mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
unconditional_dynamic_cast_addr instruction. Also, fix some major semantic problems with the existing specialization of unconditional dynamic casts by handling optional types and being much more conservative about deciding that a cast is infeasible. This commit regresses specialization slightly by failing to turn indirect dynamic casts into scalar ones when possible; we can fix that easily enough in a follow-up. Swift SVN r19044
1317 lines
49 KiB
C++
1317 lines
49 KiB
C++
//===--- SILGenLValue.cpp - Constructs logical lvalues for SILGen ---------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Emission of l-value expressions and basic operations on them.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#include "SILGen.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "Scope.h"
|
|
#include "Initialization.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/DiagnosticsCommon.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "ASTVisitor.h"
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// A pending writeback.
|
|
namespace swift {
|
|
namespace Lowering {
|
|
|
|
|
|
/// Materialize - Represents a temporary allocation.
|
|
struct LLVM_LIBRARY_VISIBILITY Materialize {
|
|
/// The address of the allocation.
|
|
SILValue address;
|
|
|
|
/// The cleanup to dispose of the value before deallocating the buffer.
|
|
/// This cleanup can be killed by calling the consume method.
|
|
CleanupHandle valueCleanup;
|
|
|
|
/// Load and claim ownership of the value in the buffer. Does not deallocate
|
|
/// the buffer.
|
|
ManagedValue claim(SILGenFunction &gen, SILLocation loc);
|
|
};
|
|
|
|
|
|
struct LLVM_LIBRARY_VISIBILITY LValueWriteback {
|
|
SILLocation loc;
|
|
std::unique_ptr<LogicalPathComponent> component;
|
|
ManagedValue base;
|
|
Materialize temp;
|
|
|
|
~LValueWriteback() {}
|
|
LValueWriteback(LValueWriteback&&) = default;
|
|
LValueWriteback &operator=(LValueWriteback&&) = default;
|
|
|
|
LValueWriteback() = default;
|
|
LValueWriteback(SILLocation loc, std::unique_ptr<LogicalPathComponent> &&comp,
|
|
ManagedValue base, Materialize temp)
|
|
: loc(loc), component(std::move(comp)), base(base), temp(temp) {
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
std::vector<LValueWriteback> &SILGenFunction::getWritebackStack() {
|
|
if (!WritebackStack)
|
|
WritebackStack = new std::vector<LValueWriteback>();
|
|
|
|
return *WritebackStack;
|
|
}
|
|
|
|
void SILGenFunction::freeWritebackStack() {
|
|
delete WritebackStack;
|
|
}
|
|
|
|
Materialize SILGenFunction::emitMaterialize(SILLocation loc, ManagedValue v) {
|
|
// Address-only values are already materialized.
|
|
if (v.getType().isAddress()) {
|
|
assert(v.getType().isAddressOnly(SGM.M) && "can't materialize an l-value");
|
|
return Materialize{v.getValue(), v.getCleanup()};
|
|
}
|
|
|
|
assert(!v.isLValue() && "materializing a non-address-only lvalue?!");
|
|
auto &lowering = getTypeLowering(v.getType().getSwiftType());
|
|
|
|
// We don't use getBufferForExprResult here because the result of a
|
|
// materialization is *not* the value, but an address of the value.
|
|
SILValue tmpMem = emitTemporaryAllocation(loc, v.getType());
|
|
v.forwardInto(*this, loc, tmpMem);
|
|
|
|
CleanupHandle valueCleanup = CleanupHandle::invalid();
|
|
if (!lowering.isTrivial())
|
|
valueCleanup = enterDestroyCleanup(tmpMem);
|
|
|
|
return Materialize{tmpMem, valueCleanup};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static CanType getSubstFormalRValueType(Expr *expr) {
|
|
return expr->getType()->getRValueType()->getCanonicalType();
|
|
}
|
|
|
|
static AbstractionPattern getOrigFormalRValueType(Type formalStorageType) {
|
|
auto type =
|
|
formalStorageType->getReferenceStorageReferent()->getCanonicalType();
|
|
return AbstractionPattern(type);
|
|
}
|
|
|
|
/// Return the LValueTypeData for the formal type of a declaration
|
|
/// that needs no substitutions.
|
|
static LValueTypeData getUnsubstitutedTypeData(SILGenFunction &gen,
|
|
CanType formalRValueType) {
|
|
return {
|
|
AbstractionPattern(formalRValueType),
|
|
formalRValueType,
|
|
gen.getLoweredType(formalRValueType),
|
|
};
|
|
}
|
|
|
|
static LValueTypeData getMemberTypeData(SILGenFunction &gen,
|
|
Type memberStorageType,
|
|
Expr *lvalueExpr) {
|
|
auto origFormalType = getOrigFormalRValueType(memberStorageType);
|
|
auto substFormalType = getSubstFormalRValueType(lvalueExpr);
|
|
return {
|
|
origFormalType,
|
|
substFormalType,
|
|
gen.getLoweredType(origFormalType, substFormalType)
|
|
};
|
|
}
|
|
|
|
/// SILGenLValue - An ASTVisitor for building logical lvalues.
|
|
class LLVM_LIBRARY_VISIBILITY SILGenLValue
|
|
: public Lowering::ExprVisitor<SILGenLValue, LValue>
|
|
{
|
|
public:
|
|
SILGenFunction &gen;
|
|
SILGenLValue(SILGenFunction &gen) : gen(gen) {}
|
|
|
|
LValue visitRec(Expr *e);
|
|
|
|
/// Dummy handler to log unimplemented nodes.
|
|
LValue visitExpr(Expr *e);
|
|
|
|
// Nodes that form the root of lvalue paths
|
|
LValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *e);
|
|
LValue visitDeclRefExpr(DeclRefExpr *e);
|
|
|
|
// Nodes that make up components of lvalue paths
|
|
|
|
LValue visitMemberRefExpr(MemberRefExpr *e);
|
|
LValue visitSubscriptExpr(SubscriptExpr *e);
|
|
LValue visitTupleElementExpr(TupleElementExpr *e);
|
|
LValue visitLValueConversionExpr(LValueConversionExpr *e);
|
|
|
|
// Expressions that wrap lvalues
|
|
|
|
LValue visitInOutExpr(InOutExpr *e);
|
|
LValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *e);
|
|
};
|
|
|
|
SILValue LogicalPathComponent::getMaterialized(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue base) const {
|
|
// If the writeback is disabled, just emit a load into a temporary memory
|
|
// location.
|
|
if (!gen.InWritebackScope) {
|
|
ManagedValue value = get(gen, loc, base, SGFContext());
|
|
return gen.emitMaterialize(loc, value).address;
|
|
}
|
|
|
|
// Otherwise, we need to emit a get and set. The get operation will consume
|
|
// the base's +1, so copy the base for the setter.
|
|
ManagedValue getterBase = base;
|
|
if (base && base.hasCleanup())
|
|
getterBase = base.copy(gen, loc);
|
|
|
|
ManagedValue value = get(gen, loc, getterBase, SGFContext());
|
|
Materialize temp = gen.emitMaterialize(loc, value);
|
|
|
|
gen.getWritebackStack().emplace_back(loc, clone(gen, loc), base, temp);
|
|
return temp.address;
|
|
}
|
|
|
|
ManagedValue Materialize::claim(SILGenFunction &gen, SILLocation loc) {
|
|
auto &addressTL = gen.getTypeLowering(address.getType());
|
|
if (addressTL.isAddressOnly()) {
|
|
// We can use the temporary as an address-only rvalue directly.
|
|
return ManagedValue(address, valueCleanup);
|
|
}
|
|
|
|
// A materialized temporary is always its own type-of-rvalue because
|
|
// we did a semantic load to produce it in the first place.
|
|
|
|
if (valueCleanup.isValid())
|
|
gen.Cleanups.setCleanupState(valueCleanup, CleanupState::Dead);
|
|
return gen.emitLoad(loc, address, addressTL, SGFContext(), IsTake);
|
|
}
|
|
|
|
WritebackScope::WritebackScope(SILGenFunction &g)
|
|
: gen(&g), wasInWritebackScope(g.InWritebackScope),
|
|
savedDepth(g.getWritebackStack().size())
|
|
{
|
|
// If we're in an inout conversion scope, disable nested writeback scopes.
|
|
if (g.InInOutConversionScope) {
|
|
gen = nullptr;
|
|
return;
|
|
}
|
|
g.InWritebackScope = true;
|
|
}
|
|
|
|
WritebackScope::~WritebackScope() {
|
|
if (!gen)
|
|
return;
|
|
|
|
gen->InWritebackScope = wasInWritebackScope;
|
|
auto i = gen->getWritebackStack().end(),
|
|
deepest = gen->getWritebackStack().begin() + savedDepth;
|
|
while (i-- > deepest) {
|
|
ManagedValue mv = i->temp.claim(*gen, i->loc);
|
|
auto formalTy = i->component->getSubstFormalType();
|
|
i->component->set(*gen, i->loc, RValue(*gen, i->loc, formalTy, mv),
|
|
i->base);
|
|
}
|
|
|
|
gen->getWritebackStack().erase(deepest, gen->getWritebackStack().end());
|
|
}
|
|
|
|
WritebackScope::WritebackScope(WritebackScope &&o)
|
|
: gen(o.gen),
|
|
wasInWritebackScope(o.wasInWritebackScope),
|
|
savedDepth(o.savedDepth)
|
|
{
|
|
o.gen = nullptr;
|
|
}
|
|
|
|
WritebackScope &WritebackScope::operator=(WritebackScope &&o) {
|
|
gen = o.gen;
|
|
wasInWritebackScope = o.wasInWritebackScope;
|
|
savedDepth = o.savedDepth;
|
|
o.gen = nullptr;
|
|
return *this;
|
|
}
|
|
|
|
InOutConversionScope::InOutConversionScope(SILGenFunction &gen)
|
|
: gen(gen)
|
|
{
|
|
assert(gen.InWritebackScope
|
|
&& "inout conversions should happen in writeback scopes");
|
|
assert(!gen.InInOutConversionScope
|
|
&& "inout conversions should not be nested");
|
|
gen.InInOutConversionScope = true;
|
|
}
|
|
|
|
InOutConversionScope::~InOutConversionScope() {
|
|
assert(gen.InInOutConversionScope && "already exited conversion scope?!");
|
|
gen.InInOutConversionScope = false;
|
|
}
|
|
|
|
void PathComponent::_anchor() {}
|
|
void PhysicalPathComponent::_anchor() {}
|
|
void LogicalPathComponent::_anchor() {}
|
|
|
|
/// Return the LValueTypeData for a value whose type is its own
|
|
/// lowering.
|
|
static LValueTypeData getValueTypeData(SILValue value) {
|
|
assert(value.getType().isObject() ||
|
|
value.getType().getSwiftRValueType()->isExistentialType() ||
|
|
value.getType().getSwiftRValueType()->is<ArchetypeType>());
|
|
return {
|
|
AbstractionPattern(value.getType().getSwiftRValueType()),
|
|
value.getType().getSwiftRValueType(),
|
|
value.getType()
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
class RefElementComponent : public PhysicalPathComponent {
|
|
VarDecl *Field;
|
|
SILType SubstFieldType;
|
|
public:
|
|
RefElementComponent(VarDecl *field, SILType substFieldType,
|
|
LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData),
|
|
Field(field), SubstFieldType(substFieldType) {}
|
|
|
|
ManagedValue offset(SILGenFunction &gen, SILLocation loc, ManagedValue base)
|
|
const override
|
|
{
|
|
assert(base.getType().isObject() &&
|
|
"base for ref element component must be an object");
|
|
assert(base.getType().hasReferenceSemantics() &&
|
|
"base for ref element component must be a reference type");
|
|
auto Res = gen.B.createRefElementAddr(loc, base.getValue(), Field,
|
|
SubstFieldType);
|
|
return ManagedValue::forLValue(Res);
|
|
}
|
|
};
|
|
|
|
class TupleElementComponent : public PhysicalPathComponent {
|
|
unsigned ElementIndex;
|
|
public:
|
|
TupleElementComponent(unsigned elementIndex, LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData), ElementIndex(elementIndex) {}
|
|
|
|
ManagedValue offset(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base) const override {
|
|
assert(base && "invalid value for element base");
|
|
auto Res = gen.B.createTupleElementAddr(loc, base.getUnmanagedValue(),
|
|
ElementIndex,
|
|
getTypeOfRValue().getAddressType());
|
|
return ManagedValue::forLValue(Res);
|
|
}
|
|
};
|
|
|
|
class StructElementComponent : public PhysicalPathComponent {
|
|
VarDecl *Field;
|
|
SILType SubstFieldType;
|
|
public:
|
|
StructElementComponent(VarDecl *field, SILType substFieldType,
|
|
LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData),
|
|
Field(field), SubstFieldType(substFieldType) {}
|
|
|
|
ManagedValue offset(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base) const override {
|
|
assert(base && "invalid value for element base");
|
|
auto Res = gen.B.createStructElementAddr(loc, base.getUnmanagedValue(),
|
|
Field, SubstFieldType);
|
|
return ManagedValue::forLValue(Res);
|
|
}
|
|
};
|
|
|
|
class ValueComponent : public PhysicalPathComponent {
|
|
ManagedValue Value;
|
|
public:
|
|
ValueComponent(ManagedValue value, LValueTypeData typeData) :
|
|
PhysicalPathComponent(typeData),
|
|
Value(value) {
|
|
}
|
|
|
|
ManagedValue offset(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base) const override {
|
|
assert(!base && "value component must be root of lvalue path");
|
|
return Value;
|
|
}
|
|
};
|
|
|
|
class GetterSetterComponent : public LogicalPathComponent {
|
|
// The VarDecl or SubscriptDecl being get/set.
|
|
AbstractStorageDecl *decl;
|
|
bool IsSuper;
|
|
std::vector<Substitution> substitutions;
|
|
Expr *subscriptIndexExpr;
|
|
mutable RValue origSubscripts;
|
|
|
|
struct AccessorArgs {
|
|
RValueSource base;
|
|
RValue subscripts;
|
|
};
|
|
|
|
/// Returns a tuple of RValues holding the accessor value, base (retained if
|
|
/// necessary), and subscript arguments, in that order.
|
|
AccessorArgs
|
|
prepareAccessorArgs(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, AbstractFunctionDecl *funcDecl) const
|
|
{
|
|
AccessorArgs result;
|
|
if (base)
|
|
result.base = gen.prepareAccessorBaseArg(loc, base, funcDecl);
|
|
|
|
if (subscriptIndexExpr) {
|
|
if (!origSubscripts)
|
|
origSubscripts = gen.emitRValue(subscriptIndexExpr);
|
|
// TODO: use the subscript expression as the source if we're
|
|
// only using this l-value once.
|
|
result.subscripts = origSubscripts.copy(gen, loc);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public:
|
|
GetterSetterComponent(AbstractStorageDecl *decl,
|
|
bool isSuper,
|
|
ArrayRef<Substitution> substitutions,
|
|
LValueTypeData typeData,
|
|
Expr *subscriptIndexExpr = nullptr)
|
|
: LogicalPathComponent(typeData),
|
|
decl(decl),
|
|
IsSuper(isSuper),
|
|
substitutions(substitutions.begin(), substitutions.end()),
|
|
subscriptIndexExpr(subscriptIndexExpr)
|
|
{
|
|
}
|
|
|
|
GetterSetterComponent(const GetterSetterComponent &copied,
|
|
SILGenFunction &gen,
|
|
SILLocation loc)
|
|
: LogicalPathComponent(copied.getTypeData()),
|
|
decl(copied.decl),
|
|
IsSuper(copied.IsSuper),
|
|
substitutions(copied.substitutions),
|
|
subscriptIndexExpr(copied.subscriptIndexExpr),
|
|
origSubscripts(copied.origSubscripts.copy(gen, loc))
|
|
{
|
|
}
|
|
|
|
void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue base) const override {
|
|
// Pass in just the setter.
|
|
auto args = prepareAccessorArgs(gen, loc, base, decl->getSetter());
|
|
|
|
return gen.emitSetAccessor(loc, decl, substitutions,
|
|
std::move(args.base), IsSuper,
|
|
std::move(args.subscripts),
|
|
std::move(value));
|
|
}
|
|
|
|
ManagedValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, SGFContext c) const override {
|
|
auto args = prepareAccessorArgs(gen, loc, base, decl->getGetter());
|
|
|
|
return gen.emitGetAccessor(loc, decl, substitutions,
|
|
std::move(args.base), IsSuper,
|
|
std::move(args.subscripts), c);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &gen, SILLocation loc) const override {
|
|
LogicalPathComponent *clone = new GetterSetterComponent(*this, gen, loc);
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
};
|
|
|
|
/// Convert an lvalue to a different type through a pair of conversion
|
|
/// functions.
|
|
class LValueConversionComponent : public LogicalPathComponent {
|
|
LValueConversionExpr *Conversion;
|
|
|
|
public:
|
|
LValueConversionComponent(LValueConversionExpr *E,
|
|
LValueTypeData typeData)
|
|
: LogicalPathComponent(typeData),
|
|
Conversion(E)
|
|
{}
|
|
|
|
ManagedValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue orig, SGFContext c) const override {
|
|
// Load the original value.
|
|
ManagedValue origVal = gen.emitLoad(loc, orig.getValue(),
|
|
gen.getTypeLowering(orig.getType()),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
// Apply the "from" conversion.
|
|
auto origTy = Conversion->getSubExpr()->getType()
|
|
->getLValueOrInOutObjectType()
|
|
->getCanonicalType();
|
|
return gen.emitApplyConversionFunction(loc,
|
|
Conversion->getFromConversionFn(),
|
|
Conversion->getType()->getLValueOrInOutObjectType(),
|
|
RValue(gen, loc, origTy, origVal));
|
|
}
|
|
|
|
void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue origAddr) const override {
|
|
// Apply the "to" conversion.
|
|
ManagedValue convertedVal = gen.emitApplyConversionFunction(loc,
|
|
Conversion->getToConversionFn(),
|
|
Conversion->getSubExpr()->getType()->getLValueOrInOutObjectType(),
|
|
std::move(value));
|
|
|
|
// Store back to the original value.
|
|
convertedVal.assignInto(gen, loc, origAddr.getValue());
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &gen, SILLocation loc) const override {
|
|
LogicalPathComponent *clone
|
|
= new LValueConversionComponent(Conversion, getTypeData());
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
};
|
|
|
|
/// Remap an lvalue referencing a generic type to an lvalue of its substituted
|
|
/// type in a concrete context.
|
|
class OrigToSubstComponent : public LogicalPathComponent {
|
|
AbstractionPattern origType;
|
|
CanType substType;
|
|
|
|
public:
|
|
OrigToSubstComponent(SILGenFunction &gen,
|
|
AbstractionPattern origType, CanType substType)
|
|
: LogicalPathComponent(getUnsubstitutedTypeData(gen, substType)),
|
|
origType(origType), substType(substType)
|
|
{}
|
|
|
|
void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue base) const override {
|
|
// Map the value to the original abstraction level.
|
|
ManagedValue mv = std::move(value).getAsSingleValue(gen, loc);
|
|
mv = gen.emitSubstToOrigValue(loc, mv, origType, substType);
|
|
// Store to the base.
|
|
mv.assignInto(gen, loc, base.getValue());
|
|
}
|
|
|
|
ManagedValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, SGFContext c) const override {
|
|
// Load the original value.
|
|
ManagedValue baseVal = gen.emitLoad(loc, base.getValue(),
|
|
gen.getTypeLowering(base.getType()),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
// Map the base value to its substituted representation.
|
|
return gen.emitOrigToSubstValue(loc, baseVal,
|
|
origType, substType, c);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &gen, SILLocation loc) const override {
|
|
LogicalPathComponent *clone
|
|
= new OrigToSubstComponent(gen, origType, substType);
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
};
|
|
|
|
/// Remap a weak value to Optional<T>*, or unowned pointer to T*.
|
|
class OwnershipComponent : public LogicalPathComponent {
|
|
public:
|
|
OwnershipComponent(LValueTypeData typeData)
|
|
: LogicalPathComponent(typeData) {
|
|
}
|
|
|
|
|
|
ManagedValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, SGFContext c) const override {
|
|
assert(base && "ownership component must not be root of lvalue path");
|
|
auto &TL = gen.getTypeLowering(getTypeData().TypeOfRValue);
|
|
|
|
// Load the original value.
|
|
ManagedValue result = gen.emitLoad(loc, base.getValue(), TL,
|
|
SGFContext(), IsNotTake);
|
|
return result;
|
|
}
|
|
|
|
void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue base) const override {
|
|
assert(base && "ownership component must not be root of lvalue path");
|
|
auto &TL = gen.getTypeLowering(base.getType());
|
|
|
|
gen.emitSemanticStore(loc,
|
|
std::move(value).forwardAsSingleValue(gen, loc),
|
|
base.getValue(), TL, IsNotInitialization);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &gen, SILLocation loc) const override {
|
|
LogicalPathComponent *clone = new OwnershipComponent(getTypeData());
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
};
|
|
}
|
|
|
|
LValue SILGenFunction::emitLValue(Expr *e) {
|
|
LValue r = SILGenLValue(*this).visit(e);
|
|
// If the final component is physical with an abstraction change, introduce a
|
|
// reabstraction component.
|
|
if (r.isLastComponentPhysical()
|
|
&& getTypeLowering(r.getSubstFormalType()).getLoweredType()
|
|
!= r.getTypeOfRValue()) {
|
|
r.add<OrigToSubstComponent>(*this, r.getOrigFormalType(),
|
|
r.getSubstFormalType());
|
|
}
|
|
return r;
|
|
}
|
|
|
|
LValue SILGenLValue::visitRec(Expr *e) {
|
|
// Non-lvalue types (references, values, metatypes, etc) form the root of a
|
|
// logical l-value.
|
|
if (!e->getType()->is<LValueType>() && !e->getType()->is<InOutType>()) {
|
|
// Calls through protocols can be done with +0 rvalues. This allows us to
|
|
// avoid materializing copies of existentials.
|
|
SGFContext Ctx;
|
|
if (e->getType()->isExistentialType() || e->getType()->is<ArchetypeType>())
|
|
Ctx = SGFContext::AllowPlusZero;
|
|
|
|
ManagedValue rv = gen.emitRValueAsSingleValue(e, Ctx);
|
|
auto typeData = getValueTypeData(rv.getValue());
|
|
LValue lv;
|
|
lv.add<ValueComponent>(rv, typeData);
|
|
return lv;
|
|
}
|
|
|
|
return visit(e);
|
|
}
|
|
|
|
LValue SILGenLValue::visitExpr(Expr *e) {
|
|
e->dump(llvm::errs());
|
|
llvm_unreachable("unimplemented lvalue expr");
|
|
}
|
|
|
|
static LValue emitLValueForNonMemberVarDecl(SILGenFunction &gen,
|
|
SILLocation loc, VarDecl *var,
|
|
CanType formalRValueType,
|
|
bool isDirectPropertyAccess) {
|
|
LValue lv;
|
|
auto typeData = getUnsubstitutedTypeData(gen, formalRValueType);
|
|
|
|
// If it's a computed variable, push a reference to the getter and setter.
|
|
if (var->hasAccessorFunctions() && !isDirectPropertyAccess) {
|
|
ArrayRef<Substitution> substitutions;
|
|
if (auto genericParams
|
|
= gen.SGM.Types.getEffectiveGenericParamsForContext(
|
|
var->getDeclContext()))
|
|
substitutions = gen.buildForwardingSubstitutions(genericParams);
|
|
|
|
lv.add<GetterSetterComponent>(var, /*isSuper=*/false, substitutions,
|
|
typeData);
|
|
} else {
|
|
// If it's a physical value (e.g. a local variable in memory), push its
|
|
// address.
|
|
auto address = gen.emitLValueForDecl(loc, var, isDirectPropertyAccess);
|
|
assert(address.isLValue() &&
|
|
"physical lvalue decl ref must evaluate to an address");
|
|
lv.add<ValueComponent>(address, typeData);
|
|
|
|
if (address.getType().is<ReferenceStorageType>())
|
|
lv.add<OwnershipComponent>(typeData);
|
|
}
|
|
return std::move(lv);
|
|
}
|
|
|
|
|
|
LValue SILGenLValue::visitDiscardAssignmentExpr(DiscardAssignmentExpr *e) {
|
|
auto formalRValueType = getSubstFormalRValueType(e);
|
|
auto typeData = getUnsubstitutedTypeData(gen, formalRValueType);
|
|
|
|
SILValue address = gen.emitTemporaryAllocation(e, typeData.TypeOfRValue);
|
|
LValue lv;
|
|
lv.add<ValueComponent>(ManagedValue::forUnmanaged(address), typeData);
|
|
return std::move(lv);
|
|
}
|
|
|
|
|
|
LValue SILGenLValue::visitDeclRefExpr(DeclRefExpr *e) {
|
|
// The only non-member decl that can be an lvalue is VarDecl.
|
|
return emitLValueForNonMemberVarDecl(gen, e, cast<VarDecl>(e->getDecl()),
|
|
getSubstFormalRValueType(e),
|
|
e->isDirectPropertyAccess());
|
|
}
|
|
|
|
LValue SILGenLValue::visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *e){
|
|
// If it is convenient to avoid loading the base, don't bother loading it.
|
|
gen.emitRValue(e->getLHS(), SGFContext::AllowPlusZero);
|
|
return visitRec(e->getRHS());
|
|
}
|
|
|
|
LValue SILGenLValue::visitMemberRefExpr(MemberRefExpr *e) {
|
|
LValue lv = [&]{
|
|
// If we're emitting an initializer, the base is a reference to 'self', and
|
|
// we're doing direct property access, emit a +0 reference to self to avoid
|
|
// retain/release traffic that breaks brittle custom r/r implementations in
|
|
// ObjC.
|
|
if (gen.EmittingClassInitializer
|
|
&& e->isDirectPropertyAccess()) {
|
|
if (auto baseDeclRef = dyn_cast<DeclRefExpr>(e->getBase())) {
|
|
if (baseDeclRef->getDecl()->getName() == gen.getASTContext().Id_self) {
|
|
ManagedValue self = gen.emitSelfForDirectPropertyInConstructor(
|
|
e->getBase(), cast<VarDecl>(baseDeclRef->getDecl()));
|
|
auto typeData = getValueTypeData(self.getValue());
|
|
LValue valueLV;
|
|
valueLV.add<ValueComponent>(self, typeData);
|
|
return valueLV;
|
|
}
|
|
}
|
|
}
|
|
|
|
return visitRec(e->getBase());
|
|
}();
|
|
|
|
// MemberRefExpr can refer to type and function members, but the only case
|
|
// that can be an lvalue is a VarDecl.
|
|
VarDecl *var = cast<VarDecl>(e->getMember().getDecl());
|
|
|
|
LValueTypeData typeData = getMemberTypeData(gen, var->getType(), e);
|
|
|
|
// Use the property accessors if the variable has accessors and this isn't a
|
|
// direct access to underlying storage.
|
|
if (var->hasAccessorFunctions() && !e->isDirectPropertyAccess()) {
|
|
lv.add<GetterSetterComponent>(var, e->isSuper(),
|
|
e->getMember().getSubstitutions(), typeData);
|
|
return std::move(lv);
|
|
}
|
|
|
|
// Otherwise, the lvalue access is performed with a fragile element reference.
|
|
// Find the substituted storage type.
|
|
SILType varStorageType =
|
|
gen.SGM.Types.getSubstitutedStorageType(var, e->getType());
|
|
|
|
// For static variables, emit a reference to the global variable backing
|
|
// them.
|
|
// FIXME: This has to be dynamically looked up for classes, and
|
|
// dynamically instantiated for generics.
|
|
if (var->isStatic()) {
|
|
auto baseMeta = e->getBase()->getType()->castTo<MetatypeType>()
|
|
->getInstanceType();
|
|
(void)baseMeta;
|
|
assert(!baseMeta->is<BoundGenericType>() &&
|
|
"generic static stored properties not implemented");
|
|
assert((baseMeta->getStructOrBoundGenericStruct() ||
|
|
baseMeta->getEnumOrBoundGenericEnum()) &&
|
|
"static stored properties for classes/protocols not implemented");
|
|
|
|
return emitLValueForNonMemberVarDecl(gen, e, var,
|
|
getSubstFormalRValueType(e),
|
|
e->isDirectPropertyAccess());
|
|
}
|
|
|
|
// For member variables, this access is done w.r.t. a base computation that
|
|
// was already emitted. This member is accessed off of it.
|
|
if (!e->getBase()->getType()->is<LValueType>()) {
|
|
assert(e->getBase()->getType()->hasReferenceSemantics());
|
|
lv.add<RefElementComponent>(var, varStorageType, typeData);
|
|
} else {
|
|
lv.add<StructElementComponent>(var, varStorageType, typeData);
|
|
}
|
|
|
|
// If the member has weak or unowned storage, convert it away.
|
|
if (varStorageType.is<ReferenceStorageType>()) {
|
|
lv.add<OwnershipComponent>(typeData);
|
|
}
|
|
|
|
return std::move(lv);
|
|
}
|
|
|
|
LValue SILGenLValue::visitSubscriptExpr(SubscriptExpr *e) {
|
|
auto decl = cast<SubscriptDecl>(e->getDecl().getDecl());
|
|
auto typeData = getMemberTypeData(gen, decl->getElementType(), e);
|
|
|
|
LValue lv = visitRec(e->getBase());
|
|
lv.add<GetterSetterComponent>(decl, e->isSuper(),
|
|
e->getDecl().getSubstitutions(),
|
|
typeData, e->getIndex());
|
|
return std::move(lv);
|
|
}
|
|
|
|
LValue SILGenLValue::visitTupleElementExpr(TupleElementExpr *e) {
|
|
unsigned index = e->getFieldNumber();
|
|
LValue lv = visitRec(e->getBase());
|
|
|
|
auto baseTypeData = lv.getTypeData();
|
|
LValueTypeData typeData = {
|
|
baseTypeData.OrigFormalType.getTupleElementType(index),
|
|
cast<TupleType>(baseTypeData.SubstFormalType).getElementType(index),
|
|
baseTypeData.TypeOfRValue.getTupleElementType(index)
|
|
};
|
|
|
|
lv.add<TupleElementComponent>(index, typeData);
|
|
return std::move(lv);
|
|
}
|
|
|
|
LValue SILGenLValue::visitLValueConversionExpr(LValueConversionExpr *e) {
|
|
LValue lv = visitRec(e->getSubExpr());
|
|
|
|
LValueTypeData typeData = getMemberTypeData(gen,
|
|
e->getType()->getLValueOrInOutObjectType(),
|
|
e);
|
|
lv.add<LValueConversionComponent>(e, typeData);
|
|
return std::move(lv);
|
|
}
|
|
|
|
LValue SILGenLValue::visitInOutExpr(InOutExpr *e) {
|
|
return visitRec(e->getSubExpr());
|
|
}
|
|
|
|
LValue SILGenFunction::emitDirectIVarLValue(SILLocation loc, ManagedValue base,
|
|
VarDecl *ivar) {
|
|
SILGenLValue sgl(*this);
|
|
LValue lv;
|
|
|
|
auto baseType = base.getType().getSwiftRValueType();
|
|
|
|
// Refer to 'self' as the base of the lvalue.
|
|
lv.add<ValueComponent>(base, getUnsubstitutedTypeData(*this, baseType));
|
|
|
|
auto origFormalType = getOrigFormalRValueType(ivar->getType());
|
|
auto substFormalType = ivar->getType()->getCanonicalType();
|
|
LValueTypeData typeData = { origFormalType, substFormalType,
|
|
getLoweredType(origFormalType, substFormalType) };
|
|
|
|
// Find the substituted storage type.
|
|
SILType varStorageType =
|
|
SGM.Types.getSubstitutedStorageType(ivar, LValueType::get(ivar->getType()));
|
|
|
|
if (baseType->hasReferenceSemantics())
|
|
lv.add<RefElementComponent>(ivar, varStorageType, typeData);
|
|
else
|
|
lv.add<StructElementComponent>(ivar, varStorageType, typeData);
|
|
|
|
if (varStorageType.is<ReferenceStorageType>()) {
|
|
auto formalRValueType =
|
|
ivar->getType()->getRValueType()->getReferenceStorageReferent();
|
|
auto typeData =
|
|
getUnsubstitutedTypeData(*this, formalRValueType->getCanonicalType());
|
|
lv.add<OwnershipComponent>(typeData);
|
|
}
|
|
|
|
return std::move(lv);
|
|
}
|
|
|
|
/// Load an r-value out of the given address.
|
|
///
|
|
/// \param rvalueTL - the type lowering for the type-of-rvalue
|
|
/// of the address
|
|
ManagedValue SILGenFunction::emitLoad(SILLocation loc, SILValue addr,
|
|
const TypeLowering &rvalueTL,
|
|
SGFContext C, IsTake_t isTake) {
|
|
// Get the lowering for the address type. We can avoid a re-lookup
|
|
// in the very common case of this being equivalent to the r-value
|
|
// type.
|
|
auto &addrTL =
|
|
(addr.getType() == rvalueTL.getLoweredType().getAddressType()
|
|
? rvalueTL : getTypeLowering(addr.getType()));
|
|
|
|
if (rvalueTL.isAddressOnly()) {
|
|
// If the client is cool with a +0 rvalue, the decl has an address-only
|
|
// type, and there are no conversions, then we can return this as a +0
|
|
// address RValue.
|
|
if (C.isPlusZeroOk() && rvalueTL.getLoweredType() ==addrTL.getLoweredType())
|
|
return ManagedValue::forUnmanaged(addr);
|
|
|
|
// Copy the address-only value.
|
|
SILValue copy = getBufferForExprResult(loc, rvalueTL.getLoweredType(), C);
|
|
emitSemanticLoadInto(loc, addr, addrTL, copy, rvalueTL,
|
|
isTake, IsInitialization);
|
|
return manageBufferForExprResult(copy, rvalueTL, C);
|
|
}
|
|
|
|
// Load the loadable value, and retain it if we aren't taking it.
|
|
SILValue loadedV = emitSemanticLoad(loc, addr, addrTL, rvalueTL, isTake);
|
|
return emitManagedRValueWithCleanup(loadedV, rvalueTL);
|
|
}
|
|
|
|
static void emitUnloweredStoreOfCopy(SILBuilder &B, SILLocation loc,
|
|
SILValue value, SILValue addr,
|
|
IsInitialization_t isInit) {
|
|
if (isInit)
|
|
B.createStore(loc, value, addr);
|
|
else
|
|
B.createAssign(loc, value, addr);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool hasDifferentTypeOfRValue(const TypeLowering &srcTL) {
|
|
return srcTL.getLoweredType().is<ReferenceStorageType>();
|
|
}
|
|
#endif
|
|
|
|
static Substitution getSimpleSubstitution(GenericParamList &generics,
|
|
CanType typeArg) {
|
|
assert(generics.getParams().size() == 1);
|
|
auto typeParamDecl = generics.getParams()[0].getAsTypeParam();
|
|
return Substitution{typeParamDecl->getArchetype(), typeArg, {}};
|
|
}
|
|
|
|
/// Create the correct substitution for calling the given function at
|
|
/// the given type.
|
|
static Substitution getSimpleSubstitution(FuncDecl *fn, CanType typeArg) {
|
|
auto polyFnType =
|
|
cast<PolymorphicFunctionType>(fn->getType()->getCanonicalType());
|
|
return getSimpleSubstitution(polyFnType->getGenericParams(), typeArg);
|
|
}
|
|
|
|
static CanType getOptionalValueType(SILType optType,
|
|
OptionalTypeKind &optionalKind) {
|
|
auto generic = cast<BoundGenericType>(optType.getSwiftRValueType());
|
|
optionalKind = generic->getDecl()->classifyAsOptionalType();
|
|
assert(optionalKind);
|
|
return generic.getGenericArgs()[0];
|
|
}
|
|
|
|
void SILGenFunction::emitInjectOptionalValueInto(SILLocation loc,
|
|
RValueSource &&value,
|
|
SILValue dest,
|
|
const TypeLowering &optTL) {
|
|
SILType optType = optTL.getLoweredType();
|
|
OptionalTypeKind optionalKind;
|
|
CanType valueType = getOptionalValueType(optType, optionalKind);
|
|
|
|
FuncDecl *fn =
|
|
getASTContext().getInjectValueIntoOptionalDecl(nullptr, optionalKind);
|
|
Substitution sub = getSimpleSubstitution(fn, valueType);
|
|
|
|
// Materialize the r-value into a temporary.
|
|
FullExpr scope(Cleanups, CleanupLocation::getCleanupLocation(loc));
|
|
auto valueAddr = std::move(value).materialize(*this,
|
|
AbstractionPattern(CanType(sub.Archetype)));
|
|
|
|
TemporaryInitialization emitInto(dest, CleanupHandle::invalid());
|
|
auto result = emitApplyOfLibraryIntrinsic(loc, fn, sub, valueAddr,
|
|
SGFContext(&emitInto));
|
|
assert(result.isInContext() && "didn't emit directly into buffer?");
|
|
(void)result;
|
|
}
|
|
|
|
void SILGenFunction::emitInjectOptionalNothingInto(SILLocation loc,
|
|
SILValue dest,
|
|
const TypeLowering &optTL) {
|
|
SILType optType = optTL.getLoweredType();
|
|
OptionalTypeKind optionalKind;
|
|
CanType valueType = getOptionalValueType(optType, optionalKind);
|
|
|
|
FuncDecl *fn =
|
|
getASTContext().getInjectNothingIntoOptionalDecl(nullptr, optionalKind);
|
|
Substitution sub = getSimpleSubstitution(fn, valueType);
|
|
|
|
TemporaryInitialization emitInto(dest, CleanupHandle::invalid());
|
|
auto result = emitApplyOfLibraryIntrinsic(loc, fn, sub, {},
|
|
SGFContext(&emitInto));
|
|
assert(result.isInContext() && "didn't emit directly into buffer?");
|
|
(void)result;
|
|
}
|
|
|
|
SILValue SILGenFunction::emitDoesOptionalHaveValue(SILLocation loc,
|
|
SILValue addr) {
|
|
SILType optType = addr.getType().getObjectType();
|
|
OptionalTypeKind optionalKind;
|
|
CanType valueType = getOptionalValueType(optType, optionalKind);
|
|
|
|
FuncDecl *fn =
|
|
getASTContext().getDoesOptionalHaveValueDecl(nullptr, optionalKind);
|
|
Substitution sub = getSimpleSubstitution(fn, valueType);
|
|
|
|
// The argument to _doesOptionalHaveValue is passed by reference.
|
|
return emitApplyOfLibraryIntrinsic(loc, fn, sub,
|
|
ManagedValue::forUnmanaged(addr),
|
|
SGFContext())
|
|
.getUnmanagedValue();
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitGetOptionalValueFrom(SILLocation loc,
|
|
ManagedValue src,
|
|
const TypeLowering &optTL,
|
|
SGFContext C) {
|
|
SILType optType = src.getType().getObjectType();
|
|
OptionalTypeKind optionalKind;
|
|
CanType valueType = getOptionalValueType(optType, optionalKind);
|
|
|
|
FuncDecl *fn = getASTContext().getGetOptionalValueDecl(nullptr, optionalKind);
|
|
Substitution sub = getSimpleSubstitution(fn, valueType);
|
|
|
|
return emitApplyOfLibraryIntrinsic(loc, fn, sub, src, C);
|
|
}
|
|
|
|
SILValue SILGenFunction::emitConversionToSemanticRValue(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &valueTL) {
|
|
// Weak storage types are handled with their underlying type.
|
|
assert(!src.getType().is<WeakStorageType>() &&
|
|
"weak pointers are always the right optional types");
|
|
|
|
// For @unowned(safe) types, we need to generate a strong retain and
|
|
// strip the unowned box.
|
|
if (auto unownedType = src.getType().getAs<UnownedStorageType>()) {
|
|
B.createStrongRetainUnowned(loc, src);
|
|
return B.createUnownedToRef(loc, src,
|
|
SILType::getPrimitiveObjectType(unownedType.getReferentType()));
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to strip the unmanaged box
|
|
// and then do an (unsafe) retain.
|
|
if (auto unmanagedType = src.getType().getAs<UnmanagedStorageType>()) {
|
|
auto result = B.createUnmanagedToRef(loc, src,
|
|
SILType::getPrimitiveObjectType(unmanagedType.getReferentType()));
|
|
B.createStrongRetain(loc, result);
|
|
return result;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
|
|
/// Given that the type-of-rvalue differs from the type-of-storage,
|
|
/// and given that the type-of-rvalue is loadable, produce a +1 scalar
|
|
/// of the type-of-rvalue.
|
|
static SILValue emitLoadOfSemanticRValue(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &valueTL,
|
|
IsTake_t isTake) {
|
|
SILType storageType = src.getType();
|
|
|
|
// For @weak types, we need to create an Optional<T>.
|
|
// Optional<T> is currently loadable, but it probably won't be forever.
|
|
if (storageType.is<WeakStorageType>())
|
|
return gen.B.createLoadWeak(loc, src, isTake);
|
|
|
|
// For @unowned(safe) types, we need to strip the unowned box.
|
|
if (auto unownedType = storageType.getAs<UnownedStorageType>()) {
|
|
auto unownedValue = gen.B.createLoad(loc, src);
|
|
gen.B.createStrongRetainUnowned(loc, unownedValue);
|
|
if (isTake) gen.B.createUnownedRelease(loc, unownedValue);
|
|
return gen.B.createUnownedToRef(loc, unownedValue,
|
|
SILType::getPrimitiveObjectType(unownedType.getReferentType()));
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to strip the unmanaged box.
|
|
if (auto unmanagedType = src.getType().getAs<UnmanagedStorageType>()) {
|
|
auto value = gen.B.createLoad(loc, src);
|
|
auto result = gen.B.createUnmanagedToRef(loc, value,
|
|
SILType::getPrimitiveObjectType(unmanagedType.getReferentType()));
|
|
gen.B.createStrongRetain(loc, result);
|
|
return result;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Given that the type-of-rvalue differs from the type-of-storage,
|
|
/// store a +1 value (possibly not a scalar) of the type-of-rvalue
|
|
/// into the given address.
|
|
static void emitStoreOfSemanticRValue(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILValue value,
|
|
SILValue dest,
|
|
const TypeLowering &valueTL,
|
|
IsInitialization_t isInit) {
|
|
auto storageType = dest.getType();
|
|
|
|
// For @weak types, we need to break down an Optional<T> and then
|
|
// emit the storeWeak ourselves.
|
|
if (storageType.is<WeakStorageType>()) {
|
|
gen.B.createStoreWeak(loc, value, dest, isInit);
|
|
|
|
// store_weak doesn't take ownership of the input, so cancel it out.
|
|
gen.B.emitReleaseValue(loc, value);
|
|
return;
|
|
}
|
|
|
|
// For @unowned(safe) types, we need to enter the unowned box by
|
|
// turning the strong retain into an unowned retain.
|
|
if (storageType.is<UnownedStorageType>()) {
|
|
auto unownedValue =
|
|
gen.B.createRefToUnowned(loc, value, storageType.getObjectType());
|
|
gen.B.createUnownedRetain(loc, unownedValue);
|
|
emitUnloweredStoreOfCopy(gen.B, loc, unownedValue, dest, isInit);
|
|
gen.B.emitStrongRelease(loc, value);
|
|
return;
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to enter the unmanaged box and
|
|
// release the strong retain.
|
|
if (storageType.is<UnmanagedStorageType>()) {
|
|
auto unmanagedValue =
|
|
gen.B.createRefToUnmanaged(loc, value, storageType.getObjectType());
|
|
emitUnloweredStoreOfCopy(gen.B, loc, unmanagedValue, dest, isInit);
|
|
gen.B.emitStrongRelease(loc, value);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Load a value of the type-of-rvalue out of the given address as a
|
|
/// scalar. The type-of-rvalue must be loadable.
|
|
SILValue SILGenFunction::emitSemanticLoad(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &srcTL,
|
|
const TypeLowering &rvalueTL,
|
|
IsTake_t isTake) {
|
|
assert(srcTL.getLoweredType().getAddressType() == src.getType());
|
|
assert(rvalueTL.isLoadable());
|
|
|
|
// Easy case: the types match.
|
|
if (srcTL.getLoweredType() == rvalueTL.getLoweredType()) {
|
|
assert(!hasDifferentTypeOfRValue(srcTL));
|
|
return srcTL.emitLoadOfCopy(B, loc, src, isTake);
|
|
}
|
|
|
|
return emitLoadOfSemanticRValue(*this, loc, src, rvalueTL, isTake);
|
|
}
|
|
|
|
/// Load a value of the type-of-reference out of the given address
|
|
/// and into the destination address.
|
|
void SILGenFunction::emitSemanticLoadInto(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &srcTL,
|
|
SILValue dest,
|
|
const TypeLowering &destTL,
|
|
IsTake_t isTake,
|
|
IsInitialization_t isInit) {
|
|
assert(srcTL.getLoweredType().getAddressType() == src.getType());
|
|
assert(destTL.getLoweredType().getAddressType() == dest.getType());
|
|
|
|
// Easy case: the types match.
|
|
if (srcTL.getLoweredType() == destTL.getLoweredType()) {
|
|
assert(!hasDifferentTypeOfRValue(srcTL));
|
|
B.createCopyAddr(loc, src, dest, isTake, isInit);
|
|
return;
|
|
}
|
|
|
|
auto rvalue = emitLoadOfSemanticRValue(*this, loc, src, srcTL, isTake);
|
|
emitUnloweredStoreOfCopy(B, loc, rvalue, dest, isInit);
|
|
}
|
|
|
|
/// Store an r-value into the given address as an initialization.
|
|
void SILGenFunction::emitSemanticStore(SILLocation loc,
|
|
SILValue rvalue,
|
|
SILValue dest,
|
|
const TypeLowering &destTL,
|
|
IsInitialization_t isInit) {
|
|
assert(destTL.getLoweredType().getAddressType() == dest.getType());
|
|
|
|
// Easy case: the types match.
|
|
if (rvalue.getType() == destTL.getLoweredType()) {
|
|
assert(!hasDifferentTypeOfRValue(destTL));
|
|
assert(destTL.isAddressOnly() == rvalue.getType().isAddress());
|
|
if (rvalue.getType().isAddress()) {
|
|
B.createCopyAddr(loc, rvalue, dest, IsTake, isInit);
|
|
} else {
|
|
emitUnloweredStoreOfCopy(B, loc, rvalue, dest, isInit);
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto &rvalueTL = getTypeLowering(rvalue.getType());
|
|
emitStoreOfSemanticRValue(*this, loc, rvalue, dest, rvalueTL, isInit);
|
|
}
|
|
|
|
/// Convert a semantic rvalue to a value of storage type.
|
|
SILValue SILGenFunction::emitConversionFromSemanticValue(SILLocation loc,
|
|
SILValue semanticValue,
|
|
SILType storageType) {
|
|
auto &destTL = getTypeLowering(storageType);
|
|
(void)destTL;
|
|
// Easy case: the types match.
|
|
if (semanticValue.getType() == storageType) {
|
|
assert(!hasDifferentTypeOfRValue(destTL));
|
|
return semanticValue;
|
|
}
|
|
|
|
// @weak types are never loadable, so we don't need to handle them here.
|
|
|
|
// For @unowned types, place into an unowned box.
|
|
if (storageType.is<UnownedStorageType>()) {
|
|
SILValue unowned = B.createRefToUnowned(loc, semanticValue, storageType);
|
|
B.createUnownedRetain(loc, unowned);
|
|
B.emitStrongRelease(loc, semanticValue);
|
|
return unowned;
|
|
}
|
|
|
|
// For @unmanaged types, place into an unmanaged box.
|
|
if (storageType.is<UnmanagedStorageType>()) {
|
|
SILValue unmanaged =
|
|
B.createRefToUnmanaged(loc, semanticValue, storageType);
|
|
B.emitStrongRelease(loc, semanticValue);
|
|
return unmanaged;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Produce a physical address that corresponds to the given l-value
|
|
/// component.
|
|
static ManagedValue drillIntoComponent(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
const PathComponent &component,
|
|
ManagedValue base) {
|
|
ManagedValue addr;
|
|
if (component.isPhysical()) {
|
|
addr = component.asPhysical().offset(SGF, loc, base);
|
|
} else {
|
|
auto &lcomponent = component.asLogical();
|
|
addr = ManagedValue::forLValue(lcomponent.getMaterialized(SGF, loc, base));
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/// Find the last component of the given lvalue and derive a base
|
|
/// location for it.
|
|
static const PathComponent &drillToLastComponent(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
const LValue &lv,
|
|
ManagedValue &addr) {
|
|
assert(lv.begin() != lv.end() &&
|
|
"lvalue must have at least one component");
|
|
|
|
auto component = lv.begin(), next = lv.begin(), end = lv.end();
|
|
++next;
|
|
for (; next != end; component = next, ++next) {
|
|
addr = drillIntoComponent(SGF, loc, *component, addr);
|
|
}
|
|
|
|
return *component;
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitLoadOfLValue(SILLocation loc,
|
|
const LValue &src,
|
|
SGFContext C) {
|
|
// No need to write back to a loaded lvalue.
|
|
DisableWritebackScope scope(*this);
|
|
|
|
ManagedValue addr;
|
|
auto &component = drillToLastComponent(*this, loc, src, addr);
|
|
|
|
// If the last component is physical, just drill down and load from it.
|
|
if (component.isPhysical()) {
|
|
addr = component.asPhysical().offset(*this, loc, addr);
|
|
return emitLoad(loc, addr.getValue(),
|
|
getTypeLowering(src.getTypeOfRValue()), C, IsNotTake);
|
|
}
|
|
|
|
// If the last component is logical, just emit a get.
|
|
return component.asLogical().get(*this, loc, addr, C);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitAddressOfLValue(SILLocation loc,
|
|
const LValue &src) {
|
|
ManagedValue addr;
|
|
auto &component = drillToLastComponent(*this, loc, src, addr);
|
|
addr = drillIntoComponent(*this, loc, component, addr);
|
|
assert(addr.getType().isAddress() &&
|
|
"resolving lvalue did not give an address");
|
|
return addr;
|
|
}
|
|
|
|
void SILGenFunction::emitAssignToLValue(SILLocation loc, RValue &&src,
|
|
const LValue &dest) {
|
|
WritebackScope scope(*this);
|
|
|
|
// Resolve all components up to the last, keeping track of value-type logical
|
|
// properties we need to write back to.
|
|
ManagedValue destAddr;
|
|
auto &component = drillToLastComponent(*this, loc, dest, destAddr);
|
|
|
|
// Write to the tail component.
|
|
if (component.isPhysical()) {
|
|
auto finalDestAddr = component.asPhysical().offset(*this, loc, destAddr);
|
|
|
|
std::move(src).getAsSingleValue(*this, loc)
|
|
.assignInto(*this, loc, finalDestAddr.getValue());
|
|
} else {
|
|
component.asLogical().set(*this, loc, std::move(src), destAddr);
|
|
}
|
|
|
|
// The writeback scope closing will propagate the value back up through the
|
|
// writeback chain.
|
|
}
|
|
|
|
void SILGenFunction::emitCopyLValueInto(SILLocation loc, const LValue &src,
|
|
Initialization *dest) {
|
|
auto skipPeephole = [&]{
|
|
auto loaded = emitLoadOfLValue(loc, src, SGFContext(dest));
|
|
if (!loaded.isInContext())
|
|
RValue(*this, loc, src.getSubstFormalType(), loaded)
|
|
.forwardInto(*this, dest, loc);
|
|
};
|
|
|
|
// If the source is a physical lvalue, the destination is a single address,
|
|
// and there's no semantic conversion necessary, do a copy_addr from the
|
|
// lvalue into the destination.
|
|
if (!src.isPhysical())
|
|
return skipPeephole();
|
|
auto destAddr = dest->getAddressOrNull();
|
|
if (!destAddr)
|
|
return skipPeephole();
|
|
if (src.getTypeOfRValue().getSwiftRValueType()
|
|
!= destAddr.getType().getSwiftRValueType())
|
|
return skipPeephole();
|
|
|
|
auto srcAddr = emitAddressOfLValue(loc, src).getUnmanagedValue();
|
|
B.createCopyAddr(loc, srcAddr, destAddr, IsNotTake, IsInitialization);
|
|
dest->finishInitialization(*this);
|
|
}
|
|
|
|
void SILGenFunction::emitAssignLValueToLValue(SILLocation loc,
|
|
const LValue &src,
|
|
const LValue &dest) {
|
|
auto skipPeephole = [&]{
|
|
ManagedValue loaded = emitLoadOfLValue(loc, src, SGFContext());
|
|
emitAssignToLValue(loc, RValue(*this, loc, src.getSubstFormalType(),
|
|
loaded), dest);
|
|
};
|
|
|
|
// Only perform the peephole if both operands are physical and there's no
|
|
// semantic conversion necessary.
|
|
if (!src.isPhysical())
|
|
return skipPeephole();
|
|
if (!dest.isPhysical())
|
|
return skipPeephole();
|
|
|
|
auto srcAddr = emitAddressOfLValue(loc, src).getUnmanagedValue();
|
|
auto destAddr = emitAddressOfLValue(loc, dest).getUnmanagedValue();
|
|
|
|
if (srcAddr.getType() == destAddr.getType()) {
|
|
B.createCopyAddr(loc, srcAddr, destAddr, IsNotTake, IsNotInitialization);
|
|
} else {
|
|
// If there's a semantic conversion necessary, do a load then assign.
|
|
auto loaded = emitLoad(loc, srcAddr, getTypeLowering(src.getTypeOfRValue()),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
loaded.assignInto(*this, loc, destAddr);
|
|
}
|
|
}
|