Files
swift-mirror/stdlib/public/core/Collection.swift
Max Moiseev 481bcabcba [stdlib] API naming guidelines applied to split and join
- `separator` label for first argument of `split`
- `join` and related types are renamed to `joined`
2016-02-22 15:43:33 -08:00

784 lines
25 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A type that provides subscript access to its elements.
///
/// - Important: In most cases, it's best to ignore this protocol and use
/// `CollectionType` instead, as it has a more complete interface.
public protocol Indexable {
// This protocol is almost an implementation detail of the standard
// library; it is used to deduce things like the `SubSequence` and
// `Iterator` type from a minimal collection, but it is also used in
// exposed places like as a constraint on `IndexingIterator`.
/// A type that represents a valid position in the collection.
///
/// Valid indices consist of the position of every element and a
/// "past the end" position that's not valid for use as a subscript.
associatedtype Index : ForwardIndex
/// The position of the first element in a non-empty collection.
///
/// In an empty collection, `startIndex == endIndex`.
///
/// - Complexity: O(1)
var startIndex: Index { get }
/// The collection's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
///
/// - Complexity: O(1)
var endIndex: Index { get }
// The declaration of _Element and subscript here is a trick used to
// break a cyclic conformance/deduction that Swift can't handle. We
// need something other than a Collection.Iterator.Element that can
// be used as IndexingIterator<T>'s Element. Here we arrange for
// the Collection itself to have an Element type that's deducible from
// its subscript. Ideally we'd like to constrain this Element to be the same
// as Collection.Iterator.Element (see below), but we have no way of
// expressing it today.
associatedtype _Element
/// Returns the element at the given `position`.
///
/// - Complexity: O(1)
subscript(position: Index) -> _Element { get }
}
/// A type that supports subscript assignment to a mutable collection.
public protocol MutableIndexable {
associatedtype Index : ForwardIndex
var startIndex: Index { get }
var endIndex: Index { get }
associatedtype _Element
subscript(position: Index) -> _Element { get set }
}
/// The iterator used for collections that don't specify one.
public struct IndexingIterator<Elements : Indexable>
: IteratorProtocol, Sequence {
/// Create an *iterator* over the given collection.
public /// @testable
init(_elements: Elements) {
self._elements = _elements
self._position = _elements.startIndex
}
/// Advance to the next element and return it, or `nil` if no next
/// element exists.
///
/// - Precondition: No preceding call to `self.next()` has returned `nil`.
public mutating func next() -> Elements._Element? {
if _position == _elements.endIndex { return nil }
let element = _elements[_position]
_position._successorInPlace()
return element
}
internal let _elements: Elements
internal var _position: Elements.Index
}
/// A multi-pass sequence with addressable positions.
///
/// Positions are represented by an associated `Index` type. Whereas
/// an arbitrary sequence may be consumed as it is traversed, a
/// collection is multi-pass: any element may be revisited merely by
/// saving its index.
///
/// The sequence view of the elements is identical to the collection
/// view. In other words, the following code binds the same series of
/// values to `x` as does `for x in self {}`:
///
/// for i in startIndex..<endIndex {
/// let x = self[i]
/// }
public protocol Collection : Indexable, Sequence {
/// A type that provides the sequence's iteration interface and
/// encapsulates its iteration state.
///
/// By default, a `Collection` satisfies `Sequence` by
/// supplying a `IndexingIterator` as its associated `Iterator`
/// type.
associatedtype Iterator : IteratorProtocol = IndexingIterator<Self>
// FIXME: Needed here so that the Iterator is properly deduced from
// a custom iterator() function. Otherwise we get an
// IndexingIterator. <rdar://problem/21539115>
func iterator() -> Iterator
// FIXME: should be constrained to Collection
// (<rdar://problem/20715009> Implement recursive protocol
// constraints)
/// A `Sequence` that can represent a contiguous subrange of `self`'s
/// elements.
///
/// - Note: This associated type appears as a requirement in
/// `Sequence`, but is restated here with stricter
/// constraints: in a `Collection`, the `SubSequence` should
/// also be a `Collection`.
associatedtype SubSequence : Indexable, Sequence = Slice<Self>
/// Returns the element at the given `position`.
subscript(position: Index) -> Iterator.Element { get }
/// Returns a collection representing a contiguous sub-range of
/// `self`'s elements.
///
/// - Complexity: O(1)
subscript(bounds: Range<Index>) -> SubSequence { get }
/// Returns `self[startIndex..<end]`
///
/// - Complexity: O(1)
@warn_unused_result
func prefix(upTo end: Index) -> SubSequence
/// Returns `self[start..<endIndex]`
///
/// - Complexity: O(1)
@warn_unused_result
func suffix(from start: Index) -> SubSequence
/// Returns `prefix(upTo: position.successor())`
///
/// - Complexity: O(1)
@warn_unused_result
func prefix(through position: Index) -> SubSequence
/// Returns `true` iff `self` is empty.
var isEmpty: Bool { get }
/// Returns the number of elements.
///
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
/// O(N) otherwise.
var count: Index.Distance { get }
// The following requirement enables dispatching for indexOf when
// the element type is Equatable.
/// Returns `Optional(Optional(index))` if an element was found;
/// `nil` otherwise.
///
/// - Complexity: O(N).
@warn_unused_result
func _customIndexOfEquatableElement(element: Iterator.Element) -> Index??
/// Returns the first element of `self`, or `nil` if `self` is empty.
var first: Iterator.Element? { get }
}
/// Supply the default `iterator()` method for `Collection` models
/// that accept the default associated `Iterator`,
/// `IndexingIterator<Self>`.
extension Collection where Iterator == IndexingIterator<Self> {
public func iterator() -> IndexingIterator<Self> {
return IndexingIterator(_elements: self)
}
}
/// Supply the default "slicing" `subscript` for `Collection` models
/// that accept the default associated `SubSequence`, `Slice<Self>`.
extension Collection where SubSequence == Slice<Self> {
public subscript(bounds: Range<Index>) -> Slice<Self> {
Index._failEarlyRangeCheck2(
rangeStart: bounds.startIndex,
rangeEnd: bounds.endIndex,
boundsStart: startIndex,
boundsEnd: endIndex)
return Slice(_base: self, bounds: bounds)
}
}
extension Collection where SubSequence == Self {
/// If `!self.isEmpty`, remove the first element and return it, otherwise
/// return `nil`.
///
/// - Complexity: O(1)
@warn_unused_result
public mutating func popFirst() -> Iterator.Element? {
guard !isEmpty else { return nil }
let element = first!
self = self[startIndex.successor()..<endIndex]
return element
}
}
extension Collection where
SubSequence == Self, Index : BidirectionalIndex {
/// If `!self.isEmpty`, remove the last element and return it, otherwise
/// return `nil`.
///
/// - Complexity: O(1)
@warn_unused_result
public mutating func popLast() -> Iterator.Element? {
guard !isEmpty else { return nil }
let element = last!
self = self[startIndex..<endIndex.predecessor()]
return element
}
}
/// Default implementations of core requirements
extension Collection {
/// Returns `true` iff `self` is empty.
///
/// - Complexity: O(1)
public var isEmpty: Bool {
return startIndex == endIndex
}
/// Returns the first element of `self`, or `nil` if `self` is empty.
///
/// - Complexity: O(1)
public var first: Iterator.Element? {
// NB: Accessing `startIndex` may not be O(1) for some lazy collections,
// so instead of testing `isEmpty` and then returning the first element,
// we'll just rely on the fact that the generator always yields the
// first element first.
var i = iterator()
return i.next()
}
/// Returns a value less than or equal to the number of elements in
/// `self`, *nondestructively*.
///
/// - Complexity: O(`count`).
public var underestimatedCount: Int {
return numericCast(count)
}
/// Returns the number of elements.
///
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
/// O(N) otherwise.
public var count: Index.Distance {
return startIndex.distance(to: endIndex)
}
/// Customization point for `Sequence.indexOf()`.
///
/// Define this method if the collection can find an element in less than
/// O(N) by exploiting collection-specific knowledge.
///
/// - Returns: `nil` if a linear search should be attempted instead,
/// `Optional(nil)` if the element was not found, or
/// `Optional(Optional(index))` if an element was found.
///
/// - Complexity: O(`count`).
@warn_unused_result
public // dispatching
func _customIndexOfEquatableElement(_: Iterator.Element) -> Index?? {
return nil
}
}
//===----------------------------------------------------------------------===//
// Default implementations for Collection
//===----------------------------------------------------------------------===//
extension Collection {
/// Returns an `Array` containing the results of mapping `transform`
/// over `self`.
///
/// - Complexity: O(N).
@warn_unused_result
public func map<T>(
@noescape transform: (Iterator.Element) throws -> T
) rethrows -> [T] {
let count: Int = numericCast(self.count)
if count == 0 {
return []
}
var result = ContiguousArray<T>()
result.reserveCapacity(count)
var i = self.startIndex
for _ in 0..<count {
result.append(try transform(self[i]))
i = i.successor()
}
_expectEnd(i, self)
return Array(result)
}
/// Returns a subsequence containing all but the first `n` elements.
///
/// - Precondition: `n >= 0`
/// - Complexity: O(`n`)
@warn_unused_result
public func dropFirst(n: Int) -> SubSequence {
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
let start = startIndex.advanced(by: numericCast(n), limit: endIndex)
return self[start..<endIndex]
}
/// Returns a subsequence containing all but the last `n` elements.
///
/// - Precondition: `n >= 0`
/// - Complexity: O(`self.count`)
@warn_unused_result
public func dropLast(n: Int) -> SubSequence {
_precondition(
n >= 0, "Can't drop a negative number of elements from a collection")
let amount = Swift.max(0, numericCast(count) - n)
let end = startIndex.advanced(by: numericCast(amount), limit: endIndex)
return self[startIndex..<end]
}
/// Returns a subsequence, up to `maxLength` in length, containing the
/// initial elements.
///
/// If `maxLength` exceeds `self.count`, the result contains all
/// the elements of `self`.
///
/// - Precondition: `maxLength >= 0`
/// - Complexity: O(`maxLength`)
@warn_unused_result
public func prefix(maxLength: Int) -> SubSequence {
_precondition(
maxLength >= 0,
"Can't take a prefix of negative length from a collection")
let end = startIndex.advanced(by: numericCast(maxLength), limit: endIndex)
return self[startIndex..<end]
}
/// Returns a slice, up to `maxLength` in length, containing the
/// final elements of `self`.
///
/// If `maxLength` exceeds `s.count`, the result contains all
/// the elements of `self`.
///
/// - Precondition: `maxLength >= 0`
/// - Complexity: O(`self.count`)
@warn_unused_result
public func suffix(maxLength: Int) -> SubSequence {
_precondition(
maxLength >= 0,
"Can't take a suffix of negative length from a collection")
let amount = Swift.max(0, numericCast(count) - maxLength)
let start = startIndex.advanced(by: numericCast(amount), limit: endIndex)
return self[start..<endIndex]
}
/// Returns `self[startIndex..<end]`
///
/// - Complexity: O(1)
@warn_unused_result
public func prefix(upTo end: Index) -> SubSequence {
return self[startIndex..<end]
}
/// Returns `self[start..<endIndex]`
///
/// - Complexity: O(1)
@warn_unused_result
public func suffix(from start: Index) -> SubSequence {
return self[start..<endIndex]
}
/// Returns `prefix(upTo: position.successor())`
///
/// - Complexity: O(1)
@warn_unused_result
public func prefix(through position: Index) -> SubSequence {
return prefix(upTo: position.successor())
}
/// Returns the maximal `SubSequence`s of `self`, in order, that
/// don't contain elements satisfying the predicate `isSeparator`.
///
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
/// return, minus 1.
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
/// a suffix of `self` containing *all* the elements of `self` following the
/// last split point.
/// The default value is `Int.max`.
///
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
/// is produced in the result for each pair of consecutive elements
/// satisfying `isSeparator`.
/// The default value is `true`.
///
/// - Precondition: `maxSplits >= 0`
@warn_unused_result
public func split(
maxSplits maxSplits: Int = Int.max,
omittingEmptySubsequences: Bool = true,
@noescape isSeparator: (Iterator.Element) throws -> Bool
) rethrows -> [SubSequence] {
_precondition(maxSplits >= 0, "Must take zero or more splits")
var result: [SubSequence] = []
var subSequenceStart: Index = startIndex
func appendSubsequence(end end: Index) -> Bool {
if subSequenceStart == end && omittingEmptySubsequences {
return false
}
result.append(self[subSequenceStart..<end])
return true
}
if maxSplits == 0 || isEmpty {
appendSubsequence(end: endIndex)
return result
}
var subSequenceEnd = subSequenceStart
let cachedEndIndex = endIndex
while subSequenceEnd != cachedEndIndex {
if try isSeparator(self[subSequenceEnd]) {
let didAppend = appendSubsequence(end: subSequenceEnd)
subSequenceEnd._successorInPlace()
subSequenceStart = subSequenceEnd
if didAppend && result.count == maxSplits {
break
}
continue
}
subSequenceEnd._successorInPlace()
}
if subSequenceStart != cachedEndIndex || !omittingEmptySubsequences {
result.append(self[subSequenceStart..<cachedEndIndex])
}
return result
}
}
extension Collection where Iterator.Element : Equatable {
/// Returns the maximal `SubSequence`s of `self`, in order, around a
/// `separator` element.
///
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
/// return, minus 1.
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
/// a suffix of `self` containing *all* the elements of `self` following the
/// last split point.
/// The default value is `Int.max`.
///
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
/// is produced in the result for each pair of consecutive elements
/// equal to `separator`.
/// The default value is `true`.
///
/// - Precondition: `maxSplits >= 0`
@warn_unused_result
public func split(
separator separator: Iterator.Element,
maxSplits: Int = Int.max,
omittingEmptySubsequences: Bool = true
) -> [SubSequence] {
return split(
maxSplits: maxSplits,
omittingEmptySubsequences: omittingEmptySubsequences,
isSeparator: { $0 == separator })
}
}
extension Collection where Index : BidirectionalIndex {
/// Returns a subsequence containing all but the last `n` elements.
///
/// - Precondition: `n >= 0`
/// - Complexity: O(`n`)
@warn_unused_result
public func dropLast(n: Int) -> SubSequence {
_precondition(
n >= 0, "Can't drop a negative number of elements from a collection")
let end = endIndex.advanced(by: numericCast(-n), limit: startIndex)
return self[startIndex..<end]
}
/// Returns a slice, up to `maxLength` in length, containing the
/// final elements of `self`.
///
/// If `maxLength` exceeds `s.count`, the result contains all
/// the elements of `self`.
///
/// - Precondition: `maxLength >= 0`
/// - Complexity: O(`maxLength`)
@warn_unused_result
public func suffix(maxLength: Int) -> SubSequence {
_precondition(
maxLength >= 0,
"Can't take a suffix of negative length from a collection")
let start = endIndex.advanced(by: numericCast(-maxLength), limit: startIndex)
return self[start..<endIndex]
}
}
extension Collection where SubSequence == Self {
/// Remove the element at `startIndex` and return it.
///
/// - Complexity: O(1)
/// - Precondition: `!self.isEmpty`.
public mutating func removeFirst() -> Iterator.Element {
_precondition(!isEmpty, "can't remove items from an empty collection")
let element = first!
self = self[startIndex.successor()..<endIndex]
return element
}
/// Remove the first `n` elements.
///
/// - Complexity:
/// - O(1) if `Index` conforms to `RandomAccessIndex`
/// - O(n) otherwise
/// - Precondition: `n >= 0 && self.count >= n`.
public mutating func removeFirst(n: Int) {
if n == 0 { return }
_precondition(n >= 0, "number of elements to remove should be non-negative")
_precondition(count >= numericCast(n),
"can't remove more items from a collection than it contains")
self = self[startIndex.advanced(by: numericCast(n))..<endIndex]
}
}
extension Collection
where
SubSequence == Self,
Index : BidirectionalIndex {
/// Remove an element from the end.
///
/// - Complexity: O(1)
/// - Precondition: `!self.isEmpty`
public mutating func removeLast() -> Iterator.Element {
let element = last!
self = self[startIndex..<endIndex.predecessor()]
return element
}
/// Remove the last `n` elements.
///
/// - Complexity:
/// - O(1) if `Index` conforms to `RandomAccessIndex`
/// - O(n) otherwise
/// - Precondition: `n >= 0 && self.count >= n`.
public mutating func removeLast(n: Int) {
if n == 0 { return }
_precondition(n >= 0, "number of elements to remove should be non-negative")
_precondition(count >= numericCast(n),
"can't remove more items from a collection than it contains")
self = self[startIndex..<endIndex.advanced(by: numericCast(-n))]
}
}
extension Sequence
where Self : _ArrayProtocol, Self.Element == Self.Iterator.Element {
// A fast implementation for when you are backed by a contiguous array.
public func _initializeTo(ptr: UnsafeMutablePointer<Iterator.Element>)
-> UnsafeMutablePointer<Iterator.Element> {
let s = self._baseAddressIfContiguous
if s != nil {
let count = self.count
ptr.initializeFrom(s, count: count)
_fixLifetime(self._owner)
return ptr + count
} else {
var p = ptr
for x in self {
p.initializePointee(x)
p += 1
}
return p
}
}
}
extension Collection {
public func _preprocessingPass<R>(@noescape preprocess: () -> R) -> R? {
return preprocess()
}
}
/// A *collection* that supports subscript assignment.
///
/// For any instance `a` of a type conforming to
/// `MutableCollection`, :
///
/// a[i] = x
/// let y = a[i]
///
/// is equivalent to:
///
/// a[i] = x
/// let y = x
///
public protocol MutableCollection : MutableIndexable, Collection {
// FIXME: should be constrained to MutableCollection
// (<rdar://problem/20715009> Implement recursive protocol
// constraints)
associatedtype SubSequence : Collection /*: MutableCollection*/
= MutableSlice<Self>
/// Access the element at `position`.
///
/// - Precondition: `position` indicates a valid position in `self` and
/// `position != endIndex`.
///
/// - Complexity: O(1)
subscript(position: Index) -> Iterator.Element {get set}
/// Returns a collection representing a contiguous sub-range of
/// `self`'s elements.
///
/// - Complexity: O(1) for the getter, O(`bounds.count`) for the setter.
subscript(bounds: Range<Index>) -> SubSequence {get set}
/// Call `body(p)`, where `p` is a pointer to the collection's
/// mutable contiguous storage. If no such storage exists, it is
/// first created. If the collection does not support an internal
/// representation in a form of mutable contiguous storage, `body` is not
/// called and `nil` is returned.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks
/// within an algorithm, but when that fails, invoking the
/// same algorithm on `body`\ 's argument lets you trade safety for
/// speed.
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
@noescape body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
) rethrows -> R?
// FIXME: the signature should use UnsafeMutableBufferPointer, but the
// compiler can't handle that.
//
// <rdar://problem/21933004> Restore the signature of
// _withUnsafeMutableBufferPointerIfSupported() that mentions
// UnsafeMutableBufferPointer
}
extension MutableCollection {
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
@noescape body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
) rethrows -> R? {
return nil
}
public subscript(bounds: Range<Index>) -> MutableSlice<Self> {
get {
Index._failEarlyRangeCheck2(
rangeStart: bounds.startIndex,
rangeEnd: bounds.endIndex,
boundsStart: startIndex,
boundsEnd: endIndex)
return MutableSlice(_base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
}
internal func _writeBackMutableSlice<
C : MutableCollection,
Slice_ : Collection
where
C._Element == Slice_.Iterator.Element,
C.Index == Slice_.Index
>(inout self_: C, bounds: Range<C.Index>, slice: Slice_) {
C.Index._failEarlyRangeCheck2(
rangeStart: bounds.startIndex,
rangeEnd: bounds.endIndex,
boundsStart: self_.startIndex,
boundsEnd: self_.endIndex)
// FIXME(performance): can we use
// _withUnsafeMutableBufferPointerIfSupported? Would that create inout
// aliasing violations if the newValue points to the same buffer?
var selfElementIndex = bounds.startIndex
let selfElementsEndIndex = bounds.endIndex
var newElementIndex = slice.startIndex
let newElementsEndIndex = slice.endIndex
while selfElementIndex != selfElementsEndIndex &&
newElementIndex != newElementsEndIndex {
self_[selfElementIndex] = slice[newElementIndex]
selfElementIndex._successorInPlace()
newElementIndex._successorInPlace()
}
_precondition(
selfElementIndex == selfElementsEndIndex,
"Cannot replace a slice of a MutableCollection with a slice of a larger size")
_precondition(
newElementIndex == newElementsEndIndex,
"Cannot replace a slice of a MutableCollection with a slice of a smaller size")
}
@available(*, unavailable, message="Bit enum has been deprecated. Please use Int instead.")
public enum Bit {}
@available(*, unavailable, renamed="IndexingIterator")
public struct IndexingGenerator<Elements : Indexable> {}
@available(*, unavailable, renamed="Collection")
public typealias CollectionType = Collection
extension Collection {
@available(*, unavailable, renamed="Iterator")
public typealias Generator = Iterator
@available(*, unavailable, renamed="iterator")
public func generate() -> Iterator {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, message="Removed in Swift 3. Please use underestimatedCount peoperty.")
public func underestimateCount() -> Int {
fatalError("unavailable function can't be called")
}
@available(*, unavailable, message="Please use split(_:omittingEmptySubsequences:isSeparator:) instead")
public func split(
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false,
@noescape isSeparator: (Iterator.Element) throws -> Bool
) rethrows -> [SubSequence] {
fatalError("unavailable function can't be called")
}
}
extension Collection where Iterator.Element : Equatable {
@available(*, unavailable, message="Please use split(separator:maxSplits:omittingEmptySubsequences:) instead")
public func split(
separator: Iterator.Element,
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false
) -> [SubSequence] {
fatalError("unavailable function can't be called")
}
}
@available(*, unavailable, renamed="MutableCollection")
public typealias MutableCollectionType = MutableCollection
@available(*, unavailable, message="PermutationGenerator has been removed in Swift 3")
public struct PermutationGenerator<C : Collection, Indices : Sequence> {}
@available(*, unavailable, message="Please use 'Collection where SubSequence : MutableCollection'")
public typealias MutableSliceable = Collection