Files
swift-mirror/lib/Sema/MiscDiagnostics.cpp
Joe Groff 46f77c6181 Sema: Build the AST for inout address conversions.
Add two new AST node types:

- InOutConversionExpr, which represents an '&x' expression that involves inout conversion. This will be a signal to SILGen not to introduce a writeback scope for the nested conversion call.

- LValueToPointerExpr, which represents the primitive '@lvalue T' to 'RawPointer' conversion that produces the argument to the inout conversion.

Build an InOutConversionExpr AST when an inout expression is resolved by a conversion to an BuiltinInOutAddressConvertible type.

Swift SVN r15594
2014-03-29 02:50:25 +00:00

478 lines
16 KiB
C++

//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements AST-level diagnostics.
//
//===----------------------------------------------------------------------===//
#include "MiscDiagnostics.h"
#include "TypeChecker.h"
#include "swift/Basic/SourceManager.h"
#include "swift/AST/ASTWalker.h"
#include "swift/Parse/Lexer.h"
using namespace swift;
//===--------------------------------------------------------------------===//
// Diagnose assigning variable to itself.
//===--------------------------------------------------------------------===//
static Decl *findSimpleReferencedDecl(const Expr *E) {
if (auto *LE = dyn_cast<LoadExpr>(E))
E = LE->getSubExpr();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
return nullptr;
}
static std::pair<Decl *, Decl *> findReferencedDecl(const Expr *E) {
if (auto *LE = dyn_cast<LoadExpr>(E))
E = LE->getSubExpr();
if (auto *D = findSimpleReferencedDecl(E))
return std::make_pair(nullptr, D);
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
if (auto *BaseDecl = findSimpleReferencedDecl(MRE->getBase()))
return std::make_pair(BaseDecl, MRE->getMember().getDecl());
}
return std::make_pair(nullptr, nullptr);
}
/// Diagnose assigning variable to itself.
static void diagSelfAssignment(TypeChecker &TC, const Expr *E) {
auto *AE = dyn_cast<AssignExpr>(E);
if (!AE)
return;
auto LHSDecl = findReferencedDecl(AE->getDest());
auto RHSDecl = findReferencedDecl(AE->getSrc());
if (LHSDecl.second && LHSDecl == RHSDecl) {
TC.diagnose(AE->getLoc(), LHSDecl.first ? diag::self_assignment_prop
: diag::self_assignment_var)
.highlight(AE->getDest()->getSourceRange())
.highlight(AE->getSrc()->getSourceRange());
}
}
/// Issue a warning on code where a returned expression is on a different line
/// than the return keyword, but both have the same indentation.
///
/// \code
/// ...
/// return
/// foo()
/// \endcode
static void diagUnreachableCode(TypeChecker &TC, const Stmt *S) {
auto *RS = dyn_cast<ReturnStmt>(S);
if (!RS)
return;
if (!RS->hasResult())
return;
auto RetExpr = RS->getResult();
auto RSLoc = RS->getStartLoc();
auto RetExprLoc = RetExpr->getStartLoc();
// FIXME: Expose getColumnNumber() in LLVM SourceMgr to make this check
// cheaper.
if (RSLoc.isInvalid() || RetExprLoc.isInvalid() || (RSLoc == RetExprLoc))
return;
SourceManager &SM = TC.Context.SourceMgr;
if (SM.getLineAndColumn(RSLoc).second ==
SM.getLineAndColumn(RetExprLoc).second) {
TC.diagnose(RetExpr->getStartLoc(), diag::unindented_code_after_return);
TC.diagnose(RetExpr->getStartLoc(), diag::indent_expression_to_silence);
return;
}
return;
}
/// Diagnose use of module or metatype values outside of dot expressions.
static void diagModuleOrMetatypeValue(TypeChecker &TC, const Expr *E) {
class DiagnoseWalker : public ASTWalker {
public:
TypeChecker &TC;
DiagnoseWalker(TypeChecker &TC) : TC(TC) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// Diagnose module values that don't appear as part of a qualification.
if (auto *ME = dyn_cast<ModuleExpr>(E)) {
bool Diagnose = true;
if (auto *ParentExpr = Parent.getAsExpr()) {
// Allow module values as a part of:
// - ignored base expressions;
// - expressions that failed to type check.
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
isa<UnresolvedDotExpr>(ParentExpr))
Diagnose = false;
}
if (Diagnose)
TC.diagnose(ME->getStartLoc(), diag::value_of_module_type);
return { true, E };
}
// Diagnose metatype values that don't appear as part of a property,
// method, or constructor reference.
// See through implicit conversions.
auto Base = E;
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
Base = Conv->getSubExpr();
auto *DRE = dyn_cast<DeclRefExpr>(Base);
auto *MRE = dyn_cast<MemberRefExpr>(Base);
if ((DRE && isa<TypeDecl>(DRE->getDecl()))
|| (MRE && isa<TypeDecl>(MRE->getMember().getDecl()))) {
// Allow references to types as a part of:
// - member references T.foo, T.Type, T.self, etc. (but *not* T.type)
// - constructor calls T()
enum class Diagnostic {
None, // OK
UnqualifiedMetatypeValue, // type named without being accessed
TypeOfMetatypeValue, // .type applied to a type
} Diagnose;
if (auto *ParentExpr = Parent.getAsExpr()) {
switch (ParentExpr->getKind()) {
case ExprKind::Error:
case ExprKind::Call:
case ExprKind::MemberRef:
case ExprKind::DotSelf:
case ExprKind::DotSyntaxCall:
case ExprKind::ConstructorRefCall:
case ExprKind::UnresolvedMember:
case ExprKind::UnresolvedDot:
case ExprKind::UnresolvedSelector:
case ExprKind::UnresolvedSpecialize:
case ExprKind::DotSyntaxBaseIgnored:
Diagnose = Diagnostic::None;
break;
case ExprKind::Metatype:
Diagnose = Diagnostic::TypeOfMetatypeValue;
break;
case ExprKind::InOutConversion:
case ExprKind::IntegerLiteral:
case ExprKind::FloatLiteral:
case ExprKind::CharacterLiteral:
case ExprKind::StringLiteral:
case ExprKind::InterpolatedStringLiteral:
case ExprKind::MagicIdentifierLiteral:
case ExprKind::DiscardAssignment:
case ExprKind::DeclRef:
case ExprKind::SuperRef:
case ExprKind::OtherConstructorDeclRef:
case ExprKind::UnresolvedConstructor:
case ExprKind::OverloadedDeclRef:
case ExprKind::OverloadedMemberRef:
case ExprKind::UnresolvedDeclRef:
case ExprKind::DynamicMemberRef:
case ExprKind::DynamicSubscript:
case ExprKind::Sequence:
case ExprKind::Paren:
case ExprKind::Tuple:
case ExprKind::Array:
case ExprKind::Dictionary:
case ExprKind::Subscript:
case ExprKind::TupleElement:
case ExprKind::Closure:
case ExprKind::AutoClosure:
case ExprKind::Module:
case ExprKind::InOut:
case ExprKind::NewArray:
case ExprKind::RebindSelfInConstructor:
case ExprKind::OpaqueValue:
case ExprKind::BindOptional:
case ExprKind::OptionalEvaluation:
case ExprKind::ForceValue:
case ExprKind::OpenExistential:
case ExprKind::PrefixUnary:
case ExprKind::PostfixUnary:
case ExprKind::Binary:
case ExprKind::Load:
case ExprKind::TupleShuffle:
case ExprKind::FunctionConversion:
case ExprKind::CovariantFunctionConversion:
case ExprKind::CovariantReturnConversion:
case ExprKind::MetatypeConversion:
case ExprKind::Erasure:
case ExprKind::DerivedToBase:
case ExprKind::ArchetypeToSuper:
case ExprKind::ScalarToTuple:
case ExprKind::InjectIntoOptional:
case ExprKind::BridgeToBlock:
case ExprKind::LValueToPointer:
case ExprKind::ConditionalCheckedCast:
case ExprKind::Isa:
case ExprKind::Coerce:
case ExprKind::If:
case ExprKind::Assign:
case ExprKind::DefaultValue:
case ExprKind::UnresolvedPattern:
Diagnose = Diagnostic::UnqualifiedMetatypeValue;
break;
}
} else {
Diagnose = Diagnostic::UnqualifiedMetatypeValue;
}
switch (Diagnose) {
case Diagnostic::None:
break;
case Diagnostic::UnqualifiedMetatypeValue: {
TC.diagnose(E->getStartLoc(), diag::value_of_metatype_type);
// Add fixits to insert '()' or '.self'.
auto endLoc = Lexer::getLocForEndOfToken(TC.Context.SourceMgr,
E->getEndLoc());
TC.diagnose(endLoc, diag::add_parens_to_type)
.fixItInsert(endLoc, "()");
TC.diagnose(endLoc, diag::add_self_to_type)
.fixItInsert(endLoc, ".self");
break;
}
case Diagnostic::TypeOfMetatypeValue: {
TC.diagnose(E->getStartLoc(), diag::type_of_metatype);
// Add a fixit to replace '.type' with '.self'.
auto metaExpr = cast<MetatypeExpr>(Parent.getAsExpr());
auto endLoc = Lexer::getLocForEndOfToken(TC.Context.SourceMgr,
metaExpr->getMetatypeLoc());
TC.diagnose(metaExpr->getMetatypeLoc(),
diag::add_self_to_type)
.fixItReplaceChars(metaExpr->getMetatypeLoc(),
endLoc, "self");
break;
}
}
// We don't need to visit the children of a type member reference.
return { false, E };
}
return { true, E };
}
};
DiagnoseWalker Walker(TC);
const_cast<Expr *>(E)->walk(Walker);
}
/// Diagnose recursive use of properties within their own accessors
static void diagRecursivePropertyAccess(TypeChecker &TC, const Expr *E,
const DeclContext *DC) {
auto fn = dyn_cast<FuncDecl>(DC);
if (!fn || !fn->isGetterOrSetter())
return;
auto var = dyn_cast<VarDecl>(fn->getAccessorStorageDecl());
if (!var) // Ignore subscripts
return;
class DiagnoseWalker : public ASTWalker {
TypeChecker &TC;
VarDecl *Var;
bool IsSetter;
public:
explicit DiagnoseWalker(TypeChecker &TC, VarDecl *var, bool isSetter)
: TC(TC), Var(var), IsSetter(isSetter) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
// Handle local and top-level computed variables.
if (DRE->getDecl() == Var &&
!DRE->isDirectPropertyAccess()) {
bool shouldDiagnose = true;
if (auto *ParentExpr = Parent.getAsExpr()) {
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr))
shouldDiagnose = false;
else if (IsSetter)
shouldDiagnose = !isa<LoadExpr>(ParentExpr);
}
if (shouldDiagnose) {
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
Var->getName(), IsSetter);
}
}
} else if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
// Handle instance and type computed variables.
// Find MemberRefExprs that have an implicit "self" base.
if (MRE->getMember().getDecl() == Var &&
isa<DeclRefExpr>(MRE->getBase()) &&
MRE->getBase()->isImplicit() &&
!MRE->isDirectPropertyAccess()) {
bool shouldDiagnose = true;
if (IsSetter)
shouldDiagnose = !dyn_cast_or_null<LoadExpr>(Parent.getAsExpr());
if (shouldDiagnose) {
TC.diagnose(E->getLoc(), diag::recursive_accessor_reference,
Var->getName(), IsSetter);
TC.diagnose(E->getLoc(),
diag::recursive_accessor_reference_silence)
.fixItInsert(E->getStartLoc(), "self.");
}
}
} else if (auto *PE = dyn_cast<IdentityExpr>(E)) {
// Look through ParenExprs because a function argument of a single
// rvalue will have a LoadExpr /outside/ the ParenExpr.
return { true, PE->getSubExpr() };
}
return { true, E };
}
};
DiagnoseWalker walker(TC, var, fn->isSetter());
const_cast<Expr *>(E)->walk(walker);
}
/// Look for any property references in closures that lack a "self." qualifier.
/// Within a closure, we require that the source code contain "self." explicitly
/// because 'self' is captured, not the property value. This is a common source
/// of confusion, so we force an explicit self.
static void diagnoseImplicitSelfUseInClosure(TypeChecker &TC, const Expr *E) {
class DiagnoseWalker : public ASTWalker {
TypeChecker &TC;
unsigned InClosure = 0;
public:
explicit DiagnoseWalker(TypeChecker &TC) : TC(TC) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// If this is an explicit closure expression - not an autoclosure - then
// we keep track of the fact that recursive walks are within the closure.
if (isa<ClosureExpr>(E))
++InClosure;
// If we see a property reference with an implicit base from within a
// closure, then reject it as requiring an explicit "self." qualifier. We
// do this in explicit closures, not autoclosures, because otherwise the
// transparence of autoclosures is lost.
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
if (InClosure && MRE->getBase()->isImplicit() &&
isa<DeclRefExpr>(MRE->getBase()))
TC.diagnose(MRE->getLoc(),
diag::property_use_in_closure_without_explicit_self,
MRE->getMember().getDecl()->getName())
.fixItInsert(MRE->getLoc(), "self.");
return { true, E };
}
Expr *walkToExprPost(Expr *E) {
if (isa<ClosureExpr>(E)) {
assert(InClosure);
--InClosure;
}
return E;
}
};
const_cast<Expr *>(E)->walk(DiagnoseWalker(TC));
}
//===--------------------------------------------------------------------===//
// Diagnose availability.
//===--------------------------------------------------------------------===//
/// Diagnose specific availability for a declaration.
///
/// Returns true if no further availability checking is needed to reject
/// the use of this declaration.
static bool diagAvailability(TypeChecker &TC, const AvailabilityAttr *Attr,
const ValueDecl *D, SourceRange R,
const DeclContext *DC) {
// FIXME: Implement matching on the platform. For now just
// do the '*' platform (all platforms).
if (Attr->hasPlatform())
return false;
if (Attr->IsUnvailable) {
auto Name = D->getName();
TC.diagnose(R.Start, diag::availability_decl_unavailable, Name)
.highlight(R);
auto DLoc = D->getLoc();
if (DLoc.isValid())
TC.diagnose(DLoc, diag::availability_marked_unavailable, Name)
.highlight(Attr->getRange());
}
return false;
}
/// Diagnose uses of unavailable declarations.
static void diagAvailability(TypeChecker &TC, const ValueDecl *D,
SourceRange R, const DeclContext *DC) {
for (auto Attr : D->getAttrs())
if (auto AvailAttr = dyn_cast<AvailabilityAttr>(Attr))
if (diagAvailability(TC, AvailAttr, D, R, DC))
return;
}
namespace {
class AvailabilityWalker : public ASTWalker {
TypeChecker &TC;
const DeclContext *DC;
public:
AvailabilityWalker(TypeChecker &TC, const DeclContext *DC)
: TC(TC), DC(DC) {}
virtual Expr *walkToExprPost(Expr *E) override {
if (auto DR = dyn_cast<DeclRefExpr>(E))
diagAvailability(TC, DR->getDecl(), DR->getSourceRange(), DC);
return E;
}
};
}
/// Diagnose uses of unavailable declarations.
static void diagAvailability(TypeChecker &TC, const Expr *E,
const DeclContext *DC) {
AvailabilityWalker walker(TC, DC);
const_cast<Expr*>(E)->walk(walker);
}
//===--------------------------------------------------------------------===//
// High-level entry points.
//===--------------------------------------------------------------------===//
void swift::performExprDiagnostics(TypeChecker &TC, const Expr *E,
const DeclContext *DC) {
diagSelfAssignment(TC, E);
diagModuleOrMetatypeValue(TC, E);
diagRecursivePropertyAccess(TC, E, DC);
diagnoseImplicitSelfUseInClosure(TC, E);
diagAvailability(TC, E, DC);
}
void swift::performStmtDiagnostics(TypeChecker &TC, const Stmt *S) {
return diagUnreachableCode(TC, S);
}