Files
swift-mirror/stdlib/public/core/String.swift

1220 lines
43 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// A Unicode string value that is a collection of characters.
///
/// A string is a series of characters, such as `"Swift"`, that forms a
/// collection. Strings in Swift are Unicode correct and locale insensitive,
/// and are designed to be efficient. The `String` type bridges with the
/// Objective-C class `NSString` and offers interoperability with C functions
/// that works with strings.
///
/// You can create new strings using string literals or string interpolations.
/// A *string literal* is a series of characters enclosed in quotes.
///
/// let greeting = "Welcome!"
///
/// *String interpolations* are string literals that evaluate any included
/// expressions and convert the results to string form. String interpolations
/// give you an easy way to build a string from multiple pieces. Wrap each
/// expression in a string interpolation in parentheses, prefixed by a
/// backslash.
///
/// let name = "Rosa"
/// let personalizedGreeting = "Welcome, \(name)!"
/// // personalizedGreeting == "Welcome, Rosa!"
///
/// let price = 2
/// let number = 3
/// let cookiePrice = "\(number) cookies: $\(price * number)."
/// // cookiePrice == "3 cookies: $6."
///
/// Combine strings using the concatenation operator (`+`).
///
/// let longerGreeting = greeting + " We're glad you're here!"
/// // longerGreeting == "Welcome! We're glad you're here!"
///
/// Multiline string literals are enclosed in three double quotation marks
/// (`"""`), with each delimiter on its own line. Indentation is stripped from
/// each line of a multiline string literal to match the indentation of the
/// closing delimiter.
///
/// let banner = """
/// __,
/// ( o /) _/_
/// `. , , , , // /
/// (___)(_(_/_(_ //_ (__
/// /)
/// (/
/// """
///
/// Modifying and Comparing Strings
/// ===============================
///
/// Strings always have value semantics. Modifying a copy of a string leaves
/// the original unaffected.
///
/// var otherGreeting = greeting
/// otherGreeting += " Have a nice time!"
/// // otherGreeting == "Welcome! Have a nice time!"
///
/// print(greeting)
/// // Prints "Welcome!"
///
/// Comparing strings for equality using the equal-to operator (`==`) or a
/// relational operator (like `<` or `>=`) is always performed using Unicode
/// canonical representation. As a result, different representations of a
/// string compare as being equal.
///
/// let cafe1 = "Cafe\u{301}"
/// let cafe2 = "Café"
/// print(cafe1 == cafe2)
/// // Prints "true"
///
/// The Unicode scalar value `"\u{301}"` modifies the preceding character to
/// include an accent, so `"e\u{301}"` has the same canonical representation
/// as the single Unicode scalar value `"é"`.
///
/// Basic string operations are not sensitive to locale settings, ensuring that
/// string comparisons and other operations always have a single, stable
/// result, allowing strings to be used as keys in `Dictionary` instances and
/// for other purposes.
///
/// Accessing String Elements
/// =========================
///
/// A string is a collection of *extended grapheme clusters*, which approximate
/// human-readable characters. Many individual characters, such as "é", "",
/// and "🇮🇳", can be made up of multiple Unicode scalar values. These scalar
/// values are combined by Unicode's boundary algorithms into extended
/// grapheme clusters, represented by the Swift `Character` type. Each element
/// of a string is represented by a `Character` instance.
///
/// For example, to retrieve the first word of a longer string, you can search
/// for a space and then create a substring from a prefix of the string up to
/// that point:
///
/// let name = "Marie Curie"
/// let firstSpace = name.firstIndex(of: " ") ?? name.endIndex
/// let firstName = name[..<firstSpace]
/// // firstName == "Marie"
///
/// The `firstName` constant is an instance of the `Substring` type---a type
/// that represents substrings of a string while sharing the original string's
/// storage. Substrings present the same interface as strings.
///
/// print("\(name)'s first name has \(firstName.count) letters.")
/// // Prints "Marie Curie's first name has 5 letters."
///
/// Accessing a String's Unicode Representation
/// ===========================================
///
/// If you need to access the contents of a string as encoded in different
/// Unicode encodings, use one of the string's `unicodeScalars`, `utf16`, or
/// `utf8` properties. Each property provides access to a view of the string
/// as a series of code units, each encoded in a different Unicode encoding.
///
/// To demonstrate the different views available for every string, the
/// following examples use this `String` instance:
///
/// let cafe = "Cafe\u{301} du 🌍"
/// print(cafe)
/// // Prints "Café du 🌍"
///
/// The `cafe` string is a collection of the nine characters that are visible
/// when the string is displayed.
///
/// print(cafe.count)
/// // Prints "9"
/// print(Array(cafe))
/// // Prints "["C", "a", "f", "é", " ", "d", "u", " ", "🌍"]"
///
/// Unicode Scalar View
/// -------------------
///
/// A string's `unicodeScalars` property is a collection of Unicode scalar
/// values, the 21-bit codes that are the basic unit of Unicode. Each scalar
/// value is represented by a `Unicode.Scalar` instance and is equivalent to a
/// UTF-32 code unit.
///
/// print(cafe.unicodeScalars.count)
/// // Prints "10"
/// print(Array(cafe.unicodeScalars))
/// // Prints "["C", "a", "f", "e", "\u{0301}", " ", "d", "u", " ", "\u{0001F30D}"]"
/// print(cafe.unicodeScalars.map { $0.value })
/// // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 127757]"
///
/// The `unicodeScalars` view's elements comprise each Unicode scalar value in
/// the `cafe` string. In particular, because `cafe` was declared using the
/// decomposed form of the `"é"` character, `unicodeScalars` contains the
/// scalar values for both the letter `"e"` (101) and the accent character
/// `"´"` (769).
///
/// UTF-16 View
/// -----------
///
/// A string's `utf16` property is a collection of UTF-16 code units, the
/// 16-bit encoding form of the string's Unicode scalar values. Each code unit
/// is stored as a `UInt16` instance.
///
/// print(cafe.utf16.count)
/// // Prints "11"
/// print(Array(cafe.utf16))
/// // Prints "[67, 97, 102, 101, 769, 32, 100, 117, 32, 55356, 57101]"
///
/// The elements of the `utf16` view are the code units for the string when
/// encoded in UTF-16. These elements match those accessed through indexed
/// `NSString` APIs.
///
/// let nscafe = cafe as NSString
/// print(nscafe.length)
/// // Prints "11"
/// print(nscafe.character(at: 3))
/// // Prints "101"
///
/// UTF-8 View
/// ----------
///
/// A string's `utf8` property is a collection of UTF-8 code units, the 8-bit
/// encoding form of the string's Unicode scalar values. Each code unit is
/// stored as a `UInt8` instance.
///
/// print(cafe.utf8.count)
/// // Prints "14"
/// print(Array(cafe.utf8))
/// // Prints "[67, 97, 102, 101, 204, 129, 32, 100, 117, 32, 240, 159, 140, 141]"
///
/// The elements of the `utf8` view are the code units for the string when
/// encoded in UTF-8. This representation matches the one used when `String`
/// instances are passed to C APIs.
///
/// let cLength = strlen(cafe)
/// print(cLength)
/// // Prints "14"
///
/// Measuring the Length of a String
/// ================================
///
/// When you need to know the length of a string, you must first consider what
/// you'll use the length for. Are you measuring the number of characters that
/// will be displayed on the screen, or are you measuring the amount of
/// storage needed for the string in a particular encoding? A single string
/// can have greatly differing lengths when measured by its different views.
///
/// For example, an ASCII character like the capital letter *A* is represented
/// by a single element in each of its four views. The Unicode scalar value of
/// *A* is `65`, which is small enough to fit in a single code unit in both
/// UTF-16 and UTF-8.
///
/// let capitalA = "A"
/// print(capitalA.count)
/// // Prints "1"
/// print(capitalA.unicodeScalars.count)
/// // Prints "1"
/// print(capitalA.utf16.count)
/// // Prints "1"
/// print(capitalA.utf8.count)
/// // Prints "1"
///
/// On the other hand, an emoji flag character is constructed from a pair of
/// Unicode scalar values, like `"\u{1F1F5}"` and `"\u{1F1F7}"`. Each of these
/// scalar values, in turn, is too large to fit into a single UTF-16 or UTF-8
/// code unit. As a result, each view of the string `"🇵🇷"` reports a different
/// length.
///
/// let flag = "🇵🇷"
/// print(flag.count)
/// // Prints "1"
/// print(flag.unicodeScalars.count)
/// // Prints "2"
/// print(flag.utf16.count)
/// // Prints "4"
/// print(flag.utf8.count)
/// // Prints "8"
///
/// To check whether a string is empty, use its `isEmpty` property instead of
/// comparing the length of one of the views to `0`. Unlike with `isEmpty`,
/// calculating a view's `count` property requires iterating through the
/// elements of the string.
///
/// Accessing String View Elements
/// ==============================
///
/// To find individual elements of a string, use the appropriate view for your
/// task. For example, to retrieve the first word of a longer string, you can
/// search the string for a space and then create a new string from a prefix
/// of the string up to that point.
///
/// let name = "Marie Curie"
/// let firstSpace = name.firstIndex(of: " ") ?? name.endIndex
/// let firstName = name[..<firstSpace]
/// print(firstName)
/// // Prints "Marie"
///
/// Strings and their views share indices, so you can access the UTF-8 view of
/// the `name` string using the same `firstSpace` index.
///
/// print(Array(name.utf8[..<firstSpace]))
/// // Prints "[77, 97, 114, 105, 101]"
///
/// Note that an index into one view may not have an exact corresponding
/// position in another view. For example, the `flag` string declared above
/// comprises a single character, but is composed of eight code units when
/// encoded as UTF-8. The following code creates constants for the first and
/// second positions in the `flag.utf8` view. Accessing the `utf8` view with
/// these indices yields the first and second code UTF-8 units.
///
/// let firstCodeUnit = flag.startIndex
/// let secondCodeUnit = flag.utf8.index(after: firstCodeUnit)
/// // flag.utf8[firstCodeUnit] == 240
/// // flag.utf8[secondCodeUnit] == 159
///
/// When used to access the elements of the `flag` string itself, however, the
/// `secondCodeUnit` index does not correspond to the position of a specific
/// character. Instead of only accessing the specific UTF-8 code unit, that
/// index is treated as the position of the character at the index's encoded
/// offset. In the case of `secondCodeUnit`, that character is still the flag
/// itself.
///
/// // flag[firstCodeUnit] == "🇵🇷"
/// // flag[secondCodeUnit] == "🇵🇷"
///
/// If you need to validate that an index from one string's view corresponds
/// with an exact position in another view, use the index's
/// `samePosition(in:)` method or the `init(_:within:)` initializer.
///
/// if let exactIndex = secondCodeUnit.samePosition(in: flag) {
/// print(flag[exactIndex])
/// } else {
/// print("No exact match for this position.")
/// }
/// // Prints "No exact match for this position."
///
/// Performance Optimizations
/// =========================
///
/// Although strings in Swift have value semantics, strings use a copy-on-write
/// strategy to store their data in a buffer. This buffer can then be shared
/// by different copies of a string. A string's data is only copied lazily,
/// upon mutation, when more than one string instance is using the same
/// buffer. Therefore, the first in any sequence of mutating operations may
/// cost O(*n*) time and space.
///
/// When a string's contiguous storage fills up, a new buffer must be allocated
/// and data must be moved to the new storage. String buffers use an
/// exponential growth strategy that makes appending to a string a constant
/// time operation when averaged over many append operations.
///
/// Bridging Between String and NSString
/// ====================================
///
/// Any `String` instance can be bridged to `NSString` using the type-cast
/// operator (`as`), and any `String` instance that originates in Objective-C
/// may use an `NSString` instance as its storage. Because any arbitrary
/// subclass of `NSString` can become a `String` instance, there are no
/// guarantees about representation or efficiency when a `String` instance is
/// backed by `NSString` storage. Because `NSString` is immutable, it is just
/// as though the storage was shared by a copy. The first in any sequence of
/// mutating operations causes elements to be copied into unique, contiguous
/// storage which may cost O(*n*) time and space, where *n* is the length of
/// the string's encoded representation (or more, if the underlying `NSString`
/// has unusual performance characteristics).
///
/// For more information about the Unicode terms used in this discussion, see
/// the [Unicode.org glossary][glossary]. In particular, this discussion
/// mentions [extended grapheme clusters][clusters], [Unicode scalar
/// values][scalars], and [canonical equivalence][equivalence].
///
/// [glossary]: http://www.unicode.org/glossary/
/// [clusters]: http://www.unicode.org/glossary/#extended_grapheme_cluster
/// [scalars]: http://www.unicode.org/glossary/#unicode_scalar_value
/// [equivalence]: http://www.unicode.org/glossary/#canonical_equivalent
@frozen
@_eagerMove
public struct String {
public // @SPI(Foundation)
var _guts: _StringGuts
@inlinable @inline(__always)
internal init(_ _guts: _StringGuts) {
self._guts = _guts
_invariantCheck()
}
// This is intentionally a static function and not an initializer, because
// an initializer would conflict with the Int-parsing initializer, when used
// as function name, e.g.
// [1, 2, 3].map(String.init)
@_alwaysEmitIntoClient
@_semantics("string.init_empty_with_capacity")
@_semantics("inline_late")
@inlinable
internal static func _createEmpty(withInitialCapacity: Int) -> String {
return String(_StringGuts(_initialCapacity: withInitialCapacity))
}
/// Creates an empty string.
///
/// Using this initializer is equivalent to initializing a string with an
/// empty string literal.
///
/// let empty = ""
/// let alsoEmpty = String()
@inlinable @inline(__always)
@_semantics("string.init_empty")
public init() { self.init(_StringGuts()) }
}
extension String: Sendable { }
extension String {
#if !INTERNAL_CHECKS_ENABLED
@inlinable @inline(__always) internal func _invariantCheck() {}
#else
@usableFromInline @inline(never) @_effects(releasenone)
internal func _invariantCheck() {
}
#endif // INTERNAL_CHECKS_ENABLED
public func _dump() {
#if INTERNAL_CHECKS_ENABLED
_guts._dump()
#endif // INTERNAL_CHECKS_ENABLED
}
}
extension String {
/// Returns a boolean value indicating whether this string is identical to
/// `other`.
///
/// Two string values are identical if there is no way to distinguish between
/// them.
///
/// Comparing strings this way includes comparing (normally) hidden
/// implementation details such as the memory location of any underlying
/// string storage object. Therefore, identical strings are guaranteed to
/// compare equal with `==`, but not all equal strings are considered
/// identical.
///
/// - Performance: O(1)
@_alwaysEmitIntoClient
public func _isIdentical(to other: Self) -> Bool {
self._guts.rawBits == other._guts.rawBits
}
}
extension String {
// This force type-casts element to UInt8, since we cannot currently
// communicate to the type checker that we proved this with our dynamic
// check in String(decoding:as:).
@_alwaysEmitIntoClient
@inline(never) // slow-path
internal static func _fromNonContiguousUnsafeBitcastUTF8Repairing<
C: Collection
>(_ input: C) -> (result: String, repairsMade: Bool) {
_internalInvariant(C.Element.self == UInt8.self)
return unsafe Array(input).withUnsafeBufferPointer {
unsafe UnsafeRawBufferPointer($0).withMemoryRebound(to: UInt8.self) {
unsafe String._fromUTF8Repairing($0)
}
}
}
/// Creates a string from the given Unicode code units in the specified
/// encoding.
///
/// - Parameters:
/// - codeUnits: A collection of code units encoded in the encoding
/// specified in `sourceEncoding`.
/// - sourceEncoding: The encoding in which `codeUnits` should be
/// interpreted.
@inlinable
@inline(__always) // Eliminate dynamic type check when possible
public init<C: Collection, Encoding: Unicode.Encoding>(
decoding codeUnits: C, as sourceEncoding: Encoding.Type
) where C.Iterator.Element == Encoding.CodeUnit {
guard _fastPath(sourceEncoding == UTF8.self) else {
self = String._fromCodeUnits(
codeUnits, encoding: sourceEncoding, repair: true)!.0
return
}
// Fast path for user-defined Collections and typed contiguous collections.
//
// Note: this comes first, as the optimizer nearly always has insight into
// wCSIA, but cannot prove that a type does not have conformance to
// _HasContiguousBytes.
if let str = codeUnits.withContiguousStorageIfAvailable({
(buffer: UnsafeBufferPointer<C.Element>) -> String in
Builtin.onFastPath() // encourage SIL Optimizer to inline this closure :-(
let rawBufPtr = UnsafeRawBufferPointer(buffer)
return unsafe String._fromUTF8Repairing(
UnsafeBufferPointer(
start: rawBufPtr.baseAddress?.assumingMemoryBound(to: UInt8.self),
count: rawBufPtr.count)).0
}) {
self = str
return
}
#if !$Embedded
// Fast path for untyped raw storage and known stdlib types
if let contigBytes = codeUnits as? _HasContiguousBytes,
contigBytes._providesContiguousBytesNoCopy
{
self = contigBytes.withUnsafeBytes { rawBufPtr in
Builtin.onFastPath() // encourage SIL Optimizer to inline this closure
return unsafe String._fromUTF8Repairing(
UnsafeBufferPointer(
start: rawBufPtr.baseAddress?.assumingMemoryBound(to: UInt8.self),
count: rawBufPtr.count)).0
}
return
}
#endif
self = String._fromNonContiguousUnsafeBitcastUTF8Repairing(codeUnits).0
}
/// Creates a new string by copying and validating the sequence of
/// code units passed in, according to the specified encoding.
///
/// This initializer does not try to repair ill-formed code unit sequences.
/// If any are found, the result of the initializer is `nil`.
///
/// The following example calls this initializer with the contents of two
/// different arrays---first with a well-formed UTF-8 code unit sequence and
/// then with an ill-formed UTF-16 code unit sequence.
///
/// let validUTF8: [UInt8] = [67, 97, 0, 102, 195, 169]
/// let valid = String(validating: validUTF8, as: UTF8.self)
/// print(valid ?? "nil")
/// // Prints "Café"
///
/// let invalidUTF16: [UInt16] = [0x41, 0x42, 0xd801]
/// let invalid = String(validating: invalidUTF16, as: UTF16.self)
/// print(invalid ?? "nil")
/// // Prints "nil"
///
/// - Parameters:
/// - codeUnits: A sequence of code units that encode a `String`
/// - encoding: A conformer to `Unicode.Encoding` to be used
/// to decode `codeUnits`.
@inlinable
@available(SwiftStdlib 6.0, *)
public init?<Encoding: Unicode.Encoding>(
validating codeUnits: some Sequence<Encoding.CodeUnit>,
as encoding: Encoding.Type
) {
let contiguousResult = codeUnits.withContiguousStorageIfAvailable {
unsafe String._validate($0, as: Encoding.self)
}
if let validationResult = contiguousResult {
guard let validatedString = validationResult else {
return nil
}
self = validatedString
return
}
// slow-path
var transcoded: [UTF8.CodeUnit] = []
transcoded.reserveCapacity(codeUnits.underestimatedCount)
var isASCII = true
let error = transcode(
codeUnits.makeIterator(),
from: Encoding.self,
to: UTF8.self,
stoppingOnError: true,
into: {
uint8 in
transcoded.append(uint8)
if isASCII && (uint8 & 0x80) == 0x80 { isASCII = false }
}
)
if error { return nil }
self = unsafe transcoded.withUnsafeBufferPointer{
unsafe String._uncheckedFromUTF8($0, asciiPreScanResult: isASCII)
}
}
/// Creates a new string by copying and validating the sequence of
/// code units passed in, according to the specified encoding.
///
/// This initializer does not try to repair ill-formed code unit sequences.
/// If any are found, the result of the initializer is `nil`.
///
/// The following example calls this initializer with the contents of two
/// different arrays---first with a well-formed UTF-8 code unit sequence and
/// then with an ill-formed ASCII code unit sequence.
///
/// let validUTF8: [Int8] = [67, 97, 0, 102, -61, -87]
/// let valid = String(validating: validUTF8, as: UTF8.self)
/// print(valid ?? "nil")
/// // Prints "Café"
///
/// let invalidASCII: [Int8] = [67, 97, -5]
/// let invalid = String(validating: invalidASCII, as: Unicode.ASCII.self)
/// print(invalid ?? "nil")
/// // Prints "nil"
///
/// - Parameters:
/// - codeUnits: A sequence of code units that encode a `String`
/// - encoding: A conformer to `Unicode.Encoding` that can decode
/// `codeUnits` as `UInt8`
@inlinable
@available(SwiftStdlib 6.0, *)
public init?<Encoding>(
validating codeUnits: some Sequence<Int8>,
as encoding: Encoding.Type
) where Encoding: Unicode.Encoding, Encoding.CodeUnit == UInt8 {
let contiguousResult = codeUnits.withContiguousStorageIfAvailable {
unsafe $0.withMemoryRebound(to: UInt8.self) {
unsafe String._validate($0, as: Encoding.self)
}
}
if let validationResult = contiguousResult {
guard let validatedString = validationResult else {
return nil
}
self = validatedString
return
}
// slow-path
let uint8s = codeUnits.lazy.map(UInt8.init(bitPattern:))
self.init(validating: uint8s, as: Encoding.self)
}
/// Creates a new string with the specified capacity in UTF-8 code units, and
/// then calls the given closure with a buffer covering the string's
/// uninitialized memory.
///
/// The closure should return the number of initialized code units,
/// or 0 if it couldn't initialize the buffer (for example if the
/// requested capacity was too small).
///
/// This method replaces ill-formed UTF-8 sequences with the Unicode
/// replacement character (`"\u{FFFD}"`). This may require resizing
/// the buffer beyond its original capacity.
///
/// The following examples use this initializer with the contents of two
/// different `UInt8` arrays---the first with a well-formed UTF-8 code unit
/// sequence, and the second with an ill-formed sequence at the end.
///
/// let validUTF8: [UInt8] = [0x43, 0x61, 0x66, 0xC3, 0xA9]
/// let invalidUTF8: [UInt8] = [0x43, 0x61, 0x66, 0xC3]
///
/// let cafe1 = String(unsafeUninitializedCapacity: validUTF8.count) {
/// _ = $0.initialize(from: validUTF8)
/// return validUTF8.count
/// }
/// // cafe1 == "Café"
///
/// let cafe2 = String(unsafeUninitializedCapacity: invalidUTF8.count) {
/// _ = $0.initialize(from: invalidUTF8)
/// return invalidUTF8.count
/// }
/// // cafe2 == "Caf<EFBFBD>"
///
/// let empty = String(unsafeUninitializedCapacity: 16) { _ in
/// // Can't initialize the buffer (e.g. the capacity is too small).
/// return 0
/// }
/// // empty == ""
///
/// - Parameters:
/// - capacity: The number of UTF-8 code units worth of memory to allocate
/// for the string (excluding the null terminator).
/// - initializer: A closure that accepts a buffer covering uninitialized
/// memory with room for `capacity` UTF-8 code units, initializes
/// that memory, and returns the number of initialized elements.
@inline(__always)
@available(SwiftStdlib 5.3, *)
public init(
unsafeUninitializedCapacity capacity: Int,
initializingUTF8With initializer: (
_ buffer: UnsafeMutableBufferPointer<UInt8>
) throws -> Int
) rethrows {
self = try unsafe String(
_uninitializedCapacity: capacity,
initializingUTF8With: initializer
)
}
@inline(__always)
internal init(
_uninitializedCapacity capacity: Int,
initializingUTF8With initializer: (
_ buffer: UnsafeMutableBufferPointer<UInt8>
) throws -> Int
) rethrows {
if _fastPath(capacity <= _SmallString.capacity) {
let smol = try unsafe _SmallString(initializingUTF8With: {
try unsafe initializer(.init(start: $0.baseAddress, count: capacity))
})
// Fast case where we fit in a _SmallString and don't need UTF8 validation
if _fastPath(smol.isASCII) {
self = String(_StringGuts(smol))
} else {
// We succeeded in making a _SmallString, but may need to repair UTF8
self = smol.withUTF8 { unsafe String._fromUTF8Repairing($0).result }
}
return
}
self = try unsafe String._fromLargeUTF8Repairing(
uninitializedCapacity: capacity,
initializingWith: initializer)
}
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of UTF-8 code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(_:)`. Do not store or return the pointer for
/// later use.
///
/// - Parameter body: A closure with a pointer parameter that points to a
/// null-terminated sequence of UTF-8 code units. If `body` has a return
/// value, that value is also used as the return value for the
/// `withCString(_:)` method. The pointer argument is valid only for the
/// duration of the method's execution.
/// - Returns: The return value, if any, of the `body` closure parameter.
@inlinable // fast-path: already C-string compatible
public func withCString<Result>(
_ body: (UnsafePointer<Int8>) throws -> Result
) rethrows -> Result {
return try unsafe _guts.withCString(body)
}
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(encodedAs:_:)`. Do not store or return the
/// pointer for later use.
///
/// - Parameters:
/// - body: A closure with a pointer parameter that points to a
/// null-terminated sequence of code units. If `body` has a return
/// value, that value is also used as the return value for the
/// `withCString(encodedAs:_:)` method. The pointer argument is valid
/// only for the duration of the method's execution.
/// - targetEncoding: The encoding in which the code units should be
/// interpreted.
/// - Returns: The return value, if any, of the `body` closure parameter.
@inlinable
@inline(__always) // Eliminate dynamic type check when possible
public func withCString<Result, TargetEncoding: Unicode.Encoding>(
encodedAs targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result {
if targetEncoding == UTF8.self {
return try unsafe self.withCString {
(cPtr: UnsafePointer<CChar>) -> Result in
_internalInvariant(UInt8.self == TargetEncoding.CodeUnit.self)
let ptr = unsafe UnsafeRawPointer(cPtr).assumingMemoryBound(
to: TargetEncoding.CodeUnit.self)
return try unsafe body(ptr)
}
}
return try unsafe _slowWithCString(encodedAs: targetEncoding, body)
}
@usableFromInline @inline(never) // slow-path
@_effects(releasenone)
internal func _slowWithCString<Result, TargetEncoding: Unicode.Encoding>(
encodedAs targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result {
var copy = self
return try copy.withUTF8 { utf8 in
var arg = Array<TargetEncoding.CodeUnit>()
arg.reserveCapacity(1 &+ self._guts.count / 4)
let repaired = unsafe transcode(
utf8.makeIterator(),
from: UTF8.self,
to: targetEncoding,
stoppingOnError: false,
into: { arg.append($0) })
arg.append(TargetEncoding.CodeUnit(0))
_internalInvariant(!repaired)
return try unsafe body(arg)
}
}
}
extension String: _ExpressibleByBuiltinUnicodeScalarLiteral {
@_effects(readonly)
@inlinable @inline(__always)
public init(_builtinUnicodeScalarLiteral value: Builtin.Int32) {
self.init(Unicode.Scalar(_unchecked: UInt32(value)))
}
@inlinable @inline(__always)
public init(_ scalar: Unicode.Scalar) {
self = scalar.withUTF8CodeUnits { unsafe String._uncheckedFromUTF8($0) }
}
}
extension String: _ExpressibleByBuiltinExtendedGraphemeClusterLiteral {
@inlinable @inline(__always)
@_effects(readonly) @_semantics("string.makeUTF8")
public init(
_builtinExtendedGraphemeClusterLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1
) {
self.init(
_builtinStringLiteral: start,
utf8CodeUnitCount: utf8CodeUnitCount,
isASCII: isASCII)
}
}
extension String: _ExpressibleByBuiltinStringLiteral {
@inlinable @inline(__always)
@_effects(readonly) @_semantics("string.makeUTF8")
public init(
_builtinStringLiteral start: Builtin.RawPointer,
utf8CodeUnitCount: Builtin.Word,
isASCII: Builtin.Int1
) {
let bufPtr = unsafe UnsafeBufferPointer(
start: UnsafeRawPointer(start).assumingMemoryBound(to: UInt8.self),
count: Int(utf8CodeUnitCount))
if let smol = unsafe _SmallString(bufPtr) {
self = String(_StringGuts(smol))
return
}
unsafe self.init(_StringGuts(bufPtr, isASCII: Bool(isASCII)))
}
}
extension String: ExpressibleByStringLiteral {
/// Creates an instance initialized to the given string value.
///
/// Do not call this initializer directly. It is used by the compiler when you
/// initialize a string using a string literal. For example:
///
/// let nextStop = "Clark & Lake"
///
/// This assignment to the `nextStop` constant calls this string literal
/// initializer behind the scenes.
@inlinable @inline(__always)
public init(stringLiteral value: String) {
self = value
}
}
extension String: CustomDebugStringConvertible {
/// A representation of the string that is suitable for debugging.
public var debugDescription: String {
func hasBreak(between left: String, and right: Unicode.Scalar) -> Bool {
// Note: we know `left` ends with an ASCII character, so we only need to
// look at its last scalar.
var state = _GraphemeBreakingState()
return state.shouldBreak(between: left.unicodeScalars.last!, and: right)
}
// Prevent unquoted scalars in the string from combining with the opening
// `"` or the tail of the preceding quoted scalar.
var result = "\""
var wantBreak = true // true if next scalar must not combine with the last
for us in self.unicodeScalars {
if let escaped = us._escaped(asASCII: false) {
result += escaped
wantBreak = true
} else if wantBreak && !hasBreak(between: result, and: us) {
result += us.escaped(asASCII: true)
wantBreak = true
} else {
result.unicodeScalars.append(us)
wantBreak = false
}
}
// Also prevent the last scalar from combining with the closing `"`.
var suffix = "\"".unicodeScalars
while !result.isEmpty {
// Append first scalar of suffix, then check if it combines.
result.unicodeScalars.append(suffix.first!)
let i = result.index(before: result.endIndex)
let j = result.unicodeScalars.index(before: result.endIndex)
if i >= j {
// All good; append the rest and we're done.
result.unicodeScalars.append(contentsOf: suffix.dropFirst())
break
}
// Cancel appending the scalar, then quote the last scalar in `result` and
// prepend it to `suffix`.
result.unicodeScalars.removeLast()
let last = result.unicodeScalars.removeLast()
suffix.insert(
contentsOf: last.escaped(asASCII: true).unicodeScalars,
at: suffix.startIndex)
}
return result
}
}
extension String {
@inlinable // Forward inlinability to append
@_effects(readonly) @_semantics("string.concat")
public static func + (lhs: String, rhs: String) -> String {
var result = lhs
result.append(rhs)
return result
}
// String append
@inlinable // Forward inlinability to append
@_semantics("string.plusequals")
public static func += (lhs: inout String, rhs: String) {
lhs.append(rhs)
}
}
extension Sequence where Element: StringProtocol {
/// Returns a new string by concatenating the elements of the sequence,
/// adding the given separator between each element.
///
/// The following example shows how an array of strings can be joined to a
/// single, comma-separated string:
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// let list = cast.joined(separator: ", ")
/// print(list)
/// // Prints "Vivien, Marlon, Kim, Karl"
///
/// - Parameter separator: A string to insert between each of the elements
/// in this sequence. The default separator is an empty string.
/// - Returns: A single, concatenated string.
@_specialize(where Self == Array<Substring>)
@_specialize(where Self == Array<String>)
public func joined(separator: String = "") -> String {
return _joined(separator: separator)
}
@inline(__always) // Pick up @_specialize and devirtualize from two callers
internal func _joined(separator: String) -> String {
// A likely-under-estimate, but lets us skip some of the growth curve
// for large Sequences.
let underestimatedCap =
(1 &+ separator._guts.count) &* self.underestimatedCount
var result = ""
result.reserveCapacity(underestimatedCap)
if separator.isEmpty {
for x in self {
result.append(x._ephemeralString)
}
return result
}
var iter = makeIterator()
if let first = iter.next() {
result.append(first._ephemeralString)
while let next = iter.next() {
result.append(separator)
result.append(next._ephemeralString)
}
}
return result
}
}
// This overload is necessary because String now conforms to
// BidirectionalCollection, and there are other `joined` overloads that are
// considered more specific. See Flatten.swift.gyb.
extension BidirectionalCollection where Element == String {
/// Returns a new string by concatenating the elements of the sequence,
/// adding the given separator between each element.
///
/// The following example shows how an array of strings can be joined to a
/// single, comma-separated string:
///
/// let cast = ["Vivien", "Marlon", "Kim", "Karl"]
/// let list = cast.joined(separator: ", ")
/// print(list)
/// // Prints "Vivien, Marlon, Kim, Karl"
///
/// - Parameter separator: A string to insert between each of the elements
/// in this sequence. The default separator is an empty string.
/// - Returns: A single, concatenated string.
@_specialize(where Self == Array<String>)
public func joined(separator: String = "") -> String {
return _joined(separator: separator)
}
}
// Unicode algorithms
extension String {
@inline(__always)
internal func _uppercaseASCII(_ x: UInt8) -> UInt8 {
/// A "table" for which ASCII characters need to be upper cased.
/// To determine which bit corresponds to which ASCII character, subtract 1
/// from the ASCII value of that character and divide by 2. The bit is set if
/// that character is a lower case character; otherwise, it's not set.
let _lowercaseTable: UInt64 =
0b0001_1111_1111_1111_0000_0000_0000_0000 &<< 32
// Lookup if it should be shifted in our ascii table, then we subtract 0x20 if
// it should, 0x0 if not.
// This code is equivalent to:
// This code is equivalent to:
// switch sourcex {
// case let x where (x >= 0x41 && x <= 0x5a):
// return x &- 0x20
// case let x:
// return x
// }
let isLower = _lowercaseTable &>> UInt64(((x &- 1) & 0b0111_1111) &>> 1)
let toSubtract = (isLower & 0x1) &<< 5
return x &- UInt8(truncatingIfNeeded: toSubtract)
}
@inline(__always)
internal func _lowercaseASCII(_ x: UInt8) -> UInt8 {
/// A "table" for which ASCII characters need to be lower cased.
/// To determine which bit corresponds to which ASCII character, subtract 1
/// from the ASCII value of that character and divide by 2. The bit is set if
/// that character is a upper case character; otherwise, it's not set.
let _uppercaseTable: UInt64 =
0b0000_0000_0000_0000_0001_1111_1111_1111 &<< 32
// Lookup if it should be shifted in our ascii table, then we add 0x20 if
// it should, 0x0 if not.
// This code is equivalent to:
// This code is equivalent to:
// switch sourcex {
// case let x where (x >= 0x41 && x <= 0x5a):
// return x &- 0x20
// case let x:
// return x
// }
let isUpper = _uppercaseTable &>> UInt64(((x &- 1) & 0b0111_1111) &>> 1)
let toAdd = (isUpper & 0x1) &<< 5
return x &+ UInt8(truncatingIfNeeded: toAdd)
}
/// Returns a lowercase version of the string.
///
/// Here's an example of transforming a string to all lowercase letters.
///
/// let cafe = "BBQ Café 🍵"
/// print(cafe.lowercased())
/// // Prints "bbq café 🍵"
///
/// - Returns: A lowercase copy of the string.
///
/// - Complexity: O(*n*)
@_effects(releasenone)
public func lowercased() -> String {
if _fastPath(_guts.isFastASCII) {
return unsafe _guts.withFastUTF8 { utf8 in
return unsafe String(_uninitializedCapacity: utf8.count) { buffer in
for i in 0 ..< utf8.count {
unsafe buffer[i] = unsafe _lowercaseASCII(utf8[i])
}
return utf8.count
}
}
}
var result = ""
result.reserveCapacity(utf8.count)
for scalar in unicodeScalars {
result += scalar.properties.lowercaseMapping
}
return result
}
/// Returns an uppercase version of the string.
///
/// The following example transforms a string to uppercase letters:
///
/// let cafe = "Café 🍵"
/// print(cafe.uppercased())
/// // Prints "CAFÉ 🍵"
///
/// - Returns: An uppercase copy of the string.
///
/// - Complexity: O(*n*)
@_effects(releasenone)
public func uppercased() -> String {
if _fastPath(_guts.isFastASCII) {
return unsafe _guts.withFastUTF8 { utf8 in
return unsafe String(_uninitializedCapacity: utf8.count) { buffer in
for i in 0 ..< utf8.count {
unsafe buffer[i] = unsafe _uppercaseASCII(utf8[i])
}
return utf8.count
}
}
}
var result = ""
result.reserveCapacity(utf8.count)
for scalar in unicodeScalars {
result += scalar.properties.uppercaseMapping
}
return result
}
/// Creates an instance from the description of a given
/// `LosslessStringConvertible` instance.
@inlinable @inline(__always)
public init<T: LosslessStringConvertible>(_ value: T) {
self = value.description
}
}
extension String: CustomStringConvertible {
/// The value of this string.
///
/// Using this property directly is discouraged. Instead, use simple
/// assignment to create a new constant or variable equal to this string.
@inlinable
public var description: String { return self }
}
extension String {
public // @testable
var _nfcCodeUnits: [UInt8] {
var codeUnits = [UInt8]()
_withNFCCodeUnits {
codeUnits.append($0)
}
return codeUnits
}
public // @testable
func _withNFCCodeUnits(_ f: (UInt8) throws -> Void) rethrows {
try _gutsSlice._withNFCCodeUnits(f)
}
}
extension _StringGutsSlice {
internal func _isScalarNFCQC(
_ scalar: Unicode.Scalar,
_ prevCCC: inout UInt8
) -> Bool {
let normData = Unicode._NormData(scalar, fastUpperbound: 0x300)
if prevCCC > normData.ccc, normData.ccc != 0 {
return false
}
if !normData.isNFCQC {
return false
}
prevCCC = normData.ccc
return true
}
internal func _withNFCCodeUnits(_ f: (UInt8) throws -> Void) rethrows {
let substring = String(_guts)[range]
// Fast path: If we're already NFC (or ASCII), then we don't need to do
// anything at all.
if _fastPath(_guts.isNFC) {
try substring.utf8.forEach(f)
return
}
var isNFCQC = true
var prevCCC: UInt8 = 0
if _guts.isFastUTF8 {
_fastNFCCheck(&isNFCQC, &prevCCC)
// Because we have access to the fastUTF8, we can go through that instead
// of accessing the UTF8 view on String.
if isNFCQC {
try unsafe withFastUTF8 {
for unsafe byte in unsafe $0 {
try f(byte)
}
}
return
}
} else {
for scalar in substring.unicodeScalars {
if !_isScalarNFCQC(scalar, &prevCCC) {
isNFCQC = false
break
}
}
if isNFCQC {
for byte in substring.utf8 {
try f(byte)
}
return
}
}
for scalar in substring.unicodeScalars._internalNFC {
try scalar.withUTF8CodeUnits {
for unsafe byte in unsafe $0 {
try f(byte)
}
}
}
}
internal func _fastNFCCheck(_ isNFCQC: inout Bool, _ prevCCC: inout UInt8) {
unsafe withFastUTF8 { utf8 in
var position = 0
while position < utf8.count {
// If our first byte is less than 0xCC, then it means we're under the
// 0x300 scalar value and everything up to 0x300 is NFC already.
if unsafe utf8[position] < 0xCC {
// If our first byte is less than 0xC0, then it means it is ASCII
// and only takes up a single byte.
if unsafe utf8[position] < 0xC0 {
position &+= 1
} else {
// Otherwise, this is a 2 byte < 0x300 sequence.
position &+= 2
}
// ASCII always has ccc of 0.
prevCCC = 0
continue
}
let (scalar, len) = unsafe _decodeScalar(utf8, startingAt: position)
if !_isScalarNFCQC(scalar, &prevCCC) {
isNFCQC = false
return
}
position &+= len
}
}
}
}