Files
swift-mirror/stdlib/public/core/StringGraphemeBreaking.swift
2025-03-05 18:52:11 -08:00

1157 lines
38 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// CR and LF are common special cases in grapheme breaking logic
private var _CR: UInt8 { return 0x0d }
private var _LF: UInt8 { return 0x0a }
internal func _hasGraphemeBreakBetween(
_ lhs: Unicode.Scalar, _ rhs: Unicode.Scalar
) -> Bool {
// CR-LF is a special case: no break between these
if lhs == Unicode.Scalar(_CR) && rhs == Unicode.Scalar(_LF) {
return false
}
// Whether the given scalar, when it appears paired with another scalar
// satisfying this property, has a grapheme break between it and the other
// scalar.
func hasBreakWhenPaired(_ x: Unicode.Scalar) -> Bool {
// TODO: This doesn't generate optimal code, tune/re-write at a lower
// level.
//
// NOTE: Order of case ranges affects codegen, and thus performance. All
// things being equal, keep existing order below.
switch x.value {
// Unified CJK Han ideographs, common and some supplemental, amongst
// others:
// U+3400 ~ U+A4CF
case 0x3400...0xa4cf: return true
// Repeat sub-300 check, this is beneficial for common cases of Latin
// characters embedded within non-Latin script (e.g. newlines, spaces,
// proper nouns and/or jargon, punctuation).
//
// NOTE: CR-LF special case has already been checked.
case 0x0000...0x02ff: return true
// Non-combining kana:
// U+3041 ~ U+3096
// U+30A1 ~ U+30FC
case 0x3041...0x3096: return true
case 0x30a1...0x30fc: return true
// Non-combining modern (and some archaic) Cyrillic:
// U+0400 ~ U+0482 (first half of Cyrillic block)
case 0x0400...0x0482: return true
// Modern Arabic, excluding extenders and prependers:
// U+061D ~ U+064A
case 0x061d...0x064a: return true
// Precomposed Hangul syllables:
// U+AC00 ~ U+D7AF
case 0xac00...0xd7af: return true
// Common general use punctuation, excluding extenders:
// U+2010 ~ U+2029
case 0x2010...0x2029: return true
// CJK punctuation characters, excluding extenders:
// U+3000 ~ U+3029
case 0x3000...0x3029: return true
// Full-width forms:
// U+FF01 ~ U+FF9D
case 0xFF01...0xFF9D: return true
default: return false
}
}
return hasBreakWhenPaired(lhs) && hasBreakWhenPaired(rhs)
}
extension _StringGuts {
@inline(__always)
internal func roundDownToNearestCharacter(
_ i: String.Index
) -> String.Index {
_internalInvariant(i._isScalarAligned)
_internalInvariant(hasMatchingEncoding(i))
_internalInvariant(i._encodedOffset <= count)
let offset = i._encodedOffset
if _fastPath(i._isCharacterAligned) { return i }
if offset == 0 || offset == count { return i._characterAligned }
return _slowRoundDownToNearestCharacter(i)
}
@inline(never)
internal func _slowRoundDownToNearestCharacter(
_ i: String.Index
) -> String.Index {
let offset = i._encodedOffset
let start = offset - _opaqueCharacterStride(endingAt: offset)
let stride = _opaqueCharacterStride(startingAt: start)
_internalInvariant(offset <= start + stride,
"Grapheme breaking inconsistency")
if offset >= start + stride {
// Already aligned, or grapheme breaking returned an unexpected result.
return i._characterAligned
}
let r = String.Index(encodedOffset: start, characterStride: stride)
return markEncoding(r._characterAligned)
}
@inline(__always)
internal func roundDownToNearestCharacter(
_ i: String.Index,
in bounds: Range<String.Index>
) -> String.Index {
_internalInvariant(
bounds.lowerBound._isScalarAligned && bounds.upperBound._isScalarAligned)
_internalInvariant(
hasMatchingEncoding(bounds.lowerBound)
&& hasMatchingEncoding(bounds.upperBound))
_internalInvariant(bounds.upperBound <= endIndex)
_internalInvariant(i._isScalarAligned)
_internalInvariant(hasMatchingEncoding(i))
_internalInvariant(i >= bounds.lowerBound && i <= bounds.upperBound)
// We can only use the `_isCharacterAligned` bit if the start index is also
// character-aligned.
if _fastPath(
bounds.lowerBound._isCharacterAligned && i._isCharacterAligned
) {
return i
}
if i == bounds.lowerBound || i == bounds.upperBound { return i }
return _slowRoundDownToNearestCharacter(i, in: bounds)
}
@inline(never)
internal func _slowRoundDownToNearestCharacter(
_ i: String.Index,
in bounds: Range<String.Index>
) -> String.Index {
let offset = i._encodedOffset
let offsetBounds = bounds._encodedOffsetRange
let prior =
offset - _opaqueCharacterStride(endingAt: offset, in: offsetBounds)
let stride = _opaqueCharacterStride(startingAt: prior)
_internalInvariant(offset <= prior + stride,
"Grapheme breaking inconsistency")
if offset >= prior + stride {
// Already aligned, or grapheme breaking returned an unexpected result.
return i
}
var r = String.Index(encodedOffset: prior, characterStride: stride)
if bounds.lowerBound._isCharacterAligned {
r = r._characterAligned
} else {
r = r._scalarAligned
}
return markEncoding(r)
}
}
extension _StringGuts {
@usableFromInline @inline(never)
@_effects(releasenone)
internal func isOnGraphemeClusterBoundary(_ i: String.Index) -> Bool {
if i._isCharacterAligned { return true }
guard i.transcodedOffset == 0 else { return false }
let offset = i._encodedOffset
if offset == 0 || offset == self.count { return true }
guard isOnUnicodeScalarBoundary(i) else { return false }
let nearest = roundDownToNearestCharacter(i._scalarAligned)
return i == nearest
}
}
extension _StringGuts {
/// Return the length of the extended grapheme cluster starting at offset `i`,
/// assuming it falls on a grapheme cluster boundary.
///
/// Note: This does not look behind at data preceding `i`, so if `i` is not on
/// a grapheme cluster boundary, then it may return results that are
/// inconsistent with `_opaqueCharacterStride(endingAt:)`. On the other hand,
/// this behavior makes this suitable for use in substrings whose start index
/// itself does not fall on a cluster boundary.
@usableFromInline @inline(__always)
@_effects(releasenone)
internal func _opaqueCharacterStride(startingAt i: Int) -> Int {
_internalInvariant(i < endIndex._encodedOffset)
if isFastUTF8 {
let fast = unsafe withFastUTF8 { utf8 in
if i &+ 1 == utf8.count { return true }
let pair = unsafe UnsafeRawPointer(
utf8.baseAddress.unsafelyUnwrapped
).loadUnaligned(fromByteOffset: i, as: UInt16.self)
//& 0x8080 == 0 is "both not ASCII", != 0x0A0D is "not CRLF"
return pair & 0x8080 == 0 && pair != 0x0A0D
}
if _fastPath(fast) {
_internalInvariant(_opaqueComplexCharacterStride(startingAt: i) == 1)
return 1
}
}
return _opaqueComplexCharacterStride(startingAt: i)
}
@_effects(releasenone) @inline(never)
internal func _opaqueComplexCharacterStride(startingAt i: Int) -> Int {
if _slowPath(isForeign) {
return _foreignOpaqueCharacterStride(startingAt: i)
}
let nextIdx = unsafe withFastUTF8 { utf8 in
nextBoundary(startingAt: i) { j in
_internalInvariant(j >= 0)
guard j < utf8.count else { return nil }
let (scalar, len) = unsafe _decodeScalar(utf8, startingAt: j)
return (scalar, j &+ len)
}
}
return nextIdx &- i
}
/// Return the length of the extended grapheme cluster ending at offset `i`,
/// or if `i` happens to be in the middle of a grapheme cluster, find and
/// return the distance to its start.
///
/// Note: unlike `_opaqueCharacterStride(startingAt:)`, this method always
/// finds a correct grapheme cluster boundary.
@usableFromInline @inline(__always)
@_effects(releasenone)
internal func _opaqueCharacterStride(endingAt i: Int) -> Int {
if i <= 1 {
return i
}
if isFastUTF8 {
let fast = unsafe withFastUTF8 { utf8 in
let pair = unsafe UnsafeRawPointer(
utf8.baseAddress.unsafelyUnwrapped
).loadUnaligned(fromByteOffset: i &- 2, as: UInt16.self)
//& 0x8080 == 0 is "both not ASCII", != 0x0A0D is "not CRLF"
return pair & 0x8080 == 0 && pair != 0x0A0D
}
if _fastPath(fast) {
_internalInvariant(_opaqueComplexCharacterStride(endingAt: i) == 1)
return 1
}
}
return _opaqueComplexCharacterStride(endingAt: i)
}
@_effects(releasenone) @inline(never)
internal func _opaqueComplexCharacterStride(endingAt i: Int) -> Int {
if _slowPath(isForeign) {
return _foreignOpaqueCharacterStride(endingAt: i)
}
let previousIdx = unsafe withFastUTF8 { utf8 in
previousBoundary(endingAt: i) { j in
_internalInvariant(j <= utf8.count)
guard j > 0 else { return nil }
let (scalar, len) = unsafe _decodeScalar(utf8, endingAt: j)
return (scalar, j &- len)
}
}
return i &- previousIdx
}
/// Return the length of the extended grapheme cluster ending at offset `i` in
/// bounds, or if `i` happens to be in the middle of a grapheme cluster, find
/// and return the distance to its start.
///
/// Note: unlike `_opaqueCharacterStride(startingAt:)`, this method always
/// finds a correct grapheme cluster boundary within the substring defined by
/// the specified bounds.
@_effects(releasenone)
internal func _opaqueCharacterStride(
endingAt i: Int,
in bounds: Range<Int>
) -> Int {
_internalInvariant(i > bounds.lowerBound && i <= bounds.upperBound)
if _slowPath(isForeign) {
return _foreignOpaqueCharacterStride(endingAt: i, in: bounds)
}
let previousIdx = unsafe withFastUTF8 { utf8 in
previousBoundary(endingAt: i) { j in
_internalInvariant(j <= bounds.upperBound)
guard j > bounds.lowerBound else { return nil }
let (scalar, len) = unsafe _decodeScalar(utf8, endingAt: j)
return (scalar, j &- len)
}
}
_internalInvariant(bounds.contains(previousIdx))
return i &- previousIdx
}
@inline(never)
@_effects(releasenone)
private func _foreignOpaqueCharacterStride(startingAt i: Int) -> Int {
#if _runtime(_ObjC)
_internalInvariant(isForeign)
let nextIdx = nextBoundary(startingAt: i) { j in
_internalInvariant(j >= 0)
guard j < count else { return nil }
let scalars = String.UnicodeScalarView(self)
let idx = String.Index(_encodedOffset: j)
let scalar = scalars[idx]
let nextIdx = scalars.index(after: idx)
return (scalar, nextIdx._encodedOffset)
}
return nextIdx &- i
#else
fatalError("No foreign strings on Linux in this version of Swift")
#endif
}
@inline(never)
@_effects(releasenone)
private func _foreignOpaqueCharacterStride(
startingAt i: Int,
in bounds: Range<Int>
) -> Int {
#if _runtime(_ObjC)
_internalInvariant(isForeign)
_internalInvariant(bounds.contains(i))
let nextIdx = nextBoundary(startingAt: i) { j in
_internalInvariant(j >= bounds.lowerBound)
guard j < bounds.upperBound else { return nil }
let scalars = String.UnicodeScalarView(self)
let idx = String.Index(_encodedOffset: j)
let scalar = scalars[idx]
let nextIdx = scalars.index(after: idx)
return (scalar, nextIdx._encodedOffset)
}
return nextIdx &- i
#else
fatalError("No foreign strings on Linux in this version of Swift")
#endif
}
@inline(never)
@_effects(releasenone)
private func _foreignOpaqueCharacterStride(endingAt i: Int) -> Int {
#if _runtime(_ObjC)
_internalInvariant(isForeign)
let previousIdx = previousBoundary(endingAt: i) { j in
_internalInvariant(j <= self.count)
guard j > 0 else { return nil }
let scalars = String.UnicodeScalarView(self)
let idx = String.Index(_encodedOffset: j)
let previousIdx = scalars.index(before: idx)
let scalar = scalars[previousIdx]
return (scalar, previousIdx._encodedOffset)
}
return i &- previousIdx
#else
fatalError("No foreign strings on Linux in this version of Swift")
#endif
}
@inline(never)
@_effects(releasenone)
private func _foreignOpaqueCharacterStride(
endingAt i: Int,
in bounds: Range<Int>
) -> Int {
#if _runtime(_ObjC)
_internalInvariant(isForeign)
_internalInvariant(i > bounds.lowerBound && i <= bounds.upperBound)
let previousIdx = previousBoundary(endingAt: i) { j in
_internalInvariant(j <= bounds.upperBound)
guard j > bounds.lowerBound else { return nil }
let scalars = String.UnicodeScalarView(self)
let idx = String.Index(_encodedOffset: j)
let previousIdx = scalars.index(before: idx)
let scalar = scalars[previousIdx]
return (scalar, previousIdx._encodedOffset)
}
return i &- previousIdx
#else
fatalError("No foreign strings on Linux in this version of Swift")
#endif
}
}
extension Unicode.Scalar {
fileprivate var _isInCBConsonant: Bool {
_swift_stdlib_isInCB_Consonant(value)
}
fileprivate var _isInCBExtend: Bool {
// Assuming that we're already an Extend or ZWJ...
!(_isInCBConsonant || _isInCBLinker || value == 0x200C)
}
fileprivate var _isInCBLinker: Bool {
switch value {
// Devanagari
case 0x94D:
return true
// Bengali
case 0x9CD:
return true
// Gujarati
case 0xACD:
return true
// Oriya
case 0xB4D:
return true
// Telugu
case 0xC4D:
return true
// Malayalam
case 0xD4D:
return true
default:
return false
}
}
}
internal struct _GraphemeBreakingState: Sendable, Equatable {
// When we're looking through an indic sequence, one of the requirements is
// that there is at LEAST 1 InCB=Linker present between two InCB=Consonant.
// This value helps ensure that when we ultimately need to decide whether or
// not to break that we've at least seen 1 when walking.
var hasSeenInCBLinker = false
// When walking forwards in a string, we need to know whether or not we've
// entered an emoji sequence to be able to eventually break after all of the
// emoji's various extenders and zero width joiners. This bit allows us to
// keep track of whether or not we're still in an emoji sequence when deciding
// to break.
var isInEmojiSequence = false
// Similar to emoji sequences, we need to know not to break an Indic grapheme
// sequence. This sequence is (potentially) composed of many scalars and isn't
// as trivial as comparing two grapheme properties.
var isInIndicSequence = false
// When walking forward in a string, we need to not break on emoji flag
// sequences. Emoji flag sequences are composed of 2 regional indicators, so
// when we see our first (.regionalIndicator, .regionalIndicator) decision,
// we need to know to return false in this case. However, if the next scalar
// is another regional indicator, we reach the same decision rule, but in this
// case we actually need to break there's a boundary between emoji flag
// sequences.
var shouldBreakRI = false
}
extension _GraphemeBreakingState: CustomStringConvertible {
var description: String {
var r = "["
if hasSeenInCBLinker { r += "L" }
if isInEmojiSequence { r += "E" }
if isInIndicSequence { r += "I" }
if shouldBreakRI { r += "R" }
r += "]"
return r
}
}
extension Unicode {
/// A state machine for recognizing character (i.e., extended grapheme
/// cluster) boundaries in an arbitrary series of Unicode scalars.
///
/// To detect grapheme breaks in a sequence of Unicode scalars, feed each of
/// them to the `hasBreak(before:)` method. The method returns true if the
/// sequence has a grapheme break preceding the given value.
///
/// The results produced by this state machine are guaranteed to match the way
/// `String` splits its contents into `Character` values.
@available(SwiftStdlib 5.8, *)
public // SPI(Foundation) FIXME: We need API for this
struct _CharacterRecognizer: Sendable {
internal var _previous: Unicode.Scalar
internal var _state: _GraphemeBreakingState
/// Returns a non-nil value if it can be determined whether there is a
/// grapheme break between `scalar1` and `scalar2` without knowing anything
/// about the scalars that precede `scalar1`. This can optionally be used as
/// a fast (but incomplete) test before spinning up a full state machine
/// session.
@_effects(releasenone)
public static func quickBreak(
between scalar1: Unicode.Scalar,
and scalar2: Unicode.Scalar
) -> Bool? {
if scalar1.value == 0xD, scalar2.value == 0xA {
return false
}
if _hasGraphemeBreakBetween(scalar1, scalar2) {
return true
}
return nil
}
/// Initialize a new character recognizer at the _start of text_ (sot)
/// position.
///
/// The resulting state machine will report a grapheme break on the
/// first scalar that is fed to it.
public init() {
_state = _GraphemeBreakingState()
// To avoid having to handle the empty case specially, we use NUL as the
// placeholder before the first scalar. NUL is a control character, so per
// rule GB5, it will induce an unconditional grapheme break before the
// first actual scalar, emulating GB1.
_previous = Unicode.Scalar(0 as UInt8)
}
/// Feeds the next scalar to the state machine, returning a Boolean value
/// indicating whether it starts a new extended grapheme cluster.
///
/// This method will always report a break the first time it is called
/// on a newly initialized recognizer.
///
/// The state machine does not carry information across character
/// boundaries. I.e., if this method returns true, then `self` after the
/// call is equivalent to feeding the same scalar to a newly initialized
/// recognizer instance.
@_effects(releasenone)
public mutating func hasBreak(
before next: Unicode.Scalar
) -> Bool {
let r = _state.shouldBreak(between: _previous, and: next)
if r {
_state = _GraphemeBreakingState()
}
_previous = next
return r
}
/// Decode the scalars in the given UTF-8 buffer and feed them to the
/// recognizer up to and including the scalar following the first grapheme
/// break. If the buffer contains a grapheme break, then this function
/// returns the index range of the scalar that follows the first one;
/// otherwise it returns `nil`.
///
/// On return, the state of the recognizer is updated to reflect the scalars
/// up to and including the returned one. You can detect additional grapheme
/// breaks by feeding the recognizer subsequent data.
///
/// - Parameter buffer: A buffer containing valid UTF-8 data, starting and
/// ending on Unicode scalar boundaries.
///
/// - Parameter start: A valid index into `buffer`, addressing the first
/// code unit of a UTF-8 scalar in the buffer, or the end.
///
/// - Returns: The index range of the scalar that follows the first grapheme
/// break in the buffer, if there is one. If the buffer contains no
/// grapheme breaks, then this function returns `nil`.
///
/// - Warning: This function does not validate that the buffer contains
/// valid UTF-8 data; its behavior is undefined if given invalid input.
@_effects(releasenone)
public mutating func _firstBreak(
inUncheckedUnsafeUTF8Buffer buffer: UnsafeBufferPointer<UInt8>,
startingAt start: Int = 0
) -> Range<Int>? {
var i = start
while i < buffer.endIndex {
let (next, n) = unsafe _decodeScalar(buffer, startingAt: i)
if hasBreak(before: next) {
return unsafe Range(_uncheckedBounds: (i, i &+ n))
}
i &+= n
}
return nil
}
}
}
@available(SwiftStdlib 5.9, *)
extension Unicode._CharacterRecognizer: Equatable {
public static func ==(left: Self, right: Self) -> Bool {
left._previous == right._previous && left._state == right._state
}
}
@available(SwiftStdlib 5.9, *)
extension Unicode._CharacterRecognizer: CustomStringConvertible {
public var description: String {
return "\(_state)U+\(String(_previous.value, radix: 16, uppercase: true))"
}
}
extension _StringGuts {
// Returns the stride of the grapheme cluster starting at offset `index`,
// assuming it is on a grapheme cluster boundary.
//
// This method never looks at data below `index`. If `index` isn't on a
// grapheme cluster boundary, then the result may not be consistent with the
// actual breaks in the string. `Substring` relies on this to generate the
// right breaks if its start index isn't aligned on one -- in this case, the
// substring's breaks may not match the ones in its base string.
internal func nextBoundary(
startingAt index: Int,
nextScalar: (Int) -> (scalar: Unicode.Scalar, end: Int)?
) -> Int {
_internalInvariant(index < endIndex._encodedOffset)
// Note: If `index` in't already on a boundary, then starting with an empty
// state here sometimes leads to this method returning results that diverge
// from the true breaks in the string.
var state = _GraphemeBreakingState()
var (scalar, index) = nextScalar(index)!
while true {
guard let (scalar2, nextIndex) = nextScalar(index) else { break }
if state.shouldBreak(between: scalar, and: scalar2) {
break
}
index = nextIndex
scalar = scalar2
}
return index
}
// Returns the stride of the grapheme cluster ending at offset `index`.
//
// This method uses `previousScalar` to looks back in the string as far as
// necessary to find a correct grapheme cluster boundary, whether or not
// `index` happens to be on a boundary itself.
internal func previousBoundary(
endingAt index: Int,
previousScalar: (Int) -> (scalar: Unicode.Scalar, start: Int)?
) -> Int {
// FIXME: This requires potentially arbitrary lookback in each iteration,
// leading to quadratic behavior in some edge cases. Ideally lookback should
// only be done once per cluster (or in the case of RI sequences, once per
// flag sequence). One way to avoid most quadratic behavior is to replace
// this implementation with a scheme that first searches backwards for a
// safe point then iterates forward using the regular `shouldBreak` until we
// reach `index`, as recommended in section 6.4 of TR#29.
//
// https://www.unicode.org/reports/tr29/#Random_Access
var (scalar2, index) = previousScalar(index)!
while true {
guard let (scalar1, previousIndex) = previousScalar(index) else { break }
if shouldBreakWithLookback(
between: scalar1, and: scalar2, at: index, with: previousScalar
) {
break
}
index = previousIndex
scalar2 = scalar1
}
return index
}
}
extension _GraphemeBreakingState {
// Return true if there is an extended grapheme cluster boundary between two
// scalars, based on state information previously collected about preceding
// scalars.
//
// This method never looks at scalars other than the two that are explicitly
// passed to it. The `state` parameter is assumed to hold all contextual
// information necessary to make a correct decision; it gets updated with more
// data as needed.
//
// This is based on the Unicode Annex #29 for [Grapheme Cluster Boundary
// Rules](https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundary_Rules).
internal mutating func shouldBreak(
between scalar1: Unicode.Scalar,
and scalar2: Unicode.Scalar
) -> Bool {
// GB3
if scalar1.value == 0xD, scalar2.value == 0xA {
return false
}
if _hasGraphemeBreakBetween(scalar1, scalar2) {
return true
}
let x = Unicode._GraphemeBreakProperty(from: scalar1)
// GB4 handled here because we don't need to know `y` for this case
if x == .control {
return true
}
// This variable and the defer statement help toggle the isInEmojiSequence
// state variable to false after every decision of 'shouldBreak'. If we
// happen to see a rhs .extend or .zwj, then it's a signal that we should
// continue treating the current grapheme cluster as an emoji sequence.
var enterEmojiSequence = false
// Very similar to emoji sequences, but for Indic grapheme sequences.
var enterIndicSequence = false
defer {
isInEmojiSequence = enterEmojiSequence
isInIndicSequence = enterIndicSequence
}
let y = Unicode._GraphemeBreakProperty(from: scalar2)
switch (x, y) {
// Fast path: If we know our scalars have no properties the decision is
// trivial and we don't need to crawl to the default statement.
case (.any, .any):
return true
// (GB4 is handled above)
// GB5
case (_, .control):
return true
// GB6
case (.l, .l),
(.l, .v),
(.l, .lv),
(.l, .lvt):
return false
// GB7
case (.lv, .v),
(.v, .v),
(.lv, .t),
(.v, .t):
return false
// GB8
case (.lvt, .t),
(.t, .t):
return false
// GB9 (partial GB9c and partial GB11)
case (_, .extend),
(_, .zwj):
// Prepare for recognizing GB11, by remembering if we're in an emoji
// sequence.
//
// GB11: Extended_Pictographic Extend* ZWJ × Extended_Pictographic
//
// If our left-side scalar is a pictograph, then it starts a new emoji
// sequence; the sequence continues through subsequent extend/extend and
// extend/zwj pairs.
if (
x == .extendedPictographic || (isInEmojiSequence && x == .extend)
) {
enterEmojiSequence = true
}
// GB9c: InCB=Consonant [InCB=Extend InCB=Linker]* InCB=Linker [InCB=Extend InCB=Linker]* × InCB=Consonant
//
// If our lhs is an InCB=Consonant and our rhs is either an InCB=Extend or
// an InCB=Linker, then enter into an indic sequence and mark if scalar 2
// is a linker and that we've seen a linker.
//
// If the lhs is not an InCB=Consonant, then check if we're currently in
// an indic sequence to properly propagate that back to the state.
// Otherwise, we're not in an indic sequence, but our rhs is still an
// extension scalar so don't break regardless right here. If we are in an
// indic sequence, tell the state that we've seen a linker if our rhs is
// one.
switch (scalar1._isInCBConsonant, scalar2._isInCBExtend, scalar2._isInCBLinker) {
// (InCB=Consonant, InCB=Extend)
case (true, true, false):
enterIndicSequence = true
// (InCB=Consonant, InCB=Linker)
case (true, false, true):
enterIndicSequence = true
hasSeenInCBLinker = true
// (_, InCB=Extend)
case (false, true, false):
guard isInIndicSequence else {
break
}
enterIndicSequence = true
// (_, InCB=Linker)
case (false, false, true):
guard isInIndicSequence else {
break
}
enterIndicSequence = true
hasSeenInCBLinker = true
default:
break
}
return false
// GB9a
case (_, .spacingMark):
return false
// GB9b
case (.prepend, _):
return false
// GB11
case (.zwj, .extendedPictographic):
return !isInEmojiSequence
// GB12 & GB13
case (.regionalIndicator, .regionalIndicator):
defer {
shouldBreakRI.toggle()
}
return shouldBreakRI
// GB999
default:
// GB9c
if isInIndicSequence, hasSeenInCBLinker, scalar2._isInCBConsonant {
hasSeenInCBLinker = false
return false
}
return true
}
}
}
extension _StringGuts {
// Return true if there is an extended grapheme cluster boundary between two
// scalars, with no previous knowledge about preceding scalars.
//
// This method looks back as far as it needs to determine the correct
// placement of boundaries.
//
// This is based off of the Unicode Annex #29 for [Grapheme Cluster Boundary
// Rules](https://unicode.org/reports/tr29/#Grapheme_Cluster_Boundary_Rules).
internal func shouldBreakWithLookback(
between scalar1: Unicode.Scalar,
and scalar2: Unicode.Scalar,
at index: Int,
with previousScalar: (Int) -> (scalar: Unicode.Scalar, start: Int)?
) -> Bool {
// GB3
if scalar1.value == 0xD, scalar2.value == 0xA {
return false
}
if _hasGraphemeBreakBetween(scalar1, scalar2) {
return true
}
let x = Unicode._GraphemeBreakProperty(from: scalar1)
let y = Unicode._GraphemeBreakProperty(from: scalar2)
switch (x, y) {
// Fast path: If we know our scalars have no properties the decision is
// trivial and we don't need to crawl to the default statement.
case (.any, .any):
return true
// GB4
case (.control, _):
return true
// GB5
case (_, .control):
return true
// GB6
case (.l, .l),
(.l, .v),
(.l, .lv),
(.l, .lvt):
return false
// GB7
case (.lv, .v),
(.v, .v),
(.lv, .t),
(.v, .t):
return false
// GB8
case (.lvt, .t),
(.t, .t):
return false
// GB9
case (_, .extend),
(_, .zwj):
return false
// GB9a
case (_, .spacingMark):
return false
// GB9b
case (.prepend, _):
return false
// GB11
case (.zwj, .extendedPictographic):
return !checkIfInEmojiSequence(at: index, with: previousScalar)
// GB12 & GB13
case (.regionalIndicator, .regionalIndicator):
return countRIs(at: index, with: previousScalar)
// GB999
default:
// GB9c
//
// Check if our rhs is an InCB=Consonant first because we can more easily
// exit out of this branch in most cases. Otherwise, this is a consonant.
// Check that the lhs is an InCB=Extend or InCB=Linker (we have to check
// if it's an .extend or .zwj first because _isInCBExtend assumes that it
// is true).
if scalar2._isInCBConsonant,
(x == .extend || x == .zwj),
(scalar1._isInCBExtend || scalar1._isInCBLinker) {
return !checkIfInIndicSequence(at: index, with: previousScalar)
}
return true
}
}
// When walking backwards, it's impossible to know whether we were in an emoji
// sequence without walking further backwards. This walks the string backwards
// enough until we figure out whether or not to break our
// (.zwj, .extendedPictographic) question. For example:
//
// Scalar view #1:
//
// [.control, .zwj, .extendedPictographic]
// ^
// | = To determine whether or not we break here, we need
// to see the previous scalar's grapheme property.
// ^
// | = This is neither .extendedPictographic nor .extend, thus we
// were never in an emoji sequence, so break between the .zwj
// and .extendedPictographic.
//
// Scalar view #2:
//
// [.extendedPictographic, .zwj, .extendedPictographic]
// ^
// | = Same as above, move backwards one to
// view the previous scalar's property.
// ^
// | = This is an .extendedPictographic, so this indicates that
// we are in an emoji sequence, so we should NOT break
// between the .zwj and .extendedPictographic.
//
// Scalar view #3:
//
// [.extendedPictographic, .extend, .extend, .zwj, .extendedPictographic]
// ^
// | = Same as above
// ^
// | = This is an .extend which means
// there is a potential emoji
// sequence, walk further backwards
// to find an .extendedPictographic.
//
// <-- = Another extend, go backwards more.
// ^
// | = We found our starting .extendedPictographic letting us
// know that we are in an emoji sequence so our initial
// break question is answered as NO.
internal func checkIfInEmojiSequence(
at index: Int,
with previousScalar: (Int) -> (scalar: Unicode.Scalar, start: Int)?
) -> Bool {
guard var i = previousScalar(index)?.start else { return false }
while let prev = previousScalar(i) {
i = prev.start
let gbp = Unicode._GraphemeBreakProperty(from: prev.scalar)
switch gbp {
case .extend:
continue
case .extendedPictographic:
return true
default:
return false
}
}
return false
}
// When walking backwards, it's impossible to know whether we break when we
// see our first (InCB=Extend, InCB=Consonant) or (InCB=Linker, InCB=Consonant)
// without walking further backwards. This walks the string backwards enough
// until we figure out whether or not to break this indic sequence. For example:
//
// Scalar view #1:
//
// [InCB=Linker, InCB=Extend, InCB=Consonant]
// ^
// | = To be able to know whether or not to
// break these two, we need to walk
// backwards to determine if this is a
// legitimate indic sequence.
// ^
// | = The scalar sequence ends without a starting InCB=Consonant,
// so this is in fact not an indic sequence, so we can break the two.
//
// Scalar view #2:
//
// [InCB=Consonant, InCB=Linker, InCB=Extend, InCB=Consonant]
// ^
// | = Same as above
// ^
// | = This is a Linker, so we at least have seen
// 1 to be able to return true if we see a
// consonant later.
// ^
// | = Is a consonant and we've seen a linker, so this is a
// legitimate indic sequence, so do NOT break the initial question.
internal func checkIfInIndicSequence(
at index: Int,
with previousScalar: (Int) -> (scalar: Unicode.Scalar, start: Int)?
) -> Bool {
guard let p = previousScalar(index) else { return false }
var hasSeenInCBLinker = p.scalar._isInCBLinker
var i = p.start
while let (scalar, prev) = previousScalar(i) {
i = prev
if scalar._isInCBConsonant {
return hasSeenInCBLinker
}
let gbp = Unicode._GraphemeBreakProperty(from: scalar)
guard gbp == .extend || gbp == .zwj else {
return false
}
switch (scalar._isInCBExtend, scalar._isInCBLinker) {
case (false, false):
return false
case (false, true):
hasSeenInCBLinker = true
case (true, false):
continue
case (true, true):
// This case should never happen, but if it does then just be cautious
// and say this is invalid.
return false
}
}
return false
}
// When walking backwards, it's impossible to know whether we break when we
// see our first (.regionalIndicator, .regionalIndicator) without walking
// further backwards. This walks the string backwards enough until we figure
// out whether or not to break these RIs. For example:
//
// Scalar view #1:
//
// [.control, .regionalIndicator, .regionalIndicator]
// ^
// | = To be able to know whether or not to
// break these two, we need to walk
// backwards to determine if there were
// any previous .regionalIndicators in
// a row.
// ^
// | = Not a .regionalIndicator, so our total riCount is 0 and 0 is
// even thus we do not break.
//
// Scalar view #2:
//
// [.control, .regionalIndicator, .regionalIndicator, .regionalIndicator]
// ^
// | = Same as above
// ^
// | = This is a .regionalIndicator, so continue
// walking backwards for more of them. riCount is
// now equal to 1.
// ^
// | = Not a .regionalIndicator. riCount = 1 which is odd, so break
// the last two .regionalIndicators.
internal func countRIs(
at index: Int,
with previousScalar: (Int) -> (scalar: Unicode.Scalar, start: Int)?
) -> Bool {
guard let p = previousScalar(index) else { return false }
var i = p.start
var riCount = 0
while let p = previousScalar(i) {
i = p.start
let gbp = Unicode._GraphemeBreakProperty(from: p.scalar)
guard gbp == .regionalIndicator else {
break
}
riCount += 1
}
return riCount & 1 != 0
}
}