Files
swift-mirror/lib/ClangImporter/ImportDecl.cpp
Doug Gregor 4492f85d59 When we import an Objective-C init method as a constructor, suppress the method.
This makes it impossible to call an "init" method from Swift code; one
must construct an object, delegate to another constructor (not yet
implemented), or chain to a superclass constructor.


Swift SVN r8421
2013-09-18 22:05:27 +00:00

2524 lines
93 KiB
C++

//===--- ImportDecl.cpp - Import Clang Declarations -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for importing Clang declarations into Swift.
//
//===----------------------------------------------------------------------===//
#include "ImporterImpl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/ClangImporter/ClangModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclVisitor.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
/// \brief Set the declaration context of each variable within the given
/// patterns to \p dc.
static void setVarDeclContexts(ArrayRef<Pattern *> patterns, DeclContext *dc) {
for (auto pattern : patterns) {
auto pat = pattern->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pat))
named->getDecl()->setDeclContext(dc);
if (auto tuple = dyn_cast<TuplePattern>(pat)) {
for (auto elt : tuple->getFields())
setVarDeclContexts(elt.getPattern(), dc);
}
}
}
/// \brief Map a well-known C type to a swift type from the standard library.
///
/// \param IsError set to true when we know the corresponding swift type name,
/// but we could not find it. (For example, the type was not defined in the
/// standard library or the required standard library module was not imported.)
/// This should be a hard error, we don't want to map the type only sometimes.
///
/// \returns A pair of a swift type and its name that corresponds to a given
/// C type.
static std::pair<Type, StringRef>
getSwiftStdlibType(const clang::TypedefNameDecl *D,
Identifier Name,
ClangImporter::Implementation &Impl,
bool *IsError) {
*IsError = false;
MappedCTypeKind CTypeKind;
unsigned Bitwidth;
StringRef SwiftModuleName;
bool IsSwiftModule; // True if SwiftModuleName == "swift".
StringRef SwiftTypeName;
MappedLanguages Languages;
bool CanBeMissing;
do {
#define MAP_TYPE(C_TYPE_NAME, C_TYPE_KIND, C_TYPE_BITWIDTH, \
SWIFT_MODULE_NAME, SWIFT_TYPE_NAME, LANGUAGES, \
CAN_BE_MISSING) \
if (Name.str() == C_TYPE_NAME) { \
CTypeKind = MappedCTypeKind::C_TYPE_KIND; \
Bitwidth = C_TYPE_BITWIDTH; \
if (StringRef("swift") == SWIFT_MODULE_NAME) \
IsSwiftModule = true; \
else { \
IsSwiftModule = false; \
SwiftModuleName = SWIFT_MODULE_NAME; \
} \
SwiftTypeName = SWIFT_TYPE_NAME; \
Languages = MappedLanguages::LANGUAGES; \
CanBeMissing = CAN_BE_MISSING; \
break; \
}
#include "MappedTypes.def"
// We did not find this type, thus it is not mapped.
return std::make_pair(Type(), "");
} while(0);
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
if (Languages != MappedLanguages::All) {
if ((unsigned(Languages) & unsigned(MappedLanguages::ObjC1)) != 0 &&
!ClangCtx.getLangOpts().ObjC1)
return std::make_pair(Type(), "");
}
auto ClangType = D->getUnderlyingType();
// If the C type does not have the expected size, don't import it as a stdlib
// type.
if (Bitwidth != 0 &&
Bitwidth != ClangCtx.getTypeSize(ClangType))
return std::make_pair(Type(), "");
// Chceck other expected properties of the C type.
switch(CTypeKind) {
case MappedCTypeKind::UnsignedInt:
if (!ClangType->isUnsignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::SignedInt:
if (!ClangType->isSignedIntegerType())
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEsingle:
case MappedCTypeKind::FloatIEEEdouble:
case MappedCTypeKind::FloatX87DoubleExtended: {
if (!ClangType->isFloatingType())
return std::make_pair(Type(), "");
const llvm::fltSemantics &Sem = ClangCtx.getFloatTypeSemantics(ClangType);
switch(CTypeKind) {
case MappedCTypeKind::FloatIEEEsingle:
assert(Bitwidth == 32 && "FloatIEEEsingle should be 32 bits wide");
if (&Sem != &APFloat::IEEEsingle)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatIEEEdouble:
assert(Bitwidth == 64 && "FloatIEEEsingle should be 64 bits wide");
if (&Sem != &APFloat::IEEEdouble)
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::FloatX87DoubleExtended:
assert(Bitwidth == 80 && "FloatIEEEsingle should be 80 bits wide");
if (&Sem != &APFloat::x87DoubleExtended)
return std::make_pair(Type(), "");
break;
default:
llvm_unreachable("should see only floating point types here");
}
}
break;
case MappedCTypeKind::ObjCBool:
if (!ClangCtx.hasSameType(ClangType, ClangCtx.ObjCBuiltinBoolTy))
return std::make_pair(Type(), "");
break;
case MappedCTypeKind::ObjCSel:
if (auto PT = ClangType->getAs<clang::PointerType>()) {
if (!PT->getPointeeType()->isSpecificBuiltinType(
clang::BuiltinType::ObjCSel))
return std::make_pair(Type(), "");
}
break;
}
Module *M;
if (IsSwiftModule)
M = Impl.getSwiftModule();
else
M = Impl.getNamedModule(SwiftModuleName);
if (!M) {
// User did not import the library module that contains the type we want to
// substitute.
*IsError = true;
return std::make_pair(Type(), "");
}
Type SwiftType = Impl.getNamedSwiftType(M, SwiftTypeName);
if (!SwiftType && !CanBeMissing) {
// The required type is not defined in the standard library.
*IsError = true;
return std::make_pair(Type(), "");
}
return std::make_pair(SwiftType, SwiftTypeName);
}
namespace {
typedef ClangImporter::Implementation::EnumKind EnumKind;
/// \brief Convert Clang declarations into the corresponding Swift
/// declarations.
class SwiftDeclConverter
: public clang::ConstDeclVisitor<SwiftDeclConverter, Decl *>
{
ClangImporter::Implementation &Impl;
bool forwardDeclaration = false;
public:
explicit SwiftDeclConverter(ClangImporter::Implementation &impl)
: Impl(impl) { }
bool hadForwardDeclaration() const {
return forwardDeclaration;
}
Decl *VisitDecl(const clang::Decl *decl) {
return nullptr;
}
Decl *VisitTranslationUnitDecl(const clang::TranslationUnitDecl *decl) {
// Note: translation units are handled specially by importDeclContext.
return nullptr;
}
Decl *VisitNamespaceDecl(const clang::NamespaceDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitUsingDirectiveDecl(const clang::UsingDirectiveDecl *decl) {
// Never imported.
return nullptr;
}
Decl *VisitNamespaceAliasDecl(const clang::NamespaceAliasDecl *decl) {
// FIXME: Implement once Swift has namespaces.
return nullptr;
}
Decl *VisitLabelDecl(const clang::LabelDecl *decl) {
// Labels are function-local, and therefore never imported.
return nullptr;
}
Decl *VisitTypedefNameDecl(const clang::TypedefNameDecl *Decl) {
auto Name = Impl.importName(Decl->getDeclName());
if (Name.empty())
return nullptr;
auto DC = Impl.importDeclContextOf(Decl);
if (!DC)
return nullptr;
Type SwiftType;
if (Decl->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
bool IsError;
StringRef StdlibTypeName;
std::tie(SwiftType, StdlibTypeName) =
getSwiftStdlibType(Decl, Name, Impl, &IsError);
if (IsError)
return nullptr;
if (SwiftType) {
// Note that this typedef-name is special.
Impl.SpecialTypedefNames.insert(Decl);
if (Name.str() == StdlibTypeName) {
// Don't create an extra typealias in the imported module because
// doing so will cause ambiguity between the name in the imported
// module and the same name in the 'swift' module.
return SwiftType->castTo<StructType>()->getDecl();
}
}
}
if (!SwiftType)
SwiftType = Impl.importType(Decl->getUnderlyingType(),
ImportTypeKind::Normal);
if (!SwiftType)
return nullptr;
auto Loc = Impl.importSourceLoc(Decl->getLocation());
return new (Impl.SwiftContext) TypeAliasDecl(
Impl.importSourceLoc(Decl->getLocStart()),
Name,
Loc,
TypeLoc::withoutLoc(SwiftType),
DC,
{ });
}
Decl *
VisitUnresolvedUsingTypenameDecl(const clang::UnresolvedUsingTypenameDecl *decl) {
// Note: only occurs in templates.
return nullptr;
}
/// \brief Create a constructor that initializes a struct from its members.
ConstructorDecl *createValueConstructor(StructDecl *structDecl,
ArrayRef<Decl *> members) {
auto &context = Impl.SwiftContext;
// FIXME: Name hack.
auto name = context.getIdentifier("constructor");
// Create the 'self' declaration.
auto selfType = structDecl->getDeclaredTypeInContext();
auto selfMetaType = MetaTypeType::get(selfType, context);
auto selfName = context.getIdentifier("self");
auto selfDecl = new (context) VarDecl(SourceLoc(), selfName, selfType,
structDecl);
// Construct the set of parameters from the list of members.
SmallVector<Pattern *, 4> paramPatterns;
SmallVector<TuplePatternElt, 8> patternElts;
SmallVector<TupleTypeElt, 8> tupleElts;
SmallVector<VarDecl *, 8> params;
for (auto member : members) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (var->isProperty())
continue;
auto param = new (context) VarDecl(SourceLoc(), var->getName(),
var->getType(), structDecl);
params.push_back(param);
Pattern *pattern = new (context) NamedPattern(param);
pattern->setType(var->getType());
auto tyLoc = TypeLoc::withoutLoc(var->getType());
pattern = new (context) TypedPattern(pattern, tyLoc);
pattern->setType(var->getType());
paramPatterns.push_back(pattern);
patternElts.push_back(TuplePatternElt(pattern));
tupleElts.push_back(TupleTypeElt(var->getType(), var->getName()));
}
}
auto paramPattern = TuplePattern::create(context, SourceLoc(), patternElts,
SourceLoc());
auto paramTy = TupleType::get(tupleElts, context);
paramPattern->setType(paramTy);
// Create the constructor
auto constructor = new (context) ConstructorDecl(name, SourceLoc(),
paramPattern,
paramPattern,
selfDecl,
nullptr, structDecl);
// Set the constructor's type.
auto fnTy = FunctionType::get(paramTy, selfType, context);
auto allocFnTy = FunctionType::get(selfMetaType, fnTy, context);
auto initFnTy = FunctionType::get(selfType, fnTy, context);
constructor->setType(allocFnTy);
constructor->setInitializerType(initFnTy);
// Fix the declaration contexts.
selfDecl->setDeclContext(constructor);
setVarDeclContexts(paramPatterns, constructor);
// Assign all of the member variables appropriately.
SmallVector<BraceStmt::ExprStmtOrDecl, 4> stmts;
unsigned paramIdx = 0;
for (auto member : members) {
auto var = dyn_cast<VarDecl>(member);
if (!var || var->isProperty())
continue;
// Construct left-hand side.
Expr *lhs = new (context) DeclRefExpr(selfDecl, SourceLoc());
lhs = new (context) MemberRefExpr(lhs, SourceLoc(), var, SourceLoc());
// Construct right-hand side.
auto param = params[paramIdx++];
auto rhs = new (context) DeclRefExpr(param, SourceLoc());
// Add assignment.
stmts.push_back(new (context) AssignExpr(lhs, SourceLoc(), rhs));
}
// Create the function body.
auto body = BraceStmt::create(context, SourceLoc(), stmts, SourceLoc());
constructor->setBody(body);
// Add this as an external definition.
Impl.SwiftContext.addedExternalDecl(constructor);
// We're done.
return constructor;
}
Decl *VisitEnumDecl(const clang::EnumDecl *decl) {
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the union declaration and record it.
Decl *result;
UnionDecl *unionDecl = nullptr;
switch (Impl.classifyEnum(decl)) {
case EnumKind::Constants: {
// There is no declaration. Rather, the type is mapped to the
// underlying type.
return nullptr;
}
case EnumKind::Options: {
auto structDecl = new (Impl.SwiftContext)
StructDecl(SourceLoc(), name, SourceLoc(), { }, nullptr, dc);
structDecl->computeType();
// Compute the underlying type of the enumeration.
auto underlyingType = Impl.importType(decl->getIntegerType(),
ImportTypeKind::Normal);
if (!underlyingType)
return nullptr;
// Create a field to store the underlying value.
auto fieldName = Impl.SwiftContext.getIdentifier("value");
auto field = new (Impl.SwiftContext) VarDecl(SourceLoc(), fieldName,
underlyingType,
structDecl);
// Create a pattern binding to describe the field.
Pattern * fieldPattern = new (Impl.SwiftContext) NamedPattern(field);
fieldPattern->setType(field->getType());
fieldPattern
= new (Impl.SwiftContext) TypedPattern(
fieldPattern,
TypeLoc::withoutLoc(field->getType()));
fieldPattern->setType(field->getType());
auto patternBinding
= new (Impl.SwiftContext) PatternBindingDecl(SourceLoc(),
fieldPattern,
nullptr, structDecl);
// Create a constructor to initialize that value from a value of the
// underlying type.
Decl *fieldDecl = field;
auto constructor = createValueConstructor(structDecl, {&fieldDecl, 1});
// Set the members of the struct.
Decl *members[3] = { constructor, patternBinding, field };
structDecl->setMembers(
Impl.SwiftContext.AllocateCopy(ArrayRef<Decl *>(members, 3)),
SourceRange());
result = structDecl;
break;
}
case EnumKind::Union:
unionDecl = new (Impl.SwiftContext)
UnionDecl(Impl.importSourceLoc(decl->getLocStart()),
/*isEnum*/ true,
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result = unionDecl;
break;
}
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
// Import each of the enumerators.
SmallVector<Decl *, 4> members;
for (auto ec = decl->enumerator_begin(), ecEnd = decl->enumerator_end();
ec != ecEnd; ++ec) {
auto ood = Impl.importDecl(*ec);
if (!ood)
continue;
members.push_back(ood);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
// FIXME: Eventually, we'd like to be able to do this for structs as well,
// but we need static variables first.
if (unionDecl) {
unionDecl->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
}
return result;
}
Decl *VisitRecordDecl(const clang::RecordDecl *decl) {
// FIXME: Skip unions for now. We can't properly map them to Swift unions,
// because they aren't discriminated in any way. We could map them to
// structs, but that would make them very, very unsafe to use.
if (decl->isUnion())
return nullptr;
// FIXME: Skip Microsoft __interfaces.
if (decl->isInterface())
return nullptr;
// The types of anonymous structs or unions are never imported; their
// fields are dumped directly into the enclosing class.
if (decl->isAnonymousStructOrUnion())
return nullptr;
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
Identifier name;
if (decl->getDeclName())
name = Impl.importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name =Impl.importName(decl->getTypedefNameForAnonDecl()->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the struct declaration and record it.
auto result = new (Impl.SwiftContext)
StructDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
// FIXME: Figure out what to do with superclasses in C++. One possible
// solution would be to turn them into members and add conversion
// functions.
// Import each of the members.
SmallVector<Decl *, 4> members;
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
// Skip anonymous structs or unions; they'll be dealt with via the
// IndirectFieldDecls.
if (auto field = dyn_cast<clang::FieldDecl>(nd))
if (field->isAnonymousStructOrUnion())
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
members.push_back(member);
}
// FIXME: Source range isn't totally accurate because Clang lacks the
// location of the '{'.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getRBraceLoc())));
// Add the struct decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitClassTemplateSpecializationDecl(
const clang::ClassTemplateSpecializationDecl *decl) {
// FIXME: We could import specializations, but perhaps only as unnamed
// structural types.
return nullptr;
}
Decl *VisitClassTemplatePartialSpecializationDecl(
const clang::ClassTemplatePartialSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateTypeParmDecl(const clang::TemplateTypeParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitEnumConstantDecl(const clang::EnumConstantDecl *decl) {
auto &context = Impl.SwiftContext;
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto clangEnum = cast<clang::EnumDecl>(decl->getDeclContext());
switch (Impl.classifyEnum(clangEnum)) {
case EnumKind::Constants: {
// The enumeration was simply mapped to an integral type. Create a
// constant with that integral type.
// FIXME: These should be able to end up in a record, but Swift
// can't represent that now.
auto clangDC = clangEnum->getDeclContext();
while (!clangDC->isFileContext())
clangDC = clangDC->getParent();
// The context where the constant will be introduced.
auto dc = Impl.importDeclContext(clangDC);
if (!dc)
return nullptr;
// Enumeration type.
auto &clangContext = Impl.getClangASTContext();
auto type = Impl.importType(clangContext.getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!type)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
// Create the global constant.
auto result = Impl.createConstant(name, dc, type,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Coerce);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Options: {
// The enumeration was mapped to a struct containining the integral
// type. Create a constant with that struct type.
// FIXME: These should be able to end up in a record, but Swift
// can't represent that now.
auto clangDC = clangEnum->getDeclContext();
while (!clangDC->isFileContext())
clangDC = clangDC->getParent();
auto dc = Impl.importDeclContext(clangDC);
if (!dc)
return nullptr;
// Import the enumeration type.
auto enumType = Impl.importType(
Impl.getClangASTContext().getTagDeclType(clangEnum),
ImportTypeKind::Normal);
if (!enumType)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
// Create the global constant.
auto result = Impl.createConstant(name, dc, enumType,
clang::APValue(decl->getInitVal()),
ConstantConvertKind::Construction);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
return result;
}
case EnumKind::Union: {
// The enumeration was mapped to a Swift union. Create an element of
// that union.
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// FIXME: Importing the type will can recursively revisit this same
// EnumConstantDecl. Short-circuit out if we already emitted the import
// for this decl.
auto known = Impl.ImportedDecls.find(decl->getCanonicalDecl());
if (known != Impl.ImportedDecls.end())
return known->second;
auto element
= new (context) UnionElementDecl(SourceLoc(), SourceLoc(),
name, TypeLoc(),
SourceLoc(), TypeLoc(),
dc);
// Give the union element the appropriate type.
auto theUnion = cast<UnionDecl>(dc);
auto argTy = MetaTypeType::get(theUnion->getDeclaredType(), context);
element->overwriteType(FunctionType::get(argTy,
theUnion->getDeclaredType(),
context));
Impl.ImportedDecls[decl->getCanonicalDecl()] = element;
return element;
}
}
}
Decl *
VisitUnresolvedUsingValueDecl(const clang::UnresolvedUsingValueDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitIndirectFieldDecl(const clang::IndirectFieldDecl *decl) {
// Check whether the context of any of the fields in the chain is a
// union. If so, don't import this field.
for (auto f = decl->chain_begin(), fEnd = decl->chain_end(); f != fEnd;
++f) {
if (auto record = dyn_cast<clang::RecordDecl>((*f)->getDeclContext())) {
if (record->isUnion())
return nullptr;
}
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Map this indirect field to a Swift variable.
return new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocStart()),
name, type, dc);
}
Decl *VisitFunctionDecl(const clang::FunctionDecl *decl) {
decl = decl->getMostRecentDecl();
if (!decl->hasPrototype()) {
// We can't import a function without a prototype.
return nullptr;
}
// FIXME: We can't IRgen inline functions, so don't import them.
if (decl->isInlined() || decl->hasAttr<clang::AlwaysInlineAttr>()) {
return nullptr;
}
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Import the function type. If we have parameters, make sure their names
// get into the resulting function type.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
Type type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns, bodyPatterns);
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
auto loc = Impl.importSourceLoc(decl->getLocation());
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), loc, name, nameLoc,
/*GenericParams=*/nullptr, type, argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
result->setBodyResultType(resultTy);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
return result;
}
Decl *VisitCXXMethodDecl(const clang::CXXMethodDecl *decl) {
// FIXME: Import C++ member functions as methods.
return nullptr;
}
Decl *VisitFieldDecl(const clang::FieldDecl *decl) {
// Fields are imported as variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto result = new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().IBOutlet = true;
// FIXME: Handle IBOutletCollection.
return result;
}
Decl *VisitObjCIvarDecl(const clang::ObjCIvarDecl *decl) {
// FIXME: Deal with fact that a property and an ivar can have the same
// name.
return VisitFieldDecl(decl);
}
Decl *VisitObjCAtDefsFieldDecl(const clang::ObjCAtDefsFieldDecl *decl) {
// @defs is an anachronism; ignore it.
return nullptr;
}
Decl *VisitVarDecl(const clang::VarDecl *decl) {
// FIXME: Swift does not have static variables in structs/classes yet.
if (decl->getDeclContext()->isRecord())
return nullptr;
// Variables are imported as... variables.
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto type = Impl.importType(decl->getType(), ImportTypeKind::Normal);
if (!type)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
return new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
}
Decl *VisitImplicitParamDecl(const clang::ImplicitParamDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *VisitParmVarDecl(const clang::ParmVarDecl *decl) {
// Parameters are never directly imported.
return nullptr;
}
Decl *
VisitNonTypeTemplateParmDecl(const clang::NonTypeTemplateParmDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitTemplateDecl(const clang::TemplateDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitUsingDecl(const clang::UsingDecl *decl) {
// Using declarations are not imported.
return nullptr;
}
Decl *VisitUsingShadowDecl(const clang::UsingShadowDecl *decl) {
// Using shadow declarations are not imported; rather, name lookup just
// looks through them.
return nullptr;
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl) {
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
return VisitObjCMethodDecl(decl, dc);
}
Decl *VisitObjCMethodDecl(const clang::ObjCMethodDecl *decl, DeclContext *dc) {
auto loc = Impl.importSourceLoc(decl->getLocStart());
// The name of the method is the first part of the selector.
auto name
= Impl.importName(decl->getSelector().getIdentifierInfoForSlot(0));
if (name.empty())
return nullptr;
assert(dc->getDeclaredTypeOfContext() && "Method in non-type context?");
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto selfTy = getSelfTypeForContext(dc);
if (decl->isClassMethod())
selfTy = MetaTypeType::get(selfTy, Impl.SwiftContext);
auto selfName = Impl.SwiftContext.getIdentifier("self");
auto selfVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), selfName,
selfTy,
Impl.firstClangModule);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfVar);
selfPat->setType(selfVar->getType());
selfPat
= new (Impl.SwiftContext) TypedPattern(selfPat,
TypeLoc::withoutLoc(selfTy));
selfPat->setType(selfVar->getType());
argPatterns.push_back(selfPat);
bodyPatterns.push_back(selfPat);
// Import the type that this method will have.
auto type = Impl.importFunctionType(decl->getResultType(),
{ decl->param_begin(),
decl->param_size() },
decl->isVariadic(),
argPatterns,
bodyPatterns,
decl->getSelector());
if (!type)
return nullptr;
auto resultTy = type->castTo<FunctionType>()->getResult();
// Add the 'self' parameter to the function type.
type = FunctionType::get(selfTy, type, Impl.SwiftContext);
// FIXME: Related result type?
// FIXME: Poor location info.
auto nameLoc = Impl.importSourceLoc(decl->getLocation());
auto result = FuncDecl::create(
Impl.SwiftContext, SourceLoc(), loc, name, nameLoc,
/*GenericParams=*/nullptr, type, argPatterns, bodyPatterns,
TypeLoc::withoutLoc(resultTy), dc);
result->setBodyResultType(resultTy);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
// Mark this as an Objective-C method.
result->getMutableAttrs().ObjC = true;
result->setIsObjC(true);
// Mark class methods as static.
if (decl->isClassMethod())
result->setStatic();
// If this method overrides another method, mark it as such.
// FIXME: We'll eventually have to deal with having multiple overrides
// in Swift.
if (auto selfClassTy = selfTy->getAs<ClassType>()) {
if (auto superTy = selfClassTy->getDecl()->getSuperclass()) {
auto superDecl = superTy->castTo<ClassType>()->getDecl();
if (auto superObjCClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
superDecl->getClangDecl())) {
if (auto superObjCMethod = superObjCClass->lookupMethod(
decl->getSelector(),
decl->isInstanceMethod())) {
// We found a method that we've overridden. Import it.
FuncDecl *superMethod = nullptr;
if (isa<clang::ObjCProtocolDecl>(
superObjCMethod->getDeclContext())) {
superMethod = cast_or_null<FuncDecl>(
Impl.importMirroredDecl(superObjCMethod,
superDecl));
} else {
superMethod = cast_or_null<FuncDecl>(
Impl.importDecl(superObjCMethod));
}
if (superMethod) {
// FIXME: Proper type checking here!
result->setOverriddenDecl(superMethod);
}
}
}
}
}
// Handle attributes.
if (decl->hasAttr<clang::IBActionAttr>())
result->getMutableAttrs().IBAction = true;
return result;
}
private:
/// Check whether the given name starts with the given word.
static bool startsWithWord(StringRef name, StringRef word) {
if (name.size() < word.size()) return false;
return ((name.size() == word.size() || !islower(name[word.size()])) &&
name.startswith(word));
}
/// Determine whether the given Objective-C method, which Clang classifies
/// as an init method, is considered an init method in Swift.
static bool isReallyInitMethod(const clang::ObjCMethodDecl *method) {
if (!method->isInstanceMethod())
return false;
auto selector = method->getSelector();
auto first = selector.getIdentifierInfoForSlot(0);
if (!first) return false;
return startsWithWord(first->getName(), "init");
}
/// \brief Given an imported method, try to import it as some kind of
/// special declaration, e.g., a constructor or subscript.
Decl *importSpecialMethod(Decl *decl, DeclContext *dc) {
// Only consider Objective-C methods...
auto objcMethod
= dyn_cast_or_null<clang::ObjCMethodDecl>(decl->getClangDecl());
if (!objcMethod)
return nullptr;
switch (objcMethod->getMethodFamily()) {
case clang::OMF_None:
// Check for one of the subscripting selectors.
if (objcMethod->isInstanceMethod() &&
(objcMethod->getSelector() == Impl.objectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript ||
objcMethod->getSelector() == Impl.objectForKeyedSubscript ||
objcMethod->getSelector() == Impl.setObjectForKeyedSubscript))
return importSubscript(decl, objcMethod, dc);
return nullptr;
case clang::OMF_init:
// An init instance method can be a constructor.
if (isReallyInitMethod(objcMethod))
return importConstructor(decl, objcMethod, dc);
return nullptr;
case clang::OMF_new:
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
// None of these methods have special consideration.
return nullptr;
}
}
/// \brief Given an imported method, try to import it as a constructor.
///
/// Objective-C methods in the 'init' family are imported as
/// constructors in Swift, enabling the 'new' syntax, e.g.,
///
/// \code
/// new NSArray(1024) // in objc: [[NSArray alloc] initWithCapacity:1024]
/// \endcode
ConstructorDecl *importConstructor(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
// Figure out the type of the container.
auto containerTy = dc->getDeclaredTypeOfContext();
assert(containerTy && "Method in non-type context?");
// Make sure that NSObject is a supertype of the container.
// FIXME: This is a hack because we don't have a suitable 'top' type for
// Objective-C classes.
auto checkTy = containerTy;
do {
auto classDecl = checkTy->getClassOrBoundGenericClass();
if (!classDecl) {
return nullptr;
}
if (classDecl->getName().str() == "NSObject")
break;
checkTy = classDecl->getSuperclass();
if (!checkTy)
return nullptr;
} while (true);
// Only methods in the 'init' family can become constructors.
FuncDecl *alloc = nullptr;
switch (objcMethod->getMethodFamily()) {
case clang::OMF_alloc:
case clang::OMF_autorelease:
case clang::OMF_copy:
case clang::OMF_dealloc:
case clang::OMF_finalize:
case clang::OMF_mutableCopy:
case clang::OMF_None:
case clang::OMF_performSelector:
case clang::OMF_release:
case clang::OMF_retain:
case clang::OMF_retainCount:
case clang::OMF_self:
case clang::OMF_new:
llvm_unreachable("Caller did not filter non-constructor methods");
case clang::OMF_init: {
assert(isReallyInitMethod(objcMethod) && "Caller didn't filter");
// Make sure we have a usable 'alloc' method. Otherwise, we can't
// build this constructor anyway.
const clang::ObjCInterfaceDecl *interface;
if (isa<clang::ObjCProtocolDecl>(objcMethod->getDeclContext())) {
// For a protocol method, look into the context in which we'll be
// mirroring the method to find 'alloc'.
// FIXME: Part of the mirroring hack.
auto classDecl = containerTy->getClassOrBoundGenericClass();
if (!classDecl)
return nullptr;
interface = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
classDecl->getClangDecl());
} else {
// For non-protocol methods, just look for the interface.
interface = objcMethod->getClassInterface();
}
// If we couldn't find a class, we're done.
if (!interface)
return nullptr;
// Form the Objective-C selector for alloc.
auto &clangContext = Impl.getClangASTContext();
auto allocId = &clangContext.Idents.get("alloc");
auto allocSel = clangContext.Selectors.getNullarySelector(allocId);
// Find the 'alloc' class method.
auto allocMethod = interface->lookupClassMethod(allocSel);
if (!allocMethod)
return nullptr;
// Import the 'alloc' class method.
alloc = cast_or_null<FuncDecl>(Impl.importDecl(allocMethod));
if (!alloc)
return nullptr;
break;
}
}
// FIXME: Hack.
auto loc = decl->getLoc();
auto name = Impl.SwiftContext.getIdentifier("constructor");
// Add the implicit 'self' parameter patterns.
SmallVector<Pattern *, 4> argPatterns;
SmallVector<Pattern *, 4> bodyPatterns;
auto selfTy = getSelfTypeForContext(dc);
auto selfMetaTy = MetaTypeType::get(selfTy, Impl.SwiftContext);
auto selfName = Impl.SwiftContext.getIdentifier("self");
auto selfMetaVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), selfName,
selfMetaTy,
Impl.firstClangModule);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfMetaVar);
selfPat->setType(selfMetaTy);
selfPat
= new (Impl.SwiftContext) TypedPattern(selfPat,
TypeLoc::withoutLoc(selfMetaTy));
selfPat->setType(selfMetaTy);
argPatterns.push_back(selfPat);
bodyPatterns.push_back(selfPat);
// Import the type that this method will have.
auto type = Impl.importFunctionType(objcMethod->getResultType(),
{ objcMethod->param_begin(),
objcMethod->param_size() },
objcMethod->isVariadic(),
argPatterns,
bodyPatterns,
objcMethod->getSelector(),
/*isConstructor=*/true);
assert(type && "Type has already been successfully converted?");
// A constructor returns an object of the type, not 'id'.
// This is effectively implementing related-result-type semantics.
// FIXME: Perhaps actually check whether the routine has a related result
// type?
type = FunctionType::get(type->castTo<FunctionType>()->getInput(),
selfTy, Impl.SwiftContext);
// Add the 'self' parameter to the function types.
Type allocType = FunctionType::get(selfMetaTy, type, Impl.SwiftContext);
Type initType = FunctionType::get(selfTy, type, Impl.SwiftContext);
VarDecl *selfVar = new (Impl.SwiftContext) VarDecl(SourceLoc(),
selfName, selfTy, dc);
// Create the actual constructor.
auto result = new (Impl.SwiftContext) ConstructorDecl(name, loc,
argPatterns.back(),
bodyPatterns.back(),
selfVar,
/*GenericParams=*/0,
dc);
result->setType(allocType);
result->setInitializerType(initType);
result->getMutableAttrs().ObjC = true;
result->setClangNode(objcMethod);
selfVar->setDeclContext(result);
setVarDeclContexts(argPatterns, result);
setVarDeclContexts(bodyPatterns, result);
// Create the call to alloc that allocates 'self'.
{
// FIXME: Use the 'self' of metaclass type rather than a metatype
// expression.
Expr* initExpr = new (Impl.SwiftContext) MetatypeExpr(nullptr, loc,
selfMetaTy);
// For an 'init' method, we need to call alloc first.
Expr *allocRef = new (Impl.SwiftContext) DeclRefExpr(alloc, loc);
auto allocCall = new (Impl.SwiftContext) DotSyntaxCallExpr(allocRef,
loc,
initExpr);
auto emptyTuple
= new (Impl.SwiftContext) TupleExpr(loc, {}, nullptr, loc,
/*hasTrailingClosure=*/false);
initExpr = new (Impl.SwiftContext) CallExpr(allocCall, emptyTuple);
// Cast the result of the alloc call to the (metatype) 'self'.
// FIXME: instancetype should make this unnecessary.
auto cast = new (Impl.SwiftContext) UnconditionalCheckedCastExpr(
initExpr,
SourceLoc(),
SourceLoc(),
TypeLoc::withoutLoc(selfTy));
cast->setCastKind(CheckedCastKind::Downcast);
initExpr = cast;
result->setAllocSelfExpr(initExpr);
}
// Inform the context that we have external definitions.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
/// \brief Retrieve the single variable described in the given pattern.
///
/// This routine assumes that the pattern is something very simple
/// like (x : type) or (x).
VarDecl *getSingleVar(Pattern *pattern) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto tuple = dyn_cast<TuplePattern>(pattern)) {
pattern = tuple->getFields()[0].getPattern()
->getSemanticsProvidingPattern();
}
return cast<NamedPattern>(pattern)->getDecl();
}
/// \brief Add the implicit 'self' pattern to the given list of patterns.
///
/// \param selfTy The type of the 'self' parameter.
///
/// \param args The set of arguments
VarDecl *addImplicitSelfParameter(Type selfTy,
SmallVectorImpl<Pattern *> &args) {
auto selfName = Impl.SwiftContext.getIdentifier("self");
auto selfVar = new (Impl.SwiftContext) VarDecl(SourceLoc(), selfName,
selfTy,
Impl.firstClangModule);
Pattern *selfPat = new (Impl.SwiftContext) NamedPattern(selfVar);
selfPat->setType(selfVar->getType());
selfPat = new (Impl.SwiftContext) TypedPattern(
selfPat,
TypeLoc::withoutLoc(selfTy));
selfPat->setType(selfVar->getType());
args.push_back(selfPat);
return selfVar;
}
/// \brief Build a thunk for an Objective-C getter.
///
/// \param getter The Objective-C getter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript getter. Null
/// indicates that we're generating a getter thunk for a property getter.
///
/// \returns The getter thunk.
FuncDecl *buildGetterThunk(FuncDecl *getter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = getter->getLoc();
// Figure out the element type, by looking through 'self' and the normal
// parameters.
auto elementTy
= getter->getType()->castTo<FunctionType>()->getResult()
->castTo<FunctionType>()->getResult();
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// 'self'
auto selfVar = addImplicitSelfParameter(dc->getDeclaredTypeOfContext(),
getterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
getterArgs.push_back(pat);
}
// empty tuple
getterArgs.push_back(TuplePattern::create(context, loc, { }, loc));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = elementTy;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(),
getterType,
context);
}
// Create the getter thunk.
auto thunk = FuncDecl::create(context, SourceLoc(), getter->getLoc(),
Identifier(), SourceLoc(), nullptr,
getterType, getterArgs, getterArgs,
TypeLoc::withoutLoc(elementTy),
getter->getDeclContext());
thunk->setBodyResultType(elementTy);
setVarDeclContexts(getterArgs, thunk);
// Create the body of the thunk, which calls the Objective-C getter.
auto selfRef = new (context) DeclRefExpr(selfVar, loc);
auto getterRef = new (context) DeclRefExpr(getter, loc);
// First, bind 'self' to the method.
Expr *call = new (context) DotSyntaxCallExpr(getterRef, loc, selfRef);
// Call the method itself.
if (indices) {
// For a subscript, pass the index.
auto indexVar = getSingleVar(getterArgs[1]);
auto indexRef = new (context) DeclRefExpr(indexVar, loc);
call = new (context) CallExpr(call, indexRef);
} else {
// For a property, call with no arguments.
auto emptyTuple = new (context) TupleExpr(loc, { }, nullptr, loc,
/*hasTrailingClosure=*/false);
call = new (context) CallExpr(call, emptyTuple);
}
// Create the return statement.
auto ret = new (context) ReturnStmt(loc, call);
// Finally, set the body.
thunk->setBody(BraceStmt::create(context, loc,
BraceStmt::ExprStmtOrDecl(ret), loc));
// Register this thunk as an external definition.
Impl.SwiftContext.addedExternalDecl(thunk);
return thunk;
}
/// \brief Build a thunk for an Objective-C setter.
///
/// \param setter The Objective-C setter method.
///
/// \param dc The declaration context into which the thunk will be added.
///
/// \param indices If non-null, the indices for a subscript setter. Null
/// indicates that we're generating a setter thunk for a property setter.
///
/// \returns The getter thunk.
FuncDecl *buildSetterThunk(FuncDecl *setter, DeclContext *dc,
Pattern *indices) {
auto &context = Impl.SwiftContext;
auto loc = setter->getLoc();
auto tuple = cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
// Objective-C subscript setters are imported with a function type
// such as:
//
// (this) -> (value, index) -> ()
//
// while Swift subscript setters are curried as
//
// (this) -> (index)(value) -> ()
//
// Build a setter thunk with the latter signature that maps to the
// former.
//
// Property setters are similar, but don't have indices.
// Form the argument patterns.
SmallVector<Pattern *, 3> setterArgs;
// 'self'
auto selfVar = addImplicitSelfParameter(dc->getDeclaredTypeOfContext(),
setterArgs);
// index, for subscript operations.
if (indices) {
// Clone the indices for the thunk.
indices = indices->clone(context);
auto pat = TuplePattern::create(context, loc, TuplePatternElt(indices),
loc);
pat->setType(TupleType::get(TupleTypeElt(indices->getType(),
indices->getBoundName()),
context));
setterArgs.push_back(pat);
}
// value
auto valuePattern = tuple->getFields()[0].getPattern()->clone(context);
setterArgs.push_back(TuplePattern::create(context, loc,
TuplePatternElt(valuePattern),
loc));
setterArgs.back()->setType(
TupleType::get(TupleTypeElt(valuePattern->getType(),
valuePattern->getBoundName()),
context));
// Form the type of the setter.
auto setterType = TupleType::getEmpty(context);
for (auto it = setterArgs.rbegin(), itEnd = setterArgs.rend();
it != itEnd; ++it) {
setterType = FunctionType::get((*it)->getType(),
setterType,
context);
}
// Create the setter thunk.
auto thunk = FuncDecl::create(
context, SourceLoc(), setter->getLoc(), Identifier(), SourceLoc(),
nullptr, setterType, setterArgs, setterArgs,
TypeLoc::withoutLoc(TupleType::getEmpty(context)), dc);
thunk->setBodyResultType(TupleType::getEmpty(context));
setVarDeclContexts(setterArgs, thunk);
// Create the body of the thunk, which calls the Objective-C setter.
auto valueVar = getSingleVar(setterArgs.back());
auto selfRef = new (context) DeclRefExpr(selfVar, loc);
auto valueRef = new (context) DeclRefExpr(valueVar, loc);
auto setterRef = new (context) DeclRefExpr(setter, loc);
// First, bind 'self' to the method.
Expr *call = new (context) DotSyntaxCallExpr(setterRef, loc, selfRef);
// Next, call the Objective-C setter.
Expr *callArgs;
if (indices) {
// For subscript setters, we have both value and index.
auto indexVar = getSingleVar(setterArgs[1]);
auto indexRef = new (context) DeclRefExpr(indexVar, loc);
Expr *callArgsArray[2] = { valueRef, indexRef };
callArgs
= new (context) TupleExpr(loc,
context.AllocateCopy(
MutableArrayRef<Expr*>(callArgsArray)),
nullptr, loc,
/*hasTrailingClosure=*/false);
} else {
callArgs = valueRef;
}
call = new (context) CallExpr(call, callArgs);
// Finally, set the body.
thunk->setBody(BraceStmt::create(context, loc,
BraceStmt::ExprStmtOrDecl(call), loc));
// Register this thunk as an external definition.
Impl.SwiftContext.addedExternalDecl(thunk);
return thunk;
}
/// \brief Given either the getter or setter for a subscript operation,
/// create the Swift subscript declaration.
SubscriptDecl *importSubscript(Decl *decl,
const clang::ObjCMethodDecl *objcMethod,
DeclContext *dc) {
assert(objcMethod->isInstanceMethod() && "Caller must filter");
// Make sure we have a usable 'alloc' method. Otherwise, we can't
// build this constructor anyway.
// FIXME: Can we do this for protocol methods as well? Do we want to?
auto interface = objcMethod->getClassInterface();
if (!interface)
return nullptr;
FuncDecl *getter = nullptr, *setter = nullptr;
if (objcMethod->getSelector() == Impl.objectAtIndexedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = interface->lookupInstanceMethod(
Impl.setObjectAtIndexedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
}
} else if (objcMethod->getSelector() == Impl.setObjectAtIndexedSubscript){
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = interface->lookupInstanceMethod(
Impl.objectAtIndexedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else if (objcMethod->getSelector() == Impl.objectForKeyedSubscript) {
getter = cast<FuncDecl>(decl);
// Find the setter
if (auto objcSetter = interface->lookupInstanceMethod(
Impl.setObjectForKeyedSubscript)) {
setter = cast_or_null<FuncDecl>(Impl.importDecl(objcSetter));
// Don't allow static setters.
if (setter && setter->isStatic())
setter = nullptr;
}
} else if (objcMethod->getSelector() == Impl.setObjectForKeyedSubscript) {
setter = cast<FuncDecl>(decl);
// Find the getter.
if (auto objcGetter = interface->lookupInstanceMethod(
Impl.objectForKeyedSubscript)) {
getter = cast_or_null<FuncDecl>(Impl.importDecl(objcGetter));
// Don't allow static getters.
if (getter && getter->isStatic())
return nullptr;
}
// FIXME: Swift doesn't have write-only subscripting.
if (!getter)
return nullptr;
} else {
llvm_unreachable("Unknown getter/setter selector");
}
// Check whether we've already created a subscript operation for
// this getter/setter pair.
if (Impl.Subscripts[{getter, setter}])
return nullptr;
// Compute the element type, looking through the implicit 'self'
// parameter and the normal function parameters.
auto elementTy
= getter->getType()->castTo<AnyFunctionType>()->getResult()
->castTo<AnyFunctionType>()->getResult();
// Check the form of the getter.
FuncDecl *getterThunk = nullptr;
Pattern *getterIndices = nullptr;
auto &context = Impl.SwiftContext;
// Find the getter indices and make sure they match.
{
auto tuple =
dyn_cast<TuplePattern>(getter -> getArgParamPatterns()[1]);
if (tuple && tuple->getFields().size() != 1)
return nullptr;
getterIndices = tuple->getFields()[0].getPattern();
}
// Check the form of the setter.
FuncDecl *setterThunk = nullptr;
Pattern *setterIndices = nullptr;
if (setter) {
auto tuple = dyn_cast<TuplePattern>(setter->getBodyParamPatterns()[1]);
if (!tuple)
return nullptr;
if (tuple->getFields().size() != 2)
return nullptr;
// The setter must accept elements of the same type as the getter
// returns.
// FIXME: Adjust C++ references?
auto setterElementTy = tuple->getFields()[0].getPattern()->getType();
if (!elementTy->isEqual(setterElementTy))
return nullptr;
setterIndices = tuple->getFields()[1].getPattern();
}
if (getter && getterIndices)
getterThunk = buildGetterThunk(getter, dc, getterIndices);
if (setter && setterIndices)
setterThunk = buildSetterThunk(setter, dc, setterIndices);
// Build the subscript declaration.
auto argPatterns =
getterThunk->getArgParamPatterns()[1]->clone(context);
auto name = context.getIdentifier("__subscript");
auto subscript
= new (context) SubscriptDecl(name, decl->getLoc(), argPatterns,
decl->getLoc(),
TypeLoc::withoutLoc(elementTy),
SourceRange(), getterThunk, setterThunk,
dc);
setVarDeclContexts(argPatterns, subscript->getDeclContext());
subscript->setType(FunctionType::get(subscript->getIndices()->getType(),
subscript->getElementType(),
context));
getterThunk->makeGetter(subscript);
if (setterThunk)
setterThunk->makeSetter(subscript);
// Determine whether this subscript operation overrides another subscript
// operation.
// FIXME: This ends up looking in the superclass for entirely bogus
// reasons. Fix it.
auto containerTy = dc->getDeclaredTypeInContext();
SmallVector<ValueDecl *, 2> lookup;
Impl.firstClangModule->lookupQualified(containerTy, name,
NL_QualifiedDefault, lookup);
Type unlabeledIndices;
for (auto result : lookup) {
auto parentSub = dyn_cast<SubscriptDecl>(result);
if (!parentSub)
continue;
// Compute the type of indices for our own subscript operation, lazily.
if (!unlabeledIndices) {
unlabeledIndices = subscript->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
}
// Compute the type of indices for the subscript we found.
auto parentUnlabeledIndices = parentSub->getIndices()->getType()
->getUnlabeledType(Impl.SwiftContext);
if (!unlabeledIndices->isEqual(parentUnlabeledIndices))
continue;
// The index types match. This is an override, so mark it as such.
subscript->setOverriddenDecl(parentSub);
if (auto parentGetter = parentSub->getGetter()) {
if (getterThunk)
getterThunk->setOverriddenDecl(parentGetter);
}
if (auto parentSetter = parentSub->getSetter()) {
if (setterThunk)
setterThunk->setOverriddenDecl(parentSetter);
}
// FIXME: Eventually, deal with multiple overrides.
break;
}
// Note that we've created this subscript.
Impl.Subscripts[{getter, setter}] = subscript;
return subscript;
}
public:
/// \brief Retrieve the type of 'self' for the given context.
Type getSelfTypeForContext(DeclContext *dc) {
// For a protocol, the type is 'Self'.
if (auto proto = dyn_cast<ProtocolDecl>(dc)) {
return proto->getSelf()->getDeclaredType();
}
return dc->getDeclaredTypeOfContext();
}
// Import the given Objective-C protocol list and return a context-allocated
// ArrayRef that can be passed to the declaration.
MutableArrayRef<ProtocolDecl *>
importObjCProtocols(Decl *decl,
const clang::ObjCProtocolList &clangProtocols) {
SmallVector<ProtocolDecl *, 4> protocols;
llvm::SmallPtrSet<ProtocolDecl *, 4> knownProtocols;
if (auto nominal = dyn_cast<NominalTypeDecl>(decl)) {
nominal->getImplicitProtocols(protocols);
knownProtocols.insert(protocols.begin(), protocols.end());
}
for (auto cp = clangProtocols.begin(), cpEnd = clangProtocols.end();
cp != cpEnd; ++cp) {
if (auto proto = cast_or_null<ProtocolDecl>(Impl.importDecl(*cp))) {
if (knownProtocols.insert(proto))
protocols.push_back(proto);
}
}
// FIXME: We should be synthesizing protocol conformances as well.
return Impl.SwiftContext.AllocateCopy(protocols);
}
/// Import members of the given Objective-C container and add them to the
/// list of corresponding Swift members.
void importObjCMembers(const clang::ObjCContainerDecl *decl,
DeclContext *swiftContext,
SmallVectorImpl<Decl *> &members) {
for (auto m = decl->decls_begin(), mEnd = decl->decls_end();
m != mEnd; ++m) {
auto nd = dyn_cast<clang::NamedDecl>(*m);
if (!nd)
continue;
auto member = Impl.importDecl(nd);
if (!member)
continue;
// If this member is a method that is a getter or setter for a property
// that was imported, don't add it to the list of members so it won't
// be found by name lookup. This eliminates the ambiguity between
// property names and getter names (by choosing to only have a
// variable).
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(nd)) {
if (auto property = objcMethod->findPropertyDecl())
if (Impl.importDecl(
const_cast<clang::ObjCPropertyDecl *>(property)))
continue;
// If there is a special declaration associated with this member,
// add it now.
if (auto special = importSpecialMethod(member, swiftContext)) {
members.push_back(special);
// If we imported a constructor, the underlying init method is not
// visible.
if (isa<ConstructorDecl>(special))
continue;
}
}
members.push_back(member);
}
}
/// \brief Import the members of all of the protocols to which the given
/// Objective-C class, category, or extension explicitly conforms into
/// the given list of members, so long as the the method was not already
/// declared in the class.
///
/// FIXME: This whole thing is a hack, because name lookup should really
/// just find these members when it looks in the protocol. Unfortunately,
/// that's not something the name lookup code can handle right now.
void importMirroredProtocolMembers(const clang::ObjCContainerDecl *decl,
DeclContext *dc,
ArrayRef<ProtocolDecl *> protocols,
SmallVectorImpl<Decl *> &members) {
for (auto proto : protocols) {
for (auto member : proto->getMembers()) {
if (auto func = dyn_cast<FuncDecl>(member)) {
if (auto objcMethod = dyn_cast_or_null<clang::ObjCMethodDecl>(
func->getClangDecl())) {
if (!decl->getMethod(objcMethod->getSelector(),
objcMethod->isInstanceMethod())) {
if (auto imported = Impl.importMirroredDecl(objcMethod, dc)) {
members.push_back(imported);
// Import any special methods based on this member.
if (auto special = importSpecialMethod(imported, dc)) {
members.push_back(special);
}
}
}
}
}
}
}
}
/// \brief Determine whether the given Objective-C class has an instance or
/// class method with the given selector directly declared (i.e., not in
/// a superclass or protocol).
static bool hasMethodShallow(const clang::Selector sel, bool isInstance,
const clang::ObjCInterfaceDecl *objcClass) {
if (objcClass->getMethod(sel, isInstance))
return true;
for (auto cat = objcClass->visible_categories_begin(),
catEnd = objcClass->visible_categories_end();
cat != catEnd;
++cat) {
if ((*cat)->getMethod(sel, isInstance))
return true;
}
return false;
}
/// \brief Import constructors from our superclasses (and their
/// categories/extensions), effectively "inheriting" constructors.
///
/// FIXME: Does it make sense to have inherited constructors as a real
/// Swift feature?
void importInheritedConstructors(const clang::ObjCInterfaceDecl *objcClass,
DeclContext *dc,
SmallVectorImpl<Decl *> &members) {
// FIXME: Would like a more robust way to ensure that we aren't creating
// duplicates.
llvm::SmallSet<clang::Selector, 16> knownSelectors;
auto inheritConstructors = [&](const clang::ObjCContainerDecl *container) {
for (auto meth = container->meth_begin(),
methEnd = container->meth_end();
meth != methEnd; ++meth) {
if ((*meth)->getMethodFamily() == clang::OMF_init &&
isReallyInitMethod(*meth) &&
!hasMethodShallow((*meth)->getSelector(),
(*meth)->isInstanceMethod(),
objcClass) &&
knownSelectors.insert((*meth)->getSelector())) {
if (auto imported = Impl.importDecl(*meth)) {
if (auto special = importConstructor(imported, *meth, dc)) {
members.push_back(special);
}
}
}
}
};
for (auto curObjCClass = objcClass; curObjCClass;
curObjCClass = curObjCClass->getSuperClass()) {
inheritConstructors(curObjCClass);
for (auto cat = curObjCClass->visible_categories_begin(),
catEnd = curObjCClass->visible_categories_end();
cat != catEnd;
++cat) {
inheritConstructors(*cat);
}
}
}
Decl *VisitObjCCategoryDecl(const clang::ObjCCategoryDecl *decl) {
// Objective-C categories and extensions map to Swift extensions.
// Find the Swift class being extended.
auto objcClass
= cast_or_null<ClassDecl>(Impl.importDecl(decl->getClassInterface()));
if (!objcClass)
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the extension declaration and record it.
auto loc = Impl.importSourceLoc(decl->getLocStart());
auto result
= new (Impl.SwiftContext)
ExtensionDecl(loc,
TypeLoc::withoutLoc(objcClass->getDeclaredType()),
{ },
dc);
objcClass->addExtension(result);
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Import each of the members.
SmallVector<Decl *, 4> members;
importObjCMembers(decl, result, members);
// Import mirrored declarations for protocols to which this category
// or extension conforms.
// FIXME: This is a short-term hack.
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
return result;
}
Decl *VisitObjCProtocolDecl(const clang::ObjCProtocolDecl *decl) {
// FIXME: Figure out how to deal with incomplete protocols, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
// Append "Proto" to protocol names.
auto name = Impl.importName(decl->getDeclName(), "Proto");
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the protocol declaration and record it.
auto result = new (Impl.SwiftContext)
ProtocolDecl(dc,
Impl.importSourceLoc(decl->getLocStart()),
Impl.importSourceLoc(decl->getLocation()),
name,
{ });
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setCircularityCheck(CircularityCheck::Checked);
// Import protocols this protocol conforms to.
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Note that this is an Objective-C and class protocol.
result->getMutableAttrs().ObjC = true;
result->getMutableAttrs().ClassProtocol = true;
result->setIsObjC(true);
// Add the implicit 'Self' associated type.
auto selfId = Impl.SwiftContext.getIdentifier("Self");
auto selfDecl = new (Impl.SwiftContext) AssociatedTypeDecl(result,
SourceLoc(),
selfId,
SourceLoc());
selfDecl->setImplicit();
auto selfArchetype = ArchetypeType::getNew(Impl.SwiftContext, nullptr,
selfDecl, selfId,
Type(result->getDeclaredType()),
Type());
selfDecl->setArchetype(selfArchetype);
result->setMembers(Impl.SwiftContext.AllocateCopy(
llvm::makeArrayRef<Decl*>(selfDecl)),
SourceRange());
// Import each of the members.
SmallVector<Decl *, 4> members;
members.push_back(selfDecl);
importObjCMembers(decl, result, members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
// Add the protocol decl to ExternalDefinitions so that IRGen can emit
// metadata for it.
// FIXME: There might be better ways to do this.
Impl.SwiftContext.addedExternalDecl(result);
return result;
}
Decl *VisitObjCInterfaceDecl(const clang::ObjCInterfaceDecl *decl) {
// FIXME: Figure out how to deal with incomplete types, since that
// notion doesn't exist in Swift.
decl = decl->getDefinition();
if (!decl) {
forwardDeclaration = true;
return nullptr;
}
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
// Create the class declaration and record it.
auto result = new (Impl.SwiftContext)
ClassDecl(Impl.importSourceLoc(decl->getLocStart()),
name,
Impl.importSourceLoc(decl->getLocation()),
{ }, nullptr, dc);
result->computeType();
Impl.ImportedDecls[decl->getCanonicalDecl()] = result;
result->setClangNode(decl->getCanonicalDecl());
result->setCircularityCheck(CircularityCheck::Checked);
// If this Objective-C class has a supertype, import it.
if (auto objcSuper = decl->getSuperClass()) {
auto super = cast_or_null<ClassDecl>(Impl.importDecl(objcSuper));
if (!super)
return nullptr;
result->setSuperclass(super->getDeclaredType());
}
// Import protocols this class conforms to.
result->setProtocols(importObjCProtocols(result,
decl->getReferencedProtocols()));
result->setCheckedInheritanceClause();
// Note that this is an Objective-C class.
result->getMutableAttrs().ObjC = true;
result->setIsObjC(true);
// Import each of the members.
SmallVector<Decl *, 4> members;
importObjCMembers(decl, result, members);
// Import inherited constructors.
importInheritedConstructors(decl, result, members);
// Import mirrored declarations for protocols to which this class
// conforms.
// FIXME: This is a short-term hack.
importMirroredProtocolMembers(decl, result, result->getProtocols(),
members);
// FIXME: Source range isn't accurate.
result->setMembers(Impl.SwiftContext.AllocateCopy(members),
Impl.importSourceRange(clang::SourceRange(
decl->getLocation(),
decl->getLocEnd())));
return result;
}
Decl *VisitObjCImplDecl(const clang::ObjCImplDecl *decl) {
// Implementations of Objective-C classes and categories are not
// reflected into Swift.
return nullptr;
}
/// \brief Given an untyped collection and an element type,
/// produce the typed collection (if possible) or return the collection
/// itself (if there is no known corresponding typed collection).
Type getTypedCollection(Type collectionTy, Type elementTy) {
auto classTy = collectionTy->getAs<ClassType>();
if (!classTy) {
return collectionTy;
}
// Map known collections to their typed equivalents.
// FIXME: This is very hacky.
typedef std::pair<StringRef, StringRef> StringRefPair;
StringRefPair typedCollection
= llvm::StringSwitch<StringRefPair>(classTy->getDecl()->getName().str())
.Case("NSArray", StringRefPair("Foundation", "NSTypedArray"))
.Default(StringRefPair(StringRef(), StringRef()));
if (typedCollection.first.empty()) {
return collectionTy;
}
// Form the specialization.
if (auto typed = Impl.getNamedSwiftTypeSpecialization(
Impl.getNamedModule(typedCollection.first),
typedCollection.second,
elementTy)) {
return typed;
}
return collectionTy;
}
Decl *VisitObjCPropertyDecl(const clang::ObjCPropertyDecl *decl) {
// Properties are imported as variables.
// FIXME: For now, don't import properties in protocols, because IRGen
// can't handle the thunks we generate.
if (isa<clang::ObjCProtocolDecl>(decl->getDeclContext()))
return nullptr;
auto dc = Impl.importDeclContextOf(decl);
if (!dc)
return nullptr;
auto name = Impl.importName(decl->getDeclName());
if (name.empty())
return nullptr;
// Check whether there is a function with the same name as this
// property. If so, suppress the property; the user will have to use
// the methods directly, to avoid ambiguities.
auto containerTy = dc->getDeclaredTypeInContext();
VarDecl *overridden = nullptr;
SmallVector<ValueDecl *, 2> lookup;
Impl.firstClangModule->lookupQualified(containerTy, name,
NL_QualifiedDefault, lookup);
for (auto result : lookup) {
if (isa<FuncDecl>(result))
return nullptr;
if (auto var = dyn_cast<VarDecl>(result))
overridden = var;
}
auto type = Impl.importType(decl->getType(), ImportTypeKind::Property);
if (!type)
return nullptr;
// Look for an iboutletcollection attribute, which provides additional
// typing information for known containers.
if (auto collectionAttr = decl->getAttr<clang::IBOutletCollectionAttr>()){
if (auto elementType = Impl.importType(collectionAttr->getInterface(),
ImportTypeKind::Normal)){
type = getTypedCollection(type, elementType);
}
}
// Import the getter.
auto getter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getGetterMethodDecl()));
if (!getter && decl->getGetterMethodDecl())
return nullptr;
// Import the setter, if there is one.
auto setter
= cast_or_null<FuncDecl>(Impl.importDecl(decl->getSetterMethodDecl()));
if (!setter && decl->getSetterMethodDecl())
return nullptr;
auto result = new (Impl.SwiftContext)
VarDecl(Impl.importSourceLoc(decl->getLocation()),
name, type, dc);
// Build thunks.
FuncDecl *getterThunk = buildGetterThunk(getter, dc, nullptr);
getterThunk->makeGetter(result);
FuncDecl *setterThunk = nullptr;
if (setter) {
setterThunk = buildSetterThunk(setter, dc, nullptr);
setterThunk->makeSetter(result);
}
// Turn this into a property.
// FIXME: Fake locations for '{' and '}'?
result->setProperty(Impl.SwiftContext, SourceLoc(),
getterThunk, setterThunk,
SourceLoc());
// Handle attributes.
if (decl->hasAttr<clang::IBOutletAttr>())
result->getMutableAttrs().IBOutlet = true;
// FIXME: Handle IBOutletCollection.
if (overridden) {
result->setOverriddenDecl(overridden);
}
return result;
}
Decl *
VisitObjCCompatibleAliasDecl(const clang::ObjCCompatibleAliasDecl *decl) {
// Like C++ using declarations, name lookup simply looks through
// Objective-C compatibility aliases. They are not imported directly.
return nullptr;
}
Decl *VisitLinkageSpecDecl(const clang::LinkageSpecDecl *decl) {
// Linkage specifications are not imported.
return nullptr;
}
Decl *VisitObjCPropertyImplDecl(const clang::ObjCPropertyImplDecl *decl) {
// @synthesize and @dynamic are not imported, since they are not part
// of the interface to a class.
return nullptr;
}
Decl *VisitFileScopeAsmDecl(const clang::FileScopeAsmDecl *decl) {
return nullptr;
}
Decl *VisitAccessSpecDecl(const clang::AccessSpecDecl *decl) {
return nullptr;
}
Decl *VisitFriendDecl(const clang::FriendDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitFriendTemplateDecl(const clang::FriendTemplateDecl *decl) {
// Friends are not imported; Swift has a different access control
// mechanism.
return nullptr;
}
Decl *VisitStaticAssertDecl(const clang::StaticAssertDecl *decl) {
// Static assertions are an implementation detail.
return nullptr;
}
Decl *VisitBlockDecl(const clang::BlockDecl *decl) {
// Blocks are not imported (although block types can be imported).
return nullptr;
}
Decl *VisitClassScopeFunctionSpecializationDecl(
const clang::ClassScopeFunctionSpecializationDecl *decl) {
// Note: templates are not imported.
return nullptr;
}
Decl *VisitImportDecl(const clang::ImportDecl *decl) {
// Transitive module imports are not handled at the declaration level.
// Rather, they are understood from the module itself.
return nullptr;
}
};
}
/// \brief Classify the given Clang enumeration to describe how it
EnumKind ClangImporter::Implementation::classifyEnum(const clang::EnumDecl *decl) {
Identifier name;
if (decl->getDeclName())
name = importName(decl->getDeclName());
else if (decl->getTypedefNameForAnonDecl())
name = importName(decl->getTypedefNameForAnonDecl()->getDeclName());
// Anonymous enumerations simply get mapped to constants of the
// underlying type of the enum, because there is no way to conjure up a
// name for the Swift type.
if (name.empty())
return EnumKind::Constants;
// FIXME: For now, Options is the only usable answer, because unions
// are broken in IRgen.
return EnumKind::Options;
}
Decl *ClangImporter::Implementation::importDecl(const clang::NamedDecl *decl) {
if (!decl)
return nullptr;
auto known = ImportedDecls.find(decl->getCanonicalDecl());
if (known != ImportedDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
auto result = converter.Visit(decl);
auto canon = decl->getCanonicalDecl();
// Note that the decl was imported from Clang. Don't mark stdlib decls as
// imported.
if (result && result->getDeclContext() != getSwiftModule()) {
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(canon);
}
if (result || !converter.hadForwardDeclaration())
ImportedDecls[canon] = result;
return result;
}
Decl *
ClangImporter::Implementation::importMirroredDecl(const clang::ObjCMethodDecl *decl,
DeclContext *dc) {
if (!decl)
return nullptr;
auto known = ImportedProtocolDecls.find({decl->getCanonicalDecl(), dc});
if (known != ImportedProtocolDecls.end())
return known->second;
SwiftDeclConverter converter(*this);
auto result = converter.VisitObjCMethodDecl(decl, dc);
auto canon = decl->getCanonicalDecl();
if (result) {
assert(!result->getClangDecl() || result->getClangDecl() == canon);
result->setClangNode(canon);
}
if (result || !converter.hadForwardDeclaration())
ImportedProtocolDecls[{canon, dc}] = result;
return result;
}
DeclContext *
ClangImporter::Implementation::importDeclContext(const clang::DeclContext *dc) {
// FIXME: Should map to the module we want to import into (?).
if (dc->isTranslationUnit())
return firstClangModule;
auto decl = dyn_cast<clang::NamedDecl>(dc);
if (!decl)
return nullptr;
auto swiftDecl = importDecl(decl);
if (!swiftDecl)
return nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(swiftDecl))
return nominal;
if (auto extension = dyn_cast<ExtensionDecl>(swiftDecl))
return extension;
if (auto constructor = dyn_cast<ConstructorDecl>(swiftDecl))
return constructor;
if (auto destructor = dyn_cast<DestructorDecl>(swiftDecl))
return destructor;
return nullptr;
}
DeclContext *
ClangImporter::Implementation::importDeclContextOf(const clang::Decl *D) {
const clang::DeclContext *DC = D->getDeclContext();
if (DC->isTranslationUnit())
if (auto *M = getClangModuleForDecl(D))
return M;
return importDeclContext(DC);
}
ValueDecl *
ClangImporter::Implementation::createConstant(Identifier name, DeclContext *dc,
Type type,
const clang::APValue &value,
ConstantConvertKind convertKind) {
auto &context = SwiftContext;
auto var = new (context) VarDecl(SourceLoc(), name, type, dc);
// Form the argument patterns.
SmallVector<Pattern *, 3> getterArgs;
// empty tuple
getterArgs.push_back(TuplePattern::create(context, SourceLoc(), { },
SourceLoc()));
getterArgs.back()->setType(TupleType::getEmpty(context));
// Form the type of the getter.
auto getterType = type;
for (auto it = getterArgs.rbegin(), itEnd = getterArgs.rend();
it != itEnd; ++it) {
getterType = FunctionType::get((*it)->getType(),
getterType,
context);
}
// Create the getter function declaration.
auto func = FuncDecl::create(context, SourceLoc(), SourceLoc(), Identifier(),
SourceLoc(), nullptr, getterType, getterArgs,
getterArgs, TypeLoc::withoutLoc(type), dc);
func->setBodyResultType(type);
setVarDeclContexts(getterArgs, func);
// Create the integer literal value.
// FIXME: Handle other kinds of values.
Expr *expr = nullptr;
switch (value.getKind()) {
case clang::APValue::AddrLabelDiff:
case clang::APValue::Array:
case clang::APValue::ComplexFloat:
case clang::APValue::ComplexInt:
case clang::APValue::LValue:
case clang::APValue::MemberPointer:
case clang::APValue::Struct:
case clang::APValue::Uninitialized:
case clang::APValue::Union:
case clang::APValue::Vector:
llvm_unreachable("Unhandled APValue kind");
case clang::APValue::Float:
case clang::APValue::Int: {
// Print the value.
llvm::SmallString<16> printedValue;
if (value.getKind() == clang::APValue::Int) {
value.getInt().toString(printedValue);
} else {
assert(value.getFloat().isFinite() && "can't handle infinities or NaNs");
value.getFloat().toString(printedValue);
}
// If this was a negative number, record that and strip off the '-'.
// FIXME: This is hideous!
// FIXME: Actually make the negation work.
bool isNegative = printedValue[0] == '-';
if (isNegative)
printedValue.erase(printedValue.begin());
// Create the expression node.
StringRef printedValueCopy(context.AllocateCopy(printedValue).data(),
printedValue.size());
if (value.getKind() == clang::APValue::Int) {
expr = new (context) IntegerLiteralExpr(printedValueCopy, SourceLoc());
} else {
expr = new (context) FloatLiteralExpr(printedValueCopy, SourceLoc());
}
if (!isNegative)
break;
// If it was a negative number, negate the integer literal.
auto minus = context.getIdentifier("-");
UnqualifiedLookup lookup(minus, getSwiftModule());
if (!lookup.isSuccess())
return nullptr;
Expr* minusRef;
SmallVector<ValueDecl *, 4> found;
for (auto &result : lookup.Results) {
if (!result.hasValueDecl())
continue;
if (!isa<FuncDecl>(result.getValueDecl()))
continue;
found.push_back(result.getValueDecl());
}
if (found.empty())
return nullptr;
if (found.size() == 1) {
minusRef = new (context) DeclRefExpr(found[0], SourceLoc());
} else {
auto foundCopy = context.AllocateCopy(found);
minusRef = new (context) OverloadedDeclRefExpr(
foundCopy, SourceLoc());
}
expr = new (context) PrefixUnaryExpr(minusRef, expr);
break;
}
}
// If we need a conversion, add one now.
switch (convertKind) {
case ConstantConvertKind::None:
break;
case ConstantConvertKind::Construction: {
auto typeRef = new (context) MetatypeExpr(nullptr, SourceLoc(),
MetaTypeType::get(type, context));
expr = new (context) CallExpr(typeRef, expr);
break;
}
case ConstantConvertKind::Coerce:
break;
case ConstantConvertKind::Downcast: {
auto cast = new (context) UnconditionalCheckedCastExpr(expr,
SourceLoc(),
SourceLoc(),
TypeLoc::withoutLoc(type));
cast->setCastKind(CheckedCastKind::Downcast);
expr = cast;
break;
}
}
// Create the return statement.
auto ret = new (context) ReturnStmt(SourceLoc(), expr);
// Finally, set the body.
func->setBody(BraceStmt::create(context, SourceLoc(),
BraceStmt::ExprStmtOrDecl(ret),
SourceLoc()));
// Write the function up as the getter.
func->makeGetter(var);
var->setProperty(context, SourceLoc(), func, nullptr, SourceLoc());
// Register this thunk as an external definition.
SwiftContext.addedExternalDecl(func);
return var;
}