Files
swift-mirror/lib/SIL/SILModule.cpp
Erik Eckstein 43f68b6974 Enable dead function removal for internal function in whole-module compilation.
This is controlled by a new isWholeModule() attribute in SILModule.

It gives about 9% code size reduction on the benchmark executables.
For test-suite reasons it is currently not done for the stdlib.



Swift SVN r22491
2014-10-03 14:14:23 +00:00

818 lines
28 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-module"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILExternalSource.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace Lowering;
STATISTIC(NumFuncLinked, "Number of SIL functions linked");
namespace swift {
/// SILTypeList - The uniqued backing store for the SILValue type list. This
/// is only exposed out of SILValue as an ArrayRef of types, so it should
/// never be used outside of libSIL.
class SILTypeList : public llvm::FoldingSetNode {
public:
unsigned NumTypes;
SILType Types[1]; // Actually variable sized.
void Profile(llvm::FoldingSetNodeID &ID) const {
for (unsigned i = 0, e = NumTypes; i != e; ++i) {
ID.AddPointer(Types[i].getOpaqueValue());
}
}
};
} // end namespace swift.
void SILExternalSource::anchor() {
}
/// SILTypeListUniquingType - This is the type of the folding set maintained by
/// SILModule that these things are uniqued into.
typedef llvm::FoldingSet<SILTypeList> SILTypeListUniquingType;
class SILModule::SerializationCallback : public SerializedSILLoader::Callback {
void didDeserialize(Module *M, SILFunction *fn) override {
updateLinkage(fn);
}
void didDeserialize(Module *M, SILGlobalVariable *var) override {
updateLinkage(var);
}
void didDeserialize(Module *M, SILVTable *vtable) override {
// TODO: should vtables get linkage?
//updateLinkage(vtable);
}
void didDeserialize(Module *M, SILWitnessTable *wt) override {
updateLinkage(wt);
}
template <class T> void updateLinkage(T *decl) {
switch (decl->getLinkage()) {
case SILLinkage::Public:
decl->setLinkage(SILLinkage::PublicExternal);
return;
case SILLinkage::Hidden:
decl->setLinkage(SILLinkage::HiddenExternal);
return;
case SILLinkage::Shared:
decl->setLinkage(SILLinkage::SharedExternal);
return;
case SILLinkage::Private:
decl->setLinkage(SILLinkage::PrivateExternal);
return;
case SILLinkage::PublicExternal:
case SILLinkage::HiddenExternal:
case SILLinkage::SharedExternal:
case SILLinkage::PrivateExternal:
return;
}
}
};
SILModule::SILModule(Module *SwiftModule, const DeclContext *associatedDC,
bool wholeModule)
: TheSwiftModule(SwiftModule), AssociatedDeclContext(associatedDC),
Stage(SILStage::Raw), Callback(new SILModule::SerializationCallback()),
wholeModule(wholeModule), Types(*this) {
TypeListUniquing = new SILTypeListUniquingType();
}
SILModule::~SILModule() {
// Decrement ref count for each SILGlobalVariable with static initializers.
for (SILGlobalVariable &v : silGlobals)
if (v.getInitializer())
v.getInitializer()->decrementRefCount();
// Drop everything functions in this module reference.
//
// This is necessary since the functions may reference each other. We don't
// need to worry about sil_witness_tables since witness tables reference each
// other via protocol conformances and sil_vtables don't reference each other
// at all.
for (SILFunction &F : *this)
F.dropAllReferences();
delete (SILTypeListUniquingType*)TypeListUniquing;
}
SILWitnessTable *
SILModule::createWitnessTableDeclaration(ProtocolConformance *C,
SILLinkage linkage) {
// If we are passed in a null conformance (a valid value), just return nullptr
// since we can not map a witness table to it.
if (!C)
return nullptr;
// Walk down to the base NormalProtocolConformance.
ProtocolConformance *ParentC = C;
ArrayRef<Substitution> Subs;
while (!isa<NormalProtocolConformance>(ParentC)) {
switch (ParentC->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
ParentC = cast<InheritedProtocolConformance>(ParentC)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(ParentC);
ParentC = SC->getGenericConformance();
assert(Subs.empty() && "multiple conformance specializations?!");
Subs = SC->getGenericSubstitutions();
break;
}
}
}
NormalProtocolConformance *NormalC
= cast<NormalProtocolConformance>(ParentC);
SILWitnessTable *WT = SILWitnessTable::create(*this,
linkage,
NormalC);
return WT;
}
std::pair<SILWitnessTable *, ArrayRef<Substitution>>
SILModule::
lookUpWitnessTable(const ProtocolConformance *C, bool deserializeLazily) {
// If we have a null conformance passed in (a legal value), just return
// nullptr.
ArrayRef<Substitution> Subs;
if (!C)
return {nullptr, Subs};
// Walk down to the base NormalProtocolConformance.
const ProtocolConformance *ParentC = C;
while (!isa<NormalProtocolConformance>(ParentC)) {
switch (ParentC->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
ParentC = cast<InheritedProtocolConformance>(ParentC)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(ParentC);
ParentC = SC->getGenericConformance();
assert(Subs.empty() && "multiple conformance specializations?!");
Subs = SC->getGenericSubstitutions();
break;
}
}
}
const NormalProtocolConformance *NormalC
= cast<NormalProtocolConformance>(ParentC);
// If the normal conformance is for a generic type, and we didn't hit a
// specialized conformance, collect the substitutions from the generic type.
// FIXME: The AST should do this for us.
if (NormalC->getType()->isSpecialized() && Subs.empty()) {
Subs = NormalC->getType()
->gatherAllSubstitutions(NormalC->getDeclContext()->getParentModule(),
nullptr);
}
// Attempt to lookup the witness table from the table.
auto found = WitnessTableLookupCache.find(NormalC);
if (found == WitnessTableLookupCache.end()) {
#ifndef NDEBUG
// Make sure that all witness tables are in the witness table lookup
// cache.
//
// This code should not be hit normally since we add witness tables to the
// lookup cache when we create them. We don't just assert here since there
// is the potential for a conformance without a witness table to be passed
// to this function.
for (SILWitnessTable &WT : witnessTables)
assert(WT.getConformance() != NormalC &&
"Found witness table that is not"
" in the witness table lookup cache.");
#endif
return {nullptr, Subs};
}
SILWitnessTable *wT = found->second;
assert(wT != nullptr && "Should never map a conformance to a null witness"
" table.");
// If we have a definition, return it.
if (wT->isDefinition())
return {wT, Subs};
// Otherwise try to deserialize it. If we succeed return the deserialized
// function.
//
// *NOTE* In practice, wT will be deserializedTable, but I do not want to rely
// on that behavior for now.
if (deserializeLazily)
if (auto deserializedTable = getSILLoader()->lookupWitnessTable(wT))
return {deserializedTable, Subs};
// If we fail, just return the declaration.
return {wT, Subs};
}
SILFunction *SILModule::getOrCreateFunction(SILLocation loc,
StringRef name,
SILLinkage linkage,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent,
IsFragile_t isFragile) {
if (auto fn = lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == type);
assert(fn->getLinkage() == linkage);
return fn;
}
auto fn = SILFunction::create(*this, linkage, name, type, nullptr,
loc, isBareSILFunction, isTransparent, isFragile);
fn->setDebugScope(new (*this) SILDebugScope(loc, *fn));
return fn;
}
SILFunction *SILModule::getOrCreateSharedFunction(SILLocation loc,
StringRef name,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent,
IsFragile_t isFragile) {
return getOrCreateFunction(loc, name, SILLinkage::Shared,
type, isBareSILFunction, isTransparent, isFragile);
}
ArrayRef<SILType> ValueBase::getTypes() const {
// No results.
if (TypeOrTypeList.isNull())
return ArrayRef<SILType>();
// Arbitrary list of results.
if (auto *TypeList = TypeOrTypeList.dyn_cast<SILTypeList*>())
return ArrayRef<SILType>(TypeList->Types, TypeList->NumTypes);
// Single result.
return TypeOrTypeList.get<SILType>();
}
/// getSILTypeList - Get a uniqued pointer to a SIL type list. This can only
/// be used by SILValue.
SILTypeList *SILModule::getSILTypeList(ArrayRef<SILType> Types) const {
assert(Types.size() > 1 && "Shouldn't use type list for 0 or 1 types");
auto UniqueMap = (SILTypeListUniquingType*)TypeListUniquing;
llvm::FoldingSetNodeID ID;
for (auto T : Types) {
ID.AddPointer(T.getOpaqueValue());
}
// If we already have this type list, just return it.
void *InsertPoint = 0;
if (SILTypeList *TypeList = UniqueMap->FindNodeOrInsertPos(ID, InsertPoint))
return TypeList;
// Otherwise, allocate a new one.
void *NewListP = BPA.Allocate(sizeof(SILTypeList)+
sizeof(SILType)*(Types.size()-1),
alignof(SILTypeList));
SILTypeList *NewList = new (NewListP) SILTypeList();
NewList->NumTypes = Types.size();
std::copy(Types.begin(), Types.end(), NewList->Types);
UniqueMap->InsertNode(NewList, InsertPoint);
return NewList;
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID =
(llvm::Intrinsic::ID)getLLVMIntrinsicID(NameRef, !Info.Types.empty());
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.startswith("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.startswith("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.startswith("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else {
// Switch through the rest of builtins.
Info.ID = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(ID, Name, Attrs) \
.Case(Name, BuiltinValueKind::ID)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
}
return Info;
}
namespace {
/// Visitor that knows how to link in dependencies of SILInstructions.
class SILLinkerVisitor : public SILInstructionVisitor<SILLinkerVisitor, bool> {
using LinkingMode = SILModule::LinkingMode;
/// The SILModule that we are loading from.
SILModule &Mod;
/// The SILLoader that this visitor is using to link.
SerializedSILLoader *Loader;
/// The external SIL source to use when linking this module.
SILExternalSource *ExternalSource = nullptr;
/// Worklist of SILFunctions we are processing.
llvm::SmallVector<SILFunction *, 128> Worklist;
/// A list of callees of the current instruction being visited. cleared after
/// every instruction is visited.
llvm::SmallVector<SILFunction *, 4> FunctionDeserializationWorklist;
/// The current linking mode.
LinkingMode Mode;
public:
SILLinkerVisitor(SILModule &M, SerializedSILLoader *L,
SILModule::LinkingMode LinkingMode,
SILExternalSource *E = nullptr)
: Mod(M), Loader(L), ExternalSource(E), Worklist(),
FunctionDeserializationWorklist(), Mode(LinkingMode) { }
/// Process F, recursively deserializing any thing F may reference.
bool processFunction(SILFunction *F) {
if (Mode == LinkingMode::LinkNone)
return false;
// If F is a declaration, first deserialize it.
auto NewFn = F->isExternalDeclaration() ? Loader->lookupSILFunction(F) : F;
if (!NewFn || NewFn->empty())
return false;
++NumFuncLinked;
// Try to transitively deserialize everything referenced by NewFn.
Worklist.push_back(NewFn);
process();
// Since we successfully processed at least one function, return true.
return true;
}
/// Deserialize the VTable mapped to C if it exists and all SIL the VTable
/// transitively references.
///
/// This method assumes that the caller made sure that no vtable existed in
/// Mod.
SILVTable *processClassDecl(const ClassDecl *C) {
// If we are not linking anything, bail.
if (Mode == LinkingMode::LinkNone)
return nullptr;
// Attempt to load the VTable from the SerializedSILLoader. If we
// fail... bail...
SILVTable *Vtbl = Loader->lookupVTable(C);
if (!Vtbl)
return nullptr;
// Otherwise, add all the vtable functions in Vtbl to the function
// processing list...
for (auto &E : Vtbl->getEntries())
Worklist.push_back(E.second);
// And then transitively deserialize all SIL referenced by those functions.
process();
// Return the deserialized Vtbl.
return Vtbl;
}
/// We do not want to visit callee functions if we just have a value base.
bool visitValueBase(ValueBase *V) { return false; }
bool visitApplyInst(ApplyInst *AI) {
// If we don't have a function ref inst, just return false. We do not have
// interesting callees.
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
// Ok we have a function ref inst, grab the callee.
SILFunction *Callee = FRI->getReferencedFunction();
// If the linking mode is not link all, AI is not transparent, and the
// callee is not shared, we don't want to perform any linking.
if (!isLinkAll() && !AI->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
// Otherwise we want to try and link in the callee... Add it to the callee
// list and return true.
addFunctionToWorklist(Callee);
return true;
}
bool visitPartialApplyInst(PartialApplyInst *PAI) {
auto *FRI = dyn_cast<FunctionRefInst>(PAI->getCallee());
if (!FRI)
return false;
SILFunction *Callee = FRI->getReferencedFunction();
if (!isLinkAll() && !Callee->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
addFunctionToWorklist(Callee);
return true;
}
bool visitFunctionRefInst(FunctionRefInst *FRI) {
// Needed to handle closures which are no longer applied, but are left
// behind as dead code. This shouldn't happen, but if it does don't get into
// an inconsistent state.
SILFunction *Callee = FRI->getReferencedFunction();
if (!isLinkAll() && !Callee->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
addFunctionToWorklist(FRI->getReferencedFunction());
return true;
}
bool visitProtocolConformance(ProtocolConformance *C,
const Optional<SILDeclRef> &Member) {
// If a null protocol conformance was passed in, just return false.
if (!C)
return false;
// Otherwise try and lookup a witness table for C.
SILWitnessTable *WT = Mod.lookUpWitnessTable(C).first;
// If we don't find any witness table for the conformance, bail and return
// false.
if (!WT) {
Mod.createWitnessTableDeclaration(C,
TypeConverter::getLinkageForProtocolConformance(
C->getRootNormalConformance(), NotForDefinition));
return false;
}
// If the looked up witness table is a declaration, there is nothing we can
// do here. Just bail and return false.
if (WT->isDeclaration())
return false;
bool performFuncDeserialization = false;
// For each entry in the witness table...
for (auto &E : WT->getEntries()) {
// If the entry is a witness method...
if (E.getKind() == SILWitnessTable::WitnessKind::Method) {
// And we are only interested in deserializing a specific requirement
// and don't have that requirement, don't deserialize this method.
if (Member.hasValue() && E.getMethodWitness().Requirement != *Member)
continue;
// Otherwise if it is the requirement we are looking for or we just want
// to deserialize everything, add the function to the list of functions
// to deserialize.
performFuncDeserialization = true;
addFunctionToWorklist(E.getMethodWitness().Witness);
}
}
return performFuncDeserialization;
}
bool visitWitnessMethodInst(WitnessMethodInst *WMI) {
return visitProtocolConformance(WMI->getConformance(), WMI->getMember());
}
bool visitInitExistentialInst(InitExistentialInst *IEI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the open_existential/witness_method before the
// init_existential_inst.
bool performFuncDeserialization = false;
for (ProtocolConformance *C : IEI->getConformances()) {
performFuncDeserialization |=
visitProtocolConformance(C, Optional<SILDeclRef>());
}
return performFuncDeserialization;
}
bool visitInitExistentialRefInst(InitExistentialRefInst *IERI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
bool performFuncDeserialization = false;
for (ProtocolConformance *C : IERI->getConformances()) {
performFuncDeserialization |=
visitProtocolConformance(C, Optional<SILDeclRef>());
}
return performFuncDeserialization;
}
bool visitAllocRefInst(AllocRefInst *ARI) {
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return false;
return linkInVTable(D);
}
bool visitMetatypeInst(MetatypeInst *MI) {
CanType instTy = MI->getType().castTo<MetatypeType>().getInstanceType();
ClassDecl *C = instTy.getClassOrBoundGenericClass();
if (!C)
return false;
return linkInVTable(C);
}
private:
/// Add a function to our function worklist for processing.
void addFunctionToWorklist(SILFunction *F) {
FunctionDeserializationWorklist.push_back(F);
}
/// Is the current mode link all? Link all implies we should try and link
/// everything, not just transparent/shared functions.
bool isLinkAll() const { return Mode == LinkingMode::LinkAll; }
bool linkInVTable(ClassDecl *D) {
// Attempt to lookup the Vtbl from the SILModule.
SILVTable *Vtbl = Mod.lookUpVTable(D);
// If the SILModule does not have the VTable, attempt to deserialize the
// VTable. If we fail to do that as well, bail.
if (!Vtbl || !(Vtbl = Loader->lookupVTable(D->getName())))
return false;
// Ok we found our VTable. Visit each function referenced by the VTable. If
// any of the functions are external declarations, add them to the worklist
// for processing.
bool Result = false;
for (auto P : Vtbl->getEntries()) {
if (P.second->isExternalDeclaration()) {
Result = true;
addFunctionToWorklist(P.second);
}
}
return Result;
}
// Main loop of the visitor. Called by one of the other *visit* methods.
bool process() {
// Process everything transitively referenced by one of the functions in the
// worklist.
bool Result = false;
while (!Worklist.empty()) {
auto Fn = Worklist.pop_back_val();
for (auto &BB : *Fn) {
for (auto &I : BB) {
// Should we try linking?
if (visit(&I)) {
for (auto F : FunctionDeserializationWorklist) {
// The ExternalSource may wish to rewrite non-empty bodies.
if (!F->empty() && ExternalSource)
if (auto NewFn = ExternalSource->lookupSILFunction(F)) {
NewFn->verify();
Worklist.push_back(NewFn);
++NumFuncLinked;
Result = true;
continue;
}
F->setBare(IsBare);
if (F->empty())
if (auto NewFn = Loader->lookupSILFunction(F)) {
NewFn->verify();
Worklist.push_back(NewFn);
Result = true;
++NumFuncLinked;
}
}
FunctionDeserializationWorklist.clear();
} else {
assert(FunctionDeserializationWorklist.empty() && "Worklist should "
"always be empty if visit does not return true.");
}
}
}
}
// If we return true, we deserialized at least one function.
return Result;
}
};
} // end anonymous namespace.
SILFunction *SILModule::lookUpFunction(SILDeclRef fnRef) {
llvm::SmallString<32> name;
fnRef.mangle(name);
return lookUpFunction(name);
}
bool SILModule::linkFunction(SILFunction *Fun, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, getSILLoader(), Mode,
ExternalSource).processFunction(Fun);
}
void SILModule::linkAllWitnessTables() {
getSILLoader()->getAllWitnessTables();
}
void SILModule::linkAllVTables() {
getSILLoader()->getAllVTables();
}
void SILModule::invalidateSILLoader() {
getSILLoader()->invalidateEntry(nullptr);
}
/// Erase a function from the module.
void SILModule::eraseFunction(SILFunction *F) {
FunctionTable.erase(F->getName());
// The owner of the function's Name was the FunctionTable key. Avoid a
// dangling pointer.
F->Name = StringRef();
assert(! F->isZombie() && "zombie function is in list of alive functions");
if (F->isInlined()) {
// The function is dead, but as it is inlined we need it later (at IRGen)
// for debug info generation. So we move it into the zombie list.
getFunctionList().remove(F);
zombieFunctions.push_back(F);
F->markAsZombie();
// This opens dead-function-removal opportunities for called functions.
// (References are not needed for debug info generation.)
F->dropAllReferences();
} else {
getFunctionList().erase(F);
}
}
SILVTable *SILModule::lookUpVTable(const ClassDecl *C) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto R = VTableLookupTable.find(C);
if (R != VTableLookupTable.end())
return R->second;
// If that fails, try to deserialize it. If that fails, return nullptr.
SILVTable *Vtbl = SILLinkerVisitor(*this, getSILLoader(),
SILModule::LinkingMode::LinkAll,
ExternalSource).processClassDecl(C);
if (!Vtbl)
return nullptr;
// If we succeeded, map C -> VTbl in the table and return VTbl.
VTableLookupTable[C] = Vtbl;
return Vtbl;
}
SerializedSILLoader *SILModule::getSILLoader() {
// If the SILLoader is null, create it.
if (!SILLoader)
SILLoader = SerializedSILLoader::create(getASTContext(), this,
Callback.get());
// Return the SerializedSILLoader.
return SILLoader.get();
}
/// \brief Given a protocol \p Proto, a member method \p Member and a concrete
/// class type \p ConcreteTy, search the witness tables and return the static
/// function that matches the member with any specializations may be
/// required. Notice that we do not scan the class hierarchy, just the concrete
/// class type.
std::tuple<SILFunction *, SILWitnessTable *, ArrayRef<Substitution>>
SILModule::findFuncInWitnessTable(const ProtocolConformance *C,
SILDeclRef Member) {
// Look up the witness table associated with our protocol conformance from the
// SILModule.
auto Ret = lookUpWitnessTable(C);
// If no witness table was found, bail.
if (!Ret.first) {
DEBUG(llvm::dbgs() << " Failed speculative lookup of witness for: ";
C->dump());
return std::make_tuple(nullptr, nullptr, ArrayRef<Substitution>());
}
// Okay, we found the correct witness table. Now look for the method.
for (auto &Entry : Ret.first->getEntries()) {
// Look at method entries only.
if (Entry.getKind() != SILWitnessTable::WitnessKind::Method)
continue;
SILWitnessTable::MethodWitness MethodEntry = Entry.getMethodWitness();
// Check if this is the member we were looking for.
if (MethodEntry.Requirement != Member)
continue;
return std::make_tuple(MethodEntry.Witness, Ret.first, Ret.second);
}
return std::make_tuple(nullptr, nullptr, ArrayRef<Substitution>());
}
static ClassDecl *getClassDeclSuperClass(ClassDecl *Class) {
Type T = Class->getSuperclass();
if (!T)
return nullptr;
return T->getCanonicalType()->getClassOrBoundGenericClass();
}
SILFunction *
SILModule::
lookUpSILFunctionFromVTable(ClassDecl *Class, SILDeclRef Member) {
// Until we reach the top of the class hierarchy...
while (Class) {
// Try to lookup a VTable for Class from the module...
auto *Vtbl = lookUpVTable(Class);
// If the lookup fails, skip Class and attempt to resolve the method in
// the VTable of the super class of Class if it exists...
if (!Vtbl) {
Class = getClassDeclSuperClass(Class);
continue;
}
// Ok, we have a VTable. Try to lookup the SILFunction implementation from
// the VTable.
if (SILFunction *F = Vtbl->getImplementation(*this, Member))
return F;
// If we fail to lookup the SILFunction, again skip Class and attempt to
// resolve the method in the VTable of the super class of Class if such a
// super class exists.
Class = getClassDeclSuperClass(Class);
}
return nullptr;
}