Files
swift-mirror/include/swift/SIL/SILModule.h
Nate Chandler 89e5e3dfca [DefaultOverrides] SIL representation.
See the comment in SILDefaultOverrideTable.h for details.
2025-03-25 07:22:14 -07:00

1180 lines
46 KiB
C++

//===--- SILModule.h - Defines the SILModule class --------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILModule class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILMODULE_H
#define SWIFT_SIL_SILMODULE_H
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/SILLayout.h"
#include "swift/AST/SILOptions.h"
#include "swift/Basic/IndexTrie.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/Notifications.h"
#include "swift/SIL/SILCoverageMap.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILDefaultOverrideTable.h"
#include "swift/SIL/SILDefaultWitnessTable.h"
#include "swift/SIL/SILDifferentiabilityWitness.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/SILMoveOnlyDeinit.h"
#include "swift/SIL/SILPrintContext.h"
#include "swift/SIL/SILProperty.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILWitnessTable.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
namespace llvm {
namespace yaml {
class Output;
} // end namespace yaml
} // end namespace llvm
namespace swift {
/// The payload for the FixedSizeSlab.
/// This is a super-class rather than a member of FixedSizeSlab to make swift
/// bridging easier.
class FixedSizeSlabPayload {
public:
/// The capacity of the payload.
static constexpr size_t capacity = 64 * sizeof(uintptr_t);
private:
friend class SILModule;
/// The magic number which is stored in overflowGuard.
static constexpr uintptr_t magicNumber = (uintptr_t)0xdeadbeafdeadbeafull;
/// The payload.
char data[capacity];
/// Used for a cheap buffer overflow check - in the spirit of libgmalloc.
uintptr_t overflowGuard = magicNumber;
public:
void operator=(const FixedSizeSlabPayload &) = delete;
void operator delete(void *Ptr, size_t) = delete;
/// Returns the payload pointing to \p T.
template<typename T> T *dataFor() { return (T *)(&data[0]); }
/// Returns the payload pointing to const \p T
template<typename T> const T *dataFor() const { return (const T *)(&data[0]); }
};
/// A fixed size slab of memory, which can be allocated and freed by the
/// SILModule at (basically) zero cost.
/// See SILModule::allocSlab().
class FixedSizeSlab : public llvm::ilist_node<FixedSizeSlab>,
public SILAllocated<FixedSizeSlab>,
public FixedSizeSlabPayload {
public:
void operator=(const FixedSizeSlab &) = delete;
void operator delete(void *Ptr, size_t) = delete;
};
class AnyFunctionType;
class ASTContext;
class FileUnit;
class FuncDecl;
class IRGenOptions;
class KeyPathPattern;
class ModuleDecl;
class SourceFile;
class SerializedSILLoader;
class SILFunctionBuilder;
class SILOptFunctionBuilder;
class SILRemarkStreamer;
namespace Lowering {
class SILGenModule;
} // namespace Lowering
/// A stage of SIL processing.
enum class SILStage {
/// "Raw" SIL, emitted by SILGen, but not yet run through guaranteed
/// optimization and diagnostic passes.
///
/// Raw SIL does not have fully-constructed SSA and may contain undiagnosed
/// dataflow errors.
Raw,
/// Canonical SIL, which has been run through at least the guaranteed
/// optimization and diagnostic passes.
///
/// Canonical SIL has stricter invariants than raw SIL. It must not contain
/// dataflow errors, and some instructions must be canonicalized to simpler
/// forms.
Canonical,
/// Lowered SIL, which has been prepared for IRGen and will no longer
/// be passed to canonical SIL transform passes.
///
/// In lowered SIL, the SILType of all SILValues is its SIL storage
/// type. Explicit storage is required for all address-only and resilient
/// types.
///
/// Generating the initial Raw SIL is typically referred to as lowering (from
/// the AST). To disambiguate, refer to the process of generating the lowered
/// stage of SIL as "address lowering".
Lowered,
};
/// A SIL module. The SIL module owns all of the SILFunctions generated
/// when a Swift compilation context is lowered to SIL.
class SILModule {
friend class SILFunctionBuilder;
public:
using FunctionListType = llvm::ilist<SILFunction>;
using GlobalListType = llvm::ilist<SILGlobalVariable>;
using VTableListType = llvm::ArrayRef<SILVTable*>;
using PropertyListType = llvm::ilist<SILProperty>;
using WitnessTableListType = llvm::ilist<SILWitnessTable>;
using DefaultWitnessTableListType = llvm::ilist<SILDefaultWitnessTable>;
using DefaultOverrideTableListType = llvm::ilist<SILDefaultOverrideTable>;
using DifferentiabilityWitnessListType =
llvm::ilist<SILDifferentiabilityWitness>;
using SILMoveOnlyDeinitListType = llvm::ArrayRef<SILMoveOnlyDeinit *>;
using CoverageMapCollectionType =
llvm::MapVector<StringRef, SILCoverageMap *>;
using BasicBlockNameMapType =
llvm::DenseMap<const SILBasicBlock *, std::string>;
enum class LinkingMode : uint8_t {
/// Link functions with shared linkage. Used by the mandatory pipeline.
LinkNormal,
/// Link all functions. Used by the performance pipeline.
LinkAll
};
using ActionCallback = std::function<void()>;
using SlabList = llvm::simple_ilist<FixedSizeSlab>;
private:
friend KeyPathPattern;
friend SILBasicBlock;
friend SILCoverageMap;
friend SILDefaultWitnessTable;
friend SILDefaultOverrideTable;
friend SILDifferentiabilityWitness;
friend SILFunction;
friend SILGlobalVariable;
friend SILLayout;
friend SILType;
friend SILVTable;
friend SILProperty;
friend SILWitnessTable;
friend SILMoveOnlyDeinit;
friend Lowering::SILGenModule;
friend Lowering::TypeConverter;
class SerializationCallback;
/// Allocator that manages the memory of all the pieces of the SILModule.
mutable llvm::BumpPtrAllocator BPA;
/// The list of freed slabs, which can be reused.
SlabList freeSlabs;
/// For consistency checking.
size_t numAllocatedSlabs = 0;
/// When an instruction is "deleted" from the SIL, it is put into this list.
/// The instructions in this list are eventually deleted for real in
/// flushDeletedInsts(), which is called by the pass manager after each pass
/// run.
/// In other words: instruction deletion is deferred to the end of a pass.
///
/// This avoids dangling instruction pointers within the run of a pass and in
/// analysis caches. Note that the analysis invalidation mechanism ensures
/// that analysis caches are invalidated before flushDeletedInsts().
std::vector<SILInstruction*> scheduledForDeletion;
/// The swift Module associated with this SILModule.
ModuleDecl *TheSwiftModule;
/// A specific context for AST-level declarations associated with this SIL
/// module.
///
/// \sa getAssociatedContext
const DeclContext *AssociatedDeclContext;
/// Lookup table for SIL functions. This needs to be declared before \p
/// functions so that the destructor of \p functions is called first.
llvm::StringMap<SILFunction *> FunctionTable;
llvm::StringMap<SILFunction *> ZombieFunctionTable;
/// The list of SILFunctions in the module.
FunctionListType functions;
/// Functions, which are dead (and not in the functions list anymore),
/// but kept alive for debug info generation.
FunctionListType zombieFunctions;
/// Lookup table for SIL vtables from class decls.
llvm::DenseMap<const ClassDecl *, SILVTable *> VTableMap;
/// Lookup table for specialized SIL vtables from types.
llvm::DenseMap<SILType, SILVTable *> SpecializedVTableMap;
/// The list of SILVTables in the module.
std::vector<SILVTable*> vtables;
/// This is a cache of vtable entries for quick look-up
llvm::DenseMap<std::pair<const SILVTable *, SILDeclRef>, SILVTable::Entry>
VTableEntryCache;
/// Lookup table for SIL witness tables from conformances.
llvm::DenseMap<const ProtocolConformance *, SILWitnessTable *>
WitnessTableMap;
/// The list of SILWitnessTables in the module.
WitnessTableListType witnessTables;
/// Lookup table for SIL default witness tables from protocols.
llvm::DenseMap<const ProtocolDecl *, SILDefaultWitnessTable *>
DefaultWitnessTableMap;
/// The list of SILDefaultWitnessTables in the module.
DefaultWitnessTableListType defaultWitnessTables;
/// Lookup table for SIL default override tables from classes.
llvm::DenseMap<const ClassDecl *, SILDefaultOverrideTable *>
DefaultOverrideTableMap;
DefaultOverrideTableListType defaultOverrideTables;
/// Lookup table for SIL differentiability witnesses, keyed by mangled name.
llvm::StringMap<SILDifferentiabilityWitness *> DifferentiabilityWitnessMap;
/// Lookup table for SILDifferentiabilityWitnesses, keyed by original
/// function name.
llvm::StringMap<llvm::SmallVector<SILDifferentiabilityWitness *, 1>>
DifferentiabilityWitnessesByFunction;
/// The list of SILDifferentiabilityWitnesses in the module.
DifferentiabilityWitnessListType differentiabilityWitnesses;
/// Lookup table for SIL vtables from class decls.
llvm::DenseMap<const NominalTypeDecl *, SILMoveOnlyDeinit *>
MoveOnlyDeinitMap;
/// The list of move only deinits in the module.
std::vector<SILMoveOnlyDeinit *> moveOnlyDeinits;
/// Declarations which are externally visible.
///
/// These are method declarations which are referenced from inlinable
/// functions due to cross-module-optimization. Those declarations don't have
/// any attributes or linkage which mark them as externally visible by
/// default.
/// Currently this table is not serialized.
llvm::SetVector<ValueDecl *> externallyVisible;
/// Lookup table for SIL Global Variables.
llvm::StringMap<SILGlobalVariable *> GlobalVariableMap;
/// The list of SILGlobalVariables in the module.
GlobalListType silGlobals;
// The map of SILCoverageMaps in the module.
CoverageMapCollectionType coverageMaps;
// The list of SILProperties in the module.
PropertyListType properties;
/// The remark streamer used to serialize SIL remarks to a file.
std::unique_ptr<swift::SILRemarkStreamer> silRemarkStreamer;
/// This is a cache of intrinsic Function declarations to numeric ID mappings.
llvm::DenseMap<Identifier, IntrinsicInfo> IntrinsicIDCache;
/// This is a cache of builtin Function declarations to numeric ID mappings.
llvm::DenseMap<Identifier, BuiltinInfo> BuiltinIDCache;
llvm::DenseMap<std::pair<Decl *, VarDecl *>, unsigned> fieldIndices;
llvm::DenseMap<EnumElementDecl *, unsigned> enumCaseIndices;
/// The stage of processing this module is at.
SILStage Stage;
/// True if SIL conventions force address-only to be passed by address.
///
/// Used for bootstrapping the AddressLowering pass. This should eventually
/// be inferred from the SIL stage to be true only when Stage == Lowered.
bool loweredAddresses;
/// The set of deserialization notification handlers.
DeserializationNotificationHandlerSet deserializationNotificationHandlers;
/// The SILLoader used when linking functions into this module.
///
/// This is lazily initialized the first time we attempt to
/// deserialize. Previously this was created when the SILModule was
/// constructed. In certain cases this was before all Modules had been loaded
/// causing us to not
std::unique_ptr<SerializedSILLoader> SILLoader;
/// The indexed profile data to be used for PGO, or nullptr.
std::unique_ptr<llvm::IndexedInstrProfReader> PGOReader;
/// A trie of integer indices that gives pointer identity to a path of
/// projections, shared between all functions in the module.
std::unique_ptr<IndexTrieNode> indexTrieRoot;
/// A mapping from local generic environments to the instructions which define
/// them.
///
/// The value is either a SingleValueInstruction or a PlaceholderValue,
/// in case a local archetype definition is looked up during parsing or
/// deserializing SIL, where local archetypes can be forward referenced.
///
/// In theory we wouldn't need to have the SILFunction in the key, because
/// local environments should be unique across the module. But currently
/// in some rare cases SILGen re-uses the same local archetype for multiple
/// functions.
using LocalArchetypeKey = std::pair<GenericEnvironment *, SILFunction *>;
llvm::DenseMap<LocalArchetypeKey, SILValue> RootLocalArchetypeDefs;
/// The number of PlaceholderValues in RootLocalArchetypeDefs.
int numUnresolvedLocalArchetypes = 0;
/// The options passed into this SILModule.
const SILOptions &Options;
/// IRGen options to be used by target specific SIL optimization passes.
///
/// Not null, if the module is created by the compiler itself (and not
/// e.g. by lldb).
const IRGenOptions *irgenOptions;
/// The number of functions created in this module, which will be the index of
/// the next function.
unsigned nextFunctionIndex = 0;
/// Set if the SILModule was serialized already. It is used
/// to ensure that the module is serialized only once.
bool serialized;
bool parsedAsSerializedSIL;
/// Set if we have registered a deserialization notification handler for
/// lowering ownership in non transparent functions.
/// This gets set in NonTransparent OwnershipModelEliminator pass.
bool regDeserializationNotificationHandlerForNonTransparentFuncOME;
/// Set if we have registered a deserialization notification handler for
/// lowering ownership in transparent functions.
/// This gets set in OwnershipModelEliminator pass.
bool regDeserializationNotificationHandlerForAllFuncOME;
// True if a DeserializationNotificationHandler is set for
// AccessMarkerElimination.
bool hasAccessMarkerHandler;
bool prespecializedFunctionDeclsImported;
/// Action to be executed for serializing the SILModule.
ActionCallback SerializeSILAction;
BasicBlockNameMapType basicBlockNames;
// Specialization attributes which need to be added to a function once it is created.
// The key of this map is the function name.
llvm::StringMap<std::vector<SILSpecializeAttr *>> pendingSpecializeAttrs;
SILModule(llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options,
const IRGenOptions *irgenOptions = nullptr);
SILModule(const SILModule&) = delete;
void operator=(const SILModule&) = delete;
/// Folding set for key path patterns.
llvm::FoldingSet<KeyPathPattern> KeyPathPatterns;
public:
~SILModule();
/// Method which returns the SerializedSILLoader, creating the loader if it
/// has not been created yet.
SerializedSILLoader *getSILLoader();
/// Add a callback for each newly deserialized SIL function body.
void registerDeserializationNotificationHandler(
std::unique_ptr<DeserializationNotificationHandler> &&handler);
/// Return the set of registered deserialization callbacks.
DeserializationNotificationHandlerSet::range
getDeserializationHandlers() const {
return deserializationNotificationHandlers.getRange();
}
void removeDeserializationNotificationHandler(
DeserializationNotificationHandler *handler) {
deserializationNotificationHandlers.erase(handler);
}
bool hasRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME() {
return regDeserializationNotificationHandlerForNonTransparentFuncOME;
}
bool hasRegisteredDeserializationNotificationHandlerForAllFuncOME() {
return regDeserializationNotificationHandlerForAllFuncOME;
}
void setRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME() {
regDeserializationNotificationHandlerForNonTransparentFuncOME = true;
}
void setRegisteredDeserializationNotificationHandlerForAllFuncOME() {
regDeserializationNotificationHandlerForAllFuncOME = true;
}
bool checkHasAccessMarkerHandler() {
return hasAccessMarkerHandler;
}
void setHasAccessMarkerHandler() {
hasAccessMarkerHandler = true;
}
/// Returns the instruction which defines the given local generic environment,
/// e.g. an open_existential_addr.
///
/// In case the generic environment is not defined yet (e.g. during parsing or
/// deserialization), a PlaceholderValue is returned. This should not be the
/// case outside of parsing or deserialization.
SILValue getLocalGenericEnvironmentDef(GenericEnvironment *genericEnv,
SILFunction *inFunction);
/// Returns the instruction which defines the given local generic environment,
/// e.g. an open_existential_addr.
///
/// In contrast to getLocalGenericEnvironmentDef, it is required that all local
/// generic environments are resolved.
SingleValueInstruction *
getLocalGenericEnvironmentDefInst(GenericEnvironment *genericEnv,
SILFunction *inFunction) {
return dyn_cast<SingleValueInstruction>(
getLocalGenericEnvironmentDef(genericEnv, inFunction));
}
/// Returns the instruction which defines the given root local archetype,
/// e.g. an open_existential_addr.
///
/// In case the local archetype is not defined yet (e.g. during parsing or
/// deserialization), a PlaceholderValue is returned. This should not be the
/// case outside of parsing or deserialization.
SILValue getRootLocalArchetypeDef(CanLocalArchetypeType archetype,
SILFunction *inFunction);
/// Returns the instruction which defines the given root local archetype,
/// e.g. an open_existential_addr.
///
/// In contrast to getLocalArchetypeDef, it is required that all local
/// archetypes are resolved.
SingleValueInstruction *
getRootLocalArchetypeDefInst(CanLocalArchetypeType archetype,
SILFunction *inFunction) {
return dyn_cast<SingleValueInstruction>(
getRootLocalArchetypeDef(archetype, inFunction));
}
/// Returns true if there are unresolved local archetypes in the module.
///
/// This should only be the case during parsing or deserialization.
bool hasUnresolvedLocalArchetypeDefinitions();
/// If we added any instructions that reference unresolved local archetypes
/// and then deleted those instructions without resolving those archetypes,
/// we must reclaim those unresolved local archetypes.
void reclaimUnresolvedLocalArchetypeDefinitions();
/// Get a unique index for a struct or class field in layout order.
///
/// Precondition: \p decl must be a non-resilient struct or class.
///
/// Precondition: \p field must be a stored property declared in \p decl,
/// not in a superclass.
///
/// Postcondition: The returned index is unique across all properties in the
/// object, including properties declared in a superclass.
unsigned getFieldIndex(NominalTypeDecl *decl, VarDecl *property);
unsigned getCaseIndex(EnumElementDecl *enumElement);
/// Called by SILBuilder whenever a new instruction is created and inserted.
void notifyAddedInstruction(SILInstruction *inst);
/// Called after an instruction is moved from one function to another.
void notifyMovedInstruction(SILInstruction *inst, SILFunction *fromFunction);
unsigned getNewFunctionIndex() { return nextFunctionIndex++; }
// This may be larger that the number of live functions in the 'functions'
// linked list because it includes the indices of zombie functions.
unsigned getNumFunctionIndices() const { return nextFunctionIndex; }
/// Set a serialization action.
void setSerializeSILAction(ActionCallback SerializeSILAction);
ActionCallback getSerializeSILAction() const;
/// Set a flag indicating that this module is serialized already.
void setSerialized() { serialized = true; }
bool isSerialized() const { return serialized; }
void setParsedAsSerializedSIL() {
serialized = true;
parsedAsSerializedSIL = true;
}
bool isParsedAsSerializedSIL() const { return parsedAsSerializedSIL; }
void setBasicBlockName(const SILBasicBlock *block, StringRef name) {
#ifndef NDEBUG
basicBlockNames[block] = name.str();
#endif
}
std::optional<StringRef> getBasicBlockName(const SILBasicBlock *block) {
#ifndef NDEBUG
auto Known = basicBlockNames.find(block);
if (Known == basicBlockNames.end())
return std::nullopt;
return StringRef(Known->second);
#else
return std::nullopt;
#endif
}
/// Serialize a SIL module using the configured SerializeSILAction.
void serialize();
/// This converts Swift types to SILTypes.
Lowering::TypeConverter &Types;
/// Invalidate cached entries in SIL Loader.
void invalidateSILLoaderCaches();
/// Erase a function from the module.
void eraseFunction(SILFunction *F);
/// Invalidate a function in SILLoader cache.
void invalidateFunctionInSILCache(SILFunction *F);
/// Specialization can cause a function that was erased before by dead function
/// elimination to become alive again. If this happens we need to remove it
/// from the list of zombies.
SILFunction *removeFromZombieList(StringRef Name);
/// Erase a global SIL variable from the module.
void eraseGlobalVariable(SILGlobalVariable *G);
/// Create and return an empty SIL module suitable for generating or parsing
/// SIL into.
///
/// \param context The associated decl context. This should be a FileUnit in
/// single-file mode, and a ModuleDecl in whole-module mode.
static std::unique_ptr<SILModule>
createEmptyModule(llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options,
const IRGenOptions *irgenOptions = nullptr);
/// Get the Swift module associated with this SIL module.
ModuleDecl *getSwiftModule() const { return TheSwiftModule; }
/// Get the AST context used for type uniquing etc. by this SIL module.
ASTContext &getASTContext() const;
SourceManager &getSourceManager() const { return getASTContext().SourceMgr; }
/// Get the Swift DeclContext associated with this SIL module. This is never
/// null.
///
/// All AST declarations within this context are assumed to have been fully
/// processed as part of generating this module. This allows certain passes
/// to make additional assumptions about these declarations.
///
/// If this is the same as TheSwiftModule, the entire module is being
/// compiled as a single unit.
const DeclContext *getAssociatedContext() const {
return AssociatedDeclContext;
}
/// Returns true if this SILModule really contains the whole module, i.e.
/// optimizations can assume that they see the whole module.
bool isWholeModule() const {
return isa<ModuleDecl>(AssociatedDeclContext);
}
bool isStdlibModule() const;
/// Returns true if it is the optimized OnoneSupport module.
bool isOptimizedOnoneSupportModule() const;
const SILOptions &getOptions() const { return Options; }
const IRGenOptions *getIRGenOptionsOrNull() const {
// This exposes target specific information, therefore serialized SIL
// is also target specific.
return irgenOptions;
}
using iterator = FunctionListType::iterator;
using const_iterator = FunctionListType::const_iterator;
FunctionListType &getFunctionList() { return functions; }
const FunctionListType &getFunctionList() const { return functions; }
iterator begin() { return functions.begin(); }
iterator end() { return functions.end(); }
const_iterator begin() const { return functions.begin(); }
const_iterator end() const { return functions.end(); }
iterator_range<iterator> getFunctions() {
return {functions.begin(), functions.end()};
}
iterator_range<const_iterator> getFunctions() const {
return {functions.begin(), functions.end()};
}
/// Move \p fn to be in the function list before \p moveBefore.
void moveBefore(SILModule::iterator moveBefore, SILFunction *fn);
/// Move \p fn to be in the function list after \p moveAfter. It is assumed
/// that \p moveAfter is not end.
void moveAfter(SILModule::iterator moveAfter, SILFunction *fn);
const_iterator zombies_begin() const { return zombieFunctions.begin(); }
const_iterator zombies_end() const { return zombieFunctions.end(); }
llvm::ArrayRef<SILVTable*> getVTables() const {
return llvm::ArrayRef<SILVTable*>(vtables);
}
using vtable_iterator = VTableListType::iterator;
using vtable_const_iterator = VTableListType::const_iterator;
vtable_iterator vtable_begin() { return getVTables().begin(); }
vtable_iterator vtable_end() { return getVTables().end(); }
vtable_const_iterator vtable_begin() const { return getVTables().begin(); }
vtable_const_iterator vtable_end() const { return getVTables().end(); }
ArrayRef<SILMoveOnlyDeinit *> getMoveOnlyDeinits() const {
return ArrayRef<SILMoveOnlyDeinit *>(moveOnlyDeinits);
}
using moveonlydeinit_iterator = SILMoveOnlyDeinitListType::iterator;
using moveonlydeinit_const_iterator =
SILMoveOnlyDeinitListType::const_iterator;
moveonlydeinit_iterator moveonlydeinit_begin() {
return getMoveOnlyDeinits().begin();
}
moveonlydeinit_iterator moveonlydeinit_end() {
return getMoveOnlyDeinits().end();
}
moveonlydeinit_const_iterator moveonlydeinit_begin() const {
return getMoveOnlyDeinits().begin();
}
moveonlydeinit_const_iterator moveonlydeinit_end() const {
return getMoveOnlyDeinits().end();
}
using witness_table_iterator = WitnessTableListType::iterator;
using witness_table_const_iterator = WitnessTableListType::const_iterator;
WitnessTableListType &getWitnessTableList() { return witnessTables; }
const WitnessTableListType &getWitnessTableList() const { return witnessTables; }
witness_table_iterator witness_table_begin() { return witnessTables.begin(); }
witness_table_iterator witness_table_end() { return witnessTables.end(); }
witness_table_const_iterator witness_table_begin() const { return witnessTables.begin(); }
witness_table_const_iterator witness_table_end() const { return witnessTables.end(); }
iterator_range<witness_table_iterator> getWitnessTables() {
return {witnessTables.begin(), witnessTables.end()};
}
iterator_range<witness_table_const_iterator> getWitnessTables() const {
return {witnessTables.begin(), witnessTables.end()};
}
using default_witness_table_iterator = DefaultWitnessTableListType::iterator;
using default_witness_table_const_iterator = DefaultWitnessTableListType::const_iterator;
DefaultWitnessTableListType &getDefaultWitnessTableList() { return defaultWitnessTables; }
const DefaultWitnessTableListType &getDefaultWitnessTableList() const { return defaultWitnessTables; }
default_witness_table_iterator default_witness_table_begin() { return defaultWitnessTables.begin(); }
default_witness_table_iterator default_witness_table_end() { return defaultWitnessTables.end(); }
default_witness_table_const_iterator default_witness_table_begin() const { return defaultWitnessTables.begin(); }
default_witness_table_const_iterator default_witness_table_end() const { return defaultWitnessTables.end(); }
iterator_range<default_witness_table_iterator> getDefaultWitnessTables() {
return {defaultWitnessTables.begin(), defaultWitnessTables.end()};
}
iterator_range<default_witness_table_const_iterator> getDefaultWitnessTables() const {
return {defaultWitnessTables.begin(), defaultWitnessTables.end()};
}
using default_override_table_iterator = DefaultOverrideTableListType::iterator;
using default_override_table_const_iterator = DefaultOverrideTableListType::const_iterator;
DefaultOverrideTableListType &getDefaultOverrideTableList() { return defaultOverrideTables; }
const DefaultOverrideTableListType &getDefaultOverrideTableList() const { return defaultOverrideTables; }
default_override_table_iterator default_override_table_begin() { return defaultOverrideTables.begin(); }
default_override_table_iterator default_override_table_end() { return defaultOverrideTables.end(); }
default_override_table_const_iterator default_override_table_begin() const { return defaultOverrideTables.begin(); }
default_override_table_const_iterator default_override_table_end() const { return defaultOverrideTables.end(); }
iterator_range<default_override_table_iterator> getDefaultOverrideTables() {
return {defaultOverrideTables.begin(), defaultOverrideTables.end()};
}
iterator_range<default_override_table_const_iterator>
getDefaultOverrideTables() const {
return {defaultOverrideTables.begin(), defaultOverrideTables.end()};
}
using differentiability_witness_iterator = DifferentiabilityWitnessListType::iterator;
using differentiability_witness_const_iterator = DifferentiabilityWitnessListType::const_iterator;
DifferentiabilityWitnessListType &getDifferentiabilityWitnessList() { return differentiabilityWitnesses; }
const DifferentiabilityWitnessListType &getDifferentiabilityWitnessList() const { return differentiabilityWitnesses; }
differentiability_witness_iterator differentiability_witness_begin() { return differentiabilityWitnesses.begin(); }
differentiability_witness_iterator differentiability_witness_end() { return differentiabilityWitnesses.end(); }
differentiability_witness_const_iterator differentiability_witness_begin() const { return differentiabilityWitnesses.begin(); }
differentiability_witness_const_iterator differentiability_witness_end() const { return differentiabilityWitnesses.end(); }
iterator_range<differentiability_witness_iterator>
getDifferentiabilityWitnesses() {
return {differentiabilityWitnesses.begin(),
differentiabilityWitnesses.end()};
}
iterator_range<differentiability_witness_const_iterator>
getDifferentiabilityWitnesses() const {
return {differentiabilityWitnesses.begin(),
differentiabilityWitnesses.end()};
}
void addExternallyVisibleDecl(ValueDecl *decl) {
externallyVisible.insert(decl);
}
bool isExternallyVisibleDecl(ValueDecl *decl) {
return externallyVisible.count(decl) != 0;
}
using sil_global_iterator = GlobalListType::iterator;
using sil_global_const_iterator = GlobalListType::const_iterator;
GlobalListType &getSILGlobalList() { return silGlobals; }
const GlobalListType &getSILGlobalList() const { return silGlobals; }
sil_global_iterator sil_global_begin() { return silGlobals.begin(); }
sil_global_iterator sil_global_end() { return silGlobals.end(); }
sil_global_const_iterator sil_global_begin() const {
return silGlobals.begin();
}
sil_global_const_iterator sil_global_end() const {
return silGlobals.end();
}
iterator_range<sil_global_iterator> getSILGlobals() {
return {silGlobals.begin(), silGlobals.end()};
}
iterator_range<sil_global_const_iterator> getSILGlobals() const {
return {silGlobals.begin(), silGlobals.end()};
}
using coverage_map_iterator = CoverageMapCollectionType::iterator;
using coverage_map_const_iterator = CoverageMapCollectionType::const_iterator;
CoverageMapCollectionType &getCoverageMaps() { return coverageMaps; }
const CoverageMapCollectionType &getCoverageMaps() const {
return coverageMaps;
}
swift::SILRemarkStreamer *getSILRemarkStreamer() {
return silRemarkStreamer.get();
}
void installSILRemarkStreamer();
// This is currently limited to VarDecl because the visibility of global
// variables and class properties is straightforward, while the visibility of
// class methods (ValueDecls) depends on the subclass scope. "Visibility" has
// a different meaning when vtable layout is at stake.
bool isVisibleExternally(const VarDecl *decl) {
return isPossiblyUsedExternally(getDeclSILLinkage(decl), isWholeModule());
}
/// Promote the linkage of every entity in this SIL module so that they are
/// externally visible. This is used to promote the linkage of private
/// entities that are compiled on-demand for lazy immediate mode, as each is
/// emitted into its own `SILModule`.
void promoteLinkages();
PropertyListType &getPropertyList() { return properties; }
const PropertyListType &getPropertyList() const { return properties; }
/// Look for a global variable by name.
///
/// \return null if this module has no such global variable
SILGlobalVariable *lookUpGlobalVariable(StringRef name) const {
return GlobalVariableMap.lookup(name);
}
/// Look for a function by name.
///
/// \return null if this module has no such function
SILFunction *lookUpFunction(StringRef name) const {
return FunctionTable.lookup(name);
}
/// Look for a function by declaration.
///
/// \return null if this module has no such function
SILFunction *lookUpFunction(SILDeclRef fnRef);
/// Attempt to deserialize function \p F and all functions which are referenced
/// from \p F (according to the \p LinkMode).
///
/// Returns true if deserialization succeeded, false otherwise.
bool loadFunction(SILFunction *F, LinkingMode LinkMode);
/// Attempt to deserialize a function with \p name and all functions which are
/// referenced from that function (according to the \p LinkMode).
///
/// If \p linkage is provided, the deserialized function is required to have
/// that linkage. Returns null, if this is not the case.
SILFunction *loadFunction(StringRef name, LinkingMode LinkMode,
std::optional<SILLinkage> linkage = std::nullopt);
/// Update the linkage of the SILFunction with the linkage of the serialized
/// function.
///
/// The serialized SILLinkage can differ from the linkage derived from the
/// AST, e.g. cross-module-optimization can change the SIL linkages.
void updateFunctionLinkage(SILFunction *F);
/// Attempt to deserialize function \p F and all required referenced functions.
///
/// Returns true if linking succeeded, false otherwise.
bool linkFunction(SILFunction *F, LinkingMode LinkMode);
/// Check if a given function exists in any of the modules.
/// i.e. it can be linked by linkFunction.
bool hasFunction(StringRef Name);
/// Look up the SILWitnessTable representing the lowering of a protocol
/// conformance, and collect the substitutions to apply to the referenced
/// witnesses, if any.
///
/// \arg C The protocol conformance mapped key to use to lookup the witness
/// table.
/// \arg deserializeLazily If we cannot find the witness table should we
/// attempt to lazily deserialize it.
SILWitnessTable *lookUpWitnessTable(const ProtocolConformance *C);
/// Attempt to lookup \p Member in the witness table for \p C.
///
/// Also, deserialize all referenced functions according to the \p linkgingMode.
std::pair<SILFunction *, SILWitnessTable *>
lookUpFunctionInWitnessTable(ProtocolConformanceRef C,
SILDeclRef Requirement,
bool lookupInSpecializedWitnessTable,
SILModule::LinkingMode linkingMode);
/// Look up the SILDefaultWitnessTable representing the default witnesses
/// of a resilient protocol, if any.
SILDefaultWitnessTable *lookUpDefaultWitnessTable(const ProtocolDecl *Protocol,
bool deserializeLazily=true);
/// Attempt to lookup \p Member in the default witness table for \p Protocol.
std::pair<SILFunction *, SILDefaultWitnessTable *>
lookUpFunctionInDefaultWitnessTable(const ProtocolDecl *Protocol,
SILDeclRef Requirement,
bool deserializeLazily=true);
/// Look up the SILDefaultOverrideTable containing the default overrides to be
/// applied to subclasses of a resilient class.
SILDefaultOverrideTable *
lookUpDefaultOverrideTable(const ClassDecl *decl,
bool deserializeLazily = true);
/// Look up the VTable mapped to the given ClassDecl. Returns null on failure.
SILVTable *lookUpVTable(const ClassDecl *C, bool deserializeLazily = true);
/// Look up a specialized VTable
SILVTable *lookUpSpecializedVTable(SILType classTy);
/// Attempt to lookup the function corresponding to \p Member in the class
/// hierarchy of \p Class.
SILFunction *lookUpFunctionInVTable(ClassDecl *Class, SILDeclRef Member);
/// Look up the deinit mapped to the given move only nominal type decl.
/// Returns null on failure.
SILMoveOnlyDeinit *lookUpMoveOnlyDeinit(const NominalTypeDecl *nomDecl,
bool deserializeLazily = true);
/// Look up the function mapped to the given move only nominal type decl.
/// Returns null on failure.
SILFunction *lookUpMoveOnlyDeinitFunction(const NominalTypeDecl *nomDecl);
/// Look up the differentiability witness with the given name.
SILDifferentiabilityWitness *lookUpDifferentiabilityWitness(StringRef name);
/// Look up the differentiability witness corresponding to the given key.
SILDifferentiabilityWitness *
lookUpDifferentiabilityWitness(SILDifferentiabilityWitnessKey key);
/// Look up the differentiability witness corresponding to the given function.
llvm::ArrayRef<SILDifferentiabilityWitness *>
lookUpDifferentiabilityWitnessesForFunction(StringRef name);
/// Attempt to deserialize the SILDifferentiabilityWitness. Returns true if
/// deserialization succeeded, false otherwise.
bool loadDifferentiabilityWitness(SILDifferentiabilityWitness *dw);
// Given a protocol, attempt to create a default witness table declaration
// for it.
SILDefaultWitnessTable *
createDefaultWitnessTableDeclaration(const ProtocolDecl *Protocol,
SILLinkage Linkage);
/// Deletes a dead witness table.
void deleteWitnessTable(SILWitnessTable *Wt);
/// Define a default override table for the indicated resilient class \p decl
/// consisting of the specified \p entries.
SILDefaultOverrideTable *createDefaultOverrideTableDefinition(
const ClassDecl *decl, SILLinkage linkage,
ArrayRef<SILDefaultOverrideTable::Entry> entries);
/// Return the stage of processing this module is at.
SILStage getStage() const { return Stage; }
/// Advance the module to a further stage of processing.
void setStage(SILStage s) {
assert(s >= Stage && "regressing stage?!");
Stage = s;
}
/// True if SIL conventions force address-only to be passed by address.
bool useLoweredAddresses() const { return loweredAddresses; }
void setLoweredAddresses(bool val) {
loweredAddresses = val;
if (val) {
Types.setLoweredAddresses();
}
}
llvm::IndexedInstrProfReader *getPGOReader() const { return PGOReader.get(); }
void setPGOReader(std::unique_ptr<llvm::IndexedInstrProfReader> IPR) {
PGOReader = std::move(IPR);
}
IndexTrieNode *getIndexTrieRoot() { return indexTrieRoot.get(); }
/// Can value operations (copies and destroys) on the given lowered type
/// be performed in this module?
bool isTypeABIAccessible(SILType type,
TypeExpansionContext forExpansion);
/// Can type metadata for the given formal type be fetched in
/// the given module?
bool isTypeMetadataAccessible(CanType type);
/// Can type metadata necessary for value operations for the given sil type be
/// fetched in the given module?
bool isTypeMetadataForLayoutAccessible(SILType type);
void verify(bool isCompleteOSSA = true,
bool checkLinearLifetime = true) const;
/// Run the SIL verifier to make sure that all Functions follow
/// invariants.
void verify(CalleeCache *calleeCache,
bool isCompleteOSSA = true,
bool checkLinearLifetime = true) const;
/// Run the SIL verifier without assuming OSSA lifetimes end at dead end
/// blocks.
void verifyIncompleteOSSA() const {
verify(/*isCompleteOSSA=*/false);
}
/// Check linear OSSA lifetimes, assuming complete OSSA.
void verifyOwnership() const;
/// Pretty-print the module.
void dump(bool Verbose = false) const;
/// Pretty-print the module to a file.
/// Useful for dumping the module when running in a debugger.
/// Warning: no error handling is done. Fails with an assert if the file
/// cannot be opened.
void dump(const char *FileName, bool Verbose = false,
bool PrintASTDecls = false) const;
/// Pretty-print the module to the designated stream.
///
/// \param M If present, the types and declarations from this module will be
/// printed. The module would usually contain the types and Decls that
/// the SIL module depends on.
/// \param Opts The SIL options, used to determine printing verbosity and
/// and sorting.
/// \param PrintASTDecls If set to true print AST decls.
void print(raw_ostream &OS, ModuleDecl *M = nullptr,
const SILOptions &Opts = SILOptions(),
bool PrintASTDecls = true) const {
SILPrintContext PrintCtx(OS, Opts);
print(PrintCtx, M, PrintASTDecls);
}
/// Pretty-print the module with the context \p PrintCtx.
///
/// \param M If present, the types and declarations from this module will be
/// printed. The module would usually contain the types and Decls that
/// the SIL module depends on.
/// \param PrintASTDecls If set to true print AST decls.
void print(SILPrintContext &PrintCtx, ModuleDecl *M = nullptr,
bool PrintASTDecls = true) const;
/// Allocate memory using the module's internal allocator.
void *allocate(unsigned Size, unsigned Align) const;
template <typename T> T *allocate(unsigned Count) const {
return static_cast<T *>(allocate(sizeof(T) * Count, alignof(T)));
}
/// Allocates a slab of memory.
///
/// This has (almost) zero cost, because for the first time, the allocation is
/// done with the BPA.
/// Subsequent allocations are reusing the already freed slabs.
FixedSizeSlab *allocSlab();
/// Frees a slab.
///
/// This has (almost) zero cost, because the slab is just put into the
/// freeSlabs list.
void freeSlab(FixedSizeSlab *slab);
/// Frees all slabs of a list.
void freeAllSlabs(SlabList &slabs);
template <typename T>
MutableArrayRef<T> allocateCopy(ArrayRef<T> Array) const {
MutableArrayRef<T> result(allocate<T>(Array.size()), Array.size());
std::uninitialized_copy(Array.begin(), Array.end(), result.begin());
return result;
}
StringRef allocateCopy(StringRef Str) const {
auto result = allocateCopy<char>({Str.data(), Str.size()});
return {result.data(), result.size()};
}
/// Allocate memory for an instruction using the module's internal allocator.
void *allocateInst(unsigned Size, unsigned Align) const;
/// Called before \p I is removed from its basic block and scheduled for
/// deletion.
void willDeleteInstruction(SILInstruction *I);
/// Schedules the (already removed) instruction \p I for deletion.
/// See scheduledForDeletion for details.
void scheduleForDeletion(SILInstruction *I);
/// Deletes all scheduled instructions for real.
/// See scheduledForDeletion for details.
void flushDeletedInsts();
bool hasInstructionsScheduledForDeletion() const {
return !scheduledForDeletion.empty();
}
/// Looks up the llvm intrinsic ID and type for the builtin function.
///
/// \returns Returns llvm::Intrinsic::not_intrinsic if the function is not an
/// intrinsic. The particular intrinsic functions which correspond to the
/// returned value are defined in llvm/Intrinsics.h.
const IntrinsicInfo &getIntrinsicInfo(Identifier ID);
/// Looks up the lazily cached identification for the builtin function.
///
/// \returns Returns builtin info of BuiltinValueKind::None kind if the
/// declaration is not a builtin.
const BuiltinInfo &getBuiltinInfo(Identifier ID);
/// Returns true if the builtin or intrinsic is no-return.
bool isNoReturnBuiltinOrIntrinsic(Identifier Name);
/// Returns true if the default atomicity of the module is Atomic.
bool isDefaultAtomic() const {
return !getOptions().AssumeSingleThreaded;
}
/// Returns true if SIL entities associated with declarations in the given
/// declaration context ought to be serialized as part of this module.
bool
shouldSerializeEntitiesAssociatedWithDeclContext(const DeclContext *DC) const;
/// Gather prespecialized from extensions.
void performOnceForPrespecializedImportedExtensions(
llvm::function_ref<void(AbstractFunctionDecl *)> action);
void addPendingSpecializeAttr(StringRef functionName, SILSpecializeAttr *attr) {
pendingSpecializeAttrs[functionName].push_back(attr);
}
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const SILModule &M){
M.print(OS);
return OS;
}
void verificationFailure(const Twine &complaint,
const SILInstruction *atInstruction,
const SILArgument *atArgument,
const std::function<void()> &extraContext);
inline bool SILOptions::supportsLexicalLifetimes(const SILModule &mod) const {
switch (mod.getStage()) {
case SILStage::Raw:
// In raw SIL, lexical markers are used for diagnostics and are always
// present.
return true;
case SILStage::Canonical:
case SILStage::Lowered:
// In Canonical SIL, lexical markers are used to ensure that object
// lifetimes do not get observably shortened from the end of a lexical
// scope. That behavior only occurs when lexical lifetimes is (fully)
// enabled. (When only diagnostic markers are enabled, the markers are
// stripped as part of lowering from raw to canonical SIL.)
return LexicalLifetimes == LexicalLifetimesOption::On;
}
}
/// Print a simple description of a SILModule for the request evaluator.
void simple_display(llvm::raw_ostream &out, const SILModule *M);
/// Retrieve a SourceLoc for a SILModule that the request evaluator can use for
/// diagnostics.
SourceLoc extractNearestSourceLoc(const SILModule *SM);
namespace Lowering {
/// Determine whether the given class will be allocated/deallocated using the
/// Objective-C runtime, i.e., +alloc and -dealloc.
LLVM_LIBRARY_VISIBILITY bool usesObjCAllocator(ClassDecl *theClass);
/// Determine if isolating destructor is needed.
LLVM_LIBRARY_VISIBILITY bool needsIsolatingDestructor(DestructorDecl *dd);
} // namespace Lowering
} // namespace swift
#endif