Files
swift-mirror/stdlib/public/runtime/Private.h
Doug Gregor 43df05a89c [SE-0470] Prohibit isolated conformances in dynamic casts marked as such
Certain dynamic casts cannot work safely with isolated conformances,
regardless of what executor the code runs on. For such cases, reject
all attempts to conform to the type.
2025-03-26 22:31:52 -07:00

797 lines
31 KiB
C++

//===--- Private.h - Private runtime declarations ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Private declarations of the Swift runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_PRIVATE_H
#define SWIFT_RUNTIME_PRIVATE_H
#include <functional>
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeLookupError.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Metadata.h"
#include "swift/shims/Visibility.h"
#if defined(__APPLE__) && __has_include(<TargetConditionals.h>)
#include <TargetConditionals.h>
#endif
// Opaque ISAs need to use object_getClass which is in runtime.h
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
#include <objc/runtime.h>
#endif
namespace swift {
class ParsedTypeIdentity;
class TypeReferenceOwnership {
enum : uint8_t {
Weak = 1 << 0,
Unowned = 1 << 1,
Unmanaged = 1 << 2,
};
uint8_t Data;
constexpr TypeReferenceOwnership(uint8_t Data) : Data(Data) {}
public:
constexpr TypeReferenceOwnership() : Data(0) {}
#define REF_STORAGE(Name, ...) \
void set##Name() { Data |= Name; } \
bool is##Name() const { return Data == Name; }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return Data == 0; }
};
/// A struct to return pointer and its size back to Swift
/// as `(UnsafePointer<UInt8>, Int)`.
struct BufferAndSize {
const void *buffer;
intptr_t length; // negative length means error.
};
/// Type information consists of metadata and its ownership info,
/// such information is used by `_typeByMangledName` accessor
/// since we don't represent ownership attributes in the metadata
/// itself related info has to be bundled with it.
class TypeInfo {
MetadataResponse Response;
TypeReferenceOwnership ReferenceOwnership;
public:
TypeInfo()
: Response{nullptr, MetadataState::Abstract}, ReferenceOwnership() {}
TypeInfo(MetadataResponse response, TypeReferenceOwnership ownership)
: Response(response), ReferenceOwnership(ownership) {}
// FIXME: remove this constructor and require a response in all cases.
TypeInfo(const Metadata *type, TypeReferenceOwnership ownership)
: Response{type, MetadataState::Abstract}, ReferenceOwnership(ownership) {}
const Metadata *getMetadata() const { return Response.Value; }
MetadataResponse getResponse() const { return Response; }
operator bool() const { return getMetadata(); }
#define REF_STORAGE(Name, ...) \
bool is##Name() const { return ReferenceOwnership.is##Name(); }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return ReferenceOwnership.isStrong(); }
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
};
#if SWIFT_HAS_ISA_MASKING
SWIFT_RUNTIME_EXPORT
uintptr_t swift_isaMask;
// Hardcode the mask. We have our own copy of the value, as it's hard to work
// out the proper includes from libobjc. The values MUST match the ones from
// libobjc. Debug builds check these values against objc_debug_isa_class_mask
// from libobjc.
# if TARGET_OS_SIMULATOR && __x86_64__
// Simulators don't currently use isa masking on x86, but we still want to emit
// swift_isaMask and the corresponding code in case that changes. libobjc's
// mask has the bottom bits clear to include pointer alignment, match that
// value here.
# define SWIFT_ISA_MASK 0xfffffffffffffff8ULL
# elif __arm64__
// The ISA mask used when ptrauth is available.
# define SWIFT_ISA_MASK_PTRAUTH 0x007ffffffffffff8ULL
// ARM64 simulators always use the ARM64e mask.
# if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# define SWIFT_ISA_MASK SWIFT_ISA_MASK_PTRAUTH
# else
# if TARGET_OS_OSX
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# define SWIFT_ISA_MASK 0x0000000ffffffff8ULL
# endif
# endif
# elif __x86_64__
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# error Unknown architecture for masked isa.
# endif
#endif
#if SWIFT_OBJC_INTEROP
bool objectConformsToObjCProtocol(const void *theObject,
ProtocolDescriptorRef protocol);
bool classConformsToObjCProtocol(const void *theClass,
ProtocolDescriptorRef protocol);
#endif
/// Is the given value a valid alignment mask?
static inline bool isAlignmentMask(size_t mask) {
// mask == xyz01111...
// mask+1 == xyz10000...
// mask&(mask+1) == xyz00000...
// So this is nonzero if and only if there any bits set
// other than an arbitrarily long sequence of low bits.
return (mask & (mask + 1)) == 0;
}
/// Is the given value an Objective-C tagged pointer?
static inline bool isObjCTaggedPointer(const void *object) {
#if SWIFT_OBJC_INTEROP
return (((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask);
#else
assert(!(((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask));
return false;
#endif
}
static inline bool isObjCTaggedPointerOrNull(const void *object) {
return object == nullptr || isObjCTaggedPointer(object);
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object may or may not have a non-pointer ISA.
/// Masking, or otherwise, may be required to get a class pointer.
static inline const ClassMetadata *_swift_getClassOfAllocated(const void *object) {
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// The ISA is opaque so masking it will not return a pointer. We instead
// need to call the objc runtime to get the class.
id idObject = reinterpret_cast<id>(const_cast<void *>(object));
return reinterpret_cast<const ClassMetadata*>(object_getClass(idObject));
#else
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
#if SWIFT_HAS_ISA_MASKING
// Apply the mask.
bits &= SWIFT_ISA_MASK;
#endif
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
#endif
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object is known to have a pointer ISA, and no
/// masking is required to convert from non-pointer to pointer ISA.
static inline const ClassMetadata *
_swift_getClassOfAllocatedFromPointer(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
}
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
/// Return whether this object is of a class which uses non-pointer ISAs.
static inline bool _swift_isNonPointerIsaObjCClass(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// If the low bit is set, then we are definitely an objc object.
// FIXME: Use a variable for this.
return bits & 1;
}
#endif
SWIFT_LIBRARY_VISIBILITY
const ClassMetadata *_swift_getClass(const void *object);
SWIFT_LIBRARY_VISIBILITY
bool usesNativeSwiftReferenceCounting(const ClassMetadata *theClass);
static inline
bool objectUsesNativeSwiftReferenceCounting(const void *object) {
assert(!isObjCTaggedPointerOrNull(object));
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// Fast path for opaque ISAs. We don't want to call
// _swift_getClassOfAllocated as that will call object_getClass.
// Instead we can look at the bits in the ISA and tell if its a
// non-pointer opaque ISA which means it is definitely an ObjC
// object and doesn't use native swift reference counting.
if (_swift_isNonPointerIsaObjCClass(object))
return false;
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
#else
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
#endif
}
/// Get the superclass pointer value used for Swift root classes.
/// Note that this function may return a nullptr on non-objc platforms,
/// where there is no common root class. rdar://problem/18987058
const ClassMetadata *getRootSuperclass();
/// Check if a class has a formal superclass in the AST.
static inline
bool classHasSuperclass(const ClassMetadata *c) {
return (c->Superclass && c->Superclass != getRootSuperclass());
}
/// Replace entries of a freshly-instantiated value witness table with more
/// efficient common implementations where applicable.
///
/// All information is taken from the passed-in layout rather than the VWT.
/// This is so that we can delay "publishing" the flags in the actual
/// value witness table until all required changes have been made.
///
/// For instance, if the value witness table represents a POD type, this will
/// insert POD value witnesses into the table. The vwtable's flags must have
/// been initialized before calling this function.
///
/// Returns true if common value witnesses were used, false otherwise.
void installCommonValueWitnesses(const TypeLayout &layout,
ValueWitnessTable *vwtable);
const Metadata *
_matchMetadataByMangledTypeName(const llvm::StringRef metadataNameRef,
const Metadata *metadata,
const TypeContextDescriptor *ntd);
bool
_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node);
const ContextDescriptor *
_searchConformancesByMangledTypeName(Demangle::NodePointer node);
SWIFT_RUNTIME_EXPORT
Demangle::NodePointer _swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem);
/// Build the demangling for the generic type that's created by specializing
/// the given type context descriptor with the given arguments.
Demangle::NodePointer
_buildDemanglingForGenericType(const TypeContextDescriptor *description,
const void *const *arguments,
Demangle::Demangler &Dem);
/// Callback used to provide the substitution of a generic parameter
/// (described by depth/index) to its metadata.
///
/// The return type here is a lie; it's actually a MetadataPackOrValue.
using SubstGenericParameterFn =
std::function<const void *(unsigned depth, unsigned index)>;
/// Callback used to provide the substitution of a generic parameter
/// (described by the ordinal, or "flat index") to its metadata. The index may
/// be "full" or it may be only relative to key arguments. The call is
/// provided both indexes and may use the one it requires.
///
/// The return type here is a lie; it's actually a MetadataPackOrValue.
using SubstGenericParameterOrdinalFn =
std::function<const void *(unsigned fullOrdinal, unsigned keyOrdinal)>;
/// Callback used to provide the substitution of a witness table based on
/// its index into the enclosing generic environment.
using SubstDependentWitnessTableFn =
std::function<const WitnessTable *(const Metadata *type, unsigned index)>;
/// A pointer to type metadata or a heap-allocated metadata pack.
struct SWIFT_RUNTIME_LIBRARY_VISIBILITY MetadataPackOrValue {
const void *Ptr;
MetadataPackOrValue() : Ptr(nullptr) {}
explicit MetadataPackOrValue(const void *ptr) : Ptr(ptr) {}
explicit MetadataPackOrValue(intptr_t value)
: Ptr(reinterpret_cast<const void *>(value)) {}
explicit MetadataPackOrValue(MetadataResponse response) : Ptr(response.Value) {}
explicit MetadataPackOrValue(MetadataPackPointer ptr) : Ptr(ptr.getPointer()) {
if (ptr.getLifetime() != PackLifetime::OnHeap)
fatalError(0, "Cannot have an on-stack pack here\n");
}
explicit operator bool() const { return Ptr != nullptr; }
bool isNull() const {
return !Ptr;
}
bool isMetadataOrNull() const {
return (reinterpret_cast<uintptr_t>(Ptr) & 1) == 0;
}
bool isMetadata() const {
return Ptr && isMetadataOrNull();
}
bool isMetadataPack() const {
return Ptr && (reinterpret_cast<uintptr_t>(Ptr) & 1) == 1;
}
const Metadata *getMetadata() const {
if (isMetadata())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
const Metadata *getMetadataOrNull() const {
if (isMetadataOrNull())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
MetadataPackPointer getMetadataPack() const {
if (isMetadataPack())
return MetadataPackPointer(Ptr);
fatalError(0, "Expected a metadata pack but got metadata\n");
}
intptr_t getValue() const {
return reinterpret_cast<intptr_t>(Ptr);
}
};
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the generic arguments from
/// the given metadata.
///
/// Use with \c _getTypeByMangledName to decode potentially-generic
/// types.
class SWIFT_RUNTIME_LIBRARY_VISIBILITY SubstGenericParametersFromMetadata {
/// Whether the source is metadata (vs. a generic environment);
enum class SourceKind {
Metadata,
Environment,
Shape,
};
const SourceKind sourceKind;
union {
const TargetContextDescriptor<InProcess> *baseContext;
const TargetGenericEnvironment<InProcess> *environment;
const TargetExtendedExistentialTypeShape<InProcess> *shape;
};
/// The generic arguments.
const void * const *genericArgs;
/// An element in the descriptor path.
struct PathElement {
/// The generic parameters local to this element.
llvm::ArrayRef<GenericParamDescriptor> localGenericParams;
/// The total number of generic parameters.
unsigned numTotalGenericParams;
/// The number of key parameters in the parent.
unsigned numKeyGenericParamsInParent;
/// The number of key parameters locally introduced here.
unsigned numKeyGenericParamsHere;
/// Whether this context has any non-key generic parameters.
bool hasNonKeyGenericParams;
};
/// Information about the generic context descriptors that make up \c
/// descriptor, from the outermost to the innermost.
mutable llvm::SmallVector<PathElement, 8> descriptorPath;
/// The number of key generic parameters.
mutable unsigned numKeyGenericParameters = 0;
/// The number of pack shape classes.
mutable unsigned numShapeClasses = 0;
/// Builds the descriptor path.
///
/// \returns a pair containing the number of key generic parameters in
/// the path up to this point.
unsigned buildDescriptorPath(const ContextDescriptor *context,
Demangler &demangler) const;
/// Builds a path from the generic environment.
unsigned buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const;
unsigned buildShapePath(
const TargetExtendedExistentialTypeShape<InProcess> *shape) const;
// Set up the state we need to compute substitutions.
void setup() const;
public:
/// Produce substitutions entirely from the given metadata.
explicit SubstGenericParametersFromMetadata(const Metadata *base)
: sourceKind(SourceKind::Metadata),
baseContext(base->getTypeContextDescriptor()),
genericArgs(base ? (const void *const *)base->getGenericArgs()
: nullptr) {}
/// Produce substitutions from the given instantiation arguments for the
/// given context.
explicit SubstGenericParametersFromMetadata(const ContextDescriptor *base,
const void *const *args)
: sourceKind(SourceKind::Metadata), baseContext(base),
genericArgs(args) {}
/// Produce substitutions from the given instantiation arguments for the
/// given generic environment.
explicit SubstGenericParametersFromMetadata(
const TargetGenericEnvironment<InProcess> *environment,
const void *const *arguments)
: sourceKind(SourceKind::Environment), environment(environment),
genericArgs(arguments) {}
explicit SubstGenericParametersFromMetadata(
const TargetExtendedExistentialTypeShape<InProcess> *shape,
const void *const *arguments)
: sourceKind(SourceKind::Shape), shape(shape), genericArgs(arguments) {}
const void * const *getGenericArgs() const { return genericArgs; }
MetadataPackOrValue getMetadata(unsigned depth, unsigned index) const;
MetadataPackOrValue getMetadataKeyArgOrdinal(unsigned ordinal) const;
const WitnessTable *getWitnessTable(const Metadata *type,
unsigned index) const;
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
/// Retrieve the type metadata described by the given demangled type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledNode(
MetadataRequest request,
Demangler &demangler,
Demangle::NodePointer node,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledName(
MetadataRequest request,
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata pack described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
TypeLookupErrorOr<MetadataPackPointer> getTypePackByMangledName(
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type value described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
TypeLookupErrorOr<intptr_t> getTypeValueByMangledName(
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
#pragma clang diagnostic pop
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool _gatherGenericParameterCounts(const ContextDescriptor *descriptor,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
Demangler &BorrowFrom);
/// Map depth/index to a flat index.
std::optional<unsigned>
_depthIndexToFlatIndex(unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts);
/// Gathers all of the written generic parameters needed for
/// '_gatherGenericParameters'. This takes a list of key arguments and fills
/// in the generic arguments with all generic arguments.
///
/// \returns true if the operation succeeded.
bool _gatherWrittenGenericParameters(
const TypeContextDescriptor *descriptor,
llvm::ArrayRef<const void *> keyArgs,
llvm::SmallVectorImpl<MetadataPackOrValue> &genericArgs,
Demangle::Demangler &Dem);
/// Check the given generic requirements using the given set of generic
/// arguments, collecting the key arguments (e.g., witness tables) for
/// the caller.
///
/// \param genericParams The generic parameters corresponding to the
/// arguments.
///
/// \param requirements The set of requirements to evaluate.
///
/// \param extraArguments The extra arguments determined while checking
/// generic requirements (e.g., those that need to be
/// passed to an instantiation function) will be added to this vector.
///
/// \param context When non-NULL, receives any information about the
/// execution context that is required to use this conformance.
///
/// \returns the error if an error occurred, None otherwise.
std::optional<TypeLookupError> _checkGenericRequirements(
llvm::ArrayRef<GenericParamDescriptor> genericParams,
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstGenericParameterOrdinalFn substGenericParamOrdinal,
SubstDependentWitnessTableFn substWitnessTable,
ConformanceExecutionContext *context);
/// A helper function which avoids performing a store if the destination
/// address already contains the source value. This is useful when
/// "initializing" memory that might have been initialized to the correct
/// value statically. In such a case, the compiler might have gone so far
/// as to map the entire object readonly, or we might just want to avoid
/// dirtying memory unnecessarily.
template <class T>
static void assignUnlessEqual(T &dest, T newValue) {
if (dest != newValue)
dest = newValue;
}
#if defined(__CYGWIN__)
void _swift_once_f(uintptr_t *predicate, void *context,
void (*function)(void *));
#endif
static inline const Metadata *getMetadataForClass(const ClassMetadata *c) {
#if SWIFT_OBJC_INTEROP
return swift_getObjCClassMetadata(c);
#else
return c;
#endif
}
template <>
inline const ClassMetadata *Metadata::getClassObject() const {
switch (getKind()) {
case MetadataKind::Class: {
// Native Swift class metadata is also the class object.
return static_cast<const ClassMetadata *>(this);
}
#if SWIFT_OBJC_INTEROP
case MetadataKind::ObjCClassWrapper: {
// Objective-C class objects are referenced by their Swift metadata wrapper.
auto wrapper = static_cast<const ObjCClassWrapperMetadata *>(this);
return wrapper->Class;
}
#endif
// Other kinds of types don't have class objects.
default:
return nullptr;
}
}
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
void *allocateMetadata(size_t size, size_t align);
// Compare two pieces of metadata that should be identical. Returns true if
// they are, false if they are not equal. Dumps the metadata contents to
// stderr if they are not equal.
bool compareGenericMetadata(const Metadata *original,
const Metadata *newMetadata);
Demangle::NodePointer
_buildDemanglingForContext(const ContextDescriptor *context,
llvm::ArrayRef<NodePointer> demangledGenerics,
Demangle::Demangler &Dem);
/// Symbolic reference resolver that produces the demangling tree for the
/// referenced context.
class ResolveToDemanglingForContext {
Demangle::Demangler &Dem;
public:
explicit ResolveToDemanglingForContext(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Symbolic reference resolver that resolves the absolute addresses of
/// symbolic references but leaves them as references.
class ResolveAsSymbolicReference {
Demangle::Demangler &Dem;
public:
explicit ResolveAsSymbolicReference(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Demangler resolver that turns resolved symbolic references into their
/// demangling trees.
class ExpandResolvedSymbolicReferences {
Demangle::Demangler &Dem;
public:
explicit ExpandResolvedSymbolicReferences(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
const void *resolvedReference);
};
/// Is the given type imported from a C tag type?
bool _isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity);
/// The execution context for a conformance, containing any additional
/// checking that has to be done in context to determine whether a given
/// conformance is available.
struct ConformanceExecutionContext {
/// The global actor to which this conformance is isolated, or NULL for
/// a nonisolated conformances.
const Metadata *globalActorIsolationType = nullptr;
/// When the conformance is global-actor-isolated, this is the conformance
/// of globalActorIsolationType to GlobalActor.
const WitnessTable *globalActorIsolationWitnessTable = nullptr;
};
/// Check whether a type conforms to a protocol.
///
/// \param value - can be null, in which case the question should
/// be answered abstractly if possible
/// \param conformance - if non-null, and the protocol requires a
/// witness table, and the type implements the protocol, the witness
/// table will be placed here
/// \param context - when non-NULL, receives any information about the
/// required execution context for this conformance.
bool _conformsToProtocol(
const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance,
ConformanceExecutionContext *context);
/// Check whether a type conforms to a value within the currently-executing
/// context.
///
/// This is equivalent to a _conformsToProtocol check followed by runtime
/// checking for global actor isolation, if needed.
bool _conformsToProtocolInContext(
const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance,
bool prohibitIsolatedConformances);
/// Construct type metadata for the given protocol.
const Metadata *
_getSimpleProtocolTypeMetadata(const ProtocolDescriptor *protocol);
/// Given a type that we know can be used with the given conformance, find
/// the superclass that introduced the conformance.
const Metadata *findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance);
/// Determine whether the given type conforms to the given Swift protocol,
/// returning the appropriate protocol conformance descriptor when it does.
const ProtocolConformanceDescriptor *
swift_conformsToSwiftProtocol(const Metadata * const type,
const ProtocolDescriptor *protocol,
StringRef module);
/// Retrieve an associated type witness from the given witness table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocType Associated type descriptor.
///
/// \returns metadata for the associated type witness.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
MetadataResponse swift_getAssociatedTypeWitnessSlow(
MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType);
/// Retrieve an associated conformance witness table from the given witness
/// table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param assocType Metadata for the associated type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocConformance Associated conformance descriptor.
///
/// \returns corresponding witness table.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const WitnessTable *swift_getAssociatedConformanceWitnessSlow(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance);
RelativeWitnessTable *
lookThroughOptionalConditionalWitnessTable(const RelativeWitnessTable *wtable);
#if SWIFT_OBJC_INTEROP
/// Returns a retained Quick Look representation object an Obj-C object.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
id _quickLookObjectForPointer(void *value);
#endif
/// Hook function that calls into the concurrency library to check whether
/// we are currently executing the given global actor.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
extern bool (* __ptrauth_swift_is_global_actor_function SWIFT_CC(swift)
_swift_task_isCurrentGlobalActorHook)(
const Metadata *, const WitnessTable *);
} // end namespace swift
#endif /* SWIFT_RUNTIME_PRIVATE_H */