Files
swift-mirror/lib/SIL/SILDeclRef.cpp
Jordan Rose 449cd98997 Excise "Accessibility" from the compiler (3/3)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.

Rename AccessibilityAttr to AccessControlAttr and
SetterAccessibilityAttr to SetterAccessAttr, then track down the last
few uses of "accessibility" that don't have to do with
NSAccessibility. (I left the SourceKit XPC API alone because that's
supposed to be more stable.)
2017-08-28 13:27:59 -07:00

885 lines
29 KiB
C++

//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILLocation.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
// Final methods can be statically referenced.
if (method->isFinal())
return MethodDispatch::Static;
// Some methods are forced to be statically dispatched.
if (method->hasForcedStaticDispatch())
return MethodDispatch::Static;
// Import-as-member declarations are always statically referenced.
if (method->isImportAsMember())
return MethodDispatch::Static;
// If this declaration is in a class but not marked final, then it is
// always dynamically dispatched.
auto dc = method->getDeclContext();
if (isa<ClassDecl>(dc))
return MethodDispatch::Class;
// Class extension methods are only dynamically dispatched if they're
// dispatched by objc_msgSend, which happens if they're foreign or dynamic.
if (dc->getAsClassOrClassExtensionContext()) {
if (method->hasClangNode())
return MethodDispatch::Class;
if (auto fd = dyn_cast<FuncDecl>(method)) {
if (fd->isAccessor() && fd->getAccessorStorageDecl()->hasClangNode())
return MethodDispatch::Class;
}
if (method->isDynamic())
return MethodDispatch::Class;
}
// Otherwise, it can be referenced statically.
return MethodDispatch::Static;
}
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
// Functions imported from C, Objective-C methods imported from Objective-C,
// as well as methods in @objc protocols (even protocols defined in Swift)
// require a foreign to native thunk.
auto dc = vd->getDeclContext();
if (auto proto = dyn_cast<ProtocolDecl>(dc))
if (proto->isObjC())
return true;
if (auto fd = dyn_cast<FuncDecl>(vd))
return fd->hasClangNode();
return false;
}
/// FIXME: merge requiresForeignEntryPoint() into getMethodDispatch() and add
/// an ObjectiveC case to the MethodDispatch enum.
bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
if (vd->isImportAsMember())
return true;
// Final functions never require ObjC dispatch.
if (vd->isFinal())
return false;
if (requiresForeignToNativeThunk(vd))
return true;
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Property accessors should be generated alongside the property.
if (fd->isGetterOrSetter())
return requiresForeignEntryPoint(fd->getAccessorStorageDecl());
return fd->isDynamic();
}
if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
if (cd->hasClangNode())
return true;
return cd->isDynamic();
}
if (auto *asd = dyn_cast<AbstractStorageDecl>(vd))
return asd->requiresForeignGetterAndSetter();
return vd->isDynamic();
}
/// TODO: We should consult the cached LoweredLocalCaptures the SIL
/// TypeConverter calculates, but that would require plumbing SILModule&
/// through every SILDeclRef constructor. Since this is only used to determine
/// "natural uncurry level", and "uncurry level" is a concept we'd like to
/// phase out, it's not worth it.
static bool hasLoweredLocalCaptures(AnyFunctionRef AFR,
llvm::DenseSet<AnyFunctionRef> &visited) {
if (!AFR.getCaptureInfo().hasLocalCaptures())
return false;
// Scan for local, non-function captures.
bool functionCapturesToRecursivelyCheck = false;
auto addFunctionCapture = [&](AnyFunctionRef capture) {
if (visited.find(capture) == visited.end())
functionCapturesToRecursivelyCheck = true;
};
for (auto &capture : AFR.getCaptureInfo().getCaptures()) {
if (!capture.getDecl()->getDeclContext()->isLocalContext())
continue;
// We transitively capture a local function's captures.
if (auto func = dyn_cast<AbstractFunctionDecl>(capture.getDecl())) {
addFunctionCapture(func);
continue;
}
// We may either directly capture properties, or capture through their
// accessors.
if (auto var = dyn_cast<VarDecl>(capture.getDecl())) {
switch (var->getStorageKind()) {
case VarDecl::StoredWithTrivialAccessors:
llvm_unreachable("stored local variable with trivial accessors?");
case VarDecl::InheritedWithObservers:
llvm_unreachable("inherited local variable?");
case VarDecl::StoredWithObservers:
case VarDecl::Addressed:
case VarDecl::AddressedWithTrivialAccessors:
case VarDecl::AddressedWithObservers:
case VarDecl::ComputedWithMutableAddress:
// Directly capture storage if we're supposed to.
if (capture.isDirect())
return true;
// Otherwise, transitively capture the accessors.
LLVM_FALLTHROUGH;
case VarDecl::Computed:
addFunctionCapture(var->getGetter());
if (auto setter = var->getSetter())
addFunctionCapture(setter);
continue;
case VarDecl::Stored:
return true;
}
}
// Anything else is directly captured.
return true;
}
// Recursively consider function captures, since we didn't have any direct
// captures.
auto captureHasLocalCaptures = [&](AnyFunctionRef capture) -> bool {
if (visited.insert(capture).second)
return hasLoweredLocalCaptures(capture, visited);
return false;
};
if (functionCapturesToRecursivelyCheck) {
for (auto &capture : AFR.getCaptureInfo().getCaptures()) {
if (!capture.getDecl()->getDeclContext()->isLocalContext())
continue;
if (auto func = dyn_cast<AbstractFunctionDecl>(capture.getDecl())) {
if (captureHasLocalCaptures(func))
return true;
continue;
}
if (auto var = dyn_cast<VarDecl>(capture.getDecl())) {
switch (var->getStorageKind()) {
case VarDecl::StoredWithTrivialAccessors:
llvm_unreachable("stored local variable with trivial accessors?");
case VarDecl::InheritedWithObservers:
llvm_unreachable("inherited local variable?");
case VarDecl::StoredWithObservers:
case VarDecl::Addressed:
case VarDecl::AddressedWithTrivialAccessors:
case VarDecl::AddressedWithObservers:
case VarDecl::ComputedWithMutableAddress:
assert(!capture.isDirect() && "should have short circuited out");
// Otherwise, transitively capture the accessors.
LLVM_FALLTHROUGH;
case VarDecl::Computed:
if (captureHasLocalCaptures(var->getGetter()))
return true;
if (auto setter = var->getSetter())
if (captureHasLocalCaptures(setter))
return true;
continue;
case VarDecl::Stored:
llvm_unreachable("should have short circuited out");
}
}
llvm_unreachable("should have short circuited out");
}
}
return false;
}
static unsigned getFuncNaturalUncurryLevel(AnyFunctionRef AFR) {
assert(AFR.getParameterLists().size() >= 1 && "no arguments for func?!");
return AFR.getParameterLists().size() - 1;
}
unsigned swift::getNaturalUncurryLevel(ValueDecl *vd) {
if (auto *func = dyn_cast<FuncDecl>(vd)) {
return getFuncNaturalUncurryLevel(func);
} else if (isa<ConstructorDecl>(vd)) {
return 1;
} else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
return ed->hasAssociatedValues() ? 1 : 0;
} else if (isa<DestructorDecl>(vd)) {
return 0;
} else if (isa<ClassDecl>(vd)) {
return 1;
} else if (isa<VarDecl>(vd)) {
return 0;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind,
ResilienceExpansion expansion,
bool isCurried, bool isForeign)
: loc(vd), kind(kind), Expansion(unsigned(expansion)),
isCurried(isCurried), isForeign(isForeign),
isDirectReference(0), defaultArgIndex(0)
{}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
ResilienceExpansion expansion,
bool isCurried, bool asForeign)
: isCurried(isCurried), isDirectReference(0), defaultArgIndex(0)
{
if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Map FuncDecls directly to Func SILDeclRefs.
loc = fd;
kind = Kind::Func;
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
assert(ACE->getParameterLists().size() >= 1 &&
"no param patterns for function?!");
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
Expansion = (unsigned) expansion;
isForeign = asForeign;
}
Optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
if (auto vd = loc.dyn_cast<ValueDecl*>()) {
if (auto afd = dyn_cast<AbstractFunctionDecl>(vd)) {
return AnyFunctionRef(afd);
} else {
return None;
}
}
return AnyFunctionRef(loc.get<AbstractClosureExpr*>());
}
bool SILDeclRef::isThunk() const {
return isCurried || isForeignToNativeThunk() || isNativeToForeignThunk();
}
bool SILDeclRef::isClangImported() const {
if (!hasDecl())
return false;
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext)) {
if (isClangGenerated())
return true;
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
return !isForeign;
if (auto *FD = dyn_cast<FuncDecl>(d))
if (FD->isAccessor() ||
isa<NominalTypeDecl>(d->getDeclContext()))
return !isForeign;
}
return false;
}
bool SILDeclRef::isClangGenerated() const {
if (!hasDecl())
return false;
return isClangGenerated(getDecl()->getClangNode());
}
// FIXME: this is a weird predicate.
bool SILDeclRef::isClangGenerated(ClangNode node) {
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
// ie, 'static inline' functions for which we must ask Clang to emit a body
// for explicitly
if (!nd->isExternallyVisible())
return true;
}
return false;
}
bool SILDeclRef::isImplicit() const {
if (hasDecl())
return getDecl()->isImplicit();
return getAbstractClosureExpr()->isImplicit();
}
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
if (getAbstractClosureExpr()) {
if (isSerialized())
return SILLinkage::Shared;
return SILLinkage::Private;
}
// Add External to the linkage (e.g. Public -> PublicExternal) if this is a
// declaration not a definition.
auto maybeAddExternal = [&](SILLinkage linkage) {
return forDefinition ? linkage : addExternalToLinkage(linkage);
};
// Native function-local declarations have shared linkage.
// FIXME: @objc declarations should be too, but we currently have no way
// of marking them "used" other than making them external.
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext();
while (!moduleContext->isModuleScopeContext()) {
if (!isForeign && moduleContext->isLocalContext()) {
if (isSerialized())
return SILLinkage::Shared;
return SILLinkage::Private;
}
moduleContext = moduleContext->getParent();
}
// Enum constructors and curry thunks either have private or shared
// linkage, dependings are essentially the same as thunks, they are
// emitted by need and have shared linkage.
if (isEnumElement() || isCurried) {
switch (d->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
default:
return SILLinkage::Shared;
}
}
// ivar initializers and destroyers are completely contained within the class
// from which they come, and never get seen externally.
if (isIVarInitializerOrDestroyer()) {
switch (d->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
default:
return maybeAddExternal(SILLinkage::Hidden);
}
}
// Calling convention thunks have shared linkage.
if (isForeignToNativeThunk())
return SILLinkage::Shared;
// If a function declares a @_cdecl name, its native-to-foreign thunk
// is exported with the visibility of the function.
if (isNativeToForeignThunk() && !d->getAttrs().hasAttribute<CDeclAttr>())
return SILLinkage::Shared;
// Declarations imported from Clang modules have shared linkage.
if (isClangImported())
return SILLinkage::Shared;
// Stored property initializers get the linkage of their containing type.
if (isStoredPropertyInitializer()) {
// If the property is public, the initializer needs to be public, because
// it might be referenced from an inlineable initializer.
//
// Note that we don't serialize the presence of an initializer, so there's
// no way to reference one from another module except for this case.
//
// This is silly, and we need a proper resilience story here.
if (d->getEffectiveAccess() == AccessLevel::Public)
return maybeAddExternal(SILLinkage::Public);
d = cast<NominalTypeDecl>(d->getDeclContext());
// Otherwise, use the visibility of the type itself, because even if the
// property is private, we might reference the initializer from another
// file.
switch (d->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
default:
return maybeAddExternal(SILLinkage::Hidden);
}
}
// Otherwise, we have external linkage.
switch (d->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
case AccessLevel::Internal:
return maybeAddExternal(SILLinkage::Hidden);
default:
return maybeAddExternal(SILLinkage::Public);
}
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
bool SILDeclRef::hasClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<ClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasAutoClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<AutoClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasFuncDecl() const {
return loc.is<ValueDecl *>() && isa<FuncDecl>(getDecl());
}
ClosureExpr *SILDeclRef::getClosureExpr() const {
return dyn_cast<ClosureExpr>(getAbstractClosureExpr());
}
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
return dyn_cast<AutoClosureExpr>(getAbstractClosureExpr());
}
FuncDecl *SILDeclRef::getFuncDecl() const {
return dyn_cast<FuncDecl>(getDecl());
}
AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
return dyn_cast<AbstractFunctionDecl>(getDecl());
}
/// \brief True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (isStoredPropertyInitializer())
return true;
if (hasAutoClosureExpr())
return true;
if (hasDecl()) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
return AFD->isTransparent();
if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
return ASD->isTransparent();
}
return false;
}
/// \brief True if the function should have its body serialized.
IsSerialized_t SILDeclRef::isSerialized() const {
DeclContext *dc;
if (auto closure = getAbstractClosureExpr())
dc = closure->getLocalContext();
else {
auto *d = getDecl();
dc = getDecl()->getInnermostDeclContext();
// Enum element constructors are serialized if the enum is
// @_versioned or public.
if (isEnumElement())
if (d->getEffectiveAccess() >= AccessLevel::Public)
return IsSerialized;
// Currying thunks are serialized if referenced from an inlinable
// context -- Sema's semantic checks ensure the serialization of
// such a thunk is valid, since it must in turn reference a public
// symbol, or dispatch via class_method or witness_method.
if (isCurried)
if (d->getEffectiveAccess() >= AccessLevel::Public)
return IsSerializable;
if (isForeignToNativeThunk())
return IsSerializable;
// The allocating entry point for designated initializers are serialized
// if the class is @_versioned or public.
if (kind == SILDeclRef::Kind::Allocator) {
auto *ctor = cast<ConstructorDecl>(d);
if (ctor->isDesignatedInit() &&
ctor->getDeclContext()->getAsClassOrClassExtensionContext()) {
if (ctor->getEffectiveAccess() >= AccessLevel::Public &&
!ctor->hasClangNode())
return IsSerialized;
}
}
}
// Declarations imported from Clang modules are serialized if
// referenced from an inlineable context.
if (isClangImported())
return IsSerializable;
// Otherwise, ask the AST if we're inside an @_inlineable context.
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
/// \brief True if the function has noinline attribute.
bool SILDeclRef::isNoinline() const {
if (!hasDecl())
return false;
if (auto InlineA = getDecl()->getAttrs().getAttribute<InlineAttr>())
if (InlineA->getKind() == InlineKind::Never)
return true;
return false;
}
/// \brief True if the function has noinline attribute.
bool SILDeclRef::isAlwaysInline() const {
if (!hasDecl())
return false;
if (auto InlineA = getDecl()->getAttrs().getAttribute<InlineAttr>())
if (InlineA->getKind() == InlineKind::Always)
return true;
return false;
}
bool SILDeclRef::hasEffectsAttribute() const {
if (!hasDecl())
return false;
return getDecl()->getAttrs().hasAttribute<EffectsAttr>();
}
EffectsKind SILDeclRef::getEffectsAttribute() const {
assert(hasEffectsAttribute());
EffectsAttr *MA = getDecl()->getAttrs().getAttribute<EffectsAttr>();
return MA->getKind();
}
bool SILDeclRef::isForeignToNativeThunk() const {
// Non-decl entry points are never natively foreign, so they would never
// have a foreign-to-native thunk.
if (!hasDecl())
return false;
if (requiresForeignToNativeThunk(getDecl()))
return !isForeign;
// ObjC initializing constructors and factories are foreign.
// We emit a special native allocating constructor though.
if (isa<ConstructorDecl>(getDecl())
&& (kind == Kind::Initializer
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
&& getDecl()->hasClangNode())
return !isForeign;
return false;
}
bool SILDeclRef::isNativeToForeignThunk() const {
// We can have native-to-foreign thunks over closures.
if (!hasDecl())
return isForeign;
// We can have native-to-foreign thunks over global or local native functions.
// TODO: Static functions too.
if (auto func = dyn_cast<FuncDecl>(getDecl())) {
if (!func->getDeclContext()->isTypeContext()
&& !func->hasClangNode())
return isForeign;
}
return false;
}
/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDecl(raw_ostream &buffer,
const clang::NamedDecl *clangDecl,
ASTContext &ctx) {
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
importer->getMangledName(buffer, clangDecl);
}
std::string SILDeclRef::mangle(ManglingKind MKind) const {
using namespace Mangle;
ASTMangler mangler;
// As a special case, Clang functions and globals don't get mangled at all.
if (hasDecl()) {
if (auto clangDecl = getDecl()->getClangDecl()) {
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()
&& !isCurried) {
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
std::string s(1, '\01');
s += asmLabel->getLabel();
return s;
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>()) {
std::string storage;
llvm::raw_string_ostream SS(storage);
// FIXME: When we can import C++, use Clang's mangler all the time.
mangleClangDecl(SS, namedClangDecl, getDecl()->getASTContext());
return SS.str();
}
return namedClangDecl->getName();
}
}
}
}
ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
switch (MKind) {
case SILDeclRef::ManglingKind::Default:
if (isForeign) {
SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
} else if (isDirectReference) {
SKind = ASTMangler::SymbolKind::DirectMethodReferenceThunk;
} else if (isForeignToNativeThunk()) {
SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
}
break;
case SILDeclRef::ManglingKind::DynamicThunk:
SKind = ASTMangler::SymbolKind::DynamicThunk;
break;
}
switch (kind) {
case SILDeclRef::Kind::Func:
if (!hasDecl())
return mangler.mangleClosureEntity(getAbstractClosureExpr(), SKind);
// As a special case, functions can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()
&& !isCurried) {
return NameA->Name;
}
// Use a given cdecl name for native-to-foreign thunks.
if (auto CDeclA = getDecl()->getAttrs().getAttribute<CDeclAttr>())
if (isNativeToForeignThunk()) {
return CDeclA->Name;
}
// Otherwise, fall through into the 'other decl' case.
LLVM_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
return mangler.mangleEntity(getDecl(), isCurried, SKind);
case SILDeclRef::Kind::Deallocator:
assert(!isCurried);
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ true,
SKind);
case SILDeclRef::Kind::Destroyer:
assert(!isCurried);
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ false,
SKind);
case SILDeclRef::Kind::Allocator:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ true,
isCurried,
SKind);
case SILDeclRef::Kind::Initializer:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ false,
isCurried,
SKind);
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
assert(!isCurried);
return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
kind == SILDeclRef::Kind::IVarDestroyer,
SKind);
case SILDeclRef::Kind::GlobalAccessor:
assert(!isCurried);
return mangler.mangleAccessorEntity(AccessorKind::IsMutableAddressor,
AddressorKind::Unsafe,
getDecl(),
/*isStatic*/ false,
SKind);
case SILDeclRef::Kind::GlobalGetter:
assert(!isCurried);
return mangler.mangleGlobalGetterEntity(getDecl(), SKind);
case SILDeclRef::Kind::DefaultArgGenerator:
assert(!isCurried);
return mangler.mangleDefaultArgumentEntity(
cast<AbstractFunctionDecl>(getDecl()),
defaultArgIndex,
SKind);
case SILDeclRef::Kind::StoredPropertyInitializer:
assert(!isCurried);
return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);
}
llvm_unreachable("bad entity kind!");
}
SILDeclRef SILDeclRef::getOverridden() const {
if (!hasDecl())
return SILDeclRef();
auto overridden = getDecl()->getOverriddenDecl();
if (!overridden)
return SILDeclRef();
return SILDeclRef(overridden, kind, getResilienceExpansion(), isCurried);
}
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
if (auto overridden = getOverridden()) {
// If we overrode a foreign decl, a dynamic method, this is an
// accessor for a property that overrides an ObjC decl, or if it is an
// @NSManaged property, then it won't be in the vtable.
if (overridden.getDecl()->hasClangNode())
return SILDeclRef();
// If we overrode a non-required initializer, there won't be a vtable
// slot for the allocator.
if (overridden.kind == SILDeclRef::Kind::Allocator) {
if (!cast<ConstructorDecl>(overridden.getDecl())->isRequired())
return SILDeclRef();
} else if (overridden.getDecl()->isDynamic()) {
return SILDeclRef();
}
if (auto *ovFD = dyn_cast<FuncDecl>(overridden.getDecl()))
if (auto *asd = ovFD->getAccessorStorageDecl()) {
if (asd->hasClangNode())
return SILDeclRef();
if (asd->isDynamic())
return SILDeclRef();
}
// If we overrode a decl from an extension, it won't be in a vtable
// either. This can occur for extensions to ObjC classes.
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
return SILDeclRef();
return overridden;
}
return SILDeclRef();
}
SILLocation SILDeclRef::getAsRegularLocation() const {
if (hasDecl())
return RegularLocation(getDecl());
return RegularLocation(getAbstractClosureExpr());
}
SubclassScope SILDeclRef::getSubclassScope() const {
if (!hasDecl())
return SubclassScope::NotApplicable;
// If this declaration is a function which goes into a vtable, then it's
// symbol must be as visible as its class. Derived classes even have to put
// all less visible methods of the base class into their vtables.
auto *FD = dyn_cast<AbstractFunctionDecl>(getDecl());
if (!FD)
return SubclassScope::NotApplicable;
DeclContext *context = FD->getDeclContext();
// Methods from extensions don't go into vtables (yet).
if (context->isExtensionContext())
return SubclassScope::NotApplicable;
auto *classType = context->getAsClassOrClassExtensionContext();
if (!classType || classType->isFinal())
return SubclassScope::NotApplicable;
if (FD->isFinal())
return SubclassScope::NotApplicable;
assert(FD->getEffectiveAccess() <= classType->getEffectiveAccess() &&
"class must be as visible as its members");
switch (classType->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return SubclassScope::NotApplicable;
case AccessLevel::Internal:
case AccessLevel::Public:
return SubclassScope::Internal;
case AccessLevel::Open:
return SubclassScope::External;
}
llvm_unreachable("Unhandled access level in switch.");
}
unsigned SILDeclRef::getUncurryLevel() const {
if (isCurried)
return 0;
if (!hasDecl())
return getFuncNaturalUncurryLevel(*getAnyFunctionRef());
if (kind == Kind::DefaultArgGenerator)
return 0;
return getNaturalUncurryLevel(getDecl());
}