else
expectedBuffer += expected.str();
expectedBuffer += ':';
}
StringRef haveStr = haveBuffer;
StringRef expectedStr = expectedBuffer;
diagOpt.emplace(tc.diagnose(expr->getLoc(), diag::wrong_argument_labels,
plural, haveStr, expectedStr, isSubscript));
} else if (numMissing > 0) {
StringRef missingStr = missingBuffer;
diagOpt.emplace(tc.diagnose(expr->getLoc(), diag::missing_argument_labels,
plural, missingStr, isSubscript));
} else {
assert(numExtra > 0);
StringRef extraStr = extraBuffer;
diagOpt.emplace(tc.diagnose(expr->getLoc(), diag::extra_argument_labels,
plural, extraStr, isSubscript));
}
// Emit Fix-Its to correct the names.
auto &diag = *diagOpt;
for (unsigned i = 0, n = tuple->getNumElements(); i != n; ++i) {
Identifier oldName = tuple->getElementName(i);
Identifier newName;
if (i < newNames.size())
newName = newNames[i];
if (oldName == newName)
continue;
if (newName.empty()) {
// Delete the old name.
diag.fixItRemoveChars(tuple->getElementNameLocs()[i],
tuple->getElements()[i]->getStartLoc());
continue;
}
if (oldName.empty()) {
// Insert the name.
llvm::SmallString<16> str;
str += newName.str();
str += ": ";
diag.fixItInsert(tuple->getElements()[i]->getStartLoc(), str);
continue;
}
// Change the name.
diag.fixItReplace(tuple->getElementNameLocs()[i], newName.str());
}
// FIXME: Fix AST.
return true;
}
/// \brief Apply a given solution to the expression, producing a fully
/// type-checked expression.
Expr *ConstraintSystem::applySolution(Solution &solution, Expr *expr) {
// If any fixes needed to be applied to arrive at this solution, resolve
// them to specific expressions.
if (!solution.Fixes.empty()) {
bool diagnosed = false;
for (auto fix : solution.Fixes) {
// Some fixes need more information from the locator itself, including
// tweaking the locator. Deal with those now.
ConstraintLocator *locator = fix.second;
// Removing a nullary call to a non-function requires us to have an
// 'ApplyFunction', which we strip.
if (fix.first.getKind() == FixKind::RemoveNullaryCall) {
auto anchor = locator->getAnchor();
auto path = locator->getPath();
if (!path.empty() &&
path.back().getKind() == ConstraintLocator::ApplyFunction) {
locator = getConstraintLocator(anchor, path.slice(0, path.size()-1),
locator->getSummaryFlags());
} else {
continue;
}
}
// Resolve the locator to a specific expression.
SourceRange range1, range2;
ConstraintLocator *resolved
= simplifyLocator(*this, locator, range1, range2);
// If we didn't manage to resolve directly to an expression, we don't
// have a great diagnostic to give, so continue.
if (!resolved || !resolved->getAnchor() || !resolved->getPath().empty())
continue;
Expr *affected = resolved->getAnchor();
switch (fix.first.getKind()) {
case FixKind::None:
llvm_unreachable("no-fix marker should never make it into solution");
case FixKind::NullaryCall: {
// Dig for the function we want to call.
auto type = solution.simplifyType(TC, affected->getType())
->getRValueType();
if (auto tupleTy = type->getAs<TupleType>()) {
if (auto tuple = dyn_cast<TupleExpr>(affected))
affected = tuple->getElement(0);
type = tupleTy->getFields()[0].getType()->getRValueType();
}
if (auto optTy = type->getAnyOptionalObjectType())
type = optTy;
type = type->castTo<AnyFunctionType>()->getResult();
SourceLoc afterAffectedLoc
= Lexer::getLocForEndOfToken(TC.Context.SourceMgr,
affected->getEndLoc());
TC.diagnose(affected->getLoc(), diag::missing_nullary_call, type)
.fixItInsert(afterAffectedLoc, "()");
diagnosed = true;
break;
}
case FixKind::RemoveNullaryCall: {
if (auto apply = dyn_cast<ApplyExpr>(affected)) {
auto type = solution.simplifyType(TC, apply->getFn()->getType())
->getRValueObjectType();
TC.diagnose(affected->getLoc(), diag::extra_call_nonfunction, type)
.fixItRemove(apply->getArg()->getSourceRange());
diagnosed = true;
}
break;
}
case FixKind::ForceOptional:
case FixKind::ForceDowncast: {
auto type = solution.simplifyType(TC, affected->getType())
->getRValueObjectType();
SourceLoc afterAffectedLoc
= Lexer::getLocForEndOfToken(TC.Context.SourceMgr,
affected->getEndLoc());
TC.diagnose(affected->getLoc(),
fix.first.getKind() == FixKind::ForceOptional
? diag::missing_unwrap_optional
: diag::missing_forced_downcast,
type)
.fixItInsert(afterAffectedLoc, "!");
diagnosed = true;
break;
}
case FixKind::AddressOf: {
auto type = solution.simplifyType(TC, affected->getType())
->getRValueObjectType();
TC.diagnose(affected->getLoc(), diag::missing_address_of, type)
.fixItInsert(affected->getStartLoc(), "&");
diagnosed = true;
break;
}
case FixKind::TupleToScalar:
case FixKind::ScalarToTuple:
case FixKind::RelabelCallTuple: {
if (diagnoseRelabel(TC,affected,fix.first.getRelabelTupleNames(*this),
/*isSubscript=*/locator->getPath().back().getKind()
== ConstraintLocator::SubscriptIndex))
diagnosed = true;
break;
}
}
// FIXME: It would be really nice to emit a follow-up note showing where
// we got the other type information from, e.g., the parameter we're
// initializing.
}
if (diagnosed)
return nullptr;
// We didn't manage to diagnose anything well, so fall back to
// diagnosing mining the system to construct a reasonable error message.
this->diagnoseFailureFromConstraints(expr);
return nullptr;
}
class ExprWalker : public ASTWalker {
ExprRewriter &Rewriter;
unsigned LeftSideOfAssignment = 0;
public:
ExprWalker(ExprRewriter &Rewriter) : Rewriter(Rewriter) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// For a default-value expression, do nothing.
if (isa<DefaultValueExpr>(expr))
return { false, expr };
// For closures, update the parameter types and check the body.
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
Rewriter.simplifyExprType(expr);
auto &cs = Rewriter.getConstraintSystem();
auto &tc = cs.getTypeChecker();
// Coerce the pattern, in case we resolved something.
auto fnType = closure->getType()->castTo<FunctionType>();
Pattern *params = closure->getParams();
TypeResolutionOptions TROptions;
TROptions |= TR_OverrideType;
TROptions |= TR_FromNonInferredPattern;
if (tc.coercePatternToType(params, closure, fnType->getInput(),
TROptions))
return { false, nullptr };
closure->setParams(params);
// If this is a single-expression closure, convert the expression
// in the body to the result type of the closure.
if (closure->hasSingleExpressionBody()) {
// Enter the context of the closure when type-checking the body.
llvm::SaveAndRestore<DeclContext *> savedDC(Rewriter.dc, closure);
Expr *body = closure->getSingleExpressionBody()->walk(*this);
if (body)
body = Rewriter.coerceToType(body,
fnType->getResult(),
cs.getConstraintLocator(
closure,
ConstraintLocator::ClosureResult));
if (!body)
return { false, nullptr } ;
closure->setSingleExpressionBody(body);
} else {
// For other closures, type-check the body.
tc.typeCheckClosureBody(closure);
}
// Compute the capture list, now that we have type-checked the body.
tc.computeCaptures(closure);
return { false, closure };
}
// Track whether we're in the left-hand side of an assignment...
if (auto assign = dyn_cast<AssignExpr>(expr)) {
++LeftSideOfAssignment;
if (auto dest = assign->getDest()->walk(*this))
assign->setDest(dest);
else
return { false, nullptr };
--LeftSideOfAssignment;
auto &cs = Rewriter.getConstraintSystem();
auto srcLocator = cs.getConstraintLocator(
assign,
ConstraintLocator::AssignSource);
if (auto src = assign->getSrc()->walk(*this))
assign->setSrc(src);
else
return { false, nullptr };
expr = Rewriter.visitAssignExpr(assign, srcLocator);
return { false, expr };
}
// ...so we can verify that '_' only appears there.
if (isa<DiscardAssignmentExpr>(expr) && LeftSideOfAssignment == 0)
Rewriter.getConstraintSystem().getTypeChecker()
.diagnose(expr->getLoc(), diag::discard_expr_outside_of_assignment);
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return Rewriter.visit(expr);
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
ExprRewriter rewriter(*this, solution);
ExprWalker walker(rewriter);
auto result = expr->walk(walker);
rewriter.finalize();
return result;
}
Expr *ConstraintSystem::applySolutionShallow(const Solution &solution,
Expr *expr) {
ExprRewriter rewriter(*this, solution);
return rewriter.visit(expr);
}
Expr *Solution::coerceToType(Expr *expr, Type toType,
ConstraintLocator *locator) const {
auto &cs = getConstraintSystem();
ExprRewriter rewriter(cs, *this);
return rewriter.coerceToType(expr, toType, locator);
}
Expr *TypeChecker::callWitness(Expr *base, DeclContext *dc,
ProtocolDecl *protocol,
ProtocolConformance *conformance,
Identifier name,
MutableArrayRef<Expr *> arguments,
Diag<> brokenProtocolDiag) {
// Construct an empty constraint system and solution.
ConstraintSystem cs(*this, dc, ConstraintSystemOptions());
// Find the witness we need to use.
auto type = base->getType();
if (auto metaType = type->getAs<AnyMetatypeType>())
type = metaType->getInstanceType();
auto witness = findNamedWitness(*this, dc, type->getRValueType(), protocol,
name, brokenProtocolDiag);
if (!witness)
return nullptr;
// Form a reference to the witness itself.
Type openedFullType, openedType;
std::tie(openedFullType, openedType)
= cs.getTypeOfMemberReference(base->getType(), witness,
/*isTypeReference=*/false,
/*isDynamicResult=*/false);
auto locator = cs.getConstraintLocator(base);
// Form the call argument.
Expr *arg;
if (arguments.size() == 1)
arg = arguments[0];
else {
SmallVector<TupleTypeElt, 4> elementTypes;
for (auto elt : arguments)
elementTypes.push_back(TupleTypeElt(elt->getType()));
arg = TupleExpr::create(Context,
base->getStartLoc(),
arguments,
witness->getFullName().getArgumentNames(),
{ },
base->getEndLoc(),
/*hasTrailingClosure=*/false,
/*Implicit=*/true,
TupleType::get(elementTypes, Context));
}
// Add the conversion from the argument to the function parameter type.
cs.addConstraint(ConstraintKind::ArgumentTupleConversion, arg->getType(),
openedType->castTo<FunctionType>()->getInput(),
cs.getConstraintLocator(arg,
ConstraintLocator::ApplyArgument));
// Solve the system.
SmallVector<Solution, 1> solutions;
bool failed = cs.solve(solutions);
(void)failed;
assert(!failed && "Unable to solve for call to witness?");
Solution &solution = solutions.front();
ExprRewriter rewriter(cs, solution);
auto memberRef = rewriter.buildMemberRef(base, openedFullType,
base->getStartLoc(),
witness, base->getEndLoc(),
openedType, locator,
/*Implicit=*/true,
/*direct ivar*/false);
// Call the witness.
ApplyExpr *apply = new (Context) CallExpr(memberRef, arg, /*Implicit=*/true);
return rewriter.finishApply(apply, openedType,
cs.getConstraintLocator(arg));
}
/// \brief Convert an expression via a builtin protocol.
///
/// \param solution The solution to the expression's constraint system,
/// which must have included a constraint that the expression's type
/// conforms to the give \c protocol.
/// \param expr The expression to convert.
/// \param locator The locator describing where the conversion occurs.
/// \param protocol The protocol to use for conversion.
/// \param generalName The name of the protocol method to use for the
/// conversion.
/// \param builtinName The name of the builtin method to use for the
/// last step of the conversion.
/// \param brokenProtocolDiag Diagnostic to emit if the protocol
/// definition is missing.
/// \param brokenBuiltinDiag Diagnostic to emit if the builtin definition
/// is broken.
///
/// \returns the converted expression.
static Expr *convertViaBuiltinProtocol(const Solution &solution,
Expr *expr,
ConstraintLocator *locator,
ProtocolDecl *protocol,
Identifier generalName,
Identifier builtinName,
Diag<> brokenProtocolDiag,
Diag<> brokenBuiltinDiag) {
auto &cs = solution.getConstraintSystem();
ExprRewriter rewriter(cs, solution);
// FIXME: Cache name.
auto &tc = cs.getTypeChecker();
auto &ctx = tc.Context;
auto type = expr->getType();
// Look for the builtin name. If we don't have it, we need to call the
// general name via the witness table.
auto witnesses = tc.lookupMember(type->getRValueType(), builtinName, cs.DC);
if (!witnesses) {
// Find the witness we need to use.
auto witness = findNamedWitness(tc, cs.DC, type->getRValueType(), protocol,
generalName, brokenProtocolDiag);
// Form a reference to this member.
Expr *memberRef = new (ctx) MemberRefExpr(expr, expr->getStartLoc(),
witness, expr->getEndLoc(),
/*Implicit=*/true);
bool failed = tc.typeCheckExpressionShallow(memberRef, cs.DC);
if (failed) {
// If the member reference expression failed to type check, the Expr's
// type does not conform to the given protocol.
tc.diagnose(expr->getLoc(),
diag::type_does_not_conform,
type,
protocol->getType());
return nullptr;
}
// Call the witness.
Expr *arg = TupleExpr::createEmpty(ctx, expr->getStartLoc(),
expr->getEndLoc(), /*Implicit=*/true);
expr = new (ctx) CallExpr(memberRef, arg, /*Implicit=*/true);
failed = tc.typeCheckExpressionShallow(expr, cs.DC);
assert(!failed && "Could not call witness?");
(void)failed;
// At this point, we must have a type with the builtin member.
type = expr->getType();
witnesses = tc.lookupMember(type->getRValueType(), builtinName, cs.DC);
if (!witnesses) {
tc.diagnose(protocol->getLoc(), brokenProtocolDiag);
return nullptr;
}
}
// Find the builtin method.
if (witnesses.size() != 1) {
tc.diagnose(protocol->getLoc(), brokenBuiltinDiag);
return nullptr;
}
FuncDecl *builtinMethod = dyn_cast<FuncDecl>(witnesses[0]);
if (!builtinMethod) {
tc.diagnose(protocol->getLoc(), brokenBuiltinDiag);
return nullptr;
}
// Form a reference to the builtin method.
Expr *memberRef = new (ctx) MemberRefExpr(expr, SourceLoc(),
builtinMethod, expr->getLoc(),
/*Implicit=*/true);
bool failed = tc.typeCheckExpressionShallow(memberRef, cs.DC);
assert(!failed && "Could not reference witness?");
(void)failed;
// Call the builtin method.
Expr *arg = TupleExpr::createEmpty(ctx, expr->getStartLoc(),
expr->getEndLoc(), /*Implicit=*/true);
expr = new (ctx) CallExpr(memberRef, arg, /*Implicit=*/true);
failed = tc.typeCheckExpressionShallow(expr, cs.DC);
assert(!failed && "Could not call witness?");
(void)failed;
return expr;
}
Expr *
Solution::convertToLogicValue(Expr *expr, ConstraintLocator *locator) const {
auto &tc = getConstraintSystem().getTypeChecker();
// Special case: already a builtin logic value.
if (expr->getType()->getRValueType()->isBuiltinIntegerType(1)) {
return tc.coerceToRValue(expr);
}
// FIXME: Cache names.
auto result = convertViaBuiltinProtocol(
*this, expr, locator,
tc.getProtocol(expr->getLoc(),
KnownProtocolKind::LogicValue),
tc.Context.Id_GetLogicValue,
tc.Context.Id_GetBuiltinLogicValue,
diag::condition_broken_proto,
diag::broken_bool);
if (result && !result->getType()->isBuiltinIntegerType(1)) {
tc.diagnose(expr->getLoc(), diag::broken_bool);
return nullptr;
}
return result;
}
Expr *
Solution::convertToArrayBound(Expr *expr, ConstraintLocator *locator) const {
// FIXME: Cache names.
auto &tc = getConstraintSystem().getTypeChecker();
auto result = convertViaBuiltinProtocol(
*this, expr, locator,
tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ArrayBound),
tc.Context.Id_GetArrayBoundValue,
tc.Context.Id_GetBuiltinArrayBoundValue,
diag::broken_array_bound_proto,
diag::broken_builtin_array_bound);
if (result && !result->getType()->is<BuiltinIntegerType>()) {
tc.diagnose(expr->getLoc(), diag::broken_builtin_array_bound);
return nullptr;
}
return result;
}