mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
- `separator` label for first argument of `split` - `join` and related types are renamed to `joined`
784 lines
25 KiB
Swift
784 lines
25 KiB
Swift
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A type that provides subscript access to its elements.
|
|
///
|
|
/// - Important: In most cases, it's best to ignore this protocol and use
|
|
/// `CollectionType` instead, as it has a more complete interface.
|
|
public protocol Indexable {
|
|
// This protocol is almost an implementation detail of the standard
|
|
// library; it is used to deduce things like the `SubSequence` and
|
|
// `Iterator` type from a minimal collection, but it is also used in
|
|
// exposed places like as a constraint on `IndexingIterator`.
|
|
|
|
/// A type that represents a valid position in the collection.
|
|
///
|
|
/// Valid indices consist of the position of every element and a
|
|
/// "past the end" position that's not valid for use as a subscript.
|
|
associatedtype Index : ForwardIndex
|
|
|
|
/// The position of the first element in a non-empty collection.
|
|
///
|
|
/// In an empty collection, `startIndex == endIndex`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
var startIndex: Index { get }
|
|
|
|
/// The collection's "past the end" position.
|
|
///
|
|
/// `endIndex` is not a valid argument to `subscript`, and is always
|
|
/// reachable from `startIndex` by zero or more applications of
|
|
/// `successor()`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
var endIndex: Index { get }
|
|
|
|
// The declaration of _Element and subscript here is a trick used to
|
|
// break a cyclic conformance/deduction that Swift can't handle. We
|
|
// need something other than a Collection.Iterator.Element that can
|
|
// be used as IndexingIterator<T>'s Element. Here we arrange for
|
|
// the Collection itself to have an Element type that's deducible from
|
|
// its subscript. Ideally we'd like to constrain this Element to be the same
|
|
// as Collection.Iterator.Element (see below), but we have no way of
|
|
// expressing it today.
|
|
associatedtype _Element
|
|
|
|
/// Returns the element at the given `position`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(position: Index) -> _Element { get }
|
|
}
|
|
|
|
/// A type that supports subscript assignment to a mutable collection.
|
|
public protocol MutableIndexable {
|
|
associatedtype Index : ForwardIndex
|
|
|
|
var startIndex: Index { get }
|
|
var endIndex: Index { get }
|
|
|
|
associatedtype _Element
|
|
|
|
subscript(position: Index) -> _Element { get set }
|
|
}
|
|
|
|
/// The iterator used for collections that don't specify one.
|
|
public struct IndexingIterator<Elements : Indexable>
|
|
: IteratorProtocol, Sequence {
|
|
|
|
/// Create an *iterator* over the given collection.
|
|
public /// @testable
|
|
init(_elements: Elements) {
|
|
self._elements = _elements
|
|
self._position = _elements.startIndex
|
|
}
|
|
|
|
/// Advance to the next element and return it, or `nil` if no next
|
|
/// element exists.
|
|
///
|
|
/// - Precondition: No preceding call to `self.next()` has returned `nil`.
|
|
public mutating func next() -> Elements._Element? {
|
|
if _position == _elements.endIndex { return nil }
|
|
let element = _elements[_position]
|
|
_position._successorInPlace()
|
|
return element
|
|
}
|
|
|
|
internal let _elements: Elements
|
|
internal var _position: Elements.Index
|
|
}
|
|
|
|
/// A multi-pass sequence with addressable positions.
|
|
///
|
|
/// Positions are represented by an associated `Index` type. Whereas
|
|
/// an arbitrary sequence may be consumed as it is traversed, a
|
|
/// collection is multi-pass: any element may be revisited merely by
|
|
/// saving its index.
|
|
///
|
|
/// The sequence view of the elements is identical to the collection
|
|
/// view. In other words, the following code binds the same series of
|
|
/// values to `x` as does `for x in self {}`:
|
|
///
|
|
/// for i in startIndex..<endIndex {
|
|
/// let x = self[i]
|
|
/// }
|
|
public protocol Collection : Indexable, Sequence {
|
|
/// A type that provides the sequence's iteration interface and
|
|
/// encapsulates its iteration state.
|
|
///
|
|
/// By default, a `Collection` satisfies `Sequence` by
|
|
/// supplying a `IndexingIterator` as its associated `Iterator`
|
|
/// type.
|
|
associatedtype Iterator : IteratorProtocol = IndexingIterator<Self>
|
|
|
|
// FIXME: Needed here so that the Iterator is properly deduced from
|
|
// a custom iterator() function. Otherwise we get an
|
|
// IndexingIterator. <rdar://problem/21539115>
|
|
func iterator() -> Iterator
|
|
|
|
// FIXME: should be constrained to Collection
|
|
// (<rdar://problem/20715009> Implement recursive protocol
|
|
// constraints)
|
|
|
|
/// A `Sequence` that can represent a contiguous subrange of `self`'s
|
|
/// elements.
|
|
///
|
|
/// - Note: This associated type appears as a requirement in
|
|
/// `Sequence`, but is restated here with stricter
|
|
/// constraints: in a `Collection`, the `SubSequence` should
|
|
/// also be a `Collection`.
|
|
associatedtype SubSequence : Indexable, Sequence = Slice<Self>
|
|
|
|
/// Returns the element at the given `position`.
|
|
subscript(position: Index) -> Iterator.Element { get }
|
|
|
|
/// Returns a collection representing a contiguous sub-range of
|
|
/// `self`'s elements.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(bounds: Range<Index>) -> SubSequence { get }
|
|
|
|
/// Returns `self[startIndex..<end]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func prefix(upTo end: Index) -> SubSequence
|
|
|
|
/// Returns `self[start..<endIndex]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func suffix(from start: Index) -> SubSequence
|
|
|
|
/// Returns `prefix(upTo: position.successor())`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
func prefix(through position: Index) -> SubSequence
|
|
|
|
/// Returns `true` iff `self` is empty.
|
|
var isEmpty: Bool { get }
|
|
|
|
/// Returns the number of elements.
|
|
///
|
|
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
|
|
/// O(N) otherwise.
|
|
var count: Index.Distance { get }
|
|
|
|
// The following requirement enables dispatching for indexOf when
|
|
// the element type is Equatable.
|
|
|
|
/// Returns `Optional(Optional(index))` if an element was found;
|
|
/// `nil` otherwise.
|
|
///
|
|
/// - Complexity: O(N).
|
|
@warn_unused_result
|
|
func _customIndexOfEquatableElement(element: Iterator.Element) -> Index??
|
|
|
|
/// Returns the first element of `self`, or `nil` if `self` is empty.
|
|
var first: Iterator.Element? { get }
|
|
}
|
|
|
|
/// Supply the default `iterator()` method for `Collection` models
|
|
/// that accept the default associated `Iterator`,
|
|
/// `IndexingIterator<Self>`.
|
|
extension Collection where Iterator == IndexingIterator<Self> {
|
|
public func iterator() -> IndexingIterator<Self> {
|
|
return IndexingIterator(_elements: self)
|
|
}
|
|
}
|
|
|
|
/// Supply the default "slicing" `subscript` for `Collection` models
|
|
/// that accept the default associated `SubSequence`, `Slice<Self>`.
|
|
extension Collection where SubSequence == Slice<Self> {
|
|
public subscript(bounds: Range<Index>) -> Slice<Self> {
|
|
Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: startIndex,
|
|
boundsEnd: endIndex)
|
|
return Slice(_base: self, bounds: bounds)
|
|
}
|
|
}
|
|
|
|
extension Collection where SubSequence == Self {
|
|
/// If `!self.isEmpty`, remove the first element and return it, otherwise
|
|
/// return `nil`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public mutating func popFirst() -> Iterator.Element? {
|
|
guard !isEmpty else { return nil }
|
|
let element = first!
|
|
self = self[startIndex.successor()..<endIndex]
|
|
return element
|
|
}
|
|
}
|
|
|
|
extension Collection where
|
|
SubSequence == Self, Index : BidirectionalIndex {
|
|
/// If `!self.isEmpty`, remove the last element and return it, otherwise
|
|
/// return `nil`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public mutating func popLast() -> Iterator.Element? {
|
|
guard !isEmpty else { return nil }
|
|
let element = last!
|
|
self = self[startIndex..<endIndex.predecessor()]
|
|
return element
|
|
}
|
|
}
|
|
|
|
/// Default implementations of core requirements
|
|
extension Collection {
|
|
/// Returns `true` iff `self` is empty.
|
|
///
|
|
/// - Complexity: O(1)
|
|
public var isEmpty: Bool {
|
|
return startIndex == endIndex
|
|
}
|
|
|
|
/// Returns the first element of `self`, or `nil` if `self` is empty.
|
|
///
|
|
/// - Complexity: O(1)
|
|
public var first: Iterator.Element? {
|
|
// NB: Accessing `startIndex` may not be O(1) for some lazy collections,
|
|
// so instead of testing `isEmpty` and then returning the first element,
|
|
// we'll just rely on the fact that the generator always yields the
|
|
// first element first.
|
|
var i = iterator()
|
|
return i.next()
|
|
}
|
|
|
|
/// Returns a value less than or equal to the number of elements in
|
|
/// `self`, *nondestructively*.
|
|
///
|
|
/// - Complexity: O(`count`).
|
|
public var underestimatedCount: Int {
|
|
return numericCast(count)
|
|
}
|
|
|
|
/// Returns the number of elements.
|
|
///
|
|
/// - Complexity: O(1) if `Index` conforms to `RandomAccessIndex`;
|
|
/// O(N) otherwise.
|
|
public var count: Index.Distance {
|
|
return startIndex.distance(to: endIndex)
|
|
}
|
|
|
|
/// Customization point for `Sequence.indexOf()`.
|
|
///
|
|
/// Define this method if the collection can find an element in less than
|
|
/// O(N) by exploiting collection-specific knowledge.
|
|
///
|
|
/// - Returns: `nil` if a linear search should be attempted instead,
|
|
/// `Optional(nil)` if the element was not found, or
|
|
/// `Optional(Optional(index))` if an element was found.
|
|
///
|
|
/// - Complexity: O(`count`).
|
|
@warn_unused_result
|
|
public // dispatching
|
|
func _customIndexOfEquatableElement(_: Iterator.Element) -> Index?? {
|
|
return nil
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Default implementations for Collection
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
extension Collection {
|
|
/// Returns an `Array` containing the results of mapping `transform`
|
|
/// over `self`.
|
|
///
|
|
/// - Complexity: O(N).
|
|
@warn_unused_result
|
|
public func map<T>(
|
|
@noescape transform: (Iterator.Element) throws -> T
|
|
) rethrows -> [T] {
|
|
let count: Int = numericCast(self.count)
|
|
if count == 0 {
|
|
return []
|
|
}
|
|
|
|
var result = ContiguousArray<T>()
|
|
result.reserveCapacity(count)
|
|
|
|
var i = self.startIndex
|
|
|
|
for _ in 0..<count {
|
|
result.append(try transform(self[i]))
|
|
i = i.successor()
|
|
}
|
|
|
|
_expectEnd(i, self)
|
|
return Array(result)
|
|
}
|
|
|
|
/// Returns a subsequence containing all but the first `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`n`)
|
|
@warn_unused_result
|
|
public func dropFirst(n: Int) -> SubSequence {
|
|
_precondition(n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let start = startIndex.advanced(by: numericCast(n), limit: endIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns a subsequence containing all but the last `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`self.count`)
|
|
@warn_unused_result
|
|
public func dropLast(n: Int) -> SubSequence {
|
|
_precondition(
|
|
n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let amount = Swift.max(0, numericCast(count) - n)
|
|
let end = startIndex.advanced(by: numericCast(amount), limit: endIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a subsequence, up to `maxLength` in length, containing the
|
|
/// initial elements.
|
|
///
|
|
/// If `maxLength` exceeds `self.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`maxLength`)
|
|
@warn_unused_result
|
|
public func prefix(maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a prefix of negative length from a collection")
|
|
let end = startIndex.advanced(by: numericCast(maxLength), limit: endIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a slice, up to `maxLength` in length, containing the
|
|
/// final elements of `self`.
|
|
///
|
|
/// If `maxLength` exceeds `s.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`self.count`)
|
|
@warn_unused_result
|
|
public func suffix(maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a suffix of negative length from a collection")
|
|
let amount = Swift.max(0, numericCast(count) - maxLength)
|
|
let start = startIndex.advanced(by: numericCast(amount), limit: endIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns `self[startIndex..<end]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func prefix(upTo end: Index) -> SubSequence {
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns `self[start..<endIndex]`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func suffix(from start: Index) -> SubSequence {
|
|
return self[start..<endIndex]
|
|
}
|
|
|
|
/// Returns `prefix(upTo: position.successor())`
|
|
///
|
|
/// - Complexity: O(1)
|
|
@warn_unused_result
|
|
public func prefix(through position: Index) -> SubSequence {
|
|
return prefix(upTo: position.successor())
|
|
}
|
|
|
|
/// Returns the maximal `SubSequence`s of `self`, in order, that
|
|
/// don't contain elements satisfying the predicate `isSeparator`.
|
|
///
|
|
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
|
|
/// return, minus 1.
|
|
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
|
|
/// a suffix of `self` containing *all* the elements of `self` following the
|
|
/// last split point.
|
|
/// The default value is `Int.max`.
|
|
///
|
|
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
|
|
/// is produced in the result for each pair of consecutive elements
|
|
/// satisfying `isSeparator`.
|
|
/// The default value is `true`.
|
|
///
|
|
/// - Precondition: `maxSplits >= 0`
|
|
@warn_unused_result
|
|
public func split(
|
|
maxSplits maxSplits: Int = Int.max,
|
|
omittingEmptySubsequences: Bool = true,
|
|
@noescape isSeparator: (Iterator.Element) throws -> Bool
|
|
) rethrows -> [SubSequence] {
|
|
_precondition(maxSplits >= 0, "Must take zero or more splits")
|
|
|
|
var result: [SubSequence] = []
|
|
var subSequenceStart: Index = startIndex
|
|
|
|
func appendSubsequence(end end: Index) -> Bool {
|
|
if subSequenceStart == end && omittingEmptySubsequences {
|
|
return false
|
|
}
|
|
result.append(self[subSequenceStart..<end])
|
|
return true
|
|
}
|
|
|
|
if maxSplits == 0 || isEmpty {
|
|
appendSubsequence(end: endIndex)
|
|
return result
|
|
}
|
|
|
|
var subSequenceEnd = subSequenceStart
|
|
let cachedEndIndex = endIndex
|
|
while subSequenceEnd != cachedEndIndex {
|
|
if try isSeparator(self[subSequenceEnd]) {
|
|
let didAppend = appendSubsequence(end: subSequenceEnd)
|
|
subSequenceEnd._successorInPlace()
|
|
subSequenceStart = subSequenceEnd
|
|
if didAppend && result.count == maxSplits {
|
|
break
|
|
}
|
|
continue
|
|
}
|
|
subSequenceEnd._successorInPlace()
|
|
}
|
|
|
|
if subSequenceStart != cachedEndIndex || !omittingEmptySubsequences {
|
|
result.append(self[subSequenceStart..<cachedEndIndex])
|
|
}
|
|
|
|
return result
|
|
}
|
|
}
|
|
|
|
extension Collection where Iterator.Element : Equatable {
|
|
/// Returns the maximal `SubSequence`s of `self`, in order, around a
|
|
/// `separator` element.
|
|
///
|
|
/// - Parameter maxSplits: The maximum number of `SubSequence`s to
|
|
/// return, minus 1.
|
|
/// If `maxSplits + 1` `SubSequence`s are returned, the last one is
|
|
/// a suffix of `self` containing *all* the elements of `self` following the
|
|
/// last split point.
|
|
/// The default value is `Int.max`.
|
|
///
|
|
/// - Parameter omittingEmptySubsequences: If `false`, an empty `SubSequence`
|
|
/// is produced in the result for each pair of consecutive elements
|
|
/// equal to `separator`.
|
|
/// The default value is `true`.
|
|
///
|
|
/// - Precondition: `maxSplits >= 0`
|
|
@warn_unused_result
|
|
public func split(
|
|
separator separator: Iterator.Element,
|
|
maxSplits: Int = Int.max,
|
|
omittingEmptySubsequences: Bool = true
|
|
) -> [SubSequence] {
|
|
return split(
|
|
maxSplits: maxSplits,
|
|
omittingEmptySubsequences: omittingEmptySubsequences,
|
|
isSeparator: { $0 == separator })
|
|
}
|
|
}
|
|
|
|
extension Collection where Index : BidirectionalIndex {
|
|
/// Returns a subsequence containing all but the last `n` elements.
|
|
///
|
|
/// - Precondition: `n >= 0`
|
|
/// - Complexity: O(`n`)
|
|
@warn_unused_result
|
|
public func dropLast(n: Int) -> SubSequence {
|
|
_precondition(
|
|
n >= 0, "Can't drop a negative number of elements from a collection")
|
|
let end = endIndex.advanced(by: numericCast(-n), limit: startIndex)
|
|
return self[startIndex..<end]
|
|
}
|
|
|
|
/// Returns a slice, up to `maxLength` in length, containing the
|
|
/// final elements of `self`.
|
|
///
|
|
/// If `maxLength` exceeds `s.count`, the result contains all
|
|
/// the elements of `self`.
|
|
///
|
|
/// - Precondition: `maxLength >= 0`
|
|
/// - Complexity: O(`maxLength`)
|
|
@warn_unused_result
|
|
public func suffix(maxLength: Int) -> SubSequence {
|
|
_precondition(
|
|
maxLength >= 0,
|
|
"Can't take a suffix of negative length from a collection")
|
|
let start = endIndex.advanced(by: numericCast(-maxLength), limit: startIndex)
|
|
return self[start..<endIndex]
|
|
}
|
|
}
|
|
|
|
extension Collection where SubSequence == Self {
|
|
/// Remove the element at `startIndex` and return it.
|
|
///
|
|
/// - Complexity: O(1)
|
|
/// - Precondition: `!self.isEmpty`.
|
|
public mutating func removeFirst() -> Iterator.Element {
|
|
_precondition(!isEmpty, "can't remove items from an empty collection")
|
|
let element = first!
|
|
self = self[startIndex.successor()..<endIndex]
|
|
return element
|
|
}
|
|
|
|
/// Remove the first `n` elements.
|
|
///
|
|
/// - Complexity:
|
|
/// - O(1) if `Index` conforms to `RandomAccessIndex`
|
|
/// - O(n) otherwise
|
|
/// - Precondition: `n >= 0 && self.count >= n`.
|
|
public mutating func removeFirst(n: Int) {
|
|
if n == 0 { return }
|
|
_precondition(n >= 0, "number of elements to remove should be non-negative")
|
|
_precondition(count >= numericCast(n),
|
|
"can't remove more items from a collection than it contains")
|
|
self = self[startIndex.advanced(by: numericCast(n))..<endIndex]
|
|
}
|
|
}
|
|
|
|
extension Collection
|
|
where
|
|
SubSequence == Self,
|
|
Index : BidirectionalIndex {
|
|
|
|
/// Remove an element from the end.
|
|
///
|
|
/// - Complexity: O(1)
|
|
/// - Precondition: `!self.isEmpty`
|
|
public mutating func removeLast() -> Iterator.Element {
|
|
let element = last!
|
|
self = self[startIndex..<endIndex.predecessor()]
|
|
return element
|
|
}
|
|
|
|
/// Remove the last `n` elements.
|
|
///
|
|
/// - Complexity:
|
|
/// - O(1) if `Index` conforms to `RandomAccessIndex`
|
|
/// - O(n) otherwise
|
|
/// - Precondition: `n >= 0 && self.count >= n`.
|
|
public mutating func removeLast(n: Int) {
|
|
if n == 0 { return }
|
|
_precondition(n >= 0, "number of elements to remove should be non-negative")
|
|
_precondition(count >= numericCast(n),
|
|
"can't remove more items from a collection than it contains")
|
|
self = self[startIndex..<endIndex.advanced(by: numericCast(-n))]
|
|
}
|
|
}
|
|
|
|
extension Sequence
|
|
where Self : _ArrayProtocol, Self.Element == Self.Iterator.Element {
|
|
// A fast implementation for when you are backed by a contiguous array.
|
|
public func _initializeTo(ptr: UnsafeMutablePointer<Iterator.Element>)
|
|
-> UnsafeMutablePointer<Iterator.Element> {
|
|
let s = self._baseAddressIfContiguous
|
|
if s != nil {
|
|
let count = self.count
|
|
ptr.initializeFrom(s, count: count)
|
|
_fixLifetime(self._owner)
|
|
return ptr + count
|
|
} else {
|
|
var p = ptr
|
|
for x in self {
|
|
p.initializePointee(x)
|
|
p += 1
|
|
}
|
|
return p
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Collection {
|
|
public func _preprocessingPass<R>(@noescape preprocess: () -> R) -> R? {
|
|
return preprocess()
|
|
}
|
|
}
|
|
|
|
/// A *collection* that supports subscript assignment.
|
|
///
|
|
/// For any instance `a` of a type conforming to
|
|
/// `MutableCollection`, :
|
|
///
|
|
/// a[i] = x
|
|
/// let y = a[i]
|
|
///
|
|
/// is equivalent to:
|
|
///
|
|
/// a[i] = x
|
|
/// let y = x
|
|
///
|
|
public protocol MutableCollection : MutableIndexable, Collection {
|
|
// FIXME: should be constrained to MutableCollection
|
|
// (<rdar://problem/20715009> Implement recursive protocol
|
|
// constraints)
|
|
associatedtype SubSequence : Collection /*: MutableCollection*/
|
|
= MutableSlice<Self>
|
|
|
|
/// Access the element at `position`.
|
|
///
|
|
/// - Precondition: `position` indicates a valid position in `self` and
|
|
/// `position != endIndex`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
subscript(position: Index) -> Iterator.Element {get set}
|
|
|
|
/// Returns a collection representing a contiguous sub-range of
|
|
/// `self`'s elements.
|
|
///
|
|
/// - Complexity: O(1) for the getter, O(`bounds.count`) for the setter.
|
|
subscript(bounds: Range<Index>) -> SubSequence {get set}
|
|
|
|
/// Call `body(p)`, where `p` is a pointer to the collection's
|
|
/// mutable contiguous storage. If no such storage exists, it is
|
|
/// first created. If the collection does not support an internal
|
|
/// representation in a form of mutable contiguous storage, `body` is not
|
|
/// called and `nil` is returned.
|
|
///
|
|
/// Often, the optimizer can eliminate bounds- and uniqueness-checks
|
|
/// within an algorithm, but when that fails, invoking the
|
|
/// same algorithm on `body`\ 's argument lets you trade safety for
|
|
/// speed.
|
|
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
|
|
@noescape body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
|
|
) rethrows -> R?
|
|
// FIXME: the signature should use UnsafeMutableBufferPointer, but the
|
|
// compiler can't handle that.
|
|
//
|
|
// <rdar://problem/21933004> Restore the signature of
|
|
// _withUnsafeMutableBufferPointerIfSupported() that mentions
|
|
// UnsafeMutableBufferPointer
|
|
}
|
|
|
|
extension MutableCollection {
|
|
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
|
|
@noescape body: (UnsafeMutablePointer<Iterator.Element>, Int) throws -> R
|
|
) rethrows -> R? {
|
|
return nil
|
|
}
|
|
|
|
public subscript(bounds: Range<Index>) -> MutableSlice<Self> {
|
|
get {
|
|
Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: startIndex,
|
|
boundsEnd: endIndex)
|
|
return MutableSlice(_base: self, bounds: bounds)
|
|
}
|
|
set {
|
|
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
|
|
}
|
|
}
|
|
}
|
|
|
|
internal func _writeBackMutableSlice<
|
|
C : MutableCollection,
|
|
Slice_ : Collection
|
|
where
|
|
C._Element == Slice_.Iterator.Element,
|
|
C.Index == Slice_.Index
|
|
>(inout self_: C, bounds: Range<C.Index>, slice: Slice_) {
|
|
C.Index._failEarlyRangeCheck2(
|
|
rangeStart: bounds.startIndex,
|
|
rangeEnd: bounds.endIndex,
|
|
boundsStart: self_.startIndex,
|
|
boundsEnd: self_.endIndex)
|
|
// FIXME(performance): can we use
|
|
// _withUnsafeMutableBufferPointerIfSupported? Would that create inout
|
|
// aliasing violations if the newValue points to the same buffer?
|
|
|
|
var selfElementIndex = bounds.startIndex
|
|
let selfElementsEndIndex = bounds.endIndex
|
|
var newElementIndex = slice.startIndex
|
|
let newElementsEndIndex = slice.endIndex
|
|
|
|
while selfElementIndex != selfElementsEndIndex &&
|
|
newElementIndex != newElementsEndIndex {
|
|
|
|
self_[selfElementIndex] = slice[newElementIndex]
|
|
selfElementIndex._successorInPlace()
|
|
newElementIndex._successorInPlace()
|
|
}
|
|
|
|
_precondition(
|
|
selfElementIndex == selfElementsEndIndex,
|
|
"Cannot replace a slice of a MutableCollection with a slice of a larger size")
|
|
_precondition(
|
|
newElementIndex == newElementsEndIndex,
|
|
"Cannot replace a slice of a MutableCollection with a slice of a smaller size")
|
|
}
|
|
|
|
@available(*, unavailable, message="Bit enum has been deprecated. Please use Int instead.")
|
|
public enum Bit {}
|
|
|
|
@available(*, unavailable, renamed="IndexingIterator")
|
|
public struct IndexingGenerator<Elements : Indexable> {}
|
|
|
|
@available(*, unavailable, renamed="Collection")
|
|
public typealias CollectionType = Collection
|
|
|
|
extension Collection {
|
|
@available(*, unavailable, renamed="Iterator")
|
|
public typealias Generator = Iterator
|
|
|
|
@available(*, unavailable, renamed="iterator")
|
|
public func generate() -> Iterator {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
|
|
@available(*, unavailable, message="Removed in Swift 3. Please use underestimatedCount peoperty.")
|
|
public func underestimateCount() -> Int {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
|
|
@available(*, unavailable, message="Please use split(_:omittingEmptySubsequences:isSeparator:) instead")
|
|
public func split(
|
|
maxSplit: Int = Int.max,
|
|
allowEmptySlices: Bool = false,
|
|
@noescape isSeparator: (Iterator.Element) throws -> Bool
|
|
) rethrows -> [SubSequence] {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
}
|
|
|
|
extension Collection where Iterator.Element : Equatable {
|
|
@available(*, unavailable, message="Please use split(separator:maxSplits:omittingEmptySubsequences:) instead")
|
|
public func split(
|
|
separator: Iterator.Element,
|
|
maxSplit: Int = Int.max,
|
|
allowEmptySlices: Bool = false
|
|
) -> [SubSequence] {
|
|
fatalError("unavailable function can't be called")
|
|
}
|
|
}
|
|
@available(*, unavailable, renamed="MutableCollection")
|
|
public typealias MutableCollectionType = MutableCollection
|
|
|
|
@available(*, unavailable, message="PermutationGenerator has been removed in Swift 3")
|
|
public struct PermutationGenerator<C : Collection, Indices : Sequence> {}
|
|
|
|
@available(*, unavailable, message="Please use 'Collection where SubSequence : MutableCollection'")
|
|
public typealias MutableSliceable = Collection
|