Files
swift-mirror/lib/AST/Decl.cpp
Becca Royal-Gordon 4ba2f6e95c [NFC] Fix objcImpl request cache
Several offsetting bugs both broke the caching of `ObjCInterfaceAndImplementationRequest` and caused it to usually miss. Fix this whole painful mess. Also has collateral improvements to simple_display().
2024-05-16 13:34:55 -07:00

12379 lines
417 KiB
C++

//===--- Decl.cpp - Swift Language Decl ASTs ------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/AccessRequests.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/Attr.h"
#include "swift/AST/CaptureInfo.h"
#include "swift/AST/DeclExportabilityVisitor.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/MacroDefinition.h"
#include "swift/AST/MacroDiscriminatorContext.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ParseRequests.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/SwiftNameTranslation.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeLoc.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/TypeID.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/Parse/Lexer.h" // FIXME: Bad dependency
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Module.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "InlinableText.h"
#include <algorithm>
using namespace swift;
#define DEBUG_TYPE "Serialization"
STATISTIC(NumLazyRequirementSignatures,
"# of lazily-deserialized requirement signatures known");
#undef DEBUG_TYPE
#define DECL(Id, _) \
static_assert((DeclKind::Id == DeclKind::Module) ^ \
IsTriviallyDestructible<Id##Decl>::value, \
"Decls are BumpPtrAllocated; the destructor is never called");
#include "swift/AST/DeclNodes.def"
static_assert(IsTriviallyDestructible<ParameterList>::value,
"ParameterLists are BumpPtrAllocated; the d'tor is never called");
static_assert(IsTriviallyDestructible<GenericParamList>::value,
"GenericParamLists are BumpPtrAllocated; the d'tor isn't called");
const clang::MacroInfo *ClangNode::getAsMacro() const {
if (auto MM = getAsModuleMacro())
return MM->getMacroInfo();
return getAsMacroInfo();
}
clang::SourceLocation ClangNode::getLocation() const {
if (auto D = getAsDecl())
return D->getLocation();
if (auto M = getAsMacro())
return M->getDefinitionLoc();
return clang::SourceLocation();
}
clang::SourceRange ClangNode::getSourceRange() const {
if (auto D = getAsDecl())
return D->getSourceRange();
if (auto M = getAsMacro())
return clang::SourceRange(M->getDefinitionLoc(), M->getDefinitionEndLoc());
return clang::SourceLocation();
}
const clang::Module *ClangNode::getClangModule() const {
if (auto *M = getAsModule())
return M;
if (auto *ID = dyn_cast_or_null<clang::ImportDecl>(getAsDecl()))
return ID->getImportedModule();
return nullptr;
}
void ClangNode::dump() const {
if (auto D = getAsDecl())
D->dump();
else if (auto M = getAsMacro())
M->dump();
else if (auto M = getAsModule())
M->dump();
else
llvm::errs() << "ClangNode contains nullptr\n";
}
StringRef Decl::getKindName(DeclKind K) {
switch (K) {
#define DECL(Id, Parent) case DeclKind::Id: return #Id;
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("bad DeclKind");
}
DescriptiveDeclKind Decl::getDescriptiveKind() const {
#define TRIVIAL_KIND(Kind) \
case DeclKind::Kind: \
return DescriptiveDeclKind::Kind
switch (getKind()) {
TRIVIAL_KIND(Import);
TRIVIAL_KIND(Extension);
TRIVIAL_KIND(EnumCase);
TRIVIAL_KIND(TopLevelCode);
TRIVIAL_KIND(IfConfig);
TRIVIAL_KIND(PoundDiagnostic);
TRIVIAL_KIND(PatternBinding);
TRIVIAL_KIND(PrecedenceGroup);
TRIVIAL_KIND(InfixOperator);
TRIVIAL_KIND(PrefixOperator);
TRIVIAL_KIND(PostfixOperator);
TRIVIAL_KIND(TypeAlias);
TRIVIAL_KIND(GenericTypeParam);
TRIVIAL_KIND(AssociatedType);
TRIVIAL_KIND(Protocol);
TRIVIAL_KIND(Constructor);
TRIVIAL_KIND(Destructor);
TRIVIAL_KIND(EnumElement);
TRIVIAL_KIND(Param);
TRIVIAL_KIND(Module);
TRIVIAL_KIND(Missing);
TRIVIAL_KIND(MissingMember);
TRIVIAL_KIND(Macro);
TRIVIAL_KIND(MacroExpansion);
case DeclKind::Enum:
return cast<EnumDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericEnum
: DescriptiveDeclKind::Enum;
case DeclKind::Struct:
return cast<StructDecl>(this)->getGenericParams()
? DescriptiveDeclKind::GenericStruct
: DescriptiveDeclKind::Struct;
case DeclKind::Class: {
auto clazz = cast<ClassDecl>(this);
bool isAnyActor = clazz->isAnyActor();
bool isGeneric = clazz->getGenericParams();
auto kind = isGeneric ? DescriptiveDeclKind::GenericClass
: DescriptiveDeclKind::Class;
if (isAnyActor) {
if (clazz->isDistributedActor()) {
kind = isGeneric ? DescriptiveDeclKind::GenericDistributedActor
: DescriptiveDeclKind::DistributedActor;
} else {
kind = isGeneric ? DescriptiveDeclKind::GenericActor
: DescriptiveDeclKind::Actor;
}
}
return kind;
}
case DeclKind::Var: {
auto var = cast<VarDecl>(this);
switch (var->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
if (var->getDeclContext()->isTypeContext()) {
if (var->isDistributed() && !var->isLet()) {
return DescriptiveDeclKind::DistributedProperty;
}
return DescriptiveDeclKind::Property;
}
return var->isLet() ? DescriptiveDeclKind::Let
: DescriptiveDeclKind::Var;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticProperty;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassProperty;
}
}
case DeclKind::Subscript: {
auto subscript = cast<SubscriptDecl>(this);
switch (subscript->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
return DescriptiveDeclKind::Subscript;
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticSubscript;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassSubscript;
}
}
case DeclKind::Accessor: {
auto accessor = cast<AccessorDecl>(this);
switch (accessor->getAccessorKind()) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
return DescriptiveDeclKind::Getter;
case AccessorKind::Set:
return DescriptiveDeclKind::Setter;
case AccessorKind::WillSet:
return DescriptiveDeclKind::WillSet;
case AccessorKind::DidSet:
return DescriptiveDeclKind::DidSet;
case AccessorKind::Address:
return DescriptiveDeclKind::Addressor;
case AccessorKind::MutableAddress:
return DescriptiveDeclKind::MutableAddressor;
case AccessorKind::Read:
return DescriptiveDeclKind::ReadAccessor;
case AccessorKind::Modify:
return DescriptiveDeclKind::ModifyAccessor;
case AccessorKind::Init:
return DescriptiveDeclKind::InitAccessor;
}
llvm_unreachable("bad accessor kind");
}
case DeclKind::Func: {
auto func = cast<FuncDecl>(this);
if (func->isOperator())
return DescriptiveDeclKind::OperatorFunction;
if (func->getDeclContext()->isLocalContext())
return DescriptiveDeclKind::LocalFunction;
if (func->getDeclContext()->isModuleScopeContext())
return DescriptiveDeclKind::GlobalFunction;
// We have a method.
switch (func->getCorrectStaticSpelling()) {
case StaticSpellingKind::None:
if (func->isDistributed()) {
return DescriptiveDeclKind::DistributedMethod;
} else {
return DescriptiveDeclKind::Method;
}
case StaticSpellingKind::KeywordStatic:
return DescriptiveDeclKind::StaticMethod;
case StaticSpellingKind::KeywordClass:
return DescriptiveDeclKind::ClassMethod;
}
}
case DeclKind::OpaqueType: {
auto *opaqueTypeDecl = cast<OpaqueTypeDecl>(this);
if (dyn_cast_or_null<VarDecl>(opaqueTypeDecl->getNamingDecl()))
return DescriptiveDeclKind::OpaqueVarType;
return DescriptiveDeclKind::OpaqueResultType;
}
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleDecl should not end up here");
}
#undef TRIVIAL_KIND
llvm_unreachable("bad DescriptiveDeclKind");
}
StringRef Decl::getDescriptiveKindName(DescriptiveDeclKind K) {
#define ENTRY(Kind, String) case DescriptiveDeclKind::Kind: return String
switch (K) {
ENTRY(Import, "import");
ENTRY(Extension, "extension");
ENTRY(EnumCase, "case");
ENTRY(TopLevelCode, "top-level code");
ENTRY(IfConfig, "conditional block");
ENTRY(PoundDiagnostic, "diagnostic");
ENTRY(PatternBinding, "pattern binding");
ENTRY(Var, "var");
ENTRY(Param, "parameter");
ENTRY(Let, "let");
ENTRY(Property, "property");
ENTRY(StaticProperty, "static property");
ENTRY(ClassProperty, "class property");
ENTRY(DistributedProperty, "distributed property");
ENTRY(PrecedenceGroup, "precedence group");
ENTRY(InfixOperator, "infix operator");
ENTRY(PrefixOperator, "prefix operator");
ENTRY(PostfixOperator, "postfix operator");
ENTRY(TypeAlias, "type alias");
ENTRY(GenericTypeParam, "generic parameter");
ENTRY(AssociatedType, "associated type");
ENTRY(Type, "type");
ENTRY(Enum, "enum");
ENTRY(Struct, "struct");
ENTRY(Class, "class");
ENTRY(Actor, "actor");
ENTRY(DistributedActor, "distributed actor");
ENTRY(Protocol, "protocol");
ENTRY(GenericEnum, "generic enum");
ENTRY(GenericStruct, "generic struct");
ENTRY(GenericClass, "generic class");
ENTRY(GenericActor, "generic actor");
ENTRY(GenericDistributedActor, "generic distributed actor");
ENTRY(GenericType, "generic type");
ENTRY(Subscript, "subscript");
ENTRY(StaticSubscript, "static subscript");
ENTRY(ClassSubscript, "class subscript");
ENTRY(Constructor, "initializer");
ENTRY(Destructor, "deinitializer");
ENTRY(LocalFunction, "local function");
ENTRY(GlobalFunction, "global function");
ENTRY(OperatorFunction, "operator function");
ENTRY(Method, "instance method");
ENTRY(StaticMethod, "static method");
ENTRY(ClassMethod, "class method");
ENTRY(DistributedMethod, "distributed instance method");
ENTRY(Getter, "getter");
ENTRY(Setter, "setter");
ENTRY(WillSet, "willSet observer");
ENTRY(DidSet, "didSet observer");
ENTRY(Addressor, "address accessor");
ENTRY(MutableAddressor, "mutableAddress accessor");
ENTRY(ReadAccessor, "_read accessor");
ENTRY(ModifyAccessor, "_modify accessor");
ENTRY(InitAccessor, "init acecssor");
ENTRY(EnumElement, "enum case");
ENTRY(Module, "module");
ENTRY(Missing, "missing decl");
ENTRY(MissingMember, "missing member placeholder");
ENTRY(Requirement, "requirement");
ENTRY(OpaqueResultType, "result");
ENTRY(OpaqueVarType, "type");
ENTRY(Macro, "macro");
ENTRY(MacroExpansion, "pound literal");
}
#undef ENTRY
llvm_unreachable("bad DescriptiveDeclKind");
}
ParsedDeclAttributes Decl::getParsedAttrs() const {
return ParsedDeclAttributes(getAttrs(), this);
}
DeclAttributes Decl::getExpandedAttrs() const {
auto mutableThis = const_cast<Decl *>(this);
(void)evaluateOrDefault(getASTContext().evaluator,
ExpandMemberAttributeMacros{mutableThis}, {});
return getAttrs();
}
DeclAttributes Decl::getSemanticAttrs() const {
(void)evaluateOrDefault(getASTContext().evaluator,
SemanticDeclAttrsRequest{this}, {});
return getAttrs();
}
void Decl::visitAuxiliaryDecls(
AuxiliaryDeclCallback callback,
bool visitFreestandingExpanded
) const {
auto &ctx = getASTContext();
auto *mutableThis = const_cast<Decl *>(this);
SourceManager &sourceMgr = ctx.SourceMgr;
auto *moduleDecl = getModuleContext();
auto peerBuffers =
evaluateOrDefault(ctx.evaluator,
ExpandPeerMacroRequest{mutableThis},
{});
for (auto bufferID : peerBuffers) {
auto startLoc = sourceMgr.getLocForBufferStart(bufferID);
auto *sourceFile = moduleDecl->getSourceFileContainingLocation(startLoc);
for (auto *peer : sourceFile->getTopLevelDecls()) {
callback(peer);
}
}
if (visitFreestandingExpanded) {
Decl *thisDecl = mutableThis;
// If this is a top-level code decl consisting of a macro expansion
// expression that substituted with a macro expansion declaration, use
// that instead.
if (auto *tlcd = dyn_cast<TopLevelCodeDecl>(thisDecl)) {
if (auto body = tlcd->getBody()) {
if (body->getNumElements() == 1) {
if (auto expr = body->getFirstElement().dyn_cast<Expr *>()) {
if (auto expansion = dyn_cast<MacroExpansionExpr>(expr)) {
if (auto substitute = expansion->getSubstituteDecl())
thisDecl = substitute;
}
}
}
}
}
if (auto *med = dyn_cast<MacroExpansionDecl>(thisDecl)) {
if (auto bufferID = evaluateOrDefault(
ctx.evaluator, ExpandMacroExpansionDeclRequest{med}, {})) {
auto startLoc = sourceMgr.getLocForBufferStart(*bufferID);
auto *sourceFile = moduleDecl->getSourceFileContainingLocation(startLoc);
for (auto *decl : sourceFile->getTopLevelDecls())
callback(decl);
}
}
}
// FIXME: fold VarDecl::visitAuxiliaryDecls into this.
}
void Decl::forEachAttachedMacro(MacroRole role,
MacroCallback macroCallback) const {
for (auto customAttrConst : getExpandedAttrs().getAttributes<CustomAttr>()) {
auto customAttr = const_cast<CustomAttr *>(customAttrConst);
auto *macroDecl = getResolvedMacro(customAttr);
if (!macroDecl)
continue;
if (!macroDecl->getMacroRoles().contains(role))
continue;
macroCallback(customAttr, macroDecl);
}
}
MacroDecl *Decl::getResolvedMacro(CustomAttr *customAttr) const {
auto declRef = evaluateOrDefault(
getASTContext().evaluator,
ResolveMacroRequest{customAttr, getDeclContext()}, ConcreteDeclRef());
return dyn_cast_or_null<MacroDecl>(declRef.getDecl());
}
unsigned Decl::getAttachedMacroDiscriminator(DeclBaseName macroName,
MacroRole role,
const CustomAttr *attr) const {
assert(isAttachedMacro(role) && "Not an attached macro role");
if (role != MacroRole::MemberAttribute) {
llvm::SmallDenseMap<Identifier, unsigned> nextDiscriminator;
std::optional<unsigned> foundDiscriminator;
forEachAttachedMacro(
role, [&](CustomAttr *foundAttr, MacroDecl *foundMacro) {
unsigned discriminator =
nextDiscriminator[foundMacro->getBaseIdentifier()]++;
if (attr == foundAttr)
foundDiscriminator = discriminator;
});
if (foundDiscriminator)
return *foundDiscriminator;
}
// If that failed, conjure up a discriminator.
// FIXME: Better discriminator for member attributes - add the member name?
ASTContext &ctx = getASTContext();
assert(role == MacroRole::MemberAttribute || ctx.Diags.hadAnyError());
return ctx.getNextMacroDiscriminator(
MacroDiscriminatorContext::getParentOf(getLoc(), getDeclContext()),
macroName);
}
Type Decl::getResolvedCustomAttrType(CustomAttr *attr) const {
if (auto ty = attr->getType())
return ty;
auto dc = getDeclContext();
auto *nominal = evaluateOrDefault(
getASTContext().evaluator, CustomAttrNominalRequest{attr, dc}, nullptr);
if (!nominal)
return Type();
CustomAttrTypeKind kind;
if (nominal->isGlobalActor()) {
kind = CustomAttrTypeKind::GlobalActor;
} else if (nominal->getAttrs().hasAttribute<PropertyWrapperAttr>()) {
kind = CustomAttrTypeKind::PropertyWrapper;
} else {
kind = CustomAttrTypeKind::NonGeneric;
}
return evaluateOrDefault(getASTContext().evaluator,
CustomAttrTypeRequest{attr, dc, kind}, Type());
}
bool Decl::isExposedToClients() const {
return DeclExportabilityVisitor().visit(this);
}
const Decl *Decl::getInnermostDeclWithAvailability() const {
if (getAttrs().hasAttribute<AvailableAttr>())
return this;
if (auto parent =
AvailabilityInference::parentDeclForInferredAvailability(this))
return parent->getInnermostDeclWithAvailability();
return nullptr;
}
std::optional<llvm::VersionTuple>
Decl::getIntroducedOSVersion(PlatformKind Kind) const {
for (auto *attr: getAttrs()) {
if (auto *ava = dyn_cast<AvailableAttr>(attr)) {
if (ava->Platform == Kind && ava->Introduced) {
return ava->Introduced;
}
}
}
return std::nullopt;
}
std::optional<llvm::VersionTuple>
Decl::getBackDeployedBeforeOSVersion(ASTContext &Ctx) const {
if (auto *attr = getAttrs().getBackDeployed(Ctx)) {
auto version = attr->Version;
StringRef ignoredPlatformString;
AvailabilityInference::updateBeforePlatformForFallback(
attr, getASTContext(), ignoredPlatformString, version);
// If the remap for fallback resulted in 1.0, then the
// backdeployment prior to that is not meaningful.
if (version == clang::VersionTuple(1, 0, 0, 0))
return std::nullopt;
return version;
}
// Accessors may inherit `@backDeployed`.
if (auto *AD = dyn_cast<AccessorDecl>(this))
return AD->getStorage()->getBackDeployedBeforeOSVersion(Ctx);
return std::nullopt;
}
bool Decl::isBackDeployed(ASTContext &Ctx) const {
return getBackDeployedBeforeOSVersion(Ctx) != std::nullopt;
}
bool Decl::hasBackDeployedAttr() const {
if (getAttrs().hasAttribute<BackDeployedAttr>())
return true;
// Accessors may inherit `@backDeployed`.
if (auto *AD = dyn_cast<AccessorDecl>(this))
return AD->getStorage()->hasBackDeployedAttr();
return false;
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
StaticSpellingKind SSK) {
switch (SSK) {
case StaticSpellingKind::None:
return OS << "<none>";
case StaticSpellingKind::KeywordStatic:
return OS << "'static'";
case StaticSpellingKind::KeywordClass:
return OS << "'class'";
}
llvm_unreachable("bad StaticSpellingKind");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
ReferenceOwnership RO) {
if (RO == ReferenceOwnership::Strong)
return OS << "'strong'";
return OS << "'" << keywordOf(RO) << "'";
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
SelfAccessKind SAK) {
switch (SAK) {
case SelfAccessKind::NonMutating: return OS << "'nonmutating'";
case SelfAccessKind::Mutating: return OS << "'mutating'";
case SelfAccessKind::LegacyConsuming: return OS << "'__consuming'";
case SelfAccessKind::Consuming: return OS << "'consuming'";
case SelfAccessKind::Borrowing:
return OS << "'borrowing'";
}
llvm_unreachable("Unknown SelfAccessKind");
}
DeclContext *Decl::getInnermostDeclContext() const {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return const_cast<AbstractFunctionDecl*>(func);
if (auto subscript = dyn_cast<SubscriptDecl>(this))
return const_cast<SubscriptDecl*>(subscript);
if (auto type = dyn_cast<GenericTypeDecl>(this))
return const_cast<GenericTypeDecl*>(type);
if (auto ext = dyn_cast<ExtensionDecl>(this))
return const_cast<ExtensionDecl*>(ext);
if (auto topLevel = dyn_cast<TopLevelCodeDecl>(this))
return const_cast<TopLevelCodeDecl*>(topLevel);
if (auto macro = dyn_cast<MacroDecl>(this))
return const_cast<MacroDecl*>(macro);
return getDeclContext();
}
bool Decl::isInvalid() const {
switch (getKind()) {
#define VALUE_DECL(ID, PARENT)
#define DECL(ID, PARENT) \
case DeclKind::ID:
#include "swift/AST/DeclNodes.def"
return Bits.Decl.Invalid;
case DeclKind::Param: {
// Parameters are special because closure parameters may not have type
// annotations. In which case, the interface type request returns
// ErrorType. Therefore, consider parameters with implicit types to always
// be valid.
auto *PD = cast<ParamDecl>(this);
if (!PD->getTypeRepr() && !PD->hasInterfaceType())
return false;
}
LLVM_FALLTHROUGH;
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Protocol:
case DeclKind::OpaqueType:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Module:
case DeclKind::Var:
case DeclKind::Subscript:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::Func:
case DeclKind::EnumElement:
case DeclKind::Macro:
return cast<ValueDecl>(this)->getInterfaceType()->hasError();
case DeclKind::Accessor: {
auto *AD = cast<AccessorDecl>(this);
if (AD->hasInterfaceType() && AD->getInterfaceType()->hasError())
return true;
return AD->getStorage()->isInvalid();
}
case DeclKind::BuiltinTuple:
return false;
}
llvm_unreachable("Unknown decl kind");
}
void Decl::setInvalidBit() { Bits.Decl.Invalid = true; }
void Decl::setInvalid() {
switch (getKind()) {
#define VALUE_DECL(ID, PARENT)
#define DECL(ID, PARENT) \
case DeclKind::ID:
#include "swift/AST/DeclNodes.def"
Bits.Decl.Invalid = true;
return;
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Protocol:
case DeclKind::OpaqueType:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Module:
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Subscript:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::Func:
case DeclKind::Accessor:
case DeclKind::EnumElement:
case DeclKind::Macro:
cast<ValueDecl>(this)->setInterfaceType(ErrorType::get(getASTContext()));
return;
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleDecl should not end up here");
}
llvm_unreachable("Unknown decl kind");
}
void Decl::setDeclContext(DeclContext *DC) {
Context = DC;
}
bool Decl::isUserAccessible() const {
if (auto VD = dyn_cast<ValueDecl>(this)) {
return VD->isUserAccessible();
}
return true;
}
bool Decl::canHaveComment() const {
return !this->hasClangNode() &&
(isa<ValueDecl>(this) || isa<ExtensionDecl>(this)) &&
!isa<ParamDecl>(this) &&
!isa<GenericTypeParamDecl>(this);
}
ModuleDecl *Decl::getModuleContext() const {
return getDeclContext()->getParentModule();
}
/// Retrieve the diagnostic engine for diagnostics emission.
DiagnosticEngine &Decl::getDiags() const {
return getASTContext().Diags;
}
// Helper functions to verify statically whether source-location
// functions have been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)() const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)() const);
template<typename Class>
inline char checkSourceLocType(SourceLoc (Class::*)(bool) const);
inline TwoChars checkSourceLocType(SourceLoc (Decl::*)(bool) const);
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Decl::*)() const);
SourceRange Decl::getSourceRange() const {
switch (getKind()) {
#define DECL(ID, PARENT) \
static_assert(sizeof(checkSourceRangeType(&ID##Decl::getSourceRange)) == 1, \
#ID "Decl is missing getSourceRange()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getSourceRange();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
SourceRange Decl::getSourceRangeIncludingAttrs() const {
auto Range = getSourceRange();
// Attributes on AccessorDecl may syntactically belong to PatternBindingDecl.
// e.g. 'override'.
if (auto *AD = dyn_cast<AccessorDecl>(this)) {
// If this is implicit getter, accessor range should not include attributes.
if (AD->isImplicitGetter())
return Range;
// Otherwise, include attributes directly attached to the accessor.
SourceLoc VarLoc = AD->getStorage()->getStartLoc();
for (auto *Attr : getParsedAttrs()) {
if (!Attr->getRange().isValid())
continue;
SourceLoc AttrStartLoc = Attr->getRangeWithAt().Start;
if (getASTContext().SourceMgr.isBeforeInBuffer(VarLoc, AttrStartLoc))
Range.widen(AttrStartLoc);
}
return Range;
}
// Attributes on VarDecl syntactically belong to PatternBindingDecl.
if (isa<VarDecl>(this) && !isa<ParamDecl>(this))
return Range;
// Attributes on PatternBindingDecls are attached to VarDecls in AST.
if (auto *PBD = dyn_cast<PatternBindingDecl>(this)) {
for (auto i : range(PBD->getNumPatternEntries()))
PBD->getPattern(i)->forEachVariable([&](VarDecl *VD) {
for (auto *Attr : VD->getParsedAttrs())
if (Attr->getRange().isValid())
Range.widen(Attr->getRangeWithAt());
});
}
for (auto *Attr : getParsedAttrs()) {
if (Attr->getRange().isValid())
Range.widen(Attr->getRangeWithAt());
}
return Range;
}
bool Decl::isInMacroExpansionInContext() const {
auto *dc = getDeclContext();
auto parentFile = dc->getParentSourceFile();
auto *mod = getModuleContext();
auto *file = mod->getSourceFileContainingLocation(getStartLoc());
// Decls in macro expansions always have a source file. The source
// file can be null if the decl is implicit or has an invalid
// source location.
if (!parentFile || !file)
return false;
if (file->getBufferID() == parentFile->getBufferID())
return false;
return file->getFulfilledMacroRole() != std::nullopt;
}
SourceLoc Decl::getLocFromSource() const {
switch (getKind()) {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLocFromSource)) == 1, \
#ID "Decl is missing getLocFromSource()"); \
case DeclKind::ID: return cast<ID##Decl>(this)->getLocFromSource();
#include "swift/AST/DeclNodes.def"
}
llvm_unreachable("Unknown decl kind");
}
const ExternalSourceLocs *Decl::getSerializedLocs() const {
auto &Context = getASTContext();
if (auto EL = Context.getExternalSourceLocs(this).value_or(nullptr))
return EL;
static ExternalSourceLocs NullLocs{};
auto *File = cast<FileUnit>(getDeclContext()->getModuleScopeContext());
if (File->getKind() != FileUnitKind::SerializedAST)
return &NullLocs;
auto RawLocs = File->getExternalRawLocsForDecl(this);
if (!RawLocs.has_value()) {
// Don't read .swiftsourceinfo again on failure
Context.setExternalSourceLocs(this, &NullLocs);
return &NullLocs;
}
auto &SM = getASTContext().SourceMgr;
unsigned BufferID = SM.getExternalSourceBufferID(RawLocs->SourceFilePath);
if (!BufferID) {
// Don't try open the file again on failure
Context.setExternalSourceLocs(this, &NullLocs);
return &NullLocs;
}
CharSourceRange BufferRange = SM.getRangeForBuffer(BufferID);
auto ResolveLoc = [&](const ExternalSourceLocs::RawLoc &Raw) -> SourceLoc {
// If the underlying source has been updated and the swiftsourceinfo hasn't,
// make sure we don't produce invalid source locations. Ideally would check
// the file hasn't been modified.
if (Raw.Offset > BufferRange.getByteLength())
return SourceLoc();
// If the decl had a presumed loc, create its virtual file so that
// getPresumedLineAndColForLoc works from serialized locations as well. No
// need to check the buffer range, the directive must be before the location
// itself.
if (Raw.Directive.isValid()) {
auto &LD = Raw.Directive;
SourceLoc Loc = SM.getLocForOffset(BufferID, LD.Offset);
SM.createVirtualFile(Loc, LD.Name, LD.LineOffset, LD.Length);
}
return SM.getLocForOffset(BufferID, Raw.Offset);
};
auto *Result = getASTContext().Allocate<ExternalSourceLocs>();
Result->BufferID = BufferID;
Result->Loc = ResolveLoc(RawLocs->Loc);
auto DocRanges = getASTContext().AllocateUninitialized<CharSourceRange>(RawLocs->DocRanges.size());
for (auto I : indices(RawLocs->DocRanges)) {
auto &Range = RawLocs->DocRanges[I];
DocRanges[I] = CharSourceRange(ResolveLoc(Range.first), Range.second);
}
Result->DocRanges = DocRanges;
Context.setExternalSourceLocs(this, Result);
return Result;
}
StringRef Decl::getAlternateModuleName() const {
for (auto *Att: Attrs) {
if (auto *OD = dyn_cast<OriginallyDefinedInAttr>(Att)) {
if (OD->isActivePlatform(getASTContext())) {
return OD->OriginalModuleName;
}
}
}
for (auto *DC = getDeclContext(); DC; DC = DC->getParent()) {
if (auto decl = DC->getAsDecl()) {
if (decl == this)
continue;
auto AM = decl->getAlternateModuleName();
if (!AM.empty())
return AM;
}
}
return StringRef();
}
SourceLoc Decl::getLoc(bool SerializedOK) const {
#define DECL(ID, X) \
static_assert(sizeof(checkSourceLocType(&ID##Decl::getLoc)) == 2, \
#ID "Decl is re-defining getLoc()");
#include "swift/AST/DeclNodes.def"
if (isa<ModuleDecl>(this))
return SourceLoc();
// When the decl is context-free, we should get loc from source buffer.
if (!getDeclContext())
return getLocFromSource();
FileUnit *File = dyn_cast<FileUnit>(getDeclContext()->getModuleScopeContext());
if (!File)
return getLocFromSource();
switch(File->getKind()) {
case FileUnitKind::Source:
return getLocFromSource();
case FileUnitKind::SerializedAST: {
if (!SerializedOK)
return SourceLoc();
return getSerializedLocs()->Loc;
}
case FileUnitKind::Builtin:
case FileUnitKind::Synthesized:
case FileUnitKind::ClangModule:
case FileUnitKind::DWARFModule:
return SourceLoc();
}
llvm_unreachable("invalid file kind");
}
std::optional<CustomAttrNominalPair> Decl::getGlobalActorAttr() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<Decl *>(this);
return evaluateOrDefault(
ctx.evaluator, GlobalActorAttributeRequest{mutableThis}, std::nullopt);
}
bool Decl::preconcurrency() const {
if (getAttrs().hasAttribute<PreconcurrencyAttr>())
return true;
// Imported C declarations always predate concurrency.
if (isa<ClangModuleUnit>(getDeclContext()->getModuleScopeContext()))
return true;
// Variables declared in top-level code are @_predatesConcurrency
if (const VarDecl *var = dyn_cast<VarDecl>(this)) {
const LangOptions &langOpts = getASTContext().LangOpts;
return !langOpts.isSwiftVersionAtLeast(6) && var->isTopLevelGlobal() &&
var->getDeclContext()->isAsyncContext();
}
return false;
}
Type AbstractFunctionDecl::getThrownInterfaceType() const {
if (!getThrownTypeRepr())
return ThrownType.getType();
auto mutableThis = const_cast<AbstractFunctionDecl *>(this);
return CatchNode(mutableThis).getExplicitCaughtType(getASTContext());
}
std::optional<Type> AbstractFunctionDecl::getEffectiveThrownErrorType() const {
// FIXME: Only getters can have thrown error types right now, and DidSet
// has a cyclic reference if we try to get its interface type here. Find a
// better way to express this.
if (auto accessor = dyn_cast<AccessorDecl>(this)) {
if (accessor->getAccessorKind() != AccessorKind::Get &&
accessor->getAccessorKind() != AccessorKind::DistributedGet) {
return std::nullopt;
}
}
Type interfaceType = getInterfaceType();
if (hasImplicitSelfDecl()) {
if (auto fnType = interfaceType->getAs<AnyFunctionType>())
interfaceType = fnType->getResult();
}
if (auto fnType = interfaceType->getAs<AnyFunctionType>())
return fnType->getEffectiveThrownErrorType();
return std::nullopt;
}
bool AbstractStorageDecl::isCompileTimeConst() const {
return getAttrs().hasAttribute<CompileTimeConstAttr>();
}
bool AbstractStorageDecl::isTransparent() const {
return getAttrs().hasAttribute<TransparentAttr>();
}
bool AbstractFunctionDecl::isTransparent() const {
// Check if the declaration had the attribute.
if (getAttrs().hasAttribute<TransparentAttr>())
return true;
// If this is an accessor, the computation is a bit more involved, so we
// kick off a request.
if (const auto *AD = dyn_cast<AccessorDecl>(this)) {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsAccessorTransparentRequest{const_cast<AccessorDecl *>(AD)},
false);
}
return false;
}
bool ParameterList::hasInternalParameter(StringRef Prefix) const {
for (auto param : *this) {
if (param->hasName() && param->getNameStr().starts_with(Prefix))
return true;
auto argName = param->getArgumentName();
if (!argName.empty() && argName.str().starts_with(Prefix))
return true;
}
return false;
}
bool Decl::hasUnderscoredNaming() const {
const Decl *D = this;
// If it's a function or subscript with a parameter with leading
// underscore, it's a private function or subscript.
if (isa<AbstractFunctionDecl>(D) || isa<SubscriptDecl>(D)) {
const auto VD = cast<ValueDecl>(D);
if (getParameterList(const_cast<ValueDecl *>(VD))
->hasInternalParameter("_")) {
return true;
}
}
if (const auto PD = dyn_cast<ProtocolDecl>(D)) {
StringRef NameStr = PD->getNameStr();
if (NameStr.starts_with("_Builtin")) {
return true;
}
if (NameStr.starts_with("_ExpressibleBy")) {
return true;
}
}
if (const auto ImportD = dyn_cast<ImportDecl>(D)) {
if (const auto *Mod = ImportD->getModule()) {
if (Mod->isSwiftShimsModule()) {
return true;
}
}
}
const auto VD = dyn_cast<ValueDecl>(D);
if (!VD || !VD->hasName()) {
return false;
}
if (!VD->getBaseName().isSpecial() &&
VD->getBaseIdentifier().hasUnderscoredNaming()) {
return true;
}
return false;
}
bool Decl::isPrivateStdlibDecl(bool treatNonBuiltinProtocolsAsPublic) const {
const Decl *D = this;
if (auto ExtD = dyn_cast<ExtensionDecl>(D)) {
Type extTy = ExtD->getExtendedType();
return extTy.isPrivateStdlibType(treatNonBuiltinProtocolsAsPublic);
}
DeclContext *DC = D->getDeclContext()->getModuleScopeContext();
if (DC->getParentModule()->isBuiltinModule() ||
DC->getParentModule()->isSwiftShimsModule())
return true;
if (!DC->getParentModule()->isSystemModule())
return false;
auto FU = dyn_cast<FileUnit>(DC);
if (!FU)
return false;
// Check for Swift module and overlays.
if (!DC->getParentModule()->isStdlibModule() &&
FU->getKind() != FileUnitKind::SerializedAST)
return false;
if (isa<ProtocolDecl>(D)) {
if (treatNonBuiltinProtocolsAsPublic)
return false;
}
if (D->getAttrs().hasAttribute<ShowInInterfaceAttr>()) {
return false;
}
return hasUnderscoredNaming();
}
bool Decl::isStdlibDecl() const {
DeclContext *DC = getDeclContext();
return DC->isModuleScopeContext() &&
DC->getParentModule()->isStdlibModule();
}
LifetimeAnnotation Decl::getLifetimeAnnotationFromAttributes() const {
auto &attrs = getAttrs();
if (attrs.hasAttribute<EagerMoveAttr>())
return LifetimeAnnotation::EagerMove;
if (attrs.hasAttribute<NoEagerMoveAttr>())
return LifetimeAnnotation::Lexical;
return LifetimeAnnotation::None;
}
LifetimeAnnotation Decl::getLifetimeAnnotation() const {
if (auto *pd = dyn_cast<ParamDecl>(this)) {
return pd->getLifetimeAnnotation();
}
if (auto *fd = dyn_cast<FuncDecl>(this)) {
return fd->getLifetimeAnnotation();
}
return getLifetimeAnnotationFromAttributes();
}
AvailabilityContext Decl::getAvailabilityForLinkage() const {
ASTContext &ctx = getASTContext();
// When computing availability for linkage, use the "before" version from
// the @backDeployed attribute, if present.
if (auto backDeployVersion = getBackDeployedBeforeOSVersion(ctx))
return AvailabilityContext{VersionRange::allGTE(*backDeployVersion)};
auto containingContext =
AvailabilityInference::annotatedAvailableRange(this, getASTContext());
if (containingContext.has_value()) {
// If this entity comes from the concurrency module, adjust its
// availability for linkage purposes up to Swift 5.5, so that we use
// weak references any time we reference those symbols when back-deploying
// concurrency.
if (getModuleContext()->getName() == ctx.Id_Concurrency) {
containingContext->intersectWith(ctx.getConcurrencyAvailability());
}
return *containingContext;
}
// FIXME: Adopt AvailabilityInference::parentDeclForInferredAvailability()
// here instead of duplicating the logic.
if (auto *accessor = dyn_cast<AccessorDecl>(this))
return accessor->getStorage()->getAvailabilityForLinkage();
if (auto *opaqueTypeDecl = dyn_cast<OpaqueTypeDecl>(this))
return opaqueTypeDecl->getNamingDecl()->getAvailabilityForLinkage();
if (auto *ext = dyn_cast<ExtensionDecl>(this))
if (auto *nominal = ext->getExtendedNominal())
return nominal->getAvailabilityForLinkage();
auto *dc = getDeclContext();
if (auto *ext = dyn_cast<ExtensionDecl>(dc))
return ext->getAvailabilityForLinkage();
else if (auto *nominal = dyn_cast<NominalTypeDecl>(dc))
return nominal->getAvailabilityForLinkage();
return AvailabilityContext::alwaysAvailable();
}
bool Decl::isAlwaysWeakImported() const {
// For a Clang declaration, trust Clang.
if (auto clangDecl = getClangDecl()) {
return clangDecl->isWeakImported();
}
if (getAttrs().hasAttribute<WeakLinkedAttr>())
return true;
// FIXME: Weak linking on Windows is not yet supported
// https://github.com/apple/swift/issues/53303
if (getSemanticUnavailableAttr() &&
!getASTContext().LangOpts.Target.isOSWindows())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(this))
return accessor->getStorage()->isAlwaysWeakImported();
if (auto *opaqueTypeDecl = dyn_cast<OpaqueTypeDecl>(this))
return opaqueTypeDecl->getNamingDecl()->isAlwaysWeakImported();
if (auto *ext = dyn_cast<ExtensionDecl>(this))
if (auto *nominal = ext->getExtendedNominal())
return nominal->isAlwaysWeakImported();
auto *dc = getDeclContext();
if (auto *ext = dyn_cast<ExtensionDecl>(dc))
return ext->isAlwaysWeakImported();
if (auto *nominal = dyn_cast<NominalTypeDecl>(dc))
return nominal->isAlwaysWeakImported();
return false;
}
bool Decl::isWeakImported(ModuleDecl *fromModule) const {
if (fromModule == nullptr) {
return (isAlwaysWeakImported() ||
!getAvailabilityForLinkage().isAlwaysAvailable());
}
if (getModuleContext() == fromModule)
return false;
if (isAlwaysWeakImported())
return true;
if (fromModule->isImportedAsWeakLinked(this->getModuleContext()))
return true;
auto availability = getAvailabilityForLinkage();
if (availability.isAlwaysAvailable())
return false;
auto &ctx = fromModule->getASTContext();
auto deploymentTarget = AvailabilityContext::forDeploymentTarget(ctx);
if (ctx.LangOpts.WeakLinkAtTarget)
return !availability.isSupersetOf(deploymentTarget);
return !deploymentTarget.isContainedIn(availability);
}
GenericContext::GenericContext(DeclContextKind Kind, DeclContext *Parent,
GenericParamList *Params)
: _GenericContext(), DeclContext(Kind, Parent) {
if (Params) {
Params->setDeclContext(this);
GenericParamsAndState.setPointerAndInt(Params, GenericParamsState::Parsed);
}
}
ArrayRef<GenericTypeParamType *>
GenericContext::getInnermostGenericParamTypes() const {
return getGenericSignature().getInnermostGenericParams();
}
/// Retrieve the generic requirements.
ArrayRef<Requirement> GenericContext::getGenericRequirements() const {
return getGenericSignature().getRequirements();
}
GenericParamList *GenericContext::getGenericParams() const {
return evaluateOrDefault(getASTContext().evaluator,
GenericParamListRequest{
const_cast<GenericContext *>(this)}, nullptr);
}
GenericParamList *GenericContext::getParsedGenericParams() const {
switch (GenericParamsAndState.getInt()) {
case GenericParamsState::Parsed:
case GenericParamsState::ParsedAndTypeChecked:
return GenericParamsAndState.getPointer();
case GenericParamsState::TypeChecked:
return nullptr;
}
}
bool GenericContext::hasComputedGenericSignature() const {
return GenericSigAndBit.getInt();
}
bool GenericContext::isComputingGenericSignature() const {
return getASTContext().evaluator.hasActiveRequest(
GenericSignatureRequest{const_cast<GenericContext*>(this)});
}
/// If we hit a cycle while building the generic signature, we can't return
/// nullptr, since this breaks invariants elsewhere. Instead, build a dummy
/// signature where everything is Copyable and Escapable, to avoid spurious
/// downstream diagnostics concerning move-only types.
static GenericSignature getPlaceholderGenericSignature(
ASTContext &ctx, const DeclContext *DC) {
SmallVector<GenericParamList *, 2> gpLists;
DC->forEachGenericContext([&](GenericParamList *genericParams) {
gpLists.push_back(genericParams);
});
if (gpLists.empty())
return nullptr;
std::reverse(gpLists.begin(), gpLists.end());
for (unsigned i : indices(gpLists))
gpLists[i]->setDepth(i);
SmallVector<GenericTypeParamType *, 2> genericParams;
SmallVector<Requirement, 2> requirements;
for (auto *gpList : gpLists) {
for (auto *genericParam : *gpList) {
auto type = genericParam->getDeclaredInterfaceType();
genericParams.push_back(type->castTo<GenericTypeParamType>());
for (auto ip : InvertibleProtocolSet::allKnown()) {
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
requirements.emplace_back(RequirementKind::Conformance, type,
proto->getDeclaredInterfaceType());
}
}
}
return GenericSignature::get(genericParams, requirements);
}
GenericSignature GenericContext::getGenericSignature() const {
auto &ctx = getASTContext();
return ctx.evaluator(
GenericSignatureRequest{const_cast<GenericContext *>(this)},
[&ctx, this]() { return getPlaceholderGenericSignature(ctx, this); });
}
GenericEnvironment *GenericContext::getGenericEnvironment() const {
return getGenericSignature().getGenericEnvironment();
}
void GenericContext::setGenericSignature(GenericSignature genericSig) {
assert(!GenericSigAndBit.getPointer() && "Generic signature cannot be changed");
getASTContext().evaluator.cacheOutput(GenericSignatureRequest{this},
std::move(genericSig));
}
SourceRange GenericContext::getGenericTrailingWhereClauseSourceRange() const {
if (const auto *where = getTrailingWhereClause())
return where->getSourceRange();
return SourceRange();
}
ImportDecl *ImportDecl::create(ASTContext &Ctx, DeclContext *DC,
SourceLoc ImportLoc, ImportKind Kind,
SourceLoc KindLoc,
ImportPath Path,
ClangNode ClangN) {
assert(!Path.empty());
assert(Kind == ImportKind::Module || Path.size() > 1);
assert(ClangN.isNull() || ClangN.getAsModule() ||
isa<clang::ImportDecl>(ClangN.getAsDecl()));
size_t Size = totalSizeToAlloc<ImportPath::Element>(Path.size());
void *ptr = allocateMemoryForDecl<ImportDecl>(Ctx, Size, !ClangN.isNull());
auto D = new (ptr) ImportDecl(DC, ImportLoc, Kind, KindLoc, Path);
if (ClangN)
D->setClangNode(ClangN);
auto realNameIfExists = Ctx.getRealModuleName(Path.front().Item,
ASTContext::ModuleAliasLookupOption::realNameFromAlias);
if (!realNameIfExists.empty()) {
D->RealModuleName = realNameIfExists;
}
return D;
}
ImportDecl::ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
SourceLoc KindLoc, ImportPath Path)
: Decl(DeclKind::Import, DC), ImportLoc(ImportLoc), KindLoc(KindLoc) {
Bits.ImportDecl.NumPathElements = Path.size();
assert(Bits.ImportDecl.NumPathElements == Path.size() && "Truncation error");
Bits.ImportDecl.ImportKind = static_cast<unsigned>(K);
assert(getImportKind() == K && "not enough bits for ImportKind");
std::uninitialized_copy(Path.begin(), Path.end(),
getTrailingObjects<ImportPath::Element>());
}
ImportKind ImportDecl::getBestImportKind(const ValueDecl *VD) {
switch (VD->getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::EnumCase:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::PrecedenceGroup:
case DeclKind::Missing:
case DeclKind::MissingMember:
case DeclKind::MacroExpansion:
llvm_unreachable("not a ValueDecl");
case DeclKind::AssociatedType:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::GenericTypeParam:
case DeclKind::Subscript:
case DeclKind::EnumElement:
case DeclKind::Param:
llvm_unreachable("not a top-level ValueDecl");
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleDecl should not end up here");
case DeclKind::Protocol:
return ImportKind::Protocol;
case DeclKind::Class:
return ImportKind::Class;
case DeclKind::Enum:
return ImportKind::Enum;
case DeclKind::Struct:
return ImportKind::Struct;
case DeclKind::OpaqueType:
return ImportKind::Type;
case DeclKind::TypeAlias: {
Type type = cast<TypeAliasDecl>(VD)->getDeclaredInterfaceType();
auto *nominal = type->getAnyNominal();
if (!nominal)
return ImportKind::Type;
return getBestImportKind(nominal);
}
case DeclKind::Accessor:
case DeclKind::Func:
return ImportKind::Func;
case DeclKind::Var:
return ImportKind::Var;
case DeclKind::Module:
case DeclKind::Macro:
return ImportKind::Module;
}
llvm_unreachable("bad DeclKind");
}
std::optional<ImportKind>
ImportDecl::findBestImportKind(ArrayRef<ValueDecl *> Decls) {
assert(!Decls.empty());
ImportKind FirstKind = ImportDecl::getBestImportKind(Decls.front());
// FIXME: Only functions can be overloaded.
if (Decls.size() == 1)
return FirstKind;
if (FirstKind != ImportKind::Func)
return std::nullopt;
for (auto NextDecl : Decls.slice(1)) {
if (ImportDecl::getBestImportKind(NextDecl) != FirstKind)
return std::nullopt;
}
return FirstKind;
}
ImportPath ImportDecl::getRealImportPath(ImportPath::Builder &scratch) const {
assert(scratch.empty() && "scratch ImportPath::Builder must be initially empty");
auto path = getImportPath();
if (RealModuleName.empty())
return path;
for (auto elem : path) {
if (scratch.empty()) {
// Add the real module name instead of its alias
scratch.push_back(RealModuleName);
} else {
// Add the rest if any (access path elements)
scratch.push_back(elem.Item);
}
}
return scratch.get();
}
ArrayRef<ValueDecl *> ImportDecl::getDecls() const {
// If this isn't a scoped import, there's nothing to do.
if (getImportKind() == ImportKind::Module)
return {};
auto &ctx = getASTContext();
auto *mutableThis = const_cast<ImportDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ScopedImportLookupRequest{mutableThis}, {});
}
AccessLevel ImportDecl::getAccessLevel() const {
if (auto attr = getAttrs().getAttribute<AccessControlAttr>()) {
if (attr->getAccess() == AccessLevel::Open) {
// Use a conservative import if the level given is invalid.
return AccessLevel::Internal;
} else
return attr->getAccess();
}
auto &LangOpts = getASTContext().LangOpts;
if (LangOpts.hasFeature(Feature::InternalImportsByDefault)) {
// Swift 6 mode where the default import is internal.
return AccessLevel::Internal;
} else {
return AccessLevel::Public;
}
}
bool ImportDecl::isAccessLevelImplicit() const {
if (auto attr = getAttrs().getAttribute<AccessControlAttr>()) {
return false;
}
return true;
}
void NominalTypeDecl::setConformanceLoader(LazyMemberLoader *lazyLoader,
uint64_t contextData) {
assert(!Bits.NominalTypeDecl.HasLazyConformances &&
"Already have lazy conformances");
Bits.NominalTypeDecl.HasLazyConformances = true;
ASTContext &ctx = getASTContext();
auto contextInfo = ctx.getOrCreateLazyIterableContextData(this, lazyLoader);
contextInfo->allConformancesData = contextData;
}
std::pair<LazyMemberLoader *, uint64_t>
NominalTypeDecl::takeConformanceLoaderSlow() {
assert(Bits.NominalTypeDecl.HasLazyConformances && "not lazy conformances");
Bits.NominalTypeDecl.HasLazyConformances = false;
auto contextInfo =
getASTContext().getOrCreateLazyIterableContextData(this, nullptr);
return { contextInfo->loader, contextInfo->allConformancesData };
}
InheritedEntry::InheritedEntry(const TypeLoc &typeLoc)
: InheritedEntry(typeLoc, /*isUnchecked=*/false, /*isRetroactive=*/false,
/*isPreconcurrency=*/false) {
if (auto typeRepr = typeLoc.getTypeRepr()) {
IsUnchecked = typeRepr->findAttrLoc(TypeAttrKind::Unchecked).isValid();
IsRetroactive = typeRepr->findAttrLoc(TypeAttrKind::Retroactive).isValid();
IsPreconcurrency =
typeRepr->findAttrLoc(TypeAttrKind::Preconcurrency).isValid();
}
}
InheritedTypes::InheritedTypes(const TypeDecl *typeDecl) : Decl(typeDecl) {
Entries = typeDecl->Inherited;
}
InheritedTypes::InheritedTypes(const ExtensionDecl *extensionDecl)
: Decl(extensionDecl) {
Entries = extensionDecl->Inherited;
}
InheritedTypes::InheritedTypes(
llvm::PointerUnion<const TypeDecl *, const ExtensionDecl *> decl)
: Decl(decl) {
if (auto *typeDecl = decl.dyn_cast<const TypeDecl *>()) {
Entries = typeDecl->Inherited;
} else {
Entries = decl.get<const ExtensionDecl *>()->Inherited;
}
}
InheritedTypes::InheritedTypes(const class Decl *decl) {
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
Decl = typeDecl;
Entries = typeDecl->Inherited;
} else if (auto extensionDecl = dyn_cast<ExtensionDecl>(decl)) {
Decl = extensionDecl;
Entries = extensionDecl->Inherited;
} else {
Decl = nullptr;
Entries = ArrayRef<InheritedEntry>();
}
}
ASTContext &InheritedTypes::getASTContext() const {
if (auto typeDecl = Decl.dyn_cast<const TypeDecl *>()) {
return typeDecl->getASTContext();
} else {
return Decl.get<const ExtensionDecl *>()->getASTContext();
}
}
SourceLoc InheritedTypes::getColonLoc() const {
if (Entries.size() == 0)
return SourceLoc();
SourceLoc precedingTok;
if (auto typeDecl = Decl.dyn_cast<const TypeDecl *>()) {
precedingTok = typeDecl->getNameLoc();
} else {
auto *ext = Decl.get<const ExtensionDecl *>();
precedingTok = ext->getSourceRange().End;
}
auto &ctx = getASTContext();
return Lexer::getLocForEndOfToken(ctx.SourceMgr, precedingTok);
}
SourceRange InheritedTypes::getRemovalRange(unsigned i) const {
auto inheritedClause = getEntries();
auto &ctx = getASTContext();
// If there is just one entry, remove the entire inheritance clause.
if (inheritedClause.size() == 1) {
SourceLoc end = inheritedClause[i].getSourceRange().End;
return SourceRange(getColonLoc(),
Lexer::getLocForEndOfToken(ctx.SourceMgr, end));
}
// If we're at the first entry, remove from the start of this entry to the
// start of the next entry.
if (i == 0) {
return SourceRange(inheritedClause[i].getSourceRange().Start,
inheritedClause[i+1].getSourceRange().Start);
}
// Otherwise, remove from the end of the previous entry to the end of this
// entry.
SourceLoc afterPriorLoc =
Lexer::getLocForEndOfToken(ctx.SourceMgr,
inheritedClause[i-1].getSourceRange().End);
SourceLoc afterMyEndLoc =
Lexer::getLocForEndOfToken(ctx.SourceMgr,
inheritedClause[i].getSourceRange().End);
return SourceRange(afterPriorLoc, afterMyEndLoc);
}
Type InheritedTypes::getResolvedType(unsigned i,
TypeResolutionStage stage) const {
ASTContext &ctx = Decl.is<const ExtensionDecl *>()
? Decl.get<const ExtensionDecl *>()->getASTContext()
: Decl.get<const TypeDecl *>()->getASTContext();
return evaluateOrDefault(ctx.evaluator, InheritedTypeRequest{Decl, i, stage},
InheritedTypeResult::forDefault())
.getInheritedTypeOrNull(getASTContext());
}
ExtensionDecl::ExtensionDecl(SourceLoc extensionLoc,
TypeRepr *extendedType,
ArrayRef<InheritedEntry> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause)
: GenericContext(DeclContextKind::ExtensionDecl, parent, nullptr),
Decl(DeclKind::Extension, parent),
IterableDeclContext(IterableDeclContextKind::ExtensionDecl),
ExtensionLoc(extensionLoc),
ExtendedTypeRepr(extendedType),
Inherited(inherited)
{
Bits.ExtensionDecl.DefaultAndMaxAccessLevel = 0;
Bits.ExtensionDecl.HasLazyConformances = false;
setTrailingWhereClause(trailingWhereClause);
}
ExtensionDecl *ExtensionDecl::create(ASTContext &ctx, SourceLoc extensionLoc,
TypeRepr *extendedType,
ArrayRef<InheritedEntry> inherited,
DeclContext *parent,
TrailingWhereClause *trailingWhereClause,
ClangNode clangNode) {
unsigned size = sizeof(ExtensionDecl);
void *declPtr = allocateMemoryForDecl<ExtensionDecl>(ctx, size,
!clangNode.isNull());
// Construct the extension.
auto result = ::new (declPtr) ExtensionDecl(extensionLoc, extendedType,
inherited, parent,
trailingWhereClause);
if (clangNode)
result->setClangNode(clangNode);
return result;
}
void ExtensionDecl::setConformanceLoader(LazyMemberLoader *lazyLoader,
uint64_t contextData) {
assert(!Bits.ExtensionDecl.HasLazyConformances &&
"Already have lazy conformances");
Bits.ExtensionDecl.HasLazyConformances = true;
ASTContext &ctx = getASTContext();
auto contextInfo = ctx.getOrCreateLazyIterableContextData(this, lazyLoader);
contextInfo->allConformancesData = contextData;
}
std::pair<LazyMemberLoader *, uint64_t>
ExtensionDecl::takeConformanceLoaderSlow() {
assert(Bits.ExtensionDecl.HasLazyConformances && "no conformance loader?");
Bits.ExtensionDecl.HasLazyConformances = false;
auto contextInfo =
getASTContext().getOrCreateLazyIterableContextData(this, nullptr);
return { contextInfo->loader, contextInfo->allConformancesData };
}
NominalTypeDecl *ExtensionDecl::getExtendedNominal() const {
if (hasBeenBound()) {
return ExtendedNominal.getPointer();
} else if (canNeverBeBound()) {
return computeExtendedNominal();
}
llvm_unreachable(
"Extension must have already been bound (by bindExtensions)");
}
NominalTypeDecl *ExtensionDecl::computeExtendedNominal() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(
ctx.evaluator, ExtendedNominalRequest{const_cast<ExtensionDecl *>(this)},
nullptr);
}
bool ExtensionDecl::canNeverBeBound() const {
// \c bindExtensions() only looks at valid parents for extensions.
return !hasValidParent();
}
bool ExtensionDecl::hasValidParent() const {
return getDeclContext()->canBeParentOfExtension();
}
bool ExtensionDecl::isConstrainedExtension() const {
auto nominal = getExtendedNominal();
if (!nominal)
return false;
auto typeSig = nominal->getGenericSignature();
if (!typeSig)
return false;
auto extSig = getGenericSignature();
if (!extSig)
return false;
// If the generic signature differs from that of the nominal type, it's a
// constrained extension.
return !typeSig->isEqual(extSig);
}
bool ExtensionDecl::isWrittenWithConstraints() const {
auto nominal = getExtendedNominal();
if (!nominal)
return false;
// If there's no generic signature, then it's written without constraints.
CanGenericSignature extSig = getGenericSignature().getCanonicalSignature();
if (!extSig)
return false;
CanGenericSignature typeSig =
nominal->getGenericSignature().getCanonicalSignature();
// Get the requirements and inverses for both the extension and type.
SmallVector<Requirement, 2> extReqs;
SmallVector<InverseRequirement, 2> extInverseReqs;
extSig->getRequirementsWithInverses(extReqs, extInverseReqs);
SmallVector<Requirement, 2> typeReqs;
SmallVector<InverseRequirement, 2> typeInverseReqs;
typeSig->getRequirementsWithInverses(typeReqs, typeInverseReqs);
// If the (non-inverse) requirements are different between the extension and
// the original type, it's written with constraints. Note that
// the extension can only add requirements, so we need only check the size
// (not the specific requirements).
if (extReqs.size() > typeReqs.size()) {
return true;
}
assert(extReqs.size() == typeReqs.size());
// If the type has no inverse requirements, there are no extra constraints
// to write.
if (typeInverseReqs.empty()) {
return false;
}
// If the extension has no inverse requirements, then there are no constraints
// that need to be written down.
if (extInverseReqs.empty()) {
return false;
}
// We have inverses that need to be written out.
return true;
}
bool ExtensionDecl::isInSameDefiningModule() const {
auto decl = getExtendedNominal();
auto extensionAlterName = getAlternateModuleName();
auto typeAlterName = decl->getAlternateModuleName();
if (!extensionAlterName.empty()) {
if (!typeAlterName.empty()) {
// Case I: type and extension are both moved from somewhere else
return typeAlterName == extensionAlterName;
} else {
// Case II: extension alone was moved from somewhere else
return extensionAlterName == decl->getParentModule()->getNameStr();
}
} else {
if (!typeAlterName.empty()) {
// Case III: extended type alone was moved from somewhere else
return typeAlterName == getParentModule()->getNameStr();
} else {
// Case IV: neither of type and extension was moved from somewhere else
return getParentModule() == decl->getParentModule();
}
}
}
bool ExtensionDecl::isEquivalentToExtendedContext() const {
return isInSameDefiningModule()
&& !isConstrainedExtension()
&& !getDeclaredInterfaceType()->isExistentialType();
}
AccessLevel ExtensionDecl::getDefaultAccessLevel() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
DefaultAndMaxAccessLevelRequest{const_cast<ExtensionDecl *>(this)},
{AccessLevel::Private, AccessLevel::Private}).first;
}
AccessLevel ExtensionDecl::getMaxAccessLevel() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
DefaultAndMaxAccessLevelRequest{const_cast<ExtensionDecl *>(this)},
{AccessLevel::Private, AccessLevel::Private}).second;
}
Type ExtensionDecl::getExtendedType() const {
ASTContext &ctx = getASTContext();
if (auto type = evaluateOrDefault(ctx.evaluator,
ExtendedTypeRequest{const_cast<ExtensionDecl *>(this)},
Type()))
return type;
return ErrorType::get(ctx);
}
bool Decl::isObjCImplementation() const {
return getAttrs().hasAttribute<ObjCImplementationAttr>(/*AllowInvalid=*/true);
}
PatternBindingDecl::PatternBindingDecl(SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent)
: Decl(DeclKind::PatternBinding, Parent),
StaticLoc(StaticLoc), VarLoc(VarLoc) {
Bits.PatternBindingDecl.IsStatic = StaticLoc.isValid();
Bits.PatternBindingDecl.StaticSpelling =
static_cast<unsigned>(StaticSpelling);
Bits.PatternBindingDecl.NumPatternEntries = NumPatternEntries;
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling, SourceLoc VarLoc,
Pattern *Pat, SourceLoc EqualLoc, Expr *E,
DeclContext *Parent) {
// We can provide a null context, 'create' will fill it in for us.
// FIXME: This seems dubious, see the comment in 'create'.
auto PBE = PatternBindingEntry(Pat, EqualLoc, E, /*InitContext*/ nullptr);
return create(Ctx, StaticLoc, StaticSpelling, VarLoc, PBE, Parent);
}
PatternBindingDecl *PatternBindingDecl::createImplicit(
ASTContext &Ctx, StaticSpellingKind StaticSpelling, Pattern *Pat, Expr *E,
DeclContext *Parent, SourceLoc VarLoc) {
auto *Result = create(Ctx, /*StaticLoc*/ SourceLoc(), StaticSpelling, VarLoc,
Pat, /*EqualLoc*/ SourceLoc(), E, Parent);
Result->setImplicit();
return Result;
}
PatternBindingDecl *PatternBindingDecl::createForDebugger(
ASTContext &Ctx, StaticSpellingKind StaticSpelling, Pattern *Pat, Expr *E,
DeclContext *Parent) {
auto *Result = createImplicit(Ctx, StaticSpelling, Pat, E, Parent);
Result->Bits.PatternBindingDecl.IsDebugger = true;
for (auto &entry : Result->getMutablePatternList()) {
entry.setFromDebugger();
}
return Result;
}
PatternBindingDecl *
PatternBindingDecl::create(ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
ArrayRef<PatternBindingEntry> PatternList,
DeclContext *Parent) {
size_t Size = totalSizeToAlloc<PatternBindingEntry>(PatternList.size());
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
/*ClangNode*/false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
PatternList.size(), Parent);
// Set up the patterns.
std::uninitialized_copy(PatternList.begin(), PatternList.end(),
PBD->getTrailingObjects<PatternBindingEntry>());
for (auto idx : range(PBD->getNumPatternEntries())) {
auto *initContext = PBD->getInitContext(idx);
// FIXME: We ought to reconsider this since it won't recontextualize any
// closures/decls present in the initialization expr. This currently should
// only affect implicit code though.
if (!initContext && !Parent->isLocalContext())
initContext = PatternBindingInitializer::create(Parent);
// We need to call setPattern to ensure the VarDecls in the pattern have
// the PatternBindingDecl set as their parent. We also need to call
// setInitContext to setup the context.
PBD->setPattern(idx, PBD->getPattern(idx));
PBD->setInitContext(idx, initContext);
}
return PBD;
}
PatternBindingDecl *PatternBindingDecl::createDeserialized(
ASTContext &Ctx, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc VarLoc,
unsigned NumPatternEntries,
DeclContext *Parent) {
size_t Size = totalSizeToAlloc<PatternBindingEntry>(NumPatternEntries);
void *D = allocateMemoryForDecl<PatternBindingDecl>(Ctx, Size,
/*ClangNode*/false);
auto PBD = ::new (D) PatternBindingDecl(StaticLoc, StaticSpelling, VarLoc,
NumPatternEntries, Parent);
for (auto &entry : PBD->getMutablePatternList()) {
entry = PatternBindingEntry(/*Pattern*/ nullptr, /*EqualLoc*/ SourceLoc(),
/*Init*/ nullptr, /*InitContext*/ nullptr);
}
return PBD;
}
PatternBindingInitializer *
PatternBindingInitializer::createDeserialized(PatternBindingDecl *PBD,
unsigned index) {
auto *init = PatternBindingInitializer::create(PBD->getDeclContext());
init->setBinding(PBD, index);
return init;
}
ParamDecl *PatternBindingInitializer::getImplicitSelfDecl() const {
if (SelfParam)
return SelfParam;
if (auto singleVar = getInitializedLazyVar()) {
auto DC = singleVar->getDeclContext();
if (DC->isTypeContext()) {
auto specifier = (DC->getDeclaredInterfaceType()->hasReferenceSemantics()
? ParamSpecifier::Default
: ParamSpecifier::InOut);
ASTContext &C = DC->getASTContext();
auto *mutableThis = const_cast<PatternBindingInitializer *>(this);
auto *LazySelfParam = new (C) ParamDecl(SourceLoc(), SourceLoc(),
Identifier(), singleVar->getLoc(),
C.Id_self, mutableThis);
LazySelfParam->setImplicit();
LazySelfParam->setSpecifier(specifier);
LazySelfParam->setInterfaceType(DC->getSelfInterfaceType());
// Lazy members of actors have an isolated 'self', assuming there is
// no "nonisolated" attribute.
if (auto nominal = DC->getSelfNominalTypeDecl()) {
if (nominal->isActor() &&
!singleVar->getAttrs().hasAttribute<NonisolatedAttr>())
LazySelfParam->setIsolated();
}
mutableThis->SelfParam = LazySelfParam;
}
}
return SelfParam;
}
void PatternBindingInitializer::setBinding(PatternBindingDecl *binding,
unsigned bindingIndex) {
assert(binding);
assert(!Binding || Binding == binding &&
"Cannot change the binding after the fact");
assert(!Binding || SpareBits == bindingIndex &&
"Cannot change the binding index after the fact");
setParent(binding->getDeclContext());
Binding = binding;
SpareBits = bindingIndex;
}
VarDecl *PatternBindingInitializer::getInitializedLazyVar() const {
if (auto binding = getBinding()) {
if (auto var = binding->getSingleVar()) {
if (var->getAttrs().hasAttribute<LazyAttr>())
return var;
}
}
return nullptr;
}
unsigned PatternBindingDecl::getPatternEntryIndexForVarDecl(const VarDecl *VD) const {
assert(VD && "Cannot find a null VarDecl");
auto List = getPatternList();
if (List.size() == 1) {
assert(List[0].getPattern()->containsVarDecl(VD) &&
"Single entry PatternBindingDecl is set up wrong");
return 0;
}
unsigned Result = 0;
for (auto entry : List) {
if (entry.getPattern()->containsVarDecl(VD))
return Result;
++Result;
}
assert(0 && "PatternBindingDecl doesn't bind the specified VarDecl!");
return ~0U;
}
Expr *PatternBindingEntry::getOriginalInit() const {
return InitContextAndFlags.getInt().contains(PatternFlags::IsText)
? nullptr
: InitExpr.originalInit;
}
SourceRange PatternBindingEntry::getOriginalInitRange() const {
if (auto *i = getOriginalInit())
return i->getSourceRange();
return SourceRange();
}
void PatternBindingEntry::setOriginalInit(Expr *E) {
InitExpr.originalInit = E;
InitContextAndFlags.setInt(InitContextAndFlags.getInt() -
PatternFlags::IsText);
}
bool PatternBindingEntry::isInitialized(bool onlyExplicit) const {
// Directly initialized.
if (getInit() && (!onlyExplicit || getEqualLoc().isValid()))
return true;
// Initialized via a property wrapper.
if (auto var = getPattern()->getSingleVar()) {
auto customAttrs = var->getAttachedPropertyWrappers();
if (customAttrs.size() > 0 && customAttrs[0]->hasArgs())
return true;
}
return false;
}
void PatternBindingEntry::setInit(Expr *E) {
auto F = PatternAndFlags.getInt();
if (E) {
PatternAndFlags.setInt(F - Flags::Removed);
} else {
PatternAndFlags.setInt(F | Flags::Removed);
}
InitExpr.initAfterSynthesis.setPointer(E);
InitContextAndFlags.setInt(InitContextAndFlags.getInt() -
PatternFlags::IsText);
}
VarDecl *PatternBindingEntry::getAnchoringVarDecl() const {
SmallVector<VarDecl *, 8> variables;
getPattern()->collectVariables(variables);
if (variables.empty())
return nullptr;
return variables[0];
}
SourceLoc PatternBindingEntry::getLastAccessorEndLoc() const {
SourceLoc lastAccessorEnd;
getPattern()->forEachVariable([&](VarDecl *var) {
auto accessorsEndLoc = var->getBracesRange().End;
if (accessorsEndLoc.isValid())
lastAccessorEnd = accessorsEndLoc;
});
return lastAccessorEnd;
}
SourceLoc PatternBindingEntry::getStartLoc() const {
return getPattern()->getStartLoc();
}
SourceLoc PatternBindingEntry::getEndLoc(bool omitAccessors) const {
// Accessors are last
if (!omitAccessors) {
const auto lastAccessorEnd = getLastAccessorEndLoc();
if (lastAccessorEnd.isValid())
return lastAccessorEnd;
}
const auto initEnd = getOriginalInitRange().End;
if (initEnd.isValid())
return initEnd;
return getPattern()->getEndLoc();
}
SourceRange PatternBindingEntry::getSourceRange(bool omitAccessors) const {
const SourceLoc startLoc = getStartLoc();
if (startLoc.isInvalid())
return SourceRange();
const SourceLoc endLoc = getEndLoc(omitAccessors);
if (endLoc.isInvalid())
return SourceRange();
return SourceRange(startLoc, endLoc);
}
bool PatternBindingEntry::hasInitStringRepresentation() const {
if (InitContextAndFlags.getInt().contains(PatternFlags::IsText))
return !InitStringRepresentation.empty();
return getOriginalInit() && getOriginalInit()->getSourceRange().isValid();
}
StringRef PatternBindingEntry::getInitStringRepresentation(
SmallVectorImpl<char> &scratch) const {
assert(hasInitStringRepresentation() &&
"must check if pattern has string representation");
if (InitContextAndFlags.getInt().contains(PatternFlags::IsText) &&
!InitStringRepresentation.empty())
return InitStringRepresentation;
auto &sourceMgr = getAnchoringVarDecl()->getASTContext().SourceMgr;
auto init = getOriginalInit();
return extractInlinableText(sourceMgr, init, scratch);
}
SourceRange PatternBindingDecl::getSourceRange() const {
SourceLoc startLoc = getStartLoc();
SourceLoc endLoc = getPatternList().empty()
? SourceLoc()
: getPatternList().back().getSourceRange().End;
if (startLoc.isValid() != endLoc.isValid()) return SourceRange();
return { startLoc, endLoc };
}
static StaticSpellingKind getCorrectStaticSpellingForDecl(const Decl *D) {
if (auto classDecl = D->getDeclContext()->getSelfClassDecl()) {
if (!classDecl->isActor())
return StaticSpellingKind::KeywordClass;
}
return StaticSpellingKind::KeywordStatic;
}
StaticSpellingKind PatternBindingDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
if (getStaticSpelling() != StaticSpellingKind::None)
return getStaticSpelling();
return getCorrectStaticSpellingForDecl(this);
}
bool PatternBindingDecl::isAsyncLet() const {
if (auto var = getAnchoringVarDecl(0))
return var->isAsyncLet();
// Check for "async let _: <Type> = <expression>" pattern.
auto *pattern = getPatternList()[0].getPattern();
if (auto *typedPattern = dyn_cast<TypedPattern>(pattern)) {
auto *anyPattern = dyn_cast<AnyPattern>(typedPattern->getSubPattern());
return anyPattern && anyPattern->isAsyncLet();
}
// Check for "async let _ = <expression>" pattern.
if (auto *anyPattern = dyn_cast<AnyPattern>(pattern)) {
return anyPattern->isAsyncLet();
}
return false;
}
ActorIsolation
PatternBindingDecl::getInitializerIsolation(unsigned i) const {
auto *var = getPatternList()[i].getAnchoringVarDecl();
if (!var)
return ActorIsolation::forUnspecified();
return var->getInitializerIsolation();
}
Expr *PatternBindingDecl::getCheckedAndContextualizedInit(unsigned i) const {
return evaluateOrDefault(getASTContext().evaluator,
PatternBindingCheckedAndContextualizedInitRequest{
const_cast<PatternBindingDecl *>(this), i},
nullptr);
}
Expr *PatternBindingDecl::getCheckedAndContextualizedExecutableInit(
unsigned i) const {
(void)getCheckedAndContextualizedInit(i);
return getExecutableInit(i);
}
bool PatternBindingDecl::hasStorage() const {
// Walk the pattern, to check to see if any of the VarDecls included in it
// have storage.
for (auto entry : getPatternList())
if (entry.getPattern()->hasStorage())
return true;
return false;
}
const PatternBindingEntry *
PatternBindingDecl::getCheckedPatternBindingEntry(unsigned i) const {
return evaluateOrDefault(
getASTContext().evaluator,
PatternBindingEntryRequest{const_cast<PatternBindingDecl *>(this), i},
nullptr);
}
void PatternBindingDecl::setPattern(unsigned i, Pattern *P,
bool isFullyValidated) {
auto PatternList = getMutablePatternList();
PatternList[i].setPattern(P);
// Make sure that any VarDecl's contained within the pattern know about this
// PatternBindingDecl as their parent.
if (P) {
P->forEachVariable([&](VarDecl *VD) {
if (!VD->isCaptureList())
VD->setParentPatternBinding(this);
});
if (isFullyValidated)
PatternList[i].setFullyValidated();
}
}
VarDecl *PatternBindingDecl::getSingleVar() const {
if (getNumPatternEntries() == 1)
return getPatternList()[0].getPattern()->getSingleVar();
return nullptr;
}
VarDecl *PatternBindingDecl::getAnchoringVarDecl(unsigned i) const {
return getPatternList()[i].getAnchoringVarDecl();
}
bool VarDecl::isInitExposedToClients() const {
// 'lazy' initializers are emitted inside the getter, which is never
// @inlinable.
if (getAttrs().hasAttribute<LazyAttr>())
return false;
return hasInitialValue() && isLayoutExposedToClients();
}
bool VarDecl::isLayoutExposedToClients() const {
auto parent = dyn_cast<NominalTypeDecl>(getDeclContext());
if (!parent) return false;
if (isStatic()) return false;
auto nominalAccess =
parent->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (!nominalAccess.isPublic()) return false;
if (!parent->getAttrs().hasAttribute<FrozenAttr>() &&
!parent->getAttrs().hasAttribute<FixedLayoutAttr>())
return false;
if (!hasStorage() &&
!getAttrs().hasAttribute<LazyAttr>() &&
!hasAttachedPropertyWrapper()) {
return false;
}
return true;
}
/// Check whether the given type representation will be
/// default-initializable.
static bool isDefaultInitializable(const TypeRepr *typeRepr, ASTContext &ctx) {
// Look through most attributes.
if (const auto attributed = dyn_cast<AttributedTypeRepr>(typeRepr)) {
// Ownership kinds have optionalness requirements.
// FIXME: this is checking for *SIL* ownership; normal weak/unowned/etc.
// are decl attributes. Is this actually an important check to do?
if (optionalityOf(attributed->getSILOwnership()) ==
ReferenceOwnershipOptionality::Required)
return true;
return isDefaultInitializable(attributed->getTypeRepr(), ctx);
}
// Optional types are default-initializable.
if (isa<OptionalTypeRepr>(typeRepr) ||
isa<ImplicitlyUnwrappedOptionalTypeRepr>(typeRepr))
return true;
// Also support the desugared 'Optional<T>' spelling.
if (!ctx.isSwiftVersionAtLeast(5)) {
if (typeRepr->isSimpleUnqualifiedIdentifier(ctx.Id_Void)) {
return true;
}
if (auto *unqualIdentRepr = dyn_cast<UnqualifiedIdentTypeRepr>(typeRepr)) {
if (unqualIdentRepr->getNumGenericArgs() == 1 &&
unqualIdentRepr->getNameRef().getBaseIdentifier() == ctx.Id_Optional)
return true;
}
}
// Tuple types are default-initializable if all of their element
// types are.
if (const auto tuple = dyn_cast<TupleTypeRepr>(typeRepr)) {
for (const auto &elt : tuple->getElements()) {
if (!isDefaultInitializable(elt.Type, ctx))
return false;
}
return true;
}
// Not default initializable.
return false;
}
// @NSManaged properties never get default initialized, nor do debugger
// variables and immutable properties.
bool Pattern::isNeverDefaultInitializable() const {
bool result = false;
forEachVariable([&](const VarDecl *var) {
if (var->getAttrs().hasAttribute<NSManagedAttr>())
return;
if (var->isDebuggerVar() ||
var->isLet())
result = true;
});
return result;
}
bool PatternBindingDecl::isDefaultInitializableViaPropertyWrapper(unsigned i) const {
if (auto singleVar = getSingleVar()) {
if (auto wrapperInfo = singleVar->getAttachedPropertyWrapperTypeInfo(0)) {
if (wrapperInfo.defaultInit)
return true;
}
}
return false;
}
bool PatternBindingDecl::isDefaultInitializable(unsigned i) const {
const auto entry = getPatternList()[i];
// If it has an initializer expression, this is trivially true.
if (entry.isInitialized())
return true;
// If the outermost attached property wrapper vends an `init()`, use that
// for default initialization.
if (isDefaultInitializableViaPropertyWrapper(i))
return true;
// If one of the attached wrappers is missing a wrappedValue
// initializer, cannot default-initialize.
if (auto singleVar = getSingleVar()) {
if (auto wrapperInfo = singleVar->getAttachedPropertyWrapperTypeInfo(0)) {
if (!singleVar->allAttachedPropertyWrappersHaveWrappedValueInit())
return false;
}
}
if (entry.getPattern()->isNeverDefaultInitializable())
return false;
auto &ctx = getASTContext();
// If the pattern is typed as optional (or tuples thereof), it is
// default initializable.
if (const auto typedPattern = dyn_cast<TypedPattern>(entry.getPattern())) {
if (const auto typeRepr = typedPattern->getTypeRepr()) {
if (::isDefaultInitializable(typeRepr, ctx))
return true;
} else if (typedPattern->isImplicit()) {
// Lazy vars have implicit storage assigned to back them. Because the
// storage is implicit, the pattern is typed and has a TypeLoc, but not a
// TypeRepr.
//
// All lazy storage is implicitly default initializable, though, because
// lazy backing storage is optional.
if (const auto *varDecl = typedPattern->getSingleVar()) {
// Lazy storage is never user accessible.
if (!varDecl->isUserAccessible()) {
if (typedPattern->hasType() &&
typedPattern->getType()->getOptionalObjectType()) {
return true;
}
}
}
}
}
// Otherwise, we can't default initialize this binding.
return false;
}
bool PatternBindingDecl::isComputingPatternBindingEntry(
const VarDecl *vd) const {
unsigned i = getPatternEntryIndexForVarDecl(vd);
return getASTContext().evaluator.hasActiveRequest(
PatternBindingEntryRequest{const_cast<PatternBindingDecl *>(this), i});
}
bool PatternBindingDecl::isExplicitlyInitialized(unsigned i) const {
const auto &entry = getPatternList()[i];
return entry.isInitialized(/*onlyExplicit=*/true);
}
SourceLoc PatternBindingDecl::getEqualLoc(unsigned i) const {
const auto &entry = getPatternList()[i];
return entry.getEqualLoc();
}
SourceLoc TopLevelCodeDecl::getStartLoc() const {
return Body ? Body->getStartLoc() : SourceLoc();
}
SourceRange TopLevelCodeDecl::getSourceRange() const {
return Body? Body->getSourceRange() : SourceRange();
}
SourceRange IfConfigDecl::getSourceRange() const {
return SourceRange(getLoc(), EndLoc);
}
static bool isPolymorphic(const AbstractStorageDecl *storage) {
if (storage->shouldUseObjCDispatch())
return true;
// Imported declarations behave like they are dynamic, even if they're
// not marked as such explicitly.
if (storage->isObjC() && storage->hasClangNode())
return true;
if (auto *classDecl = dyn_cast<ClassDecl>(storage->getDeclContext())) {
// Accesses to members of foreign reference types should be made directly
// to storage as these are references to clang records which are not allowed
// to have dynamic dispatch.
if (storage->isFinal() || classDecl->isFinal() ||
classDecl->isForeignReferenceType())
return false;
return true;
}
if (isa<ProtocolDecl>(storage->getDeclContext()))
return true;
return false;
}
/// Returns true iff a defer's storage access kind should always
/// match the access kind of its immediately enclosing function.
///
/// In Swift 5 and earlier, this was not true, meaning that property observers,
/// etc, would be invoked in initializers or deinitializers if a property access
/// happens within a defer, but not when outside the defer.
static bool deferMatchesEnclosingAccess(const FuncDecl *defer) {
assert(defer->isDeferBody());
// In Swift 6+, then yes.
if (defer->getASTContext().isSwiftVersionAtLeast(6))
return true;
// If the defer is part of a function that is a member of an actor or
// concurrency-aware type, then yes.
if (auto *deferContext = defer->getParent()) {
if (auto *funcContext = deferContext->getParent()) {
if (auto *type = funcContext->getSelfNominalTypeDecl()) {
if (type->isAnyActor())
return true;
auto isolation = getActorIsolation(type);
switch (isolation) {
case ActorIsolation::Unspecified:
case ActorIsolation::NonisolatedUnsafe:
break;
case ActorIsolation::GlobalActor:
if (isolation.preconcurrency())
break;
return true;
case ActorIsolation::ActorInstance:
case ActorIsolation::Nonisolated:
case ActorIsolation::Erased: // really can't happen
return true;
}
}
}
}
return false;
}
static bool isDirectToStorageAccess(const DeclContext *UseDC,
const VarDecl *var, bool isAccessOnSelf) {
if (!var->hasStorage())
return false;
auto *AFD = dyn_cast_or_null<AbstractFunctionDecl>(UseDC);
if (AFD == nullptr)
return false;
// Check if this is a function representing a defer.
if (auto *func = dyn_cast<FuncDecl>(AFD))
if (func->isDeferBody() && deferMatchesEnclosingAccess(func))
return isDirectToStorageAccess(func->getParent(), var, isAccessOnSelf);
// The property reference is for immediate class, not a derived class.
if (AFD->getParent()->getSelfNominalTypeDecl() !=
var->getDeclContext()->getSelfNominalTypeDecl())
return false;
// If the storage is resilient, we cannot access it directly at all.
if (var->isResilient(UseDC->getParentModule(),
UseDC->getResilienceExpansion()))
return var->getModuleContext()->getBypassResilience();
if (isa<ConstructorDecl>(AFD) || isa<DestructorDecl>(AFD)) {
// The access must also be a member access on 'self' in all language modes.
if (!isAccessOnSelf)
return false;
return true;
} else if (auto *accessor = dyn_cast<AccessorDecl>(AFD)) {
// The accessor must be for the variable itself.
if (accessor->getStorage() != var)
return false;
// In Swift 5 and later, the access must also be a member access on 'self'.
if (!isAccessOnSelf &&
var->getDeclContext()->isTypeContext() &&
var->getASTContext().isSwiftVersionAtLeast(5))
return false;
// As a special case, 'read' and 'modify' coroutines with forced static
// dispatch must use ordinary semantics, so that the 'modify' coroutine for a
// 'dynamic' property uses Objective-C message sends and not direct access to
// storage.
if (accessor->hasForcedStaticDispatch())
return false;
return true;
}
return false;
}
/// Determines the access semantics to use in a DeclRefExpr or
/// MemberRefExpr use of this value in the specified context.
AccessSemantics
ValueDecl::getAccessSemanticsFromContext(const DeclContext *UseDC,
bool isAccessOnSelf) const {
if (auto *var = dyn_cast<VarDecl>(this))
if (isDirectToStorageAccess(UseDC, var, isAccessOnSelf))
return AccessSemantics::DirectToStorage;
// Otherwise, it's a semantically normal access. The client should be
// able to figure out the most efficient way to do this access.
return AccessSemantics::Ordinary;
}
static AccessStrategy
getDirectReadAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getReadImpl()) {
case ReadImplKind::Stored:
return AccessStrategy::getStorage();
case ReadImplKind::Inherited:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Get,
/*dispatch*/ false);
case ReadImplKind::Get:
return AccessStrategy::getAccessor(AccessorKind::Get,
/*dispatch*/ false);
case ReadImplKind::Address:
return AccessStrategy::getAccessor(AccessorKind::Address,
/*dispatch*/ false);
case ReadImplKind::Read:
return AccessStrategy::getAccessor(AccessorKind::Read,
/*dispatch*/ false);
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getDirectWriteAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getWriteImpl()) {
case WriteImplKind::Immutable: {
if (storage->hasInitAccessor())
return AccessStrategy::getAccessor(AccessorKind::Init,
/*dispatch=*/false);
assert(isa<VarDecl>(storage) && cast<VarDecl>(storage)->isLet() &&
"mutation of a immutable variable that isn't a let");
return AccessStrategy::getStorage();
}
case WriteImplKind::Stored:
return AccessStrategy::getStorage();
case WriteImplKind::StoredWithObservers:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::InheritedWithObservers:
// TODO: maybe add a specific strategy for this?
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::Set:
return AccessStrategy::getAccessor(AccessorKind::Set,
/*dispatch*/ false);
case WriteImplKind::MutableAddress:
return AccessStrategy::getAccessor(AccessorKind::MutableAddress,
/*dispatch*/ false);
case WriteImplKind::Modify:
return AccessStrategy::getAccessor(AccessorKind::Modify,
/*dispatch*/ false);
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getOpaqueReadAccessStrategy(const AbstractStorageDecl *storage, bool dispatch);
static AccessStrategy
getOpaqueWriteAccessStrategy(const AbstractStorageDecl *storage, bool dispatch);
static AccessStrategy
getDirectReadWriteAccessStrategy(const AbstractStorageDecl *storage) {
switch (storage->getReadWriteImpl()) {
case ReadWriteImplKind::Immutable:
assert(isa<VarDecl>(storage) && cast<VarDecl>(storage)->isLet() &&
"mutation of a immutable variable that isn't a let");
return AccessStrategy::getStorage();
case ReadWriteImplKind::Stored: {
// If the storage isDynamic (and not @objc) use the accessors.
if (storage->shouldUseNativeDynamicDispatch())
return AccessStrategy::getMaterializeToTemporary(
getOpaqueReadAccessStrategy(storage, false),
getOpaqueWriteAccessStrategy(storage, false));
return AccessStrategy::getStorage();
}
case ReadWriteImplKind::MutableAddress:
return AccessStrategy::getAccessor(AccessorKind::MutableAddress,
/*dispatch*/ false);
case ReadWriteImplKind::Modify:
return AccessStrategy::getAccessor(AccessorKind::Modify,
/*dispatch*/ false);
case ReadWriteImplKind::StoredWithDidSet:
case ReadWriteImplKind::InheritedWithDidSet:
if (storage->requiresOpaqueModifyCoroutine() &&
storage->getParsedAccessor(AccessorKind::DidSet)->isSimpleDidSet()) {
return AccessStrategy::getAccessor(AccessorKind::Modify,
/*dispatch*/ false);
} else {
return AccessStrategy::getMaterializeToTemporary(
getDirectReadAccessStrategy(storage),
getDirectWriteAccessStrategy(storage));
}
case ReadWriteImplKind::MaterializeToTemporary:
return AccessStrategy::getMaterializeToTemporary(
getDirectReadAccessStrategy(storage),
getDirectWriteAccessStrategy(storage));
}
llvm_unreachable("bad impl kind");
}
static AccessStrategy
getOpaqueReadAccessStrategy(const AbstractStorageDecl *storage, bool dispatch) {
if (storage->requiresOpaqueReadCoroutine())
return AccessStrategy::getAccessor(AccessorKind::Read, dispatch);
return AccessStrategy::getAccessor(AccessorKind::Get, dispatch);
}
static AccessStrategy
getOpaqueWriteAccessStrategy(const AbstractStorageDecl *storage, bool dispatch) {
if (storage->hasInitAccessor() && !storage->getAccessor(AccessorKind::Set))
return AccessStrategy::getAccessor(AccessorKind::Init, dispatch);
return AccessStrategy::getAccessor(AccessorKind::Set, dispatch);
}
static AccessStrategy
getOpaqueReadWriteAccessStrategy(const AbstractStorageDecl *storage,
bool dispatch) {
if (storage->requiresOpaqueModifyCoroutine())
return AccessStrategy::getAccessor(AccessorKind::Modify, dispatch);
return AccessStrategy::getMaterializeToTemporary(
getOpaqueReadAccessStrategy(storage, dispatch),
getOpaqueWriteAccessStrategy(storage, dispatch));
}
static AccessStrategy
getOpaqueAccessStrategy(const AbstractStorageDecl *storage,
AccessKind accessKind, bool dispatch) {
switch (accessKind) {
case AccessKind::Read:
return getOpaqueReadAccessStrategy(storage, dispatch);
case AccessKind::Write:
return getOpaqueWriteAccessStrategy(storage, dispatch);
case AccessKind::ReadWrite:
return getOpaqueReadWriteAccessStrategy(storage, dispatch);
}
llvm_unreachable("bad access kind");
}
AccessStrategy
AbstractStorageDecl::getAccessStrategy(AccessSemantics semantics,
AccessKind accessKind,
ModuleDecl *module,
ResilienceExpansion expansion) const {
switch (semantics) {
case AccessSemantics::DirectToStorage:
assert(hasStorage() || getASTContext().Diags.hadAnyError());
return AccessStrategy::getStorage();
case AccessSemantics::DistributedThunk:
return AccessStrategy::getDistributedThunkDispatchStrategy();
case AccessSemantics::Ordinary:
// Skip these checks for local variables, both because they're unnecessary
// and because we won't necessarily have computed access.
if (!getDeclContext()->isLocalContext()) {
// If the property is defined in a non-final class or a protocol, the
// accessors are dynamically dispatched, and we cannot do direct access.
if (isPolymorphic(this))
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ true);
if (shouldUseNativeDynamicDispatch())
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ false);
// If the storage is resilient from the given module and resilience
// expansion, we cannot use direct access.
//
// If we end up here with a stored property of a type that's resilient
// from some resilience domain, we cannot do direct access.
//
// As an optimization, we do want to perform direct accesses of stored
// properties declared inside the same resilience domain as the access
// context.
//
// This is done by using DirectToStorage semantics above, with the
// understanding that the access semantics are with respect to the
// resilience domain of the accessor's caller.
bool resilient;
if (module)
resilient = isResilient(module, expansion);
else
resilient = isResilient();
if (resilient)
return getOpaqueAccessStrategy(this, accessKind, /*dispatch*/ false);
}
LLVM_FALLTHROUGH;
case AccessSemantics::DirectToImplementation:
switch (accessKind) {
case AccessKind::Read:
return getDirectReadAccessStrategy(this);
case AccessKind::Write:
return getDirectWriteAccessStrategy(this);
case AccessKind::ReadWrite:
return getDirectReadWriteAccessStrategy(this);
}
llvm_unreachable("bad access kind");
}
llvm_unreachable("bad access semantics");
}
bool AbstractStorageDecl::requiresOpaqueAccessors() const {
// Subscripts always require opaque accessors, so don't even kick off
// a request.
auto *var = dyn_cast<VarDecl>(this);
if (var == nullptr)
return true;
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
RequiresOpaqueAccessorsRequest{const_cast<VarDecl *>(var)},
false);
}
bool AbstractStorageDecl::requiresOpaqueAccessor(AccessorKind kind) const {
switch (kind) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
return requiresOpaqueGetter();
case AccessorKind::Set:
return requiresOpaqueSetter();
case AccessorKind::Read:
return requiresOpaqueReadCoroutine();
case AccessorKind::Modify:
return requiresOpaqueModifyCoroutine();
// Other accessors are never part of the opaque-accessors set.
#define OPAQUE_ACCESSOR(ID, KEYWORD)
#define ACCESSOR(ID) \
case AccessorKind::ID:
#include "swift/AST/AccessorKinds.def"
return false;
}
llvm_unreachable("bad accessor kind");
}
bool AbstractStorageDecl::requiresOpaqueModifyCoroutine() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
RequiresOpaqueModifyCoroutineRequest{const_cast<AbstractStorageDecl *>(this)},
false);
}
AccessorDecl *AbstractStorageDecl::getSynthesizedAccessor(AccessorKind kind) const {
if (auto *accessor = getAccessor(kind))
return accessor;
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SynthesizeAccessorRequest{const_cast<AbstractStorageDecl *>(this), kind},
nullptr);
}
AccessorDecl *AbstractStorageDecl::getEffectfulGetAccessor() const {
if (getAllAccessors().size() != 1)
return nullptr;
if (auto accessor = getAccessor(AccessorKind::Get))
if (accessor->hasAsync() || accessor->hasThrows())
return accessor;
return nullptr;
}
bool AbstractStorageDecl::isLessEffectfulThan(AbstractStorageDecl const* other,
EffectKind kind) const {
bool allowedByOther = false;
if (auto otherGetter = other->getEffectfulGetAccessor())
allowedByOther = otherGetter->hasEffect(kind);
if (auto getter = getEffectfulGetAccessor())
if (getter->hasEffect(kind) && !allowedByOther)
return false; // has the effect when other does not; it's more effectful!
return true; // OK
}
AccessorDecl *AbstractStorageDecl::getOpaqueAccessor(AccessorKind kind) const {
auto *accessor = getAccessor(kind);
if (accessor && !accessor->isImplicit())
return accessor;
if (!requiresOpaqueAccessors())
return nullptr;
if (!requiresOpaqueAccessor(kind))
return nullptr;
return getSynthesizedAccessor(kind);
}
ArrayRef<AccessorDecl*> AbstractStorageDecl::getOpaqueAccessors(
llvm::SmallVectorImpl<AccessorDecl*> &scratch) const {
visitOpaqueAccessors([&](AccessorDecl *D) { scratch.push_back(D); });
return scratch;
}
bool AbstractStorageDecl::hasParsedAccessors() const {
for (auto *accessor : getAllAccessors())
if (!accessor->isImplicit())
return true;
return false;
}
AccessorDecl *AbstractStorageDecl::getParsedAccessor(AccessorKind kind) const {
auto *accessor = getAccessor(kind);
if (accessor && !accessor->isImplicit())
return accessor;
return nullptr;
}
void AbstractStorageDecl::visitParsedAccessors(
llvm::function_ref<void (AccessorDecl*)> visit) const {
for (auto *accessor : getAllAccessors())
if (!accessor->isImplicit())
visit(accessor);
}
void AbstractStorageDecl::visitEmittedAccessors(
llvm::function_ref<void (AccessorDecl*)> visit) const {
visitParsedAccessors(visit);
visitOpaqueAccessors([&](AccessorDecl *accessor) {
if (accessor->isImplicit())
visit(accessor);
});
}
void AbstractStorageDecl::visitExpectedOpaqueAccessors(
llvm::function_ref<void (AccessorKind)> visit) const {
if (!requiresOpaqueAccessors())
return;
if (requiresOpaqueGetter())
visit(AccessorKind::Get);
if (requiresOpaqueReadCoroutine())
visit(AccessorKind::Read);
// All mutable storage should have a setter.
if (requiresOpaqueSetter())
visit(AccessorKind::Set);
// Include the modify coroutine if it's required.
if (requiresOpaqueModifyCoroutine())
visit(AccessorKind::Modify);
}
void AbstractStorageDecl::visitOpaqueAccessors(
llvm::function_ref<void (AccessorDecl*)> visit) const {
visitExpectedOpaqueAccessors([&](AccessorKind kind) {
auto accessor = getSynthesizedAccessor(kind);
assert(!accessor->hasForcedStaticDispatch() &&
"opaque accessor with forced static dispatch?");
visit(accessor);
});
}
static bool hasPrivateOrFilePrivateFormalAccess(const Decl *D) {
if (auto *VD = dyn_cast<ValueDecl>(D))
return VD->getFormalAccess() <= AccessLevel::FilePrivate;
return isa<MacroExpansionDecl>(D);
}
/// Returns true if one of the ancestor DeclContexts of this ValueDecl is either
/// marked private or fileprivate or is a local context.
static bool isInPrivateOrLocalContext(const Decl *D) {
const DeclContext *DC = D->getDeclContext();
if (!DC->isTypeContext()) {
assert((DC->isModuleScopeContext() || DC->isLocalContext()) &&
"unexpected context kind");
return DC->isLocalContext();
}
auto *nominal = DC->getSelfNominalTypeDecl();
if (nominal == nullptr)
return false;
if (hasPrivateOrFilePrivateFormalAccess(nominal))
return true;
return isInPrivateOrLocalContext(nominal);
}
bool Decl::isOutermostPrivateOrFilePrivateScope() const {
return hasPrivateOrFilePrivateFormalAccess(this) &&
!isInPrivateOrLocalContext(this);
}
bool AbstractStorageDecl::isResilient() const {
// Check for an explicit @_fixed_layout attribute.
if (getAttrs().hasAttribute<FixedLayoutAttr>())
return false;
// If we're an instance property of a nominal type, query the type.
if (!isStatic())
if (auto *nominalDecl = getDeclContext()->getSelfNominalTypeDecl())
return nominalDecl->isResilient();
// Non-public global and static variables always have a
// fixed layout.
auto accessScope = getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (!accessScope.isPublicOrPackage())
return false;
return getModuleContext()->isResilient();
}
bool AbstractStorageDecl::isResilient(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return isResilient();
case ResilienceExpansion::Maximal:
if (M == getModuleContext())
return false;
// Non-resilient if bypass optimization in package is enabled
if (bypassResilienceInPackage(M))
return false;
return isResilient();
}
llvm_unreachable("bad resilience expansion");
}
bool AbstractStorageDecl::isValidKeyPathComponent() const {
// Check whether we're an ABI compatible override of another property. If we
// are, then the key path should refer to the base decl instead.
auto &ctx = getASTContext();
auto isABICompatibleOverride = evaluateOrDefault(
ctx.evaluator,
IsABICompatibleOverrideRequest{const_cast<AbstractStorageDecl *>(this)},
false);
return !isABICompatibleOverride;
}
bool AbstractStorageDecl::isGetterMutating() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsGetterMutatingRequest{const_cast<AbstractStorageDecl *>(this)}, {});
}
bool AbstractStorageDecl::isSetterMutating() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsSetterMutatingRequest{const_cast<AbstractStorageDecl *>(this)}, {});
}
OpaqueReadOwnership AbstractStorageDecl::getOpaqueReadOwnership() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
OpaqueReadOwnershipRequest{const_cast<AbstractStorageDecl *>(this)}, {});
}
bool ValueDecl::isInstanceMember() const {
DeclContext *DC = getDeclContext();
if (!DC->isTypeContext())
return false;
switch (getKind()) {
case DeclKind::Import:
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::TopLevelCode:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
case DeclKind::PrecedenceGroup:
case DeclKind::Missing:
case DeclKind::MissingMember:
case DeclKind::MacroExpansion:
llvm_unreachable("Not a ValueDecl");
case DeclKind::Class:
case DeclKind::Enum:
case DeclKind::Protocol:
case DeclKind::Struct:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::OpaqueType:
// Types are not instance members.
return false;
case DeclKind::Constructor:
// Constructors are not instance members.
return false;
case DeclKind::Destructor:
// Destructors are technically instance members, although they
// can't actually be referenced as such.
return true;
case DeclKind::Func:
case DeclKind::Accessor:
// Non-static methods are instance members.
return !cast<FuncDecl>(this)->isStatic();
case DeclKind::EnumElement:
case DeclKind::Param:
// enum elements and function parameters are not instance members.
return false;
case DeclKind::Subscript:
case DeclKind::Var:
// Non-static variables and subscripts are instance members.
return !cast<AbstractStorageDecl>(this)->isStatic();
case DeclKind::Module:
// Modules are never instance members.
return false;
case DeclKind::Macro:
// Macros are never instance members.
return false;
case DeclKind::BuiltinTuple:
llvm_unreachable("BuiltinTupleDecl should not end up here");
}
llvm_unreachable("bad DeclKind");
}
bool ValueDecl::hasLocalDiscriminator() const {
// Generic parameters and unnamed parameters never have local discriminators.
if (isa<GenericTypeParamDecl>(this) ||
(isa<ParamDecl>(this) && !hasName()))
return false;
// Opaque types never have local discriminators.
if (isa<OpaqueTypeDecl>(this))
return false;
// Accessors never have local discriminators.
if (isa<AccessorDecl>(this))
return false;
// Implicit and unnamed declarations never have local discriminators.
if (getBaseName().isSpecial())
return false;
// If we are not in a local context, there's nothing to do.
if (!getDeclContext()->isLocalContext())
return false;
return true;
}
unsigned ValueDecl::getLocalDiscriminator() const {
// If we have already assigned a local discriminator, we're done.
if (LocalDiscriminator != InvalidDiscriminator)
return LocalDiscriminator;
// If this declaration does not have a local discriminator, use 0 as a
// stand-in.
if (!hasLocalDiscriminator())
return 0;
// Assign local discriminators in this context.
ASTContext &ctx = getASTContext();
evaluateOrDefault(
ctx.evaluator,
LocalDiscriminatorsRequest{getDeclContext()}, InvalidDiscriminator);
// If we don't have a discriminator, and either
// 1. We have ill-formed code and we're able to assign a discriminator, or
// 2. We are in a macro expansion buffer
//
// then assign the next discriminator now.
if (LocalDiscriminator == InvalidDiscriminator &&
(ctx.Diags.hadAnyError() ||
(getLoc().isValid() &&
getModuleContext()
->getSourceFileContainingLocation(getLoc())
->getFulfilledMacroRole() != std::nullopt))) {
auto discriminator = ctx.getNextDiscriminator(getDeclContext());
ctx.setMaxAssignedDiscriminator(getDeclContext(), discriminator + 1);
const_cast<ValueDecl *>(this)->LocalDiscriminator = discriminator;
}
assert(LocalDiscriminator != InvalidDiscriminator);
return LocalDiscriminator;
}
void ValueDecl::setLocalDiscriminator(unsigned index) {
assert(hasLocalDiscriminator());
assert(LocalDiscriminator == InvalidDiscriminator &&
"LocalDiscriminator is set multiple times");
LocalDiscriminator = index;
}
ValueDecl *ValueDecl::getOverriddenDecl() const {
auto overridden = getOverriddenDecls();
if (overridden.empty()) return nullptr;
// FIXME: Arbitrarily pick the first overridden declaration.
return overridden.front();
}
bool ValueDecl::overriddenDeclsComputed() const {
return LazySemanticInfo.hasOverriddenComputed;
}
bool swift::conflicting(const OverloadSignature& sig1,
const OverloadSignature& sig2,
bool skipProtocolExtensionCheck) {
// A member of a protocol extension never conflicts with a member of a
// protocol.
if (!skipProtocolExtensionCheck &&
sig1.InProtocolExtension != sig2.InProtocolExtension)
return false;
// If the base names are different, they can't conflict.
if (sig1.Name.getBaseName() != sig2.Name.getBaseName())
return false;
// If one is an operator and the other is not, they can't conflict.
if (sig1.UnaryOperator != sig2.UnaryOperator)
return false;
// If one is an instance and the other is not, they can't conflict.
if (sig1.IsInstanceMember != sig2.IsInstanceMember)
return false;
// For distributed decls, check there's no async/no-async overloads,
// since those are more fragile in distribution than we'd want distributed calls to be.
//
// A remote call is always 'async throws', and we can always record
// an async throws "accessor" (see AccessibleFunction.cpp) as such.
// This means, if we allowed async/no-async overloads of functions,
// we'd have to store the precise "it was not throwing" information,
// but we'll _never_ make use of such because all remote calls are
// necessarily going to async to the actor in the recipient process,
// and for the remote caller, they are always as-if-async.
//
// By banning such overloads, which may be useful in local APIs,
// but too fragile in distributed APIs, we allow a remote 'v2' version
// of an implementation to add or remove `async` to their implementation
// without breaking calls which were made on previous 'v1' versions of
// the same interface; Callers are never broken this way, and rollouts
// are simpler.
//
// The restriction on overloads is not a problem for distributed calls,
// as we don't have a vast swab of APIs which must compatibly get async
// versions, as that is what the async overloading aimed to address.
//
// Note also, that overloading on throws is already illegal anyway.
if (!sig1.IsDistributed && !sig2.IsDistributed) {
// For non-distributed functions,
// if one is an async function and the other is not, they don't conflict.
if (sig1.IsAsyncFunction != sig2.IsAsyncFunction)
return false;
} // else, if any of the methods was distributed, continue checking
// If one is a macro and the other is not, they can't conflict.
if (sig1.IsMacro != sig2.IsMacro)
return false;
// If one is a compound name and the other is not, they do not conflict
// if one is a property and the other is a non-nullary function.
if (sig1.Name.isCompoundName() != sig2.Name.isCompoundName()) {
return !((sig1.IsVariable && !sig2.Name.getArgumentNames().empty()) ||
(sig2.IsVariable && !sig1.Name.getArgumentNames().empty()));
}
// Note that we intentionally ignore the HasOpaqueReturnType bit here.
// For declarations that can't be overloaded by type, we want them to be
// considered conflicting independent of their type.
return sig1.Name == sig2.Name;
}
bool swift::conflicting(ASTContext &ctx,
const OverloadSignature& sig1, CanType sig1Type,
const OverloadSignature& sig2, CanType sig2Type,
bool *wouldConflictInSwift5,
bool skipProtocolExtensionCheck) {
// If the signatures don't conflict to begin with, we're done.
if (!conflicting(sig1, sig2, skipProtocolExtensionCheck))
return false;
// Functions and enum elements do not conflict with each other if their types
// are different.
if (((sig1.IsFunction && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsFunction)) &&
sig1Type != sig2Type) {
return false;
}
// Nominal types and enum elements always conflict with each other.
if ((sig1.IsNominal && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsNominal)) {
return true;
}
// Typealiases and enum elements always conflict with each other.
if ((sig1.IsTypeAlias && sig2.IsEnumElement) ||
(sig1.IsEnumElement && sig2.IsTypeAlias)) {
return true;
}
// Enum elements always conflict with each other. At this point, they
// have the same base name but different types.
if (sig1.IsEnumElement && sig2.IsEnumElement) {
return true;
}
// Functions always conflict with non-functions with the same signature.
// In practice, this only applies for zero argument functions.
if (sig1.IsFunction != sig2.IsFunction)
return true;
// Variables always conflict with non-variables with the same signature.
// (e.g variables with zero argument functions, variables with type
// declarations)
if (sig1.IsVariable != sig2.IsVariable) {
// Prior to Swift 5, we permitted redeclarations of variables as different
// declarations if the variable was declared in an extension of a generic
// type. Make sure we maintain this behaviour in versions < 5.
if (!ctx.isSwiftVersionAtLeast(5)) {
if ((sig1.IsVariable && sig1.InExtensionOfGenericType) ||
(sig2.IsVariable && sig2.InExtensionOfGenericType)) {
if (wouldConflictInSwift5)
*wouldConflictInSwift5 = true;
return false;
}
}
return true;
}
// Otherwise, the declarations conflict if the overload types are the same.
if (sig1.HasOpaqueReturnType != sig2.HasOpaqueReturnType)
return false;
if (sig1Type != sig2Type)
return false;
// The Swift 5 overload types are the same, but similar to the above, prior to
// Swift 5, a variable not in an extension of a generic type got a null
// overload type instead of a function type as it does now, so we really
// follow that behaviour and warn if there's going to be a conflict in future.
if (!ctx.isSwiftVersionAtLeast(5)) {
auto swift4Sig1Type = sig1.IsVariable && !sig1.InExtensionOfGenericType
? CanType()
: sig1Type;
auto swift4Sig2Type = sig1.IsVariable && !sig2.InExtensionOfGenericType
? CanType()
: sig1Type;
if (swift4Sig1Type != swift4Sig2Type) {
// Old was different to the new behaviour!
if (wouldConflictInSwift5)
*wouldConflictInSwift5 = true;
return false;
}
}
return true;
}
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels);
/// Map a type within the signature of a declaration.
static Type mapSignatureType(ASTContext &ctx, Type type) {
return type.transform([&](Type type) -> Type {
if (type->is<FunctionType>()) {
return mapSignatureFunctionType(ctx, type, false, false, false, 1);
}
return type;
});
}
/// Map a signature type for a parameter.
static Type mapSignatureParamType(ASTContext &ctx, Type type) {
return mapSignatureType(ctx, type);
}
/// Map an ExtInfo for a function type.
///
/// When checking if two signatures should be equivalent for overloading,
/// we may need to compare the extended information.
///
/// In the type of the function declaration, none of the extended information
/// is relevant. We cannot overload purely on 'throws' or the calling
/// convention of the declaration itself.
///
/// For function parameter types, we do want to be able to overload on
/// 'throws', since that is part of the mangled symbol name, but not
/// @noescape.
static AnyFunctionType::ExtInfo
mapSignatureExtInfo(AnyFunctionType::ExtInfo info,
bool topLevelFunction) {
if (topLevelFunction)
return AnyFunctionType::ExtInfo();
return AnyFunctionType::ExtInfoBuilder()
.withRepresentation(info.getRepresentation())
.withSendable(info.isSendable())
.withAsync(info.isAsync())
.withThrows(info.isThrowing(), info.getThrownError())
.withClangFunctionType(info.getClangTypeInfo().getType())
.build();
}
/// Map a function's type to the type used for computing signatures,
/// which involves stripping some attributes, stripping default arguments,
/// transforming implicitly unwrapped optionals into strict optionals,
/// stripping 'inout' on the 'self' parameter etc.
static Type mapSignatureFunctionType(ASTContext &ctx, Type type,
bool topLevelFunction,
bool isMethod,
bool isInitializer,
unsigned curryLevels) {
if (type->hasError()) {
return type;
}
if (curryLevels == 0) {
// In an initializer, ignore optionality.
if (isInitializer) {
if (auto objectType = type->getOptionalObjectType()) {
type = objectType;
}
}
// Functions and subscripts cannot overload differing only in opaque return
// types. Replace the opaque type with `Any`.
if (type->is<OpaqueTypeArchetypeType>()) {
type = ctx.getAnyExistentialType();
}
return mapSignatureParamType(ctx, type);
}
auto funcTy = type->castTo<AnyFunctionType>();
SmallVector<AnyFunctionType::Param, 4> newParams;
for (const auto &param : funcTy->getParams()) {
auto newParamType = mapSignatureParamType(ctx, param.getPlainType());
// Don't allow overloading by @_nonEphemeral or isolated.
auto newFlags = param.getParameterFlags()
.withNonEphemeral(false)
.withIsolated(false);
// For the 'self' of a method, strip off 'inout'.
if (isMethod) {
newFlags = newFlags.withInOut(false);
}
AnyFunctionType::Param newParam(newParamType, param.getLabel(), newFlags,
param.getInternalLabel());
newParams.push_back(newParam);
}
// Map the result type.
auto resultTy = mapSignatureFunctionType(
ctx, funcTy->getResult(), topLevelFunction, false, isInitializer,
curryLevels - 1);
// Map various attributes differently depending on if we're looking at
// the declaration, or a function parameter type.
AnyFunctionType::ExtInfo info = mapSignatureExtInfo(
funcTy->getExtInfo(), topLevelFunction);
// Rebuild the resulting function type.
if (auto genericFuncTy = dyn_cast<GenericFunctionType>(funcTy))
return GenericFunctionType::get(genericFuncTy->getGenericSignature(),
newParams, resultTy, info);
return FunctionType::get(newParams, resultTy, info);
}
OverloadSignature ValueDecl::getOverloadSignature() const {
OverloadSignature signature;
signature.Name = getName();
signature.InProtocolExtension
= static_cast<bool>(getDeclContext()->getExtendedProtocolDecl());
signature.IsInstanceMember = isInstanceMember();
signature.IsVariable = isa<VarDecl>(this);
signature.IsEnumElement = isa<EnumElementDecl>(this);
signature.IsNominal = isa<NominalTypeDecl>(this);
signature.IsTypeAlias = isa<TypeAliasDecl>(this);
signature.IsMacro = isa<MacroDecl>(this);
signature.HasOpaqueReturnType =
!signature.IsVariable && (bool)getOpaqueResultTypeDecl();
// Unary operators also include prefix/postfix.
if (auto func = dyn_cast<FuncDecl>(this)) {
if (func->isUnaryOperator()) {
signature.UnaryOperator = func->getAttrs().getUnaryOperatorKind();
}
}
// Functions include async/not-async.
if (auto func = dyn_cast<AbstractFunctionDecl>(this)) {
signature.IsFunction = true;
if (func->hasAsync())
signature.IsAsyncFunction = true;
if (func->isDistributed())
signature.IsDistributed = true;
}
if (auto *extension = dyn_cast<ExtensionDecl>(getDeclContext()))
if (extension->isGeneric())
signature.InExtensionOfGenericType = true;
return signature;
}
CanType ValueDecl::getOverloadSignatureType() const {
if (auto *afd = dyn_cast<AbstractFunctionDecl>(this)) {
bool isMethod = afd->hasImplicitSelfDecl();
return mapSignatureFunctionType(getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true, isMethod,
/*isInitializer=*/isa<ConstructorDecl>(afd),
getNumCurryLevels())
->getMinimalCanonicalType(afd);
}
if (isa<AbstractStorageDecl>(this)) {
// First, get the default overload signature type for the decl. For vars,
// this is the empty tuple type, as variables cannot be overloaded directly
// by type. For subscripts, it's their interface type.
CanType defaultSignatureType;
if (isa<VarDecl>(this)) {
defaultSignatureType = TupleType::getEmpty(getASTContext());
} else {
defaultSignatureType =
mapSignatureFunctionType(getASTContext(), getInterfaceType(),
/*topLevelFunction=*/true,
/*isMethod=*/false,
/*isInitializer=*/false, getNumCurryLevels())
->getMinimalCanonicalType(cast<SubscriptDecl>(this));
}
// We want to curry the default signature type with the 'self' type of the
// given context (if any) in order to ensure the overload signature type
// is unique across different contexts, such as between a protocol extension
// and struct decl.
return defaultSignatureType->addCurriedSelfType(getDeclContext())
->getCanonicalType();
}
if (isa<EnumElementDecl>(this) || isa<MacroDecl>(this)) {
auto mappedType = mapSignatureFunctionType(
getASTContext(), getInterfaceType(), /*topLevelFunction=*/false,
/*isMethod=*/false, /*isInitializer=*/false, getNumCurryLevels());
return mappedType->getMinimalCanonicalType(getDeclContext());
}
// Note: If you add more cases to this function, you should update the
// implementation of the swift::conflicting overload that deals with
// overload types, in order to account for cases where the overload types
// don't match, but the decls differ and therefore always conflict.
assert(isa<TypeDecl>(this));
return CanType();
}
llvm::TinyPtrVector<ValueDecl *> ValueDecl::getOverriddenDecls() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
OverriddenDeclsRequest{const_cast<ValueDecl *>(this)}, {});
}
void ValueDecl::setOverriddenDecls(ArrayRef<ValueDecl *> overridden) {
llvm::TinyPtrVector<ValueDecl *> overriddenVec(overridden);
OverriddenDeclsRequest request{const_cast<ValueDecl *>(this)};
request.cacheResult(overriddenVec);
}
// To-Do: Replce calls to getOpaqueResultTypeRepr with getResultTypeRepr()
TypeRepr *ValueDecl::getResultTypeRepr() const {
TypeRepr *returnRepr = nullptr;
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (auto *P = VD->getParentPattern()) {
while (auto *PP = dyn_cast<ParenPattern>(P))
P = PP->getSubPattern();
if (auto *TP = dyn_cast<TypedPattern>(P)) {
P = P->getSemanticsProvidingPattern();
if (auto *NP = dyn_cast<NamedPattern>(P)) {
assert(NP->getDecl() == VD);
(void)NP;
returnRepr = TP->getTypeRepr();
}
}
} else {
returnRepr = VD->getTypeReprOrParentPatternTypeRepr();
}
} else if (auto *FD = dyn_cast<FuncDecl>(this)) {
returnRepr = FD->getResultTypeRepr();
} else if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
returnRepr = SD->getElementTypeRepr();
} else if (auto *MD = dyn_cast<MacroDecl>(this)) {
returnRepr = MD->resultType.getTypeRepr();
} else if (auto *CD = dyn_cast<ConstructorDecl>(this)) {
returnRepr = CD->getResultTypeRepr();
}
return returnRepr;
}
TypeRepr *ValueDecl::getOpaqueResultTypeRepr() const {
// FIXME: Macros don't allow opaque result types yet.
if (isa<MacroDecl>(this))
return nullptr;
auto *returnRepr = this->getResultTypeRepr();
auto *dc = getDeclContext();
auto &ctx = dc->getASTContext();
if (returnRepr && returnRepr->hasOpaque()) {
return returnRepr;
} else if (returnRepr && ctx.LangOpts.hasFeature(Feature::ImplicitSome)) {
auto opaqueReprs =
collectOpaqueTypeReprs(returnRepr, getASTContext(), getDeclContext());
return opaqueReprs.empty() ? nullptr : returnRepr;
} else {
return nullptr;
}
}
OpaqueTypeDecl *ValueDecl::getOpaqueResultTypeDecl() const {
if (getOpaqueResultTypeRepr() == nullptr) {
if (!isa<VarDecl>(this) &&
!isa<FuncDecl>(this) &&
!isa<SubscriptDecl>(this))
return nullptr;
auto file = cast<FileUnit>(getDeclContext()->getModuleScopeContext());
// Don't look up when the decl is from source, otherwise a cycle will happen.
if (file->getKind() == FileUnitKind::SerializedAST) {
Mangle::ASTMangler mangler;
auto name = mangler.mangleOpaqueTypeDecl(this);
return file->lookupOpaqueResultType(name);
}
return nullptr;
}
return evaluateOrDefault(getASTContext().evaluator,
OpaqueResultTypeRequest{const_cast<ValueDecl *>(this)},
nullptr);
}
bool ValueDecl::isObjC() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsObjCRequest{const_cast<ValueDecl *>(this)},
getAttrs().hasAttribute<ObjCAttr>());
}
void ValueDecl::setIsObjC(bool value) {
assert(!LazySemanticInfo.isObjCComputed || LazySemanticInfo.isObjC == value);
if (LazySemanticInfo.isObjCComputed) {
assert(LazySemanticInfo.isObjC == value);
return;
}
LazySemanticInfo.isObjCComputed = true;
LazySemanticInfo.isObjC = value;
}
Identifier ExtensionDecl::getObjCCategoryName() const {
// If there's an @objc attribute, it's authoritative. (ClangImporter
// attaches one automatically.)
if (auto objcAttr = getAttrs().getAttribute<ObjCAttr>(/*AllowInvalid*/true)) {
if (objcAttr->hasName() && objcAttr->getName()->getNumArgs() == 0)
return objcAttr->getName()->getSimpleName();
return Identifier();
}
// Fall back to @_objcImplementation attribute.
if (auto attr =
getAttrs().getAttribute<ObjCImplementationAttr>(/*AllowInvalid=*/true)) {
if (!attr->isCategoryNameInvalid())
return attr->CategoryName;
return Identifier();
}
// Not a category, evidently.
return Identifier();
}
bool ValueDecl::isSemanticallyFinal() const {
// Actor types are semantically final.
if (auto classDecl = dyn_cast<ClassDecl>(this)) {
if (classDecl->isAnyActor())
return true;
}
// As are methods/accessors of actor types.
if (!isa<TypeDecl>(this)) {
if (auto classDecl = getDeclContext()->getSelfClassDecl()) {
if (classDecl->isAnyActor())
return true;
}
}
// For everything else, the same as 'final'.
return isFinal();
}
bool ValueDecl::isFinal() const {
return evaluateOrDefault(getASTContext().evaluator,
IsFinalRequest { const_cast<ValueDecl *>(this) },
getAttrs().hasAttribute<FinalAttr>());
}
bool ValueDecl::isDynamic() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsDynamicRequest{const_cast<ValueDecl *>(this)},
getAttrs().hasAttribute<DynamicAttr>());
}
bool ValueDecl::isObjCDynamicInGenericClass() const {
if (!isObjCDynamic())
return false;
auto *DC = this->getDeclContext();
auto *classDecl = DC->getSelfClassDecl();
if (!classDecl)
return false;
return classDecl->isGenericContext()
&& !classDecl->isTypeErasedGenericClass();
}
bool ValueDecl::shouldUseObjCMethodReplacement() const {
if (isNativeDynamic())
return false;
if (getModuleContext()->isImplicitDynamicEnabled() &&
isObjCDynamicInGenericClass())
return false;
return isObjCDynamic();
}
bool ValueDecl::shouldUseNativeMethodReplacement() const {
if (isNativeDynamic())
return true;
if (!isObjCDynamicInGenericClass())
return false;
auto *replacedDecl = getDynamicallyReplacedDecl();
if (replacedDecl)
return false;
return getModuleContext()->isImplicitDynamicEnabled();
}
bool ValueDecl::isNativeMethodReplacement() const {
// Is this a @_dynamicReplacement(for:) that use the native dynamic function
// replacement mechanism.
auto *replacedDecl = getDynamicallyReplacedDecl();
if (!replacedDecl)
return false;
if (isNativeDynamic())
return true;
if (replacedDecl->isObjCDynamicInGenericClass())
return replacedDecl->getModuleContext()->isImplicitDynamicEnabled();
return false;
}
void ValueDecl::setIsDynamic(bool value) {
assert(!LazySemanticInfo.isDynamicComputed ||
LazySemanticInfo.isDynamic == value);
if (LazySemanticInfo.isDynamicComputed) {
assert(LazySemanticInfo.isDynamic == value);
return;
}
LazySemanticInfo.isDynamicComputed = true;
LazySemanticInfo.isDynamic = value;
}
ValueDecl *ValueDecl::getDynamicallyReplacedDecl() const {
return evaluateOrDefault(getASTContext().evaluator,
DynamicallyReplacedDeclRequest{
const_cast<ValueDecl *>(this)},
nullptr);
}
bool ValueDecl::canBeAccessedByDynamicLookup() const {
if (!hasName())
return false;
auto *dc = getDeclContext();
if (!dc->mayContainMembersAccessedByDynamicLookup())
return false;
// Dynamic lookup can find functions, variables, and subscripts.
if (!isa<FuncDecl>(this) && !isa<VarDecl>(this) && !isa<SubscriptDecl>(this))
return false;
return true;
}
bool ValueDecl::isImplicitlyUnwrappedOptional() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsImplicitlyUnwrappedOptionalRequest{const_cast<ValueDecl *>(this)},
false);
}
bool ValueDecl::isLocalCapture() const {
auto *dc = getDeclContext();
if (auto *fd = dyn_cast<FuncDecl>(this))
if (isa<SourceFile>(dc))
return fd->hasTopLevelLocalContextCaptures();
return dc->isLocalContext();
}
ArrayRef<ValueDecl *>
ValueDecl::getSatisfiedProtocolRequirements(bool Sorted) const {
// Dig out the nominal type.
NominalTypeDecl *NTD = getDeclContext()->getSelfNominalTypeDecl();
if (!NTD || isa<ProtocolDecl>(NTD))
return {};
return NTD->getSatisfiedProtocolRequirementsForMember(this, Sorted);
}
std::optional<AttributedImport<ImportedModule>>
ValueDecl::findImport(const DeclContext *fromDC) const {
// If the type is from the current module, there's no import.
auto module = getModuleContext();
if (module == fromDC->getParentModule())
return std::nullopt;
auto fromSourceFile = fromDC->getParentSourceFile();
if (!fromSourceFile)
return std::nullopt;
return fromSourceFile->findImport(module);
}
bool ValueDecl::isProtocolRequirement() const {
assert(isa<ProtocolDecl>(getDeclContext()));
if (isa<AccessorDecl>(this) ||
isa<TypeAliasDecl>(this) ||
isa<NominalTypeDecl>(this))
return false;
return true;
}
bool ValueDecl::hasInterfaceType() const {
return !TypeAndAccess.getPointer().isNull();
}
static bool isComputingInterfaceType(const ValueDecl *VD) {
return VD->getASTContext().evaluator.hasActiveRequest(
InterfaceTypeRequest{const_cast<ValueDecl *>(VD)});
}
bool ValueDecl::isRecursiveValidation() const {
if (isComputingInterfaceType(this) && !hasInterfaceType())
return true;
if (auto *vd = dyn_cast<VarDecl>(this))
if (auto *pbd = vd->getParentPatternBinding())
if (pbd->isComputingPatternBindingEntry(vd))
return true;
auto *dc = getDeclContext();
while (isa<NominalTypeDecl>(dc))
dc = dc->getParent();
if (auto *ext = dyn_cast<ExtensionDecl>(dc)) {
if (ext->isComputingGenericSignature())
return true;
}
return false;
}
Type ValueDecl::getInterfaceType() const {
auto &ctx = getASTContext();
return ctx.evaluator(InterfaceTypeRequest{const_cast<ValueDecl *>(this)},
[&ctx]() { return ErrorType::get(ctx); });
}
void ValueDecl::setInterfaceType(Type type) {
assert(!type.isNull() && "Resetting the interface type to null is forbidden");
getASTContext().evaluator.cacheOutput(InterfaceTypeRequest{this},
std::move(type));
}
StringRef ValueDecl::getCDeclName() const {
// Treat imported C functions as implicitly @_cdecl.
if (auto clangDecl = dyn_cast_or_null<clang::FunctionDecl>(getClangDecl())) {
if (clangDecl->getLanguageLinkage() == clang::CLanguageLinkage
&& clangDecl->getIdentifier())
return clangDecl->getName();
}
// Handle explicit cdecl attributes.
if (auto cdeclAttr = getAttrs().getAttribute<CDeclAttr>()) {
return cdeclAttr->Name;
}
return "";
}
std::optional<ObjCSelector>
ValueDecl::getObjCRuntimeName(bool skipIsObjCResolution) const {
if (auto func = dyn_cast<AbstractFunctionDecl>(this))
return func->getObjCSelector(DeclName(), skipIsObjCResolution);
ASTContext &ctx = getASTContext();
auto makeSelector = [&](Identifier name) -> ObjCSelector {
return ObjCSelector(ctx, 0, { name });
};
if (auto classDecl = dyn_cast<ClassDecl>(this)) {
SmallString<32> scratch;
return makeSelector(
ctx.getIdentifier(classDecl->getObjCRuntimeName(scratch)));
}
if (auto protocol = dyn_cast<ProtocolDecl>(this)) {
SmallString<32> scratch;
return makeSelector(
ctx.getIdentifier(protocol->getObjCRuntimeName(scratch)));
}
if (auto var = dyn_cast<VarDecl>(this))
return makeSelector(var->getObjCPropertyName());
return std::nullopt;
}
bool ValueDecl::canInferObjCFromRequirement(ValueDecl *requirement) {
// Only makes sense for a requirement of an @objc protocol.
auto proto = cast<ProtocolDecl>(requirement->getDeclContext());
if (!proto->isObjC()) return false;
// Only makes sense when this declaration is within a nominal type
// or extension thereof.
auto nominal = getDeclContext()->getSelfNominalTypeDecl();
if (!nominal) return false;
// If there is already an @objc attribute with an explicit name, we
// can't infer a name (it's already there).
if (auto objcAttr = getAttrs().getAttribute<ObjCAttr>()) {
if (objcAttr->hasName() && !objcAttr->isNameImplicit())
return false;
}
// If the nominal type doesn't conform to the protocol at all, we
// cannot infer @objc no matter what we do.
SmallVector<ProtocolConformance *, 1> conformances;
if (!nominal->lookupConformance(proto, conformances))
return false;
// If any of the conformances is attributed to the context in which
// this declaration resides, we can infer @objc or the Objective-C
// name.
auto dc = getDeclContext();
for (auto conformance : conformances) {
if (conformance->getDeclContext() == dc)
return true;
}
// Nothing to infer from.
return false;
}
SourceLoc ValueDecl::getAttributeInsertionLoc(bool forModifier) const {
if (isImplicit())
return SourceLoc();
if (auto var = dyn_cast<VarDecl>(this)) {
// [attrs] var ...
// The attributes are part of the VarDecl, but the 'var' is part of the PBD.
SourceLoc resultLoc = var->getAttrs().getStartLoc(forModifier);
if (resultLoc.isValid()) {
return resultLoc;
} else if (auto pbd = var->getParentPatternBinding()) {
return pbd->getStartLoc();
} else {
return var->getStartLoc();
}
}
SourceLoc resultLoc = getAttrs().getStartLoc(forModifier);
return resultLoc.isValid() ? resultLoc : getStartLoc();
}
/// Returns true if \p VD needs to be treated as publicly-accessible
/// at the SIL, LLVM, and machine levels due to being @usableFromInline.
bool ValueDecl::isUsableFromInline() const {
assert(getFormalAccess() < AccessLevel::Public);
if (getAttrs().hasAttribute<UsableFromInlineAttr>() ||
getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>() ||
getAttrs().hasAttribute<InlinableAttr>())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(this)) {
auto *storage = accessor->getStorage();
if (storage->getAttrs().hasAttribute<UsableFromInlineAttr>() ||
storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>() ||
storage->getAttrs().hasAttribute<InlinableAttr>())
return true;
}
if (auto *opaqueType = dyn_cast<OpaqueTypeDecl>(this)) {
if (auto *namingDecl = opaqueType->getNamingDecl()) {
if (namingDecl->getAttrs().hasAttribute<UsableFromInlineAttr>() ||
namingDecl->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>() ||
namingDecl->getAttrs().hasAttribute<InlinableAttr>())
return true;
}
}
if (auto *EED = dyn_cast<EnumElementDecl>(this))
if (EED->getParentEnum()->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
if (auto *containingProto = dyn_cast<ProtocolDecl>(getDeclContext())) {
if (containingProto->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
}
if (auto *DD = dyn_cast<DestructorDecl>(this))
if (auto *CD = dyn_cast<ClassDecl>(DD->getDeclContext()))
if (CD->getAttrs().hasAttribute<UsableFromInlineAttr>())
return true;
return false;
}
bool ValueDecl::shouldHideFromEditor() const {
// Hide private stdlib declarations.
if (isPrivateStdlibDecl(/*treatNonBuiltinProtocolsAsPublic*/ false) ||
// ShowInInterfaceAttr is for decls to show in interface as exception but
// they are not intended to be used directly.
getAttrs().hasAttribute<ShowInInterfaceAttr>())
return true;
if (AvailableAttr::isUnavailable(this))
return true;
// Hide 'swift_private' clang decls. They are imported with '__' prefix.
if (auto *ClangD = getClangDecl()) {
bool bypassSwiftPrivate = false;
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(this)) {
if (AFD->getForeignAsyncConvention().has_value()) {
// For imported 'async' declarations, visibility can be controlled by
// 'swift_async(...)' attribute.
if (auto *asyncAttr = ClangD->getAttr<clang::SwiftAsyncAttr>()) {
bypassSwiftPrivate = true;
switch (asyncAttr->getKind()) {
case clang::SwiftAsyncAttr::None:
// Should be unreachable.
return true;
case clang::SwiftAsyncAttr::SwiftPrivate:
// Hide 'swift_async(swift_private, ...)'.
return true;
case clang::SwiftAsyncAttr::NotSwiftPrivate:
break;
}
} else if (ClangD->getAttr<clang::SwiftAsyncNameAttr>()) {
// Manually specifying the name bypasses 'swift_private' attr.
bypassSwiftPrivate = true;
}
}
}
if (!bypassSwiftPrivate && ClangD->hasAttr<clang::SwiftPrivateAttr>())
return true;
}
if (!isUserAccessible())
return true;
// Hide editor placeholders.
if (getBaseName().isEditorPlaceholder())
return true;
// '$__' names are reserved by compiler internal.
if (!getBaseName().isSpecial() &&
getBaseIdentifier().str().starts_with("$__"))
return true;
// Macro unique names are only intended to be used inside the expanded code.
if (MacroDecl::isUniqueMacroName(getBaseName()))
return true;
return false;
}
/// Return maximally open access level which could be associated with the
/// given declaration accounting for @testable importers.
static AccessLevel getMaximallyOpenAccessFor(const ValueDecl *decl) {
// Non-final classes are considered open to @testable importers.
if (auto cls = dyn_cast<ClassDecl>(decl)) {
if (!cls->isSemanticallyFinal())
return AccessLevel::Open;
// Non-final overridable class members are considered open to
// @testable importers.
} else if (decl->isSyntacticallyOverridable()) {
if (!cast<ValueDecl>(decl)->isSemanticallyFinal())
return AccessLevel::Open;
}
// Everything else is considered public.
return AccessLevel::Public;
}
/// Adjust \p access based on whether \p VD is \@usableFromInline, has been
/// testably imported from \p useDC or \p VD is an imported SPI.
///
/// \p access isn't always just `VD->getFormalAccess()` because this adjustment
/// may be for a write, in which case the setter's access might be used instead.
static AccessLevel getAdjustedFormalAccess(const ValueDecl *VD,
AccessLevel access,
const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
// If access control is disabled in the current context, adjust
// access level of the current declaration to be as open as possible.
if (useDC && VD->getASTContext().isAccessControlDisabled())
return getMaximallyOpenAccessFor(VD);
if (treatUsableFromInlineAsPublic &&
access < AccessLevel::Public &&
VD->isUsableFromInline()) {
return AccessLevel::Public;
}
if (useDC) {
// If the use site decl context is PackageUnit, just return
// the access level that's passed in
if (auto usePkg = useDC->getPackageContext())
return access;
// Check whether we need to modify the access level based on
// @testable/@_private import attributes.
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
if (!useSF) return access;
if (useSF->hasTestableOrPrivateImport(access, VD))
return getMaximallyOpenAccessFor(VD);
}
return access;
}
/// Convenience overload that uses `VD->getFormalAccess()` as the access to
/// adjust.
static AccessLevel
getAdjustedFormalAccess(const ValueDecl *VD, const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
return getAdjustedFormalAccess(VD, VD->getFormalAccess(), useDC,
treatUsableFromInlineAsPublic);
}
AccessLevel ValueDecl::getEffectiveAccess() const {
auto effectiveAccess =
getAdjustedFormalAccess(this, /*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
// Handle @testable/@_private(sourceFile:)
switch (effectiveAccess) {
case AccessLevel::Open:
case AccessLevel::Package:
case AccessLevel::Public:
case AccessLevel::Internal:
if (getModuleContext()->isTestingEnabled() ||
getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
case AccessLevel::FilePrivate:
if (getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
case AccessLevel::Private:
effectiveAccess = AccessLevel::FilePrivate;
if (getModuleContext()->arePrivateImportsEnabled())
effectiveAccess = getMaximallyOpenAccessFor(this);
break;
}
auto restrictToEnclosing = [this](AccessLevel effectiveAccess,
AccessLevel enclosingAccess) -> AccessLevel{
if (effectiveAccess == AccessLevel::Open &&
enclosingAccess == AccessLevel::Public &&
isa<NominalTypeDecl>(this)) {
// Special case: an open class may be contained in a public
// class/struct/enum. Leave effectiveAccess as is.
return effectiveAccess;
}
return std::min(effectiveAccess, enclosingAccess);
};
if (auto enclosingNominal = dyn_cast<NominalTypeDecl>(getDeclContext())) {
effectiveAccess =
restrictToEnclosing(effectiveAccess,
enclosingNominal->getEffectiveAccess());
} else if (auto enclosingExt = dyn_cast<ExtensionDecl>(getDeclContext())) {
// Just check the base type. If it's a constrained extension, Sema should
// have already enforced access more strictly.
if (auto nominal = enclosingExt->getExtendedNominal()) {
effectiveAccess =
restrictToEnclosing(effectiveAccess, nominal->getEffectiveAccess());
}
} else if (getDeclContext()->isLocalContext()) {
effectiveAccess = AccessLevel::FilePrivate;
}
return effectiveAccess;
}
AccessLevel ValueDecl::getFormalAccess() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
AccessLevelRequest{const_cast<ValueDecl *>(this)}, AccessLevel::Private);
}
bool ValueDecl::hasOpenAccess(const DeclContext *useDC) const {
AccessLevel access =
getAdjustedFormalAccess(this, useDC,
/*treatUsableFromInlineAsPublic*/false);
return access == AccessLevel::Open;
}
bool ValueDecl::bypassResilienceInPackage(ModuleDecl *accessingModule) const {
// Client needs to opt in to bypass resilience checks at the use site.
// Client and the loaded module both need to be in the same package.
// The loaded module needs to be built from source and opt in to allow
// non-resilient access.
return getASTContext().LangOpts.EnableBypassResilienceInPackage &&
getModuleContext()->inSamePackage(accessingModule) &&
getModuleContext()->allowNonResilientAccess();
}
/// Given the formal access level for using \p VD, compute the scope where
/// \p VD may be accessed, taking \@usableFromInline, \@testable imports,
/// \@_spi imports, and enclosing access levels into account.
///
/// \p access isn't always just `VD->getFormalAccess()` because this adjustment
/// may be for a write, in which case the setter's access might be used instead.
static AccessScope
getAccessScopeForFormalAccess(const ValueDecl *VD,
AccessLevel formalAccess,
const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) {
AccessLevel access = getAdjustedFormalAccess(VD, formalAccess, useDC,
treatUsableFromInlineAsPublic);
const DeclContext *resultDC = VD->getDeclContext();
while (!resultDC->isModuleScopeContext()) {
if (isa<TopLevelCodeDecl>(resultDC)) {
return AccessScope(resultDC->getModuleScopeContext(),
access == AccessLevel::Private);
}
if (resultDC->isLocalContext() || access == AccessLevel::Private)
return AccessScope(resultDC, /*private*/ true);
if (auto enclosingNominal = dyn_cast<GenericTypeDecl>(resultDC)) {
auto enclosingAccess =
getAdjustedFormalAccess(enclosingNominal, useDC,
treatUsableFromInlineAsPublic);
access = std::min(access, enclosingAccess);
} else if (auto enclosingExt = dyn_cast<ExtensionDecl>(resultDC)) {
// Just check the base type. If it's a constrained extension, Sema should
// have already enforced access more strictly.
if (auto nominal = enclosingExt->getExtendedNominal()) {
if (nominal->getParentModule() == enclosingExt->getParentModule()) {
auto nominalAccess =
getAdjustedFormalAccess(nominal, useDC,
treatUsableFromInlineAsPublic);
access = std::min(access, nominalAccess);
}
}
} else {
llvm_unreachable("unknown DeclContext kind");
}
resultDC = resultDC->getParent();
}
auto localImportRestriction = VD->getImportAccessFrom(useDC);
if (localImportRestriction.has_value()) {
AccessLevel importAccessLevel =
localImportRestriction.value().accessLevel;
if (access > importAccessLevel) {
access = std::min(access, importAccessLevel);
resultDC = useDC->getParentSourceFile();
}
}
switch (access) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
assert(resultDC->isModuleScopeContext());
return AccessScope(resultDC, access == AccessLevel::Private);
case AccessLevel::Internal:
return AccessScope(resultDC->getParentModule());
case AccessLevel::Package: {
auto pkg = resultDC->getPackageContext(/*lookupIfNotCurrent*/ true);
if (!pkg) {
// Instead of reporting and failing early, return the scope of resultDC to
// allow continuation (should still non-zero exit later if in script mode)
return AccessScope(resultDC);
} else {
return AccessScope(pkg);
}
}
case AccessLevel::Public:
case AccessLevel::Open:
return AccessScope::getPublic();
}
llvm_unreachable("unknown access level");
}
AccessScope
ValueDecl::getFormalAccessScope(const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) const {
return getAccessScopeForFormalAccess(this, getFormalAccess(), useDC,
treatUsableFromInlineAsPublic);
}
/// Checks if \p VD may be used from \p useDC, taking \@testable imports into
/// account.
///
/// Whenever the enclosing context of \p VD is usable from \p useDC, this
/// should compute the same result as checkAccess, below, but more slowly.
///
/// Here's an example while typechecking a file with the following code.
///
/// ```
/// import OtherModule
///
/// // `Foo` is a `public` struct defined in `OtherModule`
/// public func myFunc(_ arg: OtherModule.Foo) {}
/// ```
///
/// The use site of `Foo`is a function `myFunc`, and its DeclContext (useDC)
/// is FileUnit. The call \c getAccessScopeForFormalAccess inside this function
/// to get the access scope of`Foo` returns a public scope based on its `public`
/// access level, which is a wrapper around a nullptr DeclContext. Note that the
/// useDC is still non-null (FileUnit) even though the use site itself also has
/// a `public` acess level.
///
/// The `isChildOf` call compares the DeclContext hierarchy of the use site
/// (useDC) and the decl (VD) site, and returns true in this case, since
/// FileUnit is a child of nullptr based on the DeclContext hierarchy. The
/// hierarchy is created when subclasses of DeclContext such as FileUnit or
/// ModuleDecl are constructed. For example, a top ClassDecl ctor takes FileUnit
/// as its parent DeclContext and FileUnit ctor takes ModuleDecl as its parent
/// DeclContext. There's an exception, however, for the case of PackageUnit.
/// \see PackageUnit for details on how the hierachy between that and ModuleDecl
/// is created.
/// \see DeclContext::ASTHierarchy
/// \see AccessScope::getAccessScopeForFormalAccess
/// \see ValueDecl::isAccessibleFrom for a description of \p forConformance.
static bool checkAccessUsingAccessScopes(const DeclContext *useDC,
const ValueDecl *VD,
AccessLevel access,
bool includeInlineable) {
if (VD->getASTContext().isAccessControlDisabled())
return true;
AccessScope accessScope = getAccessScopeForFormalAccess(
VD, access, useDC,
/*treatUsableFromInlineAsPublic*/ includeInlineable);
if (accessScope.getDeclContext() == useDC)
return true;
if (!AccessScope(useDC).isChildOf(accessScope))
return false;
// useDC is null only when caller wants to skip non-public type checks.
if (!useDC)
return true;
// Check SPI access
if (!VD->isSPI())
return true;
auto useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
return !useSF || useSF->isImportedAsSPI(VD) ||
VD->getDeclContext()->getParentModule() == useDC->getParentModule();
}
/// Checks if \p VD is an ObjC member implementation:
///
/// \li It's in an \c \@_objcImplementation extension
/// \li It's not explicitly \c final
/// \li Its access level is not \c private or \c fileprivate
static bool
isObjCMemberImplementation(const ValueDecl *VD,
llvm::function_ref<AccessLevel()> getAccessLevel) {
if (auto ED = dyn_cast<ExtensionDecl>(VD->getDeclContext()))
if (ED->isObjCImplementation() && !isa<TypeDecl>(VD)) {
auto attrDecl = isa<AccessorDecl>(VD)
? cast<AccessorDecl>(VD)->getStorage()
: VD;
return !attrDecl->isFinal()
&& !attrDecl->getAttrs().hasAttribute<NonObjCAttr>()
&& !attrDecl->getAttrs().hasAttribute<OverrideAttr>()
&& getAccessLevel() >= AccessLevel::Internal;
}
return false;
}
bool ValueDecl::isObjCMemberImplementation() const {
return ::isObjCMemberImplementation(
this, [&]() { return this->getFormalAccess(); });
}
/// Checks if \p VD may be used from \p useDC, taking \@testable and \@_spi
/// imports into account.
///
/// When \p access is the same as `VD->getFormalAccess()` and the enclosing
/// context of \p VD is usable from \p useDC, this ought to be the same as
/// getting the AccessScope for `VD` and checking if \p useDC is within it.
/// However, there's a source compatibility hack around protocol extensions
/// that makes it not quite the same.
///
/// See ValueDecl::isAccessibleFrom for a description of \p forConformance.
static bool checkAccess(const DeclContext *useDC, const ValueDecl *VD,
bool forConformance,
bool includeInlineable,
llvm::function_ref<AccessLevel()> getAccessLevel) {
// If this is an @_objcImplementation member implementation, and we aren't in
// a context where we would access its storage directly, forbid access. Name
// lookups will instead find and use the matching interface decl.
// FIXME: Passing `true` for `isAccessOnSelf` may cause false positives.
if ((VD->isObjCImplementation() ||
isObjCMemberImplementation(VD, getAccessLevel)) &&
VD->getAccessSemanticsFromContext(useDC, /*isAccessOnSelf=*/true)
!= AccessSemantics::DirectToStorage)
return false;
if (VD->getASTContext().isAccessControlDisabled())
return true;
auto access = getAccessLevel();
auto *sourceDC = VD->getDeclContext();
// Preserve "fast path" behavior for everything inside
// protocol extensions and operators, otherwise allow access
// check declarations inside inaccessible members via slower
// access scope based check, which is helpful for diagnostics.
if (!(sourceDC->getSelfProtocolDecl() || VD->isOperator()))
return checkAccessUsingAccessScopes(useDC, VD, access, includeInlineable);
if (!forConformance) {
if (auto *proto = sourceDC->getSelfProtocolDecl()) {
// FIXME: Swift 4.1 allowed accessing protocol extension methods that were
// marked 'public' if the protocol was '@_versioned' (now
// '@usableFromInline'). Which works at the ABI level, so let's keep
// supporting that here by explicitly checking for it.
auto protoAccess = proto->getFormalAccess();
if (access == AccessLevel::Public &&
(protoAccess == AccessLevel::Internal || protoAccess == AccessLevel::Package) &&
proto->isUsableFromInline()) {
return true;
}
// Skip the fast path below and just compare access scopes.
return checkAccessUsingAccessScopes(useDC, VD, access, includeInlineable);
}
}
// Fast path: assume that the client context already has access to our parent
// DeclContext, and only check what might be different about this declaration.
if (!useDC)
return access >= AccessLevel::Public;
switch (access) {
case AccessLevel::Private:
if (useDC != sourceDC) {
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
if (useSF && useSF->hasTestableOrPrivateImport(access, VD))
return true;
}
return (useDC == sourceDC ||
AccessScope::allowsPrivateAccess(useDC, sourceDC));
case AccessLevel::FilePrivate:
if (useDC->getModuleScopeContext() != sourceDC->getModuleScopeContext()) {
auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext());
return useSF && useSF->hasTestableOrPrivateImport(access, VD);
}
return true;
case AccessLevel::Internal: {
// Invalid if the use site is > Internal.
// E.g. extension containing a member of a protocol it conforms to has
// `package` access level but the member is `internal`
if (useDC->getContextKind() == DeclContextKind::Package)
return false;
const ModuleDecl *sourceModule = sourceDC->getParentModule();
const DeclContext *useFile = useDC->getModuleScopeContext();
if (useFile->getParentModule() == sourceModule)
return true;
auto *useSF = dyn_cast<SourceFile>(useFile);
return useSF && useSF->hasTestableOrPrivateImport(access, sourceModule);
}
case AccessLevel::Package: {
auto srcPkg = sourceDC->getPackageContext(/*lookupIfNotCurrent*/ true);
auto usePkg = useDC->getPackageContext(/*lookupIfNotCurrent*/ true);
return srcPkg && usePkg && usePkg->isSamePackageAs(srcPkg);
}
case AccessLevel::Public:
case AccessLevel::Open:
return true;
}
llvm_unreachable("bad access level");
}
bool ValueDecl::isMoreVisibleThan(ValueDecl *other) const {
auto scope = getFormalAccessScope(/*UseDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
// 'other' may have come from a @testable import, so we need to upgrade it's
// visibility to public here. That is not the same as whether 'other' is
// being built with -enable-testing though -- we don't want to treat it
// differently in that case.
auto otherScope =
other->getFormalAccessScope(getDeclContext(),
/*treatUsableFromInlineAsPublic=*/true);
if (scope.isPublic())
return !otherScope.isPublic();
else if (scope.isInternal())
return !otherScope.isPublic() && !otherScope.isInternal();
else
return false;
}
bool ValueDecl::isAccessibleFrom(const DeclContext *useDC,
bool forConformance,
bool allowUsableFromInline) const {
return checkAccess(useDC, this, forConformance, allowUsableFromInline,
[&]() { return getFormalAccess(); });
}
ImportAccessLevel Decl::getImportAccessFrom(const DeclContext *useDC) const {
ModuleDecl *Mod = getModuleContext();
if (useDC && useDC->getParentModule() != Mod) {
if (auto useSF = useDC->getParentSourceFile()) {
return useSF->getImportAccessLevel(Mod);
}
}
return std::nullopt;
}
bool AbstractStorageDecl::isSetterAccessibleFrom(const DeclContext *DC,
bool forConformance) const {
assert(isSettable(DC));
// If a stored property does not have a setter, it is still settable from the
// designated initializer constructor. In this case, don't check setter
// access; it is not set.
if (hasStorage() && !isSettable(nullptr))
return true;
if (isa<ParamDecl>(this))
return true;
return checkAccess(DC, this, forConformance, /*includeInlineable*/ false,
[&]() { return getSetterFormalAccess(); });
}
void ValueDecl::copyFormalAccessFrom(const ValueDecl *source,
bool sourceIsParentContext) {
assert(!hasAccess());
AccessLevel access = source->getFormalAccess();
// To make something have the same access as a 'private' parent, it has to
// be 'fileprivate' or greater.
if (sourceIsParentContext && access == AccessLevel::Private)
access = AccessLevel::FilePrivate;
// Only certain declarations can be 'open'.
if (access == AccessLevel::Open && !isSyntacticallyOverridable()) {
assert(!isa<ClassDecl>(this) &&
"copying 'open' onto a class has complications");
access = AccessLevel::Public;
}
setAccess(access);
// Inherit the @usableFromInline attribute.
if (source->getAttrs().hasAttribute<UsableFromInlineAttr>() &&
!getAttrs().hasAttribute<UsableFromInlineAttr>() &&
!getAttrs().hasAttribute<InlinableAttr>() &&
DeclAttribute::canAttributeAppearOnDecl(DeclAttrKind::UsableFromInline,
this)) {
auto &ctx = getASTContext();
auto *clonedAttr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
getAttrs().add(clonedAttr);
}
}
GenericParameterReferenceInfo &
GenericParameterReferenceInfo::operator|=(const GenericParameterReferenceInfo &other) {
hasCovariantSelfResult |= other.hasCovariantSelfResult;
if (other.selfRef > selfRef) {
selfRef = other.selfRef;
}
if (other.assocTypeRef > assocTypeRef) {
assocTypeRef = other.assocTypeRef;
}
return *this;
}
/// Forward declaration.
static GenericParameterReferenceInfo
findGenericParameterReferences(CanGenericSignature, GenericTypeParamType *,
Type, TypePosition, bool, bool);
/// Determine whether a function type with the given result type may have
/// a covariant generic parameter type result. This is true if the result type
/// is either a function type, or a generic parameter, possibly wrapped in some
/// level of optionality.
static bool canResultTypeHaveCovariantGenericParameterResult(Type resultTy) {
if (resultTy->is<AnyFunctionType>())
return true;
resultTy = resultTy->lookThroughAllOptionalTypes();
return resultTy->is<GenericTypeParamType>();
}
/// Report references to the given generic parameter within the given function
/// type using the given generic signature.
///
/// \param position The current position in terms of variance.
/// \param skipParamIndex The index of the parameter that shall be skipped.
static GenericParameterReferenceInfo findGenericParameterReferencesInFunction(
CanGenericSignature genericSig, GenericTypeParamType *genericParam,
const AnyFunctionType *fnType, TypePosition position,
bool treatNonResultCovarianceAsInvariant, bool canBeCovariantResult,
std::optional<unsigned> skipParamIndex) {
// If there are no type parameters, we're done.
if (!isa<GenericFunctionType>(fnType) && !fnType->hasTypeParameter())
return GenericParameterReferenceInfo();
auto inputInfo = GenericParameterReferenceInfo();
const auto params = fnType->getParams();
for (const auto paramIdx : indices(params)) {
// If this is the parameter we were supposed to skip, do so.
if (skipParamIndex && paramIdx == *skipParamIndex)
continue;
const auto &param = params[paramIdx];
// inout types are invariant.
if (param.isInOut()) {
inputInfo |= ::findGenericParameterReferences(
genericSig, genericParam, param.getPlainType(),
TypePosition::Invariant, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
continue;
}
// Parameters are contravariant, but if we're prior to the skipped
// parameter treat them as invariant because we're not allowed to
// reference the parameter at all.
TypePosition paramPos = position.flipped();
if (skipParamIndex && paramIdx < *skipParamIndex)
paramPos = TypePosition::Invariant;
inputInfo |= ::findGenericParameterReferences(
genericSig, genericParam, param.getParameterType(), paramPos,
treatNonResultCovarianceAsInvariant, /*canBeCovariantResult=*/false);
}
canBeCovariantResult =
// &= does not short-circuit.
canBeCovariantResult &&
canResultTypeHaveCovariantGenericParameterResult(fnType->getResult());
const auto resultInfo = ::findGenericParameterReferences(
genericSig, genericParam, fnType->getResult(), position,
treatNonResultCovarianceAsInvariant, canBeCovariantResult);
return inputInfo |= resultInfo;
}
/// Report references to the given generic parameter within the given type
/// using the given generic signature.
///
/// \param position The current position in terms of variance.
static GenericParameterReferenceInfo
findGenericParameterReferences(CanGenericSignature genericSig,
GenericTypeParamType *genericParam,
Type type,
TypePosition position,
bool treatNonResultCovarianceAsInvariant,
bool canBeCovariantResult) {
// If there are no type parameters, we're done.
if (!type->hasTypeParameter())
return GenericParameterReferenceInfo();
// Tuples preserve variance.
if (auto tuple = type->getAs<TupleType>()) {
auto info = GenericParameterReferenceInfo();
for (auto &elt : tuple->getElements()) {
info |= findGenericParameterReferences(
genericSig, genericParam, elt.getType(), position,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
}
return info;
}
// Function types preserve variance in the result type, and flip variance in
// the parameter type.
if (auto funcTy = type->getAs<AnyFunctionType>()) {
return findGenericParameterReferencesInFunction(
genericSig, genericParam, funcTy, position,
treatNonResultCovarianceAsInvariant, canBeCovariantResult,
/*skipParamIndex=*/std::nullopt);
}
// Metatypes preserve variance.
if (auto metaTy = type->getAs<MetatypeType>()) {
return findGenericParameterReferences(genericSig, genericParam,
metaTy->getInstanceType(), position,
treatNonResultCovarianceAsInvariant,
canBeCovariantResult);
}
// Optionals preserve variance.
if (auto optType = type->getOptionalObjectType()) {
return findGenericParameterReferences(
genericSig, genericParam, optType, position,
treatNonResultCovarianceAsInvariant, canBeCovariantResult);
}
// DynamicSelfType preserves variance.
if (auto selfType = type->getAs<DynamicSelfType>()) {
return findGenericParameterReferences(genericSig, genericParam,
selfType->getSelfType(), position,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
}
if (auto *const nominal = type->getAs<NominalOrBoundGenericNominalType>()) {
auto info = GenericParameterReferenceInfo();
// Don't forget to look in the parent.
if (const auto parent = nominal->getParent()) {
info |= findGenericParameterReferences(
genericSig, genericParam, parent, position,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
}
// Most bound generic types are invariant.
if (auto *const bgt = type->getAs<BoundGenericType>()) {
if (bgt->isArray()) {
// Swift.Array preserves variance in its 'Value' type.
info |= findGenericParameterReferences(
genericSig, genericParam, bgt->getGenericArgs().front(),
position, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
} else if (bgt->isDictionary()) {
// Swift.Dictionary preserves variance in its 'Element' type.
info |= findGenericParameterReferences(
genericSig, genericParam, bgt->getGenericArgs().front(),
TypePosition::Invariant, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
info |= findGenericParameterReferences(
genericSig, genericParam, bgt->getGenericArgs().back(),
position, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
} else {
for (const auto &paramType : bgt->getGenericArgs()) {
info |= findGenericParameterReferences(
genericSig, genericParam, paramType, TypePosition::Invariant,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
}
}
}
return info;
}
// If the signature of an opaque result type has a same-type constraint
// that references Self, it's invariant.
if (auto opaque = type->getAs<OpaqueTypeArchetypeType>()) {
auto info = GenericParameterReferenceInfo();
auto opaqueSig = opaque->getDecl()->getOpaqueInterfaceGenericSignature();
for (const auto &req : opaqueSig.getRequirements()) {
switch (req.getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirement not supported here");
case RequirementKind::Conformance:
case RequirementKind::Layout:
continue;
case RequirementKind::SameType:
info |= findGenericParameterReferences(
genericSig, genericParam, req.getFirstType(),
TypePosition::Invariant, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
LLVM_FALLTHROUGH;
case RequirementKind::Superclass:
info |= findGenericParameterReferences(
genericSig, genericParam, req.getSecondType(),
TypePosition::Invariant, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
break;
}
}
return info;
}
// Protocol compositions preserve variance.
if (auto *existential = type->getAs<ExistentialType>())
type = existential->getConstraintType();
if (auto *comp = type->getAs<ProtocolCompositionType>()) {
// 'Self' may be referenced only in an explicit superclass component.
for (const auto member : comp->getMembers()) {
if (member->getClassOrBoundGenericClass()) {
return findGenericParameterReferences(
genericSig, genericParam, member, position,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/false);
}
}
return GenericParameterReferenceInfo();
}
if (!type->isTypeParameter()) {
return GenericParameterReferenceInfo();
}
Type selfTy(genericParam);
if (!type->getRootGenericParam()->isEqual(selfTy)) {
return GenericParameterReferenceInfo();
}
// A direct reference to 'Self'.
if (selfTy->isEqual(type)) {
if (position == TypePosition::Covariant) {
if (canBeCovariantResult) {
return GenericParameterReferenceInfo::forCovariantResult();
} else if (treatNonResultCovarianceAsInvariant) {
position = TypePosition::Invariant;
}
}
return GenericParameterReferenceInfo::forSelfRef(position);
}
// If the type parameter is beyond the domain of the existential generic
// signature, ignore it.
if (!genericSig->isValidTypeParameter(type)) {
return GenericParameterReferenceInfo();
}
if (const auto concreteTy = genericSig->getConcreteType(type)) {
return findGenericParameterReferences(
genericSig, genericParam, concreteTy, position,
treatNonResultCovarianceAsInvariant, canBeCovariantResult);
}
// A reference to an associated type rooted on 'Self'.
return GenericParameterReferenceInfo::forAssocTypeRef(position);
}
GenericParameterReferenceInfo
swift::findGenericParameterReferences(const ValueDecl *value,
CanGenericSignature sig,
GenericTypeParamType *genericParam,
bool treatNonResultCovarianceAsInvariant,
std::optional<unsigned> skipParamIndex) {
assert(isa<TypeDecl>(value) == false);
assert(sig->getGenericParamOrdinal(genericParam) <
sig.getGenericParams().size());
auto type = value->getInterfaceType();
// Skip invalid declarations.
if (type->hasError())
return GenericParameterReferenceInfo();
if (isa<AbstractFunctionDecl>(value) || isa<SubscriptDecl>(value)) {
// For a method, skip the 'self' parameter.
if (value->hasCurriedSelf())
type = type->castTo<AnyFunctionType>()->getResult();
return ::findGenericParameterReferencesInFunction(
sig, genericParam, type->castTo<AnyFunctionType>(),
TypePosition::Covariant, treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/true, skipParamIndex);
}
return ::findGenericParameterReferences(sig, genericParam, type,
TypePosition::Covariant,
treatNonResultCovarianceAsInvariant,
/*canBeCovariantResult=*/true);
}
GenericParameterReferenceInfo ValueDecl::findExistentialSelfReferences(
Type baseTy, bool treatNonResultCovariantSelfAsInvariant) const {
assert(baseTy->isExistentialType());
assert(!baseTy->hasTypeParameter());
// Type declarations don't really have type signatures.
if (isa<TypeDecl>(this))
return GenericParameterReferenceInfo();
// Skip invalid declarations.
if (getInterfaceType()->hasError())
return GenericParameterReferenceInfo();
// Note: a non-null GenericSignature would violate the invariant that
// the protocol 'Self' type referenced from the requirement's interface
// type is the same as the existential 'Self' type.
auto sig = getASTContext().getOpenedExistentialSignature(baseTy,
GenericSignature());
auto genericParam = sig.getGenericParams().front();
return findGenericParameterReferences(this, sig, genericParam,
treatNonResultCovariantSelfAsInvariant,
std::nullopt);
}
TypeDecl::CanBeInvertible::Result
NominalTypeDecl::canConformTo(InvertibleProtocolKind ip) const {
auto *proto = getASTContext().getProtocol(getKnownProtocolKind(ip));
assert(proto && "missing Copyable/Escapable from stdlib!");
// Handle protocols specially, without building a GenericSignature.
if (auto *protoDecl = dyn_cast<ProtocolDecl>(this)) {
return protoDecl->inheritsFrom(proto)
? TypeDecl::CanBeInvertible::Always
: TypeDecl::CanBeInvertible::Never;
}
Type selfTy = getDeclaredInterfaceType();
assert(selfTy);
auto conformance = getModuleContext()->lookupConformance(selfTy, proto,
/*allowMissing=*/false);
if (conformance.isInvalid())
return TypeDecl::CanBeInvertible::Never;
if (!conformance.getConditionalRequirements().empty())
return TypeDecl::CanBeInvertible::Conditionally;
return TypeDecl::CanBeInvertible::Always;
}
TypeDecl::CanBeInvertible::Result NominalTypeDecl::canBeCopyable() const {
return canConformTo(InvertibleProtocolKind::Copyable);
}
TypeDecl::CanBeInvertible::Result NominalTypeDecl::canBeEscapable() const {
return canConformTo(InvertibleProtocolKind::Escapable);
}
Type TypeDecl::getDeclaredInterfaceType() const {
if (auto *NTD = dyn_cast<NominalTypeDecl>(this))
return NTD->getDeclaredInterfaceType();
if (auto *ATD = dyn_cast<AssociatedTypeDecl>(this)) {
auto &ctx = getASTContext();
auto selfTy = getDeclContext()->getSelfInterfaceType();
if (!selfTy)
return ErrorType::get(ctx);
return DependentMemberType::get(
selfTy, const_cast<AssociatedTypeDecl *>(ATD));
}
return getInterfaceType()->getMetatypeInstanceType();
}
int TypeDecl::compare(const TypeDecl *type1, const TypeDecl *type2) {
// Order based on the enclosing declaration.
auto dc1 = type1->getDeclContext();
auto dc2 = type2->getDeclContext();
// Prefer lower depths.
auto depth1 = dc1->getSemanticDepth();
auto depth2 = dc2->getSemanticDepth();
if (depth1 != depth2)
return depth1 < depth2 ? -1 : +1;
// Prefer module names earlier in the alphabet.
if (dc1->isModuleScopeContext() && dc2->isModuleScopeContext()) {
auto module1 = dc1->getParentModule();
auto module2 = dc2->getParentModule();
if (int result = module1->getName().str().compare(module2->getName().str()))
return result;
}
auto nominal1 = dc1->getSelfNominalTypeDecl();
auto nominal2 = dc2->getSelfNominalTypeDecl();
if (static_cast<bool>(nominal1) != static_cast<bool>(nominal2)) {
return static_cast<bool>(nominal1) ? -1 : +1;
}
if (nominal1 && nominal2) {
if (int result = compare(nominal1, nominal2))
return result;
}
if (int result = type1->getBaseIdentifier().str().compare(
type2->getBaseIdentifier().str()))
return result;
// Error case: two type declarations that cannot be distinguished.
if (type1 < type2)
return -1;
if (type1 > type2)
return +1;
return 0;
}
bool NominalTypeDecl::isFormallyResilient() const {
// Private and (unversioned) internal types always have a
// fixed layout.
if (!getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true).isPublicOrPackage())
return false;
// Check for an explicit @_fixed_layout or @frozen attribute.
if (getAttrs().hasAttribute<FixedLayoutAttr>() ||
getAttrs().hasAttribute<FrozenAttr>()) {
return false;
}
// Structs and enums imported from C *always* have a fixed layout.
// We know their size, and pass them as values in SIL and IRGen.
if (hasClangNode())
return false;
// @objc enums and protocols always have a fixed layout.
if ((isa<EnumDecl>(this) || isa<ProtocolDecl>(this)) && isObjC())
return false;
// Otherwise, the declaration behaves as if it was accessed via indirect
// "resilient" interfaces, even if the module is not built with resilience.
return true;
}
bool NominalTypeDecl::isResilient() const {
if (!isFormallyResilient())
return false;
return getModuleContext()->isResilient();
}
DestructorDecl *NominalTypeDecl::getValueTypeDestructor() {
if (!isa<StructDecl>(this) && !isa<EnumDecl>(this)) {
return nullptr;
}
auto found = lookupDirect(DeclBaseName::createDestructor());
if (found.size() != 1) {
return nullptr;
}
return cast<DestructorDecl>(found[0]);
}
static bool isOriginallyDefinedIn(const Decl *D, const ModuleDecl* MD) {
if (!MD)
return false;
if (D->getAlternateModuleName().empty())
return false;
return D->getAlternateModuleName() == MD->getName().str();
}
bool NominalTypeDecl::isResilient(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return isResilient();
case ResilienceExpansion::Maximal:
// We can access declarations from the same module
// non-resiliently in a maximal context.
if (M == getModuleContext())
return false;
// Non-resilient if bypass optimization in package is enabled
if (bypassResilienceInPackage(M))
return false;
// If a protocol is originally declared in the current module, then we
// directly expose protocol witness tables and their contents for any
// conformances in the same module as symbols. If the protocol later
// moves, then we need to preserve those extra symbols from the home
// module by treating the protocol as if it was still defined in the same
// module.
//
// This logic does not and should not generally extend to other kinds of
// declaration. If a declaration moves to a new module with library
// evolution enabled, then even the original module has to access it
// according to the library evolution ABI. This is an ABI compatibility
// hack only for protocols. If you see other variations of `isResilient`
// that don't check `isOriginallyDefinedIn`, they are probably correct.
if (isa<ProtocolDecl>(this)
&& isOriginallyDefinedIn(this, M)) {
return false;
}
// Otherwise, we have to access the declaration resiliently if it's
// resilient anywhere.
return isResilient();
}
llvm_unreachable("bad resilience expansion");
}
enum class DeclTypeKind : unsigned {
DeclaredType,
DeclaredInterfaceType
};
static Type computeNominalType(NominalTypeDecl *decl, DeclTypeKind kind) {
ASTContext &ctx = decl->getASTContext();
// Special case the Builtin.TheTupleType singleton.
if (isa<BuiltinTupleDecl>(decl))
return ctx.getBuiltinTupleType();
// If `decl` is a nested type, find the parent type.
Type ParentTy;
DeclContext *dc = decl->getDeclContext();
bool isUnsupportedNestedProtocol =
isa<ProtocolDecl>(decl) && decl->getParent()->isGenericContext();
if (!isUnsupportedNestedProtocol && dc->isTypeContext()) {
switch (kind) {
case DeclTypeKind::DeclaredType: {
if (auto *nominal = dc->getSelfNominalTypeDecl())
ParentTy = nominal->getDeclaredType();
break;
}
case DeclTypeKind::DeclaredInterfaceType:
ParentTy = dc->getDeclaredInterfaceType();
if (ParentTy->is<ErrorType>())
ParentTy = Type();
break;
}
}
if (!isa<ProtocolDecl>(decl) && decl->getGenericParams()) {
switch (kind) {
case DeclTypeKind::DeclaredType:
return UnboundGenericType::get(decl, ParentTy, ctx);
case DeclTypeKind::DeclaredInterfaceType: {
// Note that here, we need to be able to produce a type
// before the decl has been validated, so we rely on
// the generic parameter list directly instead of looking
// at the signature.
SmallVector<Type, 4> args;
for (auto param : decl->getGenericParams()->getParams()) {
auto argTy = param->getDeclaredInterfaceType();
if (param->isParameterPack())
argTy = PackType::getSingletonPackExpansion(argTy);
args.push_back(argTy);
}
return BoundGenericType::get(decl, ParentTy, args);
}
}
llvm_unreachable("Unhandled DeclTypeKind in switch.");
}
return NominalType::get(decl, ParentTy, ctx);
}
Type NominalTypeDecl::getDeclaredType() const {
if (DeclaredTy)
return DeclaredTy;
auto *decl = const_cast<NominalTypeDecl *>(this);
decl->DeclaredTy = computeNominalType(decl, DeclTypeKind::DeclaredType);
return DeclaredTy;
}
Type NominalTypeDecl::getDeclaredInterfaceType() const {
if (DeclaredInterfaceTy)
return DeclaredInterfaceTy;
auto *decl = const_cast<NominalTypeDecl *>(this);
decl->DeclaredInterfaceTy = computeNominalType(decl,
DeclTypeKind::DeclaredInterfaceType);
return DeclaredInterfaceTy;
}
void NominalTypeDecl::prepareExtensions() {
// Types in local contexts can't have extensions
if (getLocalContext() != nullptr) {
return;
}
auto &context = Decl::getASTContext();
// If our list of extensions is out of date, update it now.
if (context.getCurrentGeneration() > ExtensionGeneration) {
unsigned previousGeneration = ExtensionGeneration;
ExtensionGeneration = context.getCurrentGeneration();
context.loadExtensions(this, previousGeneration);
}
}
ExtensionRange NominalTypeDecl::getExtensions() {
prepareExtensions();
return ExtensionRange(ExtensionIterator(FirstExtension), ExtensionIterator());
}
void NominalTypeDecl::addExtension(ExtensionDecl *extension) {
assert(!extension->NextExtension.getInt() && "Already added extension");
extension->NextExtension.setInt(true);
// First extension; set both first and last.
if (!FirstExtension) {
FirstExtension = extension;
LastExtension = extension;
addedExtension(extension);
return;
}
// Add to the end of the list.
LastExtension->NextExtension.setPointer(extension);
LastExtension = extension;
addedExtension(extension);
}
ArrayRef<VarDecl *> NominalTypeDecl::getStoredProperties() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
StoredPropertiesRequest{mutableThis},
{});
}
ArrayRef<VarDecl *>
NominalTypeDecl::getInitAccessorProperties() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
InitAccessorPropertiesRequest{mutableThis},
{});
}
ArrayRef<VarDecl *>
NominalTypeDecl::getMemberwiseInitProperties() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
MemberwiseInitPropertiesRequest{mutableThis},
{});
}
void NominalTypeDecl::collectPropertiesInitializableByInitAccessors(
std::multimap<VarDecl *, VarDecl *> &result) const {
for (auto *property : getInitAccessorProperties()) {
auto *initAccessor = property->getAccessor(AccessorKind::Init);
for (auto *subsumed : initAccessor->getInitializedProperties())
result.insert({subsumed, property});
}
}
ArrayRef<Decl *>
NominalTypeDecl::getStoredPropertiesAndMissingMemberPlaceholders() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
StoredPropertiesAndMissingMembersRequest{mutableThis},
{});
}
bool NominalTypeDecl::isOptionalDecl() const {
return this == getASTContext().getOptionalDecl();
}
std::optional<KeyPathTypeKind> NominalTypeDecl::getKeyPathTypeKind() const {
auto &ctx = getASTContext();
#define CASE(NAME) if (this == ctx.get##NAME##Decl()) return KPTK_##NAME;
CASE(KeyPath)
CASE(WritableKeyPath)
CASE(ReferenceWritableKeyPath)
CASE(AnyKeyPath)
CASE(PartialKeyPath)
#undef CASE
return std::nullopt;
}
PropertyWrapperTypeInfo NominalTypeDecl::getPropertyWrapperTypeInfo() const {
ASTContext &ctx = getASTContext();
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
PropertyWrapperTypeInfoRequest{mutableThis},
PropertyWrapperTypeInfo());
}
bool NominalTypeDecl::isActor() const {
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
IsActorRequest{mutableThis},
false);
}
bool NominalTypeDecl::isDistributedActor() const {
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
IsDistributedActorRequest{mutableThis},
false);
}
bool NominalTypeDecl::isAnyActor() const {
return isActor() || isDistributedActor();
}
bool NominalTypeDecl::isMainActor() const {
return getName().is("MainActor") &&
getParentModule()->getName() == getASTContext().Id_Concurrency;
}
bool NominalTypeDecl::suppressesConformance(KnownProtocolKind kp) const {
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
SuppressesConformanceRequest{mutableThis, kp},
false);
}
GenericTypeDecl::GenericTypeDecl(DeclKind K, DeclContext *DC,
Identifier name, SourceLoc nameLoc,
ArrayRef<InheritedEntry> inherited,
GenericParamList *GenericParams) :
GenericContext(DeclContextKind::GenericTypeDecl, DC, GenericParams),
TypeDecl(K, DC, name, nameLoc, inherited) {}
TypeAliasDecl::TypeAliasDecl(SourceLoc TypeAliasLoc, SourceLoc EqualLoc,
Identifier Name, SourceLoc NameLoc,
GenericParamList *GenericParams, DeclContext *DC)
: GenericTypeDecl(DeclKind::TypeAlias, DC, Name, NameLoc, {}, GenericParams),
TypeAliasLoc(TypeAliasLoc), EqualLoc(EqualLoc) {
Bits.TypeAliasDecl.IsCompatibilityAlias = false;
Bits.TypeAliasDecl.IsDebuggerAlias = false;
}
SourceRange TypeAliasDecl::getSourceRange() const {
auto TrailingWhereClauseSourceRange = getGenericTrailingWhereClauseSourceRange();
if (TrailingWhereClauseSourceRange.isValid())
return { TypeAliasLoc, TrailingWhereClauseSourceRange.End };
if (UnderlyingTy.hasLocation())
return { TypeAliasLoc, UnderlyingTy.getSourceRange().End };
if (TypeEndLoc.isValid())
return { TypeAliasLoc, TypeEndLoc };
return { TypeAliasLoc, getNameLoc() };
}
Type TypeAliasDecl::getUnderlyingType() const {
auto &ctx = getASTContext();
if (auto type = evaluateOrDefault(ctx.evaluator,
UnderlyingTypeRequest{const_cast<TypeAliasDecl *>(this)},
Type()))
return type;
return ErrorType::get(ctx);
}
void TypeAliasDecl::setUnderlyingType(Type underlying) {
// lldb creates global typealiases containing archetypes
// sometimes...
if (underlying->hasArchetype() && isGenericContext())
underlying = underlying->mapTypeOutOfContext();
getASTContext().evaluator.cacheOutput(
StructuralTypeRequest{const_cast<TypeAliasDecl *>(this)},
std::move(underlying));
getASTContext().evaluator.cacheOutput(
UnderlyingTypeRequest{const_cast<TypeAliasDecl *>(this)},
std::move(underlying));
}
UnboundGenericType *TypeAliasDecl::getUnboundGenericType() const {
assert(getGenericParams());
Type parentTy;
auto parentDC = getDeclContext();
if (auto nominal = parentDC->getSelfNominalTypeDecl())
parentTy = nominal->getDeclaredType();
return UnboundGenericType::get(
const_cast<TypeAliasDecl *>(this),
parentTy, getASTContext());
}
Type TypeAliasDecl::getStructuralType() const {
auto &ctx = getASTContext();
if (auto type = evaluateOrDefault(
ctx.evaluator,
StructuralTypeRequest{const_cast<TypeAliasDecl *>(this)},
Type()))
return type;
return ErrorType::get(ctx);
}
GenericTypeParamDecl::GenericTypeParamDecl(DeclContext *dc, Identifier name,
SourceLoc nameLoc, SourceLoc eachLoc,
unsigned depth, unsigned index,
bool isParameterPack,
bool isOpaqueType,
TypeRepr *opaqueTypeRepr)
: TypeDecl(DeclKind::GenericTypeParam, dc, name, nameLoc, {}) {
assert(!(eachLoc && !isParameterPack) &&
"'each' keyword always means type parameter pack");
Bits.GenericTypeParamDecl.Depth = depth;
assert(Bits.GenericTypeParamDecl.Depth == depth && "Truncation");
Bits.GenericTypeParamDecl.Index = index;
assert(Bits.GenericTypeParamDecl.Index == index && "Truncation");
Bits.GenericTypeParamDecl.ParameterPack = isParameterPack;
Bits.GenericTypeParamDecl.IsOpaqueType = isOpaqueType;
assert(isOpaqueType || !opaqueTypeRepr);
if (isOpaqueType)
*getTrailingObjects<TypeRepr *>() = opaqueTypeRepr;
if (isParameterPack)
*getTrailingObjects<SourceLoc>() = eachLoc;
auto &ctx = dc->getASTContext();
RecursiveTypeProperties props = RecursiveTypeProperties::HasTypeParameter;
if (this->isParameterPack())
props |= RecursiveTypeProperties::HasParameterPack;
auto type = new (ctx, AllocationArena::Permanent) GenericTypeParamType(this, props);
setInterfaceType(MetatypeType::get(type, ctx));
}
GenericTypeParamDecl *GenericTypeParamDecl::create(
DeclContext *dc, Identifier name, SourceLoc nameLoc, SourceLoc eachLoc,
unsigned depth, unsigned index, bool isParameterPack, bool isOpaqueType,
TypeRepr *opaqueTypeRepr) {
auto &ctx = dc->getASTContext();
auto allocSize = totalSizeToAlloc<TypeRepr *, SourceLoc>(
isOpaqueType ? 1 : 0, isParameterPack ? 1 : 0);
auto mem = ctx.Allocate(allocSize, alignof(GenericTypeParamDecl));
return new (mem)
GenericTypeParamDecl(dc, name, nameLoc, eachLoc, depth, index,
isParameterPack, isOpaqueType, opaqueTypeRepr);
}
GenericTypeParamDecl *GenericTypeParamDecl::createDeserialized(
DeclContext *dc, Identifier name, unsigned depth, unsigned index,
bool isParameterPack, bool isOpaqueType) {
return GenericTypeParamDecl::create(dc, name, SourceLoc(), SourceLoc(), depth,
index, isParameterPack, isOpaqueType,
/*opaqueRepr*/ nullptr);
}
GenericTypeParamDecl *
GenericTypeParamDecl::createParsed(DeclContext *dc, Identifier name,
SourceLoc nameLoc, SourceLoc eachLoc,
unsigned index, bool isParameterPack) {
// We always create generic type parameters with an invalid depth.
// Semantic analysis fills in the depth when it processes the generic
// parameter list.
return GenericTypeParamDecl::create(
dc, name, nameLoc, eachLoc, GenericTypeParamDecl::InvalidDepth, index,
isParameterPack, /*isOpaqueType*/ false, /*opaqueTypeRepr*/ nullptr);
}
GenericTypeParamDecl *GenericTypeParamDecl::createImplicit(
DeclContext *dc, Identifier name, unsigned depth, unsigned index,
bool isParameterPack, bool isOpaqueType, TypeRepr *opaqueTypeRepr,
SourceLoc nameLoc, SourceLoc eachLoc) {
auto *param = GenericTypeParamDecl::create(dc, name, nameLoc, eachLoc, depth,
index, isParameterPack,
isOpaqueType, opaqueTypeRepr);
param->setImplicit();
return param;
}
SourceRange GenericTypeParamDecl::getSourceRange() const {
auto startLoc = getNameLoc();
auto endLoc = getNameLoc();
if (const auto eachLoc = getEachLoc())
startLoc = eachLoc;
if (!getInherited().empty())
endLoc = getInherited().getEndLoc();
return {startLoc, endLoc};
}
AssociatedTypeDecl::AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc,
Identifier name, SourceLoc nameLoc,
TypeRepr *defaultDefinition,
TrailingWhereClause *trailingWhere)
: TypeDecl(DeclKind::AssociatedType, dc, name, nameLoc, { }),
KeywordLoc(keywordLoc), DefaultDefinition(defaultDefinition),
TrailingWhere(trailingWhere) {
Bits.AssociatedTypeDecl.IsDefaultDefinitionTypeComputed = false;
}
AssociatedTypeDecl *
AssociatedTypeDecl::createParsed(ASTContext &ctx, DeclContext *dc,
SourceLoc keywordLoc, Identifier name,
SourceLoc nameLoc, TypeRepr *defaultDefinition,
TrailingWhereClause *trailingWhere) {
auto *decl = new (ctx) AssociatedTypeDecl(dc, keywordLoc, name, nameLoc,
defaultDefinition, trailingWhere);
// Sort out this trivial case now to enable the AST dumper to differentiate
// between a nonexistent and null default type without having to trigger a
// request.
if (!defaultDefinition)
decl->setDefaultDefinitionType(nullptr);
return decl;
}
AssociatedTypeDecl *AssociatedTypeDecl::createDeserialized(
ASTContext &ctx, DeclContext *dc, SourceLoc keywordLoc, Identifier name,
SourceLoc nameLoc, TrailingWhereClause *trailingWhere,
LazyMemberLoader *lazyLoader, uint64_t defaultDefinitionTypeData) {
assert(lazyLoader && "missing lazy member loader");
auto *decl = new (ctx)
AssociatedTypeDecl(dc, keywordLoc, name, nameLoc,
/*defaultDefinition*/ nullptr, trailingWhere);
// Sort out this trivial case now to enable the AST dumper to differentiate
// between a nonexistent and null default type without having to trigger a
// request. '0' is the sentinel ID for no data.
if (defaultDefinitionTypeData == 0) {
decl->setDefaultDefinitionType(nullptr);
} else {
auto *data = static_cast<LazyAssociatedTypeData *>(
ctx.getOrCreateLazyContextData(decl, lazyLoader));
data->defaultDefinitionTypeData = defaultDefinitionTypeData;
}
return decl;
}
Type AssociatedTypeDecl::getDefaultDefinitionType() const {
return evaluateOrDefault(getASTContext().evaluator,
DefaultDefinitionTypeRequest{const_cast<AssociatedTypeDecl *>(this)},
Type());
}
std::optional<Type> AssociatedTypeDecl::getCachedDefaultDefinitionType() const {
if (Bits.AssociatedTypeDecl.IsDefaultDefinitionTypeComputed)
return DefaultDefinition.getType();
return std::nullopt;
}
void AssociatedTypeDecl::setDefaultDefinitionType(Type ty) {
DefaultDefinition.setType(ty);
Bits.AssociatedTypeDecl.IsDefaultDefinitionTypeComputed = true;
}
SourceRange AssociatedTypeDecl::getSourceRange() const {
SourceLoc endLoc;
if (auto TWC = getTrailingWhereClause()) {
endLoc = TWC->getSourceRange().End;
} else if (auto defaultDefinition = getDefaultDefinitionTypeRepr()) {
endLoc = defaultDefinition->getEndLoc();
} else if (!getInherited().empty()) {
endLoc = getInherited().getEndLoc();
} else {
endLoc = getNameLoc();
}
return SourceRange(KeywordLoc, endLoc);
}
llvm::TinyPtrVector<AssociatedTypeDecl *>
AssociatedTypeDecl::getOverriddenDecls() const {
// FIXME: Performance hack because we end up looking at the overridden
// declarations of an associated type a *lot*.
OverriddenDeclsRequest request{const_cast<AssociatedTypeDecl *>(this)};
llvm::TinyPtrVector<ValueDecl *> overridden;
if (auto cached = request.getCachedResult())
overridden = std::move(*cached);
else
overridden = TypeDecl::getOverriddenDecls();
llvm::TinyPtrVector<AssociatedTypeDecl *> assocTypes;
for (auto decl : overridden) {
assocTypes.push_back(cast<AssociatedTypeDecl>(decl));
}
return assocTypes;
}
namespace {
static AssociatedTypeDecl *getAssociatedTypeAnchor(
const AssociatedTypeDecl *ATD,
llvm::SmallSet<const AssociatedTypeDecl *, 8> &searched) {
auto overridden = ATD->getOverriddenDecls();
// If this declaration does not override any other declarations, it's
// the anchor.
if (overridden.empty()) return const_cast<AssociatedTypeDecl *>(ATD);
// Find the best anchor among the anchors of the overridden decls and avoid
// reentrancy when erroneous cyclic protocols exist.
AssociatedTypeDecl *bestAnchor = nullptr;
for (auto assocType : overridden) {
if (!searched.insert(assocType).second)
continue;
auto anchor = getAssociatedTypeAnchor(assocType, searched);
if (!anchor)
continue;
if (!bestAnchor || TypeDecl::compare(anchor, bestAnchor) < 0)
bestAnchor = anchor;
}
return bestAnchor;
}
}
AssociatedTypeDecl *AssociatedTypeDecl::getAssociatedTypeAnchor() const {
llvm::SmallSet<const AssociatedTypeDecl *, 8> searched;
return ::getAssociatedTypeAnchor(this, searched);
}
EnumDecl::EnumDecl(SourceLoc EnumLoc,
Identifier Name, SourceLoc NameLoc,
ArrayRef<InheritedEntry> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Enum, Parent, Name, NameLoc, Inherited,
GenericParams),
EnumLoc(EnumLoc)
{
Bits.EnumDecl.HasAssociatedValues
= static_cast<unsigned>(AssociatedValueCheck::Unchecked);
Bits.EnumDecl.HasAnyUnavailableValues
= false;
}
Type EnumDecl::getRawType() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(
ctx.evaluator, EnumRawTypeRequest{const_cast<EnumDecl *>(this)},
ErrorType::get(ctx));
}
void EnumDecl::setRawType(Type rawType) {
getASTContext().evaluator.cacheOutput(EnumRawTypeRequest{this},
std::move(rawType));
}
StructDecl::StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
ArrayRef<InheritedEntry> Inherited,
GenericParamList *GenericParams, DeclContext *Parent)
: NominalTypeDecl(DeclKind::Struct, Parent, Name, NameLoc, Inherited,
GenericParams),
StructLoc(StructLoc)
{
Bits.StructDecl.HasUnreferenceableStorage = false;
Bits.StructDecl.IsCxxNonTrivial = false;
}
bool NominalTypeDecl::hasMemberwiseInitializer() const {
// Currently only structs can have memberwise initializers.
auto *sd = dyn_cast<StructDecl>(this);
if (!sd)
return false;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<StructDecl *>(sd);
return evaluateOrDefault(ctx.evaluator, HasMemberwiseInitRequest{mutableThis},
false);
}
ConstructorDecl *NominalTypeDecl::getMemberwiseInitializer() const {
if (!hasMemberwiseInitializer())
return nullptr;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, SynthesizeMemberwiseInitRequest{mutableThis}, nullptr);
}
ConstructorDecl *NominalTypeDecl::getEffectiveMemberwiseInitializer() {
auto &ctx = getASTContext();
auto *mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ResolveEffectiveMemberwiseInitRequest{mutableThis},
nullptr);
}
bool NominalTypeDecl::hasDefaultInitializer() const {
// Currently only structs and classes can have default initializers.
if (!isa<StructDecl>(this) && !isa<ClassDecl>(this))
return false;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(ctx.evaluator, HasDefaultInitRequest{mutableThis},
false);
}
bool NominalTypeDecl::isTypeErasedGenericClass() const {
// ObjC classes are type erased.
// TODO: Unless they have magic methods...
if (auto clazz = dyn_cast<ClassDecl>(this))
return clazz->isTypeErasedGenericClass();
return false;
}
ConstructorDecl *NominalTypeDecl::getDefaultInitializer() const {
if (!hasDefaultInitializer())
return nullptr;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
SynthesizeDefaultInitRequest{mutableThis}, nullptr);
}
void NominalTypeDecl::synthesizeSemanticMembersIfNeeded(DeclName member) {
// Silently break cycles here because we can't be sure when and where a
// request to synthesize will come from yet.
// FIXME: rdar://56844567
if (Bits.NominalTypeDecl.IsComputingSemanticMembers)
return;
Bits.NominalTypeDecl.IsComputingSemanticMembers = true;
SWIFT_DEFER { Bits.NominalTypeDecl.IsComputingSemanticMembers = false; };
auto baseName = member.getBaseName();
auto &Context = getASTContext();
std::optional<ImplicitMemberAction> action = std::nullopt;
if (baseName.isConstructor())
action.emplace(ImplicitMemberAction::ResolveImplicitInit);
if (member.isSimpleName() && !baseName.isSpecial()) {
if (baseName.getIdentifier() == getASTContext().Id_CodingKeys) {
action.emplace(ImplicitMemberAction::ResolveCodingKeys);
}
} else {
auto argumentNames = member.getArgumentNames();
if (member.isSimpleName() || argumentNames.size() == 1) {
if (baseName.isConstructor()) {
if ((member.isSimpleName() || argumentNames.front() == Context.Id_from)) {
action.emplace(ImplicitMemberAction::ResolveDecodable);
} else if (argumentNames.front() == Context.Id_system) {
action.emplace(ImplicitMemberAction::ResolveDistributedActorSystem);
}
} else if (!baseName.isSpecial() &&
baseName.getIdentifier() == Context.Id_encode &&
(member.isSimpleName() ||
argumentNames.front() == Context.Id_to)) {
action.emplace(ImplicitMemberAction::ResolveEncodable);
}
} else if (member.isSimpleName() || argumentNames.size() == 2) {
if (baseName.isConstructor()) {
if (argumentNames[0] == Context.Id_resolve &&
argumentNames[1] == Context.Id_using) {
action.emplace(ImplicitMemberAction::ResolveDistributedActor);
}
}
}
}
if (auto actionToTake = action) {
(void)evaluateOrDefault(Context.evaluator,
ResolveImplicitMemberRequest{this, actionToTake.value()}, {});
}
}
VarDecl *NominalTypeDecl::getGlobalActorInstance() const {
auto mutableThis = const_cast<NominalTypeDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
GlobalActorInstanceRequest{mutableThis},
nullptr);
}
AbstractFunctionDecl *
NominalTypeDecl::getExecutorOwnedEnqueueFunction() const {
auto &C = getASTContext();
StructDecl *executorJobDecl = C.getExecutorJobDecl();
if (!executorJobDecl)
return nullptr;
auto proto = dyn_cast<ProtocolDecl>(this);
if (!proto)
return nullptr;
llvm::SmallVector<ValueDecl *, 2> results;
lookupQualified(getSelfNominalTypeDecl(),
DeclNameRef(C.Id_enqueue),
getLoc(), NL_ProtocolMembers,
results);
for (auto candidate: results) {
// we're specifically looking for the Executor protocol requirement
if (!isa<ProtocolDecl>(candidate->getDeclContext()))
continue;
if (auto *funcDecl = dyn_cast<AbstractFunctionDecl>(candidate)) {
auto params = funcDecl->getParameters();
if (params->size() != 1)
continue;
if ((params->get(0)->getSpecifier() == ParamSpecifier::LegacyOwned ||
params->get(0)->getSpecifier() == ParamSpecifier::Consuming) &&
params->get(0)->getInterfaceType()->isEqual(executorJobDecl->getDeclaredInterfaceType())) {
return funcDecl;
}
}
}
return nullptr;
}
AbstractFunctionDecl *
NominalTypeDecl::getExecutorLegacyOwnedEnqueueFunction() const {
auto &C = getASTContext();
StructDecl *legacyJobDecl = C.getJobDecl();
if (!legacyJobDecl)
return nullptr;
auto proto = dyn_cast<ProtocolDecl>(this);
if (!proto)
return nullptr;
llvm::SmallVector<ValueDecl *, 2> results;
lookupQualified(getSelfNominalTypeDecl(),
DeclNameRef(C.Id_enqueue),
getLoc(), NL_ProtocolMembers,
results);
for (auto candidate: results) {
// we're specifically looking for the Executor protocol requirement
if (!isa<ProtocolDecl>(candidate->getDeclContext()))
continue;
if (auto *funcDecl = dyn_cast<AbstractFunctionDecl>(candidate)) {
auto params = funcDecl->getParameters();
if (params->size() != 1)
continue;
if ((params->get(0)->getSpecifier() == ParamSpecifier::LegacyOwned ||
params->get(0)->getSpecifier() == ParamSpecifier::Consuming) &&
params->get(0)->getInterfaceType()->isEqual(legacyJobDecl->getDeclaredInterfaceType())) {
return funcDecl;
}
}
}
return nullptr;
}
AbstractFunctionDecl *
NominalTypeDecl::getExecutorLegacyUnownedEnqueueFunction() const {
auto &C = getASTContext();
StructDecl *unownedJobDecl = C.getUnownedJobDecl();
if (!unownedJobDecl)
return nullptr;
auto proto = dyn_cast<ProtocolDecl>(this);
if (!proto)
return nullptr;
llvm::SmallVector<ValueDecl *, 2> results;
lookupQualified(getSelfNominalTypeDecl(),
DeclNameRef(C.Id_enqueue),
getLoc(), NL_ProtocolMembers,
results);
for (auto candidate: results) {
// we're specifically looking for the Executor protocol requirement
if (!isa<ProtocolDecl>(candidate->getDeclContext()))
continue;
if (auto *funcDecl = dyn_cast<AbstractFunctionDecl>(candidate)) {
auto params = funcDecl->getParameters();
if (params->size() != 1)
continue;
auto param = params->get(0);
if (param->getSpecifier() == ParamSpecifier::LegacyOwned ||
param->getSpecifier() == ParamSpecifier::Consuming) {
return funcDecl;
}
}
}
return nullptr;
}
ClassDecl::ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
ArrayRef<InheritedEntry> Inherited,
GenericParamList *GenericParams, DeclContext *Parent,
bool isActor)
: NominalTypeDecl(DeclKind::Class, Parent, Name, NameLoc, Inherited,
GenericParams),
ClassLoc(ClassLoc) {
Bits.ClassDecl.InheritsSuperclassInits = 0;
Bits.ClassDecl.ComputedInheritsSuperclassInits = 0;
Bits.ClassDecl.RawForeignKind = 0;
Bits.ClassDecl.HasMissingDesignatedInitializers = 0;
Bits.ClassDecl.ComputedHasMissingDesignatedInitializers = 0;
Bits.ClassDecl.HasMissingVTableEntries = 0;
Bits.ClassDecl.ComputedHasMissingVTableEntries = 0;
Bits.ClassDecl.IsIncompatibleWithWeakReferences = 0;
Bits.ClassDecl.IsActor = isActor;
}
bool ClassDecl::hasResilientMetadata() const {
// Imported classes don't have a vtable, etc, at all.
if (hasClangNode())
return false;
// If the module is not resilient, neither is the class metadata.
if (!getModuleContext()->isResilient())
return false;
// If the class is not public or package, we can't use it outside the module at all.
// Take enable testing into account.
if (getEffectiveAccess() < AccessLevel::Package)
return false;
// Otherwise we access metadata members, such as vtable entries, resiliently.
return true;
}
bool ClassDecl::hasResilientMetadata(ModuleDecl *M,
ResilienceExpansion expansion) const {
switch (expansion) {
case ResilienceExpansion::Minimal:
return hasResilientMetadata();
case ResilienceExpansion::Maximal:
return M != getModuleContext() && hasResilientMetadata();
}
llvm_unreachable("bad resilience expansion");
}
DestructorDecl *ClassDecl::getDestructor() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
GetDestructorRequest{const_cast<ClassDecl *>(this)},
nullptr);
}
/// Synthesizer callback for an empty implicit function body.
static std::pair<BraceStmt *, bool>
synthesizeEmptyFunctionBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
return { BraceStmt::create(ctx, afd->getLoc(), { }, afd->getLoc(), true),
/*isTypeChecked=*/true };
}
DestructorDecl *
GetDestructorRequest::evaluate(Evaluator &evaluator, ClassDecl *CD) const {
auto dc = CD->getImplementationContext();
auto &ctx = CD->getASTContext();
auto *DD = new (ctx) DestructorDecl(CD->getLoc(), dc->getAsGenericContext());
DD->setImplicit();
// Synthesize an empty body for the destructor as needed.
DD->setBodySynthesizer(synthesizeEmptyFunctionBody);
// Propagate access control and versioned-ness.
DD->copyFormalAccessFrom(CD, /*sourceIsParentContext*/true);
// Mark DD as ObjC, as all dtors are.
DD->setIsObjC(ctx.LangOpts.EnableObjCInterop);
if (ctx.LangOpts.EnableObjCInterop)
CD->recordObjCMethod(DD, DD->getObjCSelector());
// Mark it as synthesized to make its location in getEmittedMembers()
// deterministic.
DD->setSynthesized(true);
return DD;
}
bool ClassDecl::isDefaultActor() const {
return isDefaultActor(getModuleContext(), ResilienceExpansion::Minimal);
}
bool ClassDecl::isDefaultActor(ModuleDecl *M,
ResilienceExpansion expansion) const {
auto mutableThis = const_cast<ClassDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
IsDefaultActorRequest{mutableThis, M,
expansion},
false);
}
const ClassDecl *ClassDecl::getRootActorClass() const {
if (!isActor()) return nullptr;
auto cur = this;
while (true) {
auto super = cur->getSuperclassDecl();
if (!super || !super->isActor())
return cur;
cur = super;
}
}
bool ClassDecl::hasMissingDesignatedInitializers() const {
return evaluateOrDefault(
getASTContext().evaluator,
HasMissingDesignatedInitializersRequest{const_cast<ClassDecl *>(this)},
false);
}
bool ClassDecl::hasMissingVTableEntries() const {
if (!Bits.ClassDecl.ComputedHasMissingVTableEntries) {
auto *mutableThis = const_cast<ClassDecl *>(this);
mutableThis->Bits.ClassDecl.ComputedHasMissingVTableEntries = 1;
mutableThis->loadAllMembers();
}
return Bits.ClassDecl.HasMissingVTableEntries;
}
bool ClassDecl::isIncompatibleWithWeakReferences() const {
if (Bits.ClassDecl.IsIncompatibleWithWeakReferences) {
return true;
}
if (auto superclass = getSuperclassDecl()) {
return superclass->isIncompatibleWithWeakReferences();
}
return false;
}
bool ClassDecl::inheritsSuperclassInitializers() const {
// If there's no superclass, there's nothing to inherit.
if (!getSuperclassDecl())
return false;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<ClassDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, InheritsSuperclassInitializersRequest{mutableThis}, false);
}
AncestryOptions ClassDecl::checkAncestry() const {
return AncestryOptions(evaluateOrDefault(getASTContext().evaluator,
ClassAncestryFlagsRequest{const_cast<ClassDecl *>(this)},
AncestryFlags()));
}
AncestryFlags
ClassAncestryFlagsRequest::evaluate(Evaluator &evaluator,
ClassDecl *value) const {
AncestryOptions result;
const ClassDecl *CD = value;
const ClassDecl *PreviousCD = nullptr;
auto *M = value->getParentModule();
do {
if (CD->isGenericContext())
result |= AncestryFlags::Generic;
// Note: it's OK to check for @objc explicitly instead of calling isObjC()
// to infer it since we're going to visit every superclass.
if (CD->getAttrs().hasAttribute<ObjCAttr>())
result |= AncestryFlags::ObjC;
if (CD->getAttrs().hasAttribute<ObjCMembersAttr>())
result |= AncestryFlags::ObjCMembers;
if (CD->hasClangNode()) {
result |= AncestryFlags::ClangImported;
// Inheriting from an ObjC-defined class generally forces the use
// of the ObjC object model, but certain classes that directly
// inherit from NSObject can change that.
if (!PreviousCD ||
!(CD->isNSObject() && PreviousCD->isNativeNSObjectSubclass()))
result |= AncestryFlags::ObjCObjectModel;
}
if (CD->hasResilientMetadata())
result |= AncestryFlags::Resilient;
if (CD->hasResilientMetadata(M, ResilienceExpansion::Maximal))
result |= AncestryFlags::ResilientOther;
if (CD->getAttrs().hasAttribute<RequiresStoredPropertyInitsAttr>())
result |= AncestryFlags::RequiresStoredPropertyInits;
PreviousCD = CD;
CD = CD->getSuperclassDecl();
} while (CD != nullptr);
return AncestryFlags(result.toRaw());
}
void swift::simple_display(llvm::raw_ostream &out, AncestryFlags value) {
AncestryOptions opts(value);
out << "{ ";
// If we have more than one bit set, we need to print the separator.
bool wantsSeparator = false;
auto printBit = [&wantsSeparator, &out](bool val, StringRef name) {
if (wantsSeparator) {
out << ", ";
}
if (!wantsSeparator) {
wantsSeparator = true;
}
out << name;
if (val) {
out << " = true";
} else {
out << " = false";
}
};
printBit(opts.contains(AncestryFlags::ObjC), "ObjC");
printBit(opts.contains(AncestryFlags::ObjCMembers), "ObjCMembers");
printBit(opts.contains(AncestryFlags::Generic), "Generic");
printBit(opts.contains(AncestryFlags::Resilient), "Resilient");
printBit(opts.contains(AncestryFlags::ResilientOther), "ResilientOther");
printBit(opts.contains(AncestryFlags::ClangImported), "ClangImported");
printBit(opts.contains(AncestryFlags::RequiresStoredPropertyInits),
"RequiresStoredPropertyInits");
out << " }";
}
bool ClassDecl::isSuperclassOf(const ClassDecl *other) const {
llvm::SmallPtrSet<const ClassDecl *, 8> visited;
do {
if (!visited.insert(other).second)
break;
if (this == other)
return true;
other = other->getSuperclassDecl();
} while (other != nullptr);
return false;
}
ClassDecl::MetaclassKind ClassDecl::getMetaclassKind() const {
assert(getASTContext().LangOpts.EnableObjCInterop &&
"querying metaclass kind without objc interop");
auto objc = checkAncestry(AncestryFlags::ObjC);
return objc ? MetaclassKind::ObjC : MetaclassKind::SwiftStub;
}
/// Mangle the name of a protocol or class for use in the Objective-C
/// runtime.
static StringRef mangleObjCRuntimeName(const NominalTypeDecl *nominal,
llvm::SmallVectorImpl<char> &buffer) {
{
Mangle::ASTMangler Mangler;
std::string MangledName = Mangler.mangleObjCRuntimeName(nominal);
buffer.clear();
llvm::raw_svector_ostream os(buffer);
os << MangledName;
}
assert(buffer.size() && "Invalid buffer size");
return StringRef(buffer.data(), buffer.size());
}
StringRef ClassDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is a Clang declaration, use it's runtime name.
if (auto objcClass
= dyn_cast_or_null<clang::ObjCInterfaceDecl>(getClangDecl()))
return objcClass->getObjCRuntimeNameAsString();
// If there is an 'objc' attribute with a name, use that name.
if (auto attr = getAttrs().getAttribute<ObjCRuntimeNameAttr>())
return attr->Name;
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this class.
return mangleObjCRuntimeName(this, buffer);
}
ArtificialMainKind Decl::getArtificialMainKind() const {
if (getAttrs().hasAttribute<UIApplicationMainAttr>())
return ArtificialMainKind::UIApplicationMain;
if (getAttrs().hasAttribute<NSApplicationMainAttr>())
return ArtificialMainKind::NSApplicationMain;
if (isa<FuncDecl>(this))
return ArtificialMainKind::TypeMain;
llvm_unreachable("type has no @Main attr?!");
}
static bool isOverridingDecl(const ValueDecl *Derived,
const ValueDecl *Base) {
while (Derived) {
if (Derived == Base)
return true;
Derived = Derived->getOverriddenDecl();
}
return false;
}
static ValueDecl *findOverridingDecl(const ClassDecl *C,
const ValueDecl *Base) {
// FIXME: This is extremely inefficient. The SILOptimizer should build a
// reverse lookup table to answer these types of queries.
for (auto M : C->getMembers()) {
if (auto *Derived = dyn_cast<ValueDecl>(M))
if (::isOverridingDecl(Derived, Base))
return Derived;
}
return nullptr;
}
AbstractFunctionDecl *
ClassDecl::findOverridingDecl(const AbstractFunctionDecl *Method) const {
if (auto *Accessor = dyn_cast<AccessorDecl>(Method)) {
auto *Storage = Accessor->getStorage();
if (auto *Derived = ::findOverridingDecl(this, Storage)) {
auto *DerivedStorage = cast<AbstractStorageDecl>(Derived);
return DerivedStorage->getOpaqueAccessor(Accessor->getAccessorKind());
}
return nullptr;
}
return cast_or_null<AbstractFunctionDecl>(::findOverridingDecl(this, Method));
}
AbstractFunctionDecl *
ClassDecl::findImplementingMethod(const AbstractFunctionDecl *Method) const {
// FIXME: This is extremely inefficient. The SILOptimizer should build a
// reverse lookup table to answer these types of queries.
const ClassDecl *C = this;
while (C) {
if (C == Method->getDeclContext())
return const_cast<AbstractFunctionDecl *>(Method);
if (auto *Derived = C->findOverridingDecl(Method))
return Derived;
// Check the superclass
C = C->getSuperclassDecl();
}
return nullptr;
}
bool ClassDecl::walkSuperclasses(
llvm::function_ref<TypeWalker::Action(ClassDecl *)> fn) const {
auto *cls = const_cast<ClassDecl *>(this);
while (cls) {
switch (fn(cls)) {
case TypeWalker::Action::Stop:
return true;
case TypeWalker::Action::SkipNode:
return false;
case TypeWalker::Action::Continue:
cls = cls->getSuperclassDecl();
continue;
}
}
return false;
}
bool ClassDecl::isForeignReferenceType() const {
return getClangDecl() && isa<clang::RecordDecl>(getClangDecl());
}
bool ClassDecl::hasRefCountingAnnotations() const {
return evaluateOrDefault(getASTContext().evaluator,
CustomRefCountingOperation(
{this, CustomRefCountingOperationKind::release}),
{})
.kind != CustomRefCountingOperationResult::immortal;
}
ReferenceCounting ClassDecl::getObjectModel() const {
if (isForeignReferenceType())
return hasRefCountingAnnotations() ? ReferenceCounting::Custom
: ReferenceCounting::None;
if (checkAncestry(AncestryFlags::ObjCObjectModel))
return ReferenceCounting::ObjC;
return ReferenceCounting::Native;
}
EnumCaseDecl *EnumCaseDecl::create(SourceLoc CaseLoc,
ArrayRef<EnumElementDecl *> Elements,
DeclContext *DC) {
size_t bytes = totalSizeToAlloc<EnumElementDecl *>(Elements.size());
void *buf = DC->getASTContext().Allocate(bytes, alignof(EnumCaseDecl));
return ::new (buf) EnumCaseDecl(CaseLoc, Elements, DC);
}
bool EnumDecl::hasPotentiallyUnavailableCaseValue() const {
(void)this->hasOnlyCasesWithoutAssociatedValues(); // Prime the cache
return static_cast<bool>(Bits.EnumDecl.HasAnyUnavailableValues);
}
bool EnumDecl::hasCasesUnavailableDuringLowering() const {
(void)this->hasOnlyCasesWithoutAssociatedValues(); // Prime the cache
return static_cast<bool>(Bits.EnumDecl.HasAnyUnavailableDuringLoweringValues);
}
bool EnumDecl::hasOnlyCasesWithoutAssociatedValues() const {
// Check whether we already have a cached answer.
switch (static_cast<AssociatedValueCheck>(
Bits.EnumDecl.HasAssociatedValues)) {
case AssociatedValueCheck::Unchecked:
// Compute below.
break;
case AssociatedValueCheck::NoAssociatedValues:
return true;
case AssociatedValueCheck::HasAssociatedValues:
return false;
}
bool hasAnyUnavailableValues = false;
bool hasAnyUnavailableDuringLoweringValues = false;
bool hasAssociatedValues = false;
for (auto elt : getAllElements()) {
for (auto Attr : elt->getAttrs()) {
if (auto AvAttr = dyn_cast<AvailableAttr>(Attr)) {
if (!AvAttr->isInvalid())
hasAnyUnavailableValues = true;
}
}
if (!elt->isAvailableDuringLowering())
hasAnyUnavailableDuringLoweringValues = true;
if (elt->hasAssociatedValues())
hasAssociatedValues = true;
}
EnumDecl *enumDecl = const_cast<EnumDecl *>(this);
enumDecl->Bits.EnumDecl.HasAnyUnavailableValues = hasAnyUnavailableValues;
enumDecl->Bits.EnumDecl.HasAnyUnavailableDuringLoweringValues =
hasAnyUnavailableDuringLoweringValues;
enumDecl->Bits.EnumDecl.HasAssociatedValues = static_cast<unsigned>(
hasAssociatedValues ? AssociatedValueCheck::HasAssociatedValues
: AssociatedValueCheck::NoAssociatedValues);
return !hasAssociatedValues;
}
bool EnumDecl::isFormallyExhaustive(const DeclContext *useDC) const {
// Enums explicitly marked frozen are exhaustive.
if (getAttrs().hasAttribute<FrozenAttr>())
return true;
// Objective-C enums /not/ marked frozen are /not/ exhaustive.
// Note: This implicitly holds @objc enums defined in Swift to a higher
// standard!
if (hasClangNode())
return false;
// Non-imported enums in non-resilient modules are exhaustive.
const ModuleDecl *containingModule = getModuleContext();
if (!containingModule->isResilient())
return true;
// Non-public, non-versioned enums are always exhaustive.
AccessScope accessScope = getFormalAccessScope(/*useDC*/nullptr,
/*respectVersioned*/true);
// Both public and package enums should behave the same unless
// package enum is optimized with bypassing resilience checks.
if (!accessScope.isPublicOrPackage())
return true;
if (useDC && bypassResilienceInPackage(useDC->getParentModule()))
return true;
// All other checks are use-site specific; with no further information, the
// enum must be treated non-exhaustively.
if (!useDC)
return false;
// Enums in the same module as the use site are exhaustive /unless/ the use
// site is inlinable.
if (useDC->getParentModule() == containingModule)
if (useDC->getResilienceExpansion() == ResilienceExpansion::Maximal)
return true;
// Testably imported enums are exhaustive, on the grounds that only the author
// of the original library can import it testably.
if (auto *useSF = dyn_cast<SourceFile>(useDC->getModuleScopeContext()))
if (useSF->hasTestableOrPrivateImport(AccessLevel::Internal,
containingModule))
return true;
// Otherwise, the enum is non-exhaustive.
return false;
}
bool EnumDecl::isEffectivelyExhaustive(ModuleDecl *M,
ResilienceExpansion expansion) const {
// Generated Swift code commits to handling garbage values of @objc enums,
// whether imported or not, to deal with C's loose rules around enums.
// This covers both frozen and non-frozen @objc enums.
if (isObjC())
return false;
// Otherwise, the only non-exhaustive cases are those that don't have a fixed
// layout.
assert(isFormallyExhaustive(M) == !isResilient(M,ResilienceExpansion::Maximal)
&& "ignoring the effects of @inlinable, @testable, and @objc, "
"these should match up");
return !isResilient(M, expansion);
}
void EnumDecl::setHasFixedRawValues() {
SemanticFlags |= OptionSet<EnumDecl::SemanticInfoFlags>{EnumDecl::HasFixedRawValues};
}
bool EnumDecl::hasCircularRawValue() const {
auto &ctx = getASTContext();
auto *mutableThis = const_cast<EnumDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
HasCircularRawValueRequest{mutableThis}, true);
}
ProtocolDecl::ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc,
SourceLoc NameLoc, Identifier Name,
ArrayRef<PrimaryAssociatedTypeName> PrimaryAssociatedTypeNames,
ArrayRef<InheritedEntry> Inherited,
TrailingWhereClause *TrailingWhere)
: NominalTypeDecl(DeclKind::Protocol, DC, Name, NameLoc, Inherited,
nullptr),
ProtocolLoc(ProtocolLoc),
PrimaryAssociatedTypeNames(PrimaryAssociatedTypeNames) {
Bits.ProtocolDecl.RequiresClassValid = false;
Bits.ProtocolDecl.RequiresClass = false;
Bits.ProtocolDecl.ExistentialConformsToSelfValid = false;
Bits.ProtocolDecl.ExistentialConformsToSelf = false;
Bits.ProtocolDecl.InheritedProtocolsValid = 0;
Bits.ProtocolDecl.HasMissingRequirements = false;
Bits.ProtocolDecl.KnownProtocol = 0;
Bits.ProtocolDecl.HasAssociatedTypes = 0;
Bits.ProtocolDecl.HasLazyAssociatedTypes = 0;
Bits.ProtocolDecl.HasRequirementSignature = 0;
Bits.ProtocolDecl.HasLazyRequirementSignature = 0;
Bits.ProtocolDecl.ProtocolRequirementsValid = false;
setTrailingWhereClause(TrailingWhere);
}
bool ProtocolDecl::isMarkerProtocol() const {
return getAttrs().hasAttribute<MarkerAttr>();
}
std::optional<InvertibleProtocolKind>
ProtocolDecl::getInvertibleProtocolKind() const {
if (auto kp = getKnownProtocolKind())
return ::getInvertibleProtocolKind(*kp);
return std::nullopt;
}
ObjCRequirementMap ProtocolDecl::getObjCRequiremenMap() const {
ObjCRequirementMap defaultMap;
if (!isObjC())
return defaultMap;
return evaluateOrDefault(getASTContext().evaluator,
ObjCRequirementMapRequest{this}, defaultMap);
}
ArrayRef<ProtocolDecl *> ProtocolDecl::getInheritedProtocols() const {
auto *mutThis = const_cast<ProtocolDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
InheritedProtocolsRequest{mutThis},
{});
}
ArrayRef<ProtocolDecl *> ProtocolDecl::getAllInheritedProtocols() const {
auto *mutThis = const_cast<ProtocolDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
AllInheritedProtocolsRequest{mutThis},
{});
}
ArrayRef<AssociatedTypeDecl *>
ProtocolDecl::getAssociatedTypeMembers() const {
if (Bits.ProtocolDecl.HasAssociatedTypes)
return AssociatedTypes;
auto *self = const_cast<ProtocolDecl *>(this);
self->Bits.ProtocolDecl.HasAssociatedTypes = 1;
// Clang-imported protocols never have associated types.
if (hasClangNode())
return ArrayRef<AssociatedTypeDecl *>();
// Deserialized @objc protocols never have associated types.
if (getParentSourceFile() == nullptr && isObjC())
return ArrayRef<AssociatedTypeDecl *>();
SmallVector<AssociatedTypeDecl *, 2> result;
if (Bits.ProtocolDecl.HasLazyAssociatedTypes) {
auto &ctx = getASTContext();
auto contextData = static_cast<LazyProtocolData *>(
ctx.getOrCreateLazyContextData(this, nullptr));
contextData->loader->loadAssociatedTypes(
this, contextData->associatedTypesData, result);
} else {
for (auto member : getProtocolRequirements()) {
if (auto ATD = dyn_cast<AssociatedTypeDecl>(member)) {
result.push_back(ATD);
}
}
}
self->AssociatedTypes = getASTContext().AllocateCopy(result);
return AssociatedTypes;
}
ArrayRef<ValueDecl *> ProtocolDecl::getProtocolRequirements() const {
auto *mutableSelf = const_cast<ProtocolDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
ProtocolRequirementsRequest{mutableSelf}, {});
}
ValueDecl *ProtocolDecl::getSingleRequirement(DeclName name) const {
auto results = const_cast<ProtocolDecl *>(this)->lookupDirect(name);
ValueDecl *result = nullptr;
for (auto candidate : results) {
if (candidate->getDeclContext() != this ||
!candidate->isProtocolRequirement())
continue;
if (result) {
// Multiple results.
return nullptr;
}
result = candidate;
}
return result;
}
AssociatedTypeDecl *ProtocolDecl::getAssociatedType(Identifier name) const {
auto results = const_cast<ProtocolDecl *>(this)->lookupDirect(name);
for (auto candidate : results) {
if (candidate->getDeclContext() == this &&
isa<AssociatedTypeDecl>(candidate)) {
return cast<AssociatedTypeDecl>(candidate);
}
}
return nullptr;
}
ClassDecl *ProtocolDecl::getSuperclassDecl() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassDeclRequest{const_cast<ProtocolDecl *>(this)}, nullptr);
}
bool ProtocolDecl::walkInheritedProtocols(
llvm::function_ref<TypeWalker::Action(ProtocolDecl *)> fn) const {
auto self = const_cast<ProtocolDecl *>(this);
// Visit all of the inherited protocols.
SmallPtrSet<ProtocolDecl *, 8> visited;
SmallVector<ProtocolDecl *, 4> stack;
stack.push_back(self);
visited.insert(self);
while (!stack.empty()) {
// Pull the next protocol off the stack.
auto proto = stack.back();
stack.pop_back();
switch (fn(proto)) {
case TypeWalker::Action::Stop:
return true;
case TypeWalker::Action::Continue:
// Add inherited protocols to the stack.
for (auto inherited : proto->getInheritedProtocols()) {
if (visited.insert(inherited).second)
stack.push_back(inherited);
}
break;
case TypeWalker::Action::SkipNode:
break;
}
}
return false;
}
bool ProtocolDecl::inheritsFrom(const ProtocolDecl *super) const {
assert(super);
// Fast path.
if (this == super)
return false;
auto allInherited = getAllInheritedProtocols();
return (llvm::find(allInherited, super) != allInherited.end());
}
bool ProtocolDecl::requiresClass() const {
return evaluateOrDefault(getASTContext().evaluator,
ProtocolRequiresClassRequest{const_cast<ProtocolDecl *>(this)}, false);
}
bool ProtocolDecl::requiresSelfConformanceWitnessTable() const {
return isSpecificProtocol(KnownProtocolKind::Error);
}
bool ProtocolDecl::existentialConformsToSelf() const {
return evaluateOrDefault(getASTContext().evaluator,
ExistentialConformsToSelfRequest{const_cast<ProtocolDecl *>(this)}, true);
}
bool ProtocolDecl::hasSelfOrAssociatedTypeRequirements() const {
return evaluateOrDefault(getASTContext().evaluator,
HasSelfOrAssociatedTypeRequirementsRequest{
const_cast<ProtocolDecl *>(this)},
true);
}
bool ProtocolDecl::existentialRequiresAny() const {
if (getASTContext().LangOpts.hasFeature(Feature::ExistentialAny))
return true;
return hasSelfOrAssociatedTypeRequirements();
}
ArrayRef<AssociatedTypeDecl *>
ProtocolDecl::getPrimaryAssociatedTypes() const {
return evaluateOrDefault(getASTContext().evaluator,
PrimaryAssociatedTypesRequest{const_cast<ProtocolDecl *>(this)},
nullptr);
}
StringRef ProtocolDecl::getObjCRuntimeName(
llvm::SmallVectorImpl<char> &buffer) const {
// If there is an 'objc' attribute with a name, use that name.
if (auto objc = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = objc->getName())
return name->getString(buffer);
}
// Produce the mangled name for this protocol.
return mangleObjCRuntimeName(this, buffer);
}
ArrayRef<StructuralRequirement>
ProtocolDecl::getStructuralRequirements() const {
return evaluateOrDefault(
getASTContext().evaluator,
StructuralRequirementsRequest{const_cast<ProtocolDecl *>(this)}, {});
}
ArrayRef<Requirement>
ProtocolDecl::getTypeAliasRequirements() const {
return evaluateOrDefault(
getASTContext().evaluator,
TypeAliasRequirementsRequest{const_cast<ProtocolDecl *>(this)}, {});
}
ArrayRef<ProtocolDecl *>
ProtocolDecl::getProtocolDependencies() const {
return evaluateOrDefault(
getASTContext().evaluator,
ProtocolDependenciesRequest{const_cast<ProtocolDecl *>(this)},
std::nullopt);
}
RequirementSignature ProtocolDecl::getRequirementSignature() const {
return getASTContext().evaluator(
RequirementSignatureRequest{const_cast<ProtocolDecl *>(this)},
[this]() {
return RequirementSignature::getPlaceholderRequirementSignature(
this, GenericSignatureErrors());
});
}
bool ProtocolDecl::isComputingRequirementSignature() const {
return getASTContext().evaluator.hasActiveRequest(
RequirementSignatureRequest{const_cast<ProtocolDecl*>(this)});
}
void ProtocolDecl::setRequirementSignature(RequirementSignature requirementSig) {
RequirementSig = requirementSig;
Bits.ProtocolDecl.HasRequirementSignature = 1;
}
void
ProtocolDecl::setLazyRequirementSignature(LazyMemberLoader *lazyLoader,
uint64_t requirementSignatureData) {
assert(!isRequirementSignatureComputed() && "requirement signature already set");
auto contextData = static_cast<LazyProtocolData *>(
getASTContext().getOrCreateLazyContextData(this, lazyLoader));
contextData->requirementSignatureData = requirementSignatureData;
Bits.ProtocolDecl.HasLazyRequirementSignature = true;
++NumLazyRequirementSignatures;
// FIXME: (transitional) increment the redundant "always-on" counter.
if (auto *Stats = getASTContext().Stats)
++Stats->getFrontendCounters().NumLazyRequirementSignatures;
}
void
ProtocolDecl::setLazyAssociatedTypeMembers(
LazyMemberLoader *lazyLoader, uint64_t associatedTypesData) {
assert(!Bits.ProtocolDecl.HasAssociatedTypes);
assert(!Bits.ProtocolDecl.HasLazyAssociatedTypes);
auto contextData = static_cast<LazyProtocolData *>(
getASTContext().getOrCreateLazyContextData(this, lazyLoader));
contextData->associatedTypesData = associatedTypesData;
Bits.ProtocolDecl.HasLazyAssociatedTypes = true;
}
void
ProtocolDecl::setLazyPrimaryAssociatedTypeMembers(
LazyMemberLoader *lazyLoader, uint64_t associatedTypesData) {
assert(!Bits.ProtocolDecl.HasLazyPrimaryAssociatedTypes);
auto contextData = static_cast<LazyProtocolData *>(
getASTContext().getOrCreateLazyContextData(this, lazyLoader));
contextData->primaryAssociatedTypesData = associatedTypesData;
Bits.ProtocolDecl.HasLazyPrimaryAssociatedTypes = true;
}
void ProtocolDecl::computeKnownProtocolKind() const {
auto module = getModuleContext();
if (module != module->getASTContext().getStdlibModule() &&
module != module->getASTContext().TheBuiltinModule &&
!module->getName().is("Foundation") &&
!module->getName().is("_Differentiation") &&
!module->getName().is("_Concurrency") &&
!module->getName().is("Distributed")) {
const_cast<ProtocolDecl *>(this)->Bits.ProtocolDecl.KnownProtocol = 1;
return;
}
unsigned value =
llvm::StringSwitch<unsigned>(getBaseName().userFacingName())
#define PROTOCOL_WITH_NAME(Id, Name) \
.Case(Name, static_cast<unsigned>(KnownProtocolKind::Id) + 2)
#include "swift/AST/KnownProtocols.def"
.Default(1);
const_cast<ProtocolDecl *>(this)->Bits.ProtocolDecl.KnownProtocol = value;
}
std::optional<KnownDerivableProtocolKind>
ProtocolDecl::getKnownDerivableProtocolKind() const {
const auto knownKind = getKnownProtocolKind();
if (!knownKind)
return std::nullopt;
switch (*knownKind) {
case KnownProtocolKind::RawRepresentable:
return KnownDerivableProtocolKind::RawRepresentable;
case KnownProtocolKind::OptionSet:
return KnownDerivableProtocolKind::OptionSet;
case KnownProtocolKind::CaseIterable:
return KnownDerivableProtocolKind::CaseIterable;
case KnownProtocolKind::Comparable:
return KnownDerivableProtocolKind::Comparable;
case KnownProtocolKind::Equatable:
return KnownDerivableProtocolKind::Equatable;
case KnownProtocolKind::Hashable:
return KnownDerivableProtocolKind::Hashable;
case KnownProtocolKind::BridgedNSError:
return KnownDerivableProtocolKind::BridgedNSError;
case KnownProtocolKind::CodingKey:
return KnownDerivableProtocolKind::CodingKey;
case KnownProtocolKind::Encodable:
return KnownDerivableProtocolKind::Encodable;
case KnownProtocolKind::Decodable:
return KnownDerivableProtocolKind::Decodable;
case KnownProtocolKind::AdditiveArithmetic:
return KnownDerivableProtocolKind::AdditiveArithmetic;
case KnownProtocolKind::Differentiable:
return KnownDerivableProtocolKind::Differentiable;
case KnownProtocolKind::Identifiable:
return KnownDerivableProtocolKind::Identifiable;
case KnownProtocolKind::Actor:
return KnownDerivableProtocolKind::Actor;
case KnownProtocolKind::DistributedActor:
return KnownDerivableProtocolKind::DistributedActor;
case KnownProtocolKind::DistributedActorSystem:
return KnownDerivableProtocolKind::DistributedActorSystem;
default:
return std::nullopt;
}
}
bool ProtocolDecl::hasCircularInheritedProtocols() const {
auto &ctx = getASTContext();
auto *mutableThis = const_cast<ProtocolDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, HasCircularInheritedProtocolsRequest{mutableThis}, true);
}
/// Returns a descriptive name for the given accessor/addressor kind.
StringRef swift::getAccessorNameForDiagnostic(AccessorKind accessorKind,
bool article) {
switch (accessorKind) {
case AccessorKind::Get:
return article ? "a getter" : "getter";
case AccessorKind::DistributedGet:
return article ? "a distributed getter" : "distributed getter";
case AccessorKind::Set:
return article ? "a setter" : "setter";
case AccessorKind::Address:
return article ? "an addressor" : "addressor";
case AccessorKind::MutableAddress:
return article ? "a mutable addressor" : "mutable addressor";
case AccessorKind::Read:
return article ? "a 'read' accessor" : "'read' accessor";
case AccessorKind::Modify:
return article ? "a 'modify' accessor" : "'modify' accessor";
case AccessorKind::WillSet:
return "'willSet'";
case AccessorKind::DidSet:
return "'didSet'";
case AccessorKind::Init:
return article ? "an init accessor" : "init accessor";
}
llvm_unreachable("bad accessor kind");
}
StringRef swift::getAccessorNameForDiagnostic(AccessorDecl *accessor,
bool article) {
return getAccessorNameForDiagnostic(accessor->getAccessorKind(),
article);
}
bool AbstractStorageDecl::hasStorage() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
HasStorageRequest{const_cast<AbstractStorageDecl *>(this)},
false);
}
StorageImplInfo AbstractStorageDecl::getImplInfo() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
StorageImplInfoRequest{const_cast<AbstractStorageDecl *>(this)},
StorageImplInfo::getSimpleStored(StorageIsMutable));
}
void AbstractStorageDecl::cacheImplInfo(StorageImplInfo implInfo) {
LazySemanticInfo.ImplInfoComputed = 1;
ImplInfo = implInfo;
}
void AbstractStorageDecl::setImplInfo(StorageImplInfo implInfo) {
cacheImplInfo(implInfo);
if (isImplicit()) {
if (!LazySemanticInfo.HasStorageComputed) {
LazySemanticInfo.HasStorageComputed = true;
LazySemanticInfo.HasStorage = implInfo.hasStorage();
} else {
assert(LazySemanticInfo.HasStorage == implInfo.hasStorage());
}
}
}
bool AbstractStorageDecl::hasPrivateAccessor() const {
for (auto accessor : getAllAccessors()) {
if (hasPrivateOrFilePrivateFormalAccess(accessor))
return true;
}
return false;
}
bool AbstractStorageDecl::hasDidSetOrWillSetDynamicReplacement() const {
if (auto *func = getParsedAccessor(AccessorKind::DidSet))
return (bool)func->getDynamicallyReplacedDecl();
if (auto *func = getParsedAccessor(AccessorKind::WillSet))
return (bool)func->getDynamicallyReplacedDecl();
return false;
}
bool AbstractStorageDecl::hasAnyNativeDynamicAccessors() const {
for (auto accessor : getAllAccessors()) {
if (accessor->shouldUseNativeDynamicDispatch())
return true;
}
return false;
}
void AbstractStorageDecl::setAccessors(SourceLoc lbraceLoc,
ArrayRef<AccessorDecl *> accessors,
SourceLoc rbraceLoc) {
// This method is called after we've already recorded an accessors clause
// only on recovery paths and only when that clause was empty, or when a
// macro expands to accessors (in which case, we may already have accessors).
auto record = Accessors.getPointer();
if (record) {
for (auto accessor : accessors) {
if (!record->getAccessor(accessor->getAccessorKind()))
(void) record->addOpaqueAccessor(accessor);
}
} else {
record = AccessorRecord::create(getASTContext(),
SourceRange(lbraceLoc, rbraceLoc),
accessors);
Accessors.setPointer(record);
}
}
// Compute the number of opaque accessors.
const size_t NumOpaqueAccessors =
0
#define ACCESSOR(ID)
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
+ 1
#include "swift/AST/AccessorKinds.def"
;
AbstractStorageDecl::AccessorRecord *
AbstractStorageDecl::AccessorRecord::create(ASTContext &ctx,
SourceRange braces,
ArrayRef<AccessorDecl*> accessors) {
// Silently cap the number of accessors we store at a number that should
// be easily sufficient for all the valid cases, including space for adding
// implicit opaque accessors later.
//
// We should have already emitted a diagnostic in the parser if we have
// this many accessors, because most of them will necessarily be redundant.
if (accessors.size() + NumOpaqueAccessors > MaxNumAccessors) {
accessors = accessors.slice(0, MaxNumAccessors - NumOpaqueAccessors);
}
// Make sure that we have enough space to add implicit opaque accessors later.
size_t numMissingOpaque = NumOpaqueAccessors;
{
#define ACCESSOR(ID)
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
bool has##ID = false;
#include "swift/AST/AccessorKinds.def"
for (auto accessor : accessors) {
switch (accessor->getAccessorKind()) {
#define ACCESSOR(ID) \
case AccessorKind::ID: \
continue;
#define OPAQUE_ACCESSOR(ID, KEYWORD) \
case AccessorKind::ID: \
if (!has##ID) { \
has##ID = true; \
--numMissingOpaque; \
} \
continue;
#include "swift/AST/AccessorKinds.def"
}
llvm_unreachable("bad accessor kind");
}
}
auto accessorsCapacity = AccessorIndex(accessors.size() + numMissingOpaque);
void *mem = ctx.Allocate(totalSizeToAlloc<AccessorDecl*>(accessorsCapacity),
alignof(AccessorRecord));
return new (mem) AccessorRecord(braces, accessors, accessorsCapacity);
}
AbstractStorageDecl::AccessorRecord::AccessorRecord(SourceRange braces,
ArrayRef<AccessorDecl *> accessors,
AccessorIndex accessorsCapacity)
: Braces(braces), NumAccessors(accessors.size()),
AccessorsCapacity(accessorsCapacity), AccessorIndices{} {
// Copy the complete accessors list into place.
memcpy(getAccessorsBuffer().data(), accessors.data(),
accessors.size() * sizeof(AccessorDecl*));
// Register all the accessors.
for (auto index : indices(accessors)) {
(void) registerAccessor(accessors[index], index);
}
}
void AbstractStorageDecl::AccessorRecord::addOpaqueAccessor(AccessorDecl *decl){
assert(decl);
// Add the accessor to the array.
assert(NumAccessors < AccessorsCapacity);
AccessorIndex index = NumAccessors++;
getAccessorsBuffer()[index] = decl;
// Register it.
bool isUnique = registerAccessor(decl, index);
assert(isUnique && "adding opaque accessor that's already present");
(void) isUnique;
}
void AbstractStorageDecl::AccessorRecord::removeAccessor(
AccessorDecl *accessor
) {
// Remove this accessor from the list of accessors.
assert(getAccessor(accessor->getAccessorKind()) == accessor);
(void)std::remove(getAccessorsBuffer().begin(), getAccessorsBuffer().end(),
accessor);
// Clear out the accessor kind -> index mapping.
std::memset(AccessorIndices, 0, sizeof(AccessorIndices));
// Re-add all of the remaining accessors to build up the index mapping.
unsigned numAccessorsLeft = NumAccessors - 1;
NumAccessors = numAccessorsLeft;
auto buffer = getAccessorsBuffer();
NumAccessors = 0;
for (auto index : range(0, numAccessorsLeft)) {
addOpaqueAccessor(buffer[index]);
}
}
/// Register that we have an accessor of the given kind.
bool AbstractStorageDecl::AccessorRecord::registerAccessor(AccessorDecl *decl,
AccessorIndex index){
// Remember that we have at least one accessor of this kind.
auto &indexSlot = AccessorIndices[unsigned(decl->getAccessorKind())];
if (indexSlot) {
return false;
} else {
indexSlot = index + 1;
assert(getAccessor(decl->getAccessorKind()) == decl);
return true;
}
}
AccessLevel
AbstractStorageDecl::getSetterFormalAccess() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SetterAccessLevelRequest{const_cast<AbstractStorageDecl *>(this)},
AccessLevel::Private);
}
AccessScope
AbstractStorageDecl::getSetterFormalAccessScope(const DeclContext *useDC,
bool treatUsableFromInlineAsPublic) const {
return getAccessScopeForFormalAccess(this, getSetterFormalAccess(), useDC,
treatUsableFromInlineAsPublic);
}
void AbstractStorageDecl::setComputedSetter(AccessorDecl *setter) {
assert(getImplInfo().getReadImpl() == ReadImplKind::Get);
assert(!getImplInfo().supportsMutation());
assert(getAccessor(AccessorKind::Get) && "invariant check: missing getter");
assert(!getAccessor(AccessorKind::Set) && "already has a setter");
assert(hasClangNode() && "should only be used for ObjC properties");
assert(setter && "should not be called for readonly properties");
assert(setter->getAccessorKind() == AccessorKind::Set);
setImplInfo(StorageImplInfo::getMutableComputed());
Accessors.getPointer()->addOpaqueAccessor(setter);
}
void
AbstractStorageDecl::setSynthesizedAccessor(AccessorKind kind,
AccessorDecl *accessor) {
assert(!getAccessor(kind) && "accessor already exists");
assert(accessor->getAccessorKind() == kind);
auto accessors = Accessors.getPointer();
if (!accessors) {
accessors = AccessorRecord::create(getASTContext(), SourceRange(), {});
Accessors.setPointer(accessors);
}
accessors->addOpaqueAccessor(accessor);
}
static std::optional<ObjCSelector>
getNameFromObjcAttribute(const ObjCAttr *attr, DeclName preferredName) {
if (!attr)
return std::nullopt;
if (auto name = attr->getName()) {
if (attr->isNameImplicit()) {
// preferredName > implicit name, because implicit name is just cached
// actual name.
if (!preferredName)
return *name;
} else {
// explicit name > preferred name.
return *name;
}
}
return std::nullopt;
}
ObjCSelector
AbstractStorageDecl::getObjCGetterSelector(Identifier preferredName) const {
// If the getter has an @objc attribute with a name, use that.
if (auto getter = getAccessor(AccessorKind::Get)) {
if (auto name = getNameFromObjcAttribute(getter->getAttrs().
getAttribute<ObjCAttr>(), preferredName))
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind()) {
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 1, ctx.Id_objectAtIndexedSubscript);
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 1, ctx.Id_objectForKeyedSubscript);
}
}
// The getter selector is the property name itself.
auto var = cast<VarDecl>(this);
auto name = var->getObjCPropertyName();
// Use preferred name is specified.
if (!preferredName.empty())
name = preferredName;
return VarDecl::getDefaultObjCGetterSelector(ctx, name);
}
ObjCSelector
AbstractStorageDecl::getObjCSetterSelector(Identifier preferredName) const {
// If the setter has an @objc attribute with a name, use that.
auto setter = getAccessor(AccessorKind::Set);
auto objcAttr = setter ? setter->getAttrs().getAttribute<ObjCAttr>()
: nullptr;
if (auto name = getNameFromObjcAttribute(objcAttr, DeclName(preferredName))) {
return *name;
}
// Subscripts use a specific selector.
auto &ctx = getASTContext();
if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
switch (SD->getObjCSubscriptKind()) {
case ObjCSubscriptKind::Indexed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_atIndexedSubscript });
case ObjCSubscriptKind::Keyed:
return ObjCSelector(ctx, 2,
{ ctx.Id_setObject, ctx.Id_forKeyedSubscript });
}
}
// The setter selector for, e.g., 'fooBar' is 'setFooBar:', with the
// property name capitalized and preceded by 'set'.
auto var = cast<VarDecl>(this);
Identifier Name = var->getObjCPropertyName();
if (!preferredName.empty())
Name = preferredName;
auto result = VarDecl::getDefaultObjCSetterSelector(ctx, Name);
// Cache the result, so we don't perform string manipulation again.
if (objcAttr && preferredName.empty())
const_cast<ObjCAttr *>(objcAttr)->setName(result, /*implicit=*/true);
return result;
}
SourceLoc AbstractStorageDecl::getOverrideLoc() const {
if (auto *Override = getAttrs().getAttribute<OverrideAttr>())
return Override->getLocation();
return SourceLoc();
}
Type AbstractStorageDecl::getValueInterfaceType() const {
if (auto var = dyn_cast<VarDecl>(this))
return var->getInterfaceType()->getReferenceStorageReferent();
return cast<SubscriptDecl>(this)->getElementInterfaceType();
}
bool AbstractStorageDecl::hasInitAccessor() const {
return evaluateOrDefault(
getASTContext().evaluator,
HasInitAccessorRequest{const_cast<AbstractStorageDecl *>(this)}, false);
}
VarDecl::VarDecl(DeclKind kind, bool isStatic, VarDecl::Introducer introducer,
SourceLoc nameLoc, Identifier name,
DeclContext *dc, StorageIsMutable_t supportsMutation)
: AbstractStorageDecl(kind, isStatic, dc, name, nameLoc, supportsMutation)
{
Bits.VarDecl.Introducer = unsigned(introducer);
Bits.VarDecl.IsSelfParamCapture = false;
Bits.VarDecl.IsDebuggerVar = false;
Bits.VarDecl.IsLazyStorageProperty = false;
Bits.VarDecl.IsPropertyWrapperBackingProperty = false;
Bits.VarDecl.IsTopLevelGlobal = false;
}
Type VarDecl::getTypeInContext() const {
// If the variable is declared in context of a for-in loop over the elements
// of a parameter pack, its interface type must be mapped into context using
// the opened element environment of the pack expansion.
if (auto *env = getOpenedElementEnvironment())
return GenericEnvironment::mapTypeIntoContext(env, getInterfaceType());
return getDeclContext()->mapTypeIntoContext(getInterfaceType());
}
/// Returns whether the var is settable in the specified context: this
/// is either because it is a stored var, because it has a custom setter, or
/// is a let member in an initializer.
bool VarDecl::isSettable(const DeclContext *UseDC,
const DeclRefExpr *base) const {
// Parameters are settable or not depending on their ownership convention.
if (auto *PD = dyn_cast<ParamDecl>(this))
return !PD->isImmutableInFunctionBody();
// If this is a 'var' decl, then we're settable if we have storage or a
// setter.
if (!isLet()) {
if (hasInitAccessor()) {
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(UseDC)) {
if (base && ctor->getImplicitSelfDecl() != base->getDecl())
return supportsMutation();
return true;
}
}
return supportsMutation();
}
// Static 'let's are always immutable.
if (isStatic()) {
return false;
}
//
// All the remaining logic handles the special cases where you can
// assign a 'let'.
//
// Debugger expression 'let's are initialized through a side-channel.
if (isDebuggerVar())
return false;
// 'let's are only ever settable from a specific DeclContext.
if (UseDC == nullptr)
return false;
// 'let' properties in structs/classes are only ever settable in their
// designated initializer(s) or by init accessors.
if (isInstanceMember()) {
// Init accessors allow assignments to `let` properties if a
// property is part of `initializes` list.
if (auto *accessor =
dyn_cast<AccessorDecl>(const_cast<DeclContext *>(UseDC))) {
// Check whether this property is part of `initializes` list,
// and allow assignment/mutation if so. DI would be responsible
// for checking for re-assignment.
return accessor->isInitAccessor() &&
llvm::is_contained(accessor->getInitializedProperties(),
const_cast<VarDecl *>(this));
}
auto *CD = dyn_cast<ConstructorDecl>(UseDC);
if (!CD) return false;
auto *CDC = CD->getDeclContext();
// 'let' properties are not valid inside protocols.
if (CDC->getExtendedProtocolDecl())
return false;
// If this init is defined inside of the same type (or in an extension
// thereof) as the let property, then it is mutable.
if (CDC->getSelfNominalTypeDecl() !=
getDeclContext()->getSelfNominalTypeDecl())
return false;
if (base && CD->getImplicitSelfDecl() != base->getDecl())
return false;
// If this is a convenience initializer (i.e. one that calls
// self.init), then let properties are never mutable in it. They are
// only mutable in designated initializers.
auto initKindAndExpr = CD->getDelegatingOrChainedInitKind();
if (initKindAndExpr.initKind == BodyInitKind::Delegating)
return false;
return true;
}
// If the 'let' has a value bound to it but has no PBD, then it is
// already initializedand not settable.
if (getParentPatternBinding() == nullptr)
return false;
// If the 'let' has an explicitly written initializer with a pattern binding,
// then it isn't settable.
if (isParentInitialized())
return false;
// Normal lets (e.g. globals) are only mutable in the context of the
// declaration. To handle top-level code properly, we look through
// the TopLevelCode decl on the use (if present) since the vardecl may be
// one level up.
if (getDeclContext() == UseDC)
return true;
if (isa<TopLevelCodeDecl>(UseDC) &&
getDeclContext() == UseDC->getParent())
return true;
return false;
}
bool VarDecl::isLazilyInitializedGlobal() const {
assert(!getDeclContext()->isLocalContext() &&
"not a global variable!");
assert(hasStorage() && "not a stored global variable!");
// Imports from C are never lazily initialized.
if (hasClangNode())
return false;
if (isDebuggerVar())
return false;
if (getAttrs().hasAttribute<SILGenNameAttr>())
return false;
// Top-level global variables in the main source file and in the REPL are not
// lazily initialized.
return !isTopLevelGlobal();
}
Expr *VarDecl::getParentExecutableInitializer() const {
if (auto *PBD = getParentPatternBinding()) {
const auto i = PBD->getPatternEntryIndexForVarDecl(this);
return PBD->getExecutableInit(i);
}
return nullptr;
}
ActorIsolation VarDecl::getInitializerIsolation() const {
auto *mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
getASTContext().evaluator,
DefaultInitializerIsolation{mutableThis},
ActorIsolation::forUnspecified());
}
SourceRange VarDecl::getSourceRange() const {
if (auto Param = dyn_cast<ParamDecl>(this))
return Param->getSourceRange();
return getNameLoc();
}
SourceRange VarDecl::getTypeSourceRangeForDiagnostics() const {
// For a parameter, map back to its parameter to get the TypeLoc.
if (auto *PD = dyn_cast<ParamDecl>(this)) {
if (auto typeRepr = PD->getTypeRepr())
return typeRepr->getSourceRange();
}
Pattern *Pat = getParentPattern();
if (!Pat || Pat->isImplicit())
return SourceRange();
if (auto *VP = dyn_cast<BindingPattern>(Pat))
Pat = VP->getSubPattern();
if (auto *TP = dyn_cast<TypedPattern>(Pat))
if (auto typeRepr = TP->getTypeRepr())
return typeRepr->getSourceRange();
return SourceRange();
}
static std::optional<std::pair<CaseStmt *, Pattern *>>
findParentPatternCaseStmtAndPattern(const VarDecl *inputVD) {
auto getMatchingPattern = [&](CaseStmt *cs) -> Pattern * {
// Check if inputVD is in our case body var decls if we have any. If we do,
// treat its pattern as our first case label item pattern.
for (auto *vd : cs->getCaseBodyVariablesOrEmptyArray()) {
if (vd == inputVD) {
return cs->getMutableCaseLabelItems().front().getPattern();
}
}
// Then check the rest of our case label items.
for (auto &item : cs->getMutableCaseLabelItems()) {
if (item.getPattern()->containsVarDecl(inputVD)) {
return item.getPattern();
}
}
// Otherwise return false if we do not find anything.
return nullptr;
};
// First find our canonical var decl. This is the VarDecl corresponding to the
// first case label item of the first case block in the fallthrough chain that
// our case block is within. Grab the case stmt associated with that var decl
// and start traveling down the fallthrough chain looking for the case
// statement that the input VD belongs to by using getMatchingPattern().
auto *canonicalVD = inputVD->getCanonicalVarDecl();
auto *caseStmt =
dyn_cast_or_null<CaseStmt>(canonicalVD->getParentPatternStmt());
if (!caseStmt)
return std::nullopt;
if (auto *p = getMatchingPattern(caseStmt))
return std::make_pair(caseStmt, p);
while ((caseStmt = caseStmt->getFallthroughDest().getPtrOrNull())) {
if (auto *p = getMatchingPattern(caseStmt))
return std::make_pair(caseStmt, p);
}
return std::nullopt;
}
VarDecl *VarDecl::getCanonicalVarDecl() const {
// Any var decl without a parent var decl is canonical. This means that before
// type checking, all var decls are canonical.
auto *cur = const_cast<VarDecl *>(this);
auto *vd = cur->getParentVarDecl();
if (!vd)
return cur;
#ifndef NDEBUG
// Make sure that we don't get into an infinite loop.
SmallPtrSet<VarDecl *, 8> visitedDecls;
visitedDecls.insert(vd);
visitedDecls.insert(cur);
#endif
while (vd) {
cur = vd;
vd = vd->getParentVarDecl();
assert((!vd || visitedDecls.insert(vd).second) && "Infinite loop ?!");
}
return cur;
}
Stmt *VarDecl::getRecursiveParentPatternStmt() const {
// If our parent is already a pattern stmt, just return that.
if (auto *stmt = getParentPatternStmt())
return stmt;
// Otherwise, see if we have a parent var decl. If we do not, then return
// nullptr. Otherwise, return the case stmt that we found.
auto result = findParentPatternCaseStmtAndPattern(this);
if (!result.has_value())
return nullptr;
return result->first;
}
/// Return the Pattern involved in initializing this VarDecl. Recall that the
/// Pattern may be involved in initializing more than just this one vardecl
/// though. For example, if this is a VarDecl for "x", the pattern may be
/// "(x, y)" and the initializer on the PatternBindingDecl may be "(1,2)" or
/// "foo()".
///
/// If this has no parent pattern binding decl or statement associated, it
/// returns null.
///
Pattern *VarDecl::getParentPattern() const {
// If this has a PatternBindingDecl parent, use its pattern.
if (auto *PBD = getParentPatternBinding()) {
const auto i = PBD->getPatternEntryIndexForVarDecl(this);
return PBD->getPattern(i);
}
// If this is a statement parent, dig the pattern out of it.
if (auto *stmt = getParentPatternStmt()) {
if (auto *FES = dyn_cast<ForEachStmt>(stmt))
return FES->getPattern();
if (auto *cs = dyn_cast<CaseStmt>(stmt)) {
// In a case statement, search for the pattern that contains it. This is
// a bit silly, because you can't have something like "case x, y:" anyway.
for (auto items : cs->getCaseLabelItems()) {
if (items.getPattern()->containsVarDecl(this))
return items.getPattern();
}
}
if (auto *LCS = dyn_cast<LabeledConditionalStmt>(stmt)) {
for (auto &elt : LCS->getCond())
if (auto pat = elt.getPatternOrNull())
if (pat->containsVarDecl(this))
return pat;
}
}
// Otherwise, check if we have to walk our case stmt's var decl list to find
// the pattern.
if (auto caseStmtPatternPair = findParentPatternCaseStmtAndPattern(this)) {
return caseStmtPatternPair->second;
}
// Otherwise, this is a case we do not know or understand. Return nullptr to
// signal we do not have any information.
return nullptr;
}
NamedPattern *VarDecl::getNamingPattern() const {
return evaluateOrDefault(getASTContext().evaluator,
NamingPatternRequest{const_cast<VarDecl *>(this)},
nullptr);
}
void VarDecl::setNamingPattern(NamedPattern *Pat) {
getASTContext().evaluator.cacheOutput(NamingPatternRequest{this},
std::move(Pat));
}
TypeRepr *VarDecl::getTypeReprOrParentPatternTypeRepr() const {
if (auto *Param = dyn_cast<ParamDecl>(this))
return Param->getTypeRepr();
auto *ParentPattern = getParentPattern();
if (auto *TyPattern = dyn_cast_or_null<TypedPattern>(ParentPattern))
return TyPattern->getTypeRepr();
// Handle typed if/guard/while-let as a special case (e.g. `if let x: Int
// = Optional.some(4)`), since the `TypedPattern` is not the top-level
// pattern here - instead it is an implicit `OptionalSomePattern`
if (auto *SomePattern =
dyn_cast_or_null<OptionalSomePattern>(ParentPattern)) {
if (auto *TyPattern =
dyn_cast<TypedPattern>(SomePattern->getSubPattern())) {
return TyPattern->getTypeRepr();
}
}
return nullptr;
}
NullablePtr<VarDecl>
VarDecl::getCorrespondingFirstCaseLabelItemVarDecl() const {
if (!hasName())
return nullptr;
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return nullptr;
auto *pattern = caseStmt->getCaseLabelItems().front().getPattern();
SmallVector<VarDecl *, 8> vars;
pattern->collectVariables(vars);
for (auto *vd : vars) {
if (vd->hasName() && vd->getName() == getName())
return vd;
}
return nullptr;
}
bool VarDecl::isCaseBodyVariable() const {
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return false;
return llvm::any_of(caseStmt->getCaseBodyVariablesOrEmptyArray(),
[&](VarDecl *vd) { return vd == this; });
}
NullablePtr<VarDecl> VarDecl::getCorrespondingCaseBodyVariable() const {
// Only var decls associated with case statements can have child var decls.
auto *caseStmt = dyn_cast_or_null<CaseStmt>(getRecursiveParentPatternStmt());
if (!caseStmt)
return nullptr;
// If this var decl doesn't have a name, it can not have a corresponding case
// body variable.
if (!hasName())
return nullptr;
auto name = getName();
// A var decl associated with a case stmt implies that the case stmt has body
// var decls. So we can access the optional value here without worry.
auto caseBodyVars = caseStmt->getCaseBodyVariables();
auto result = llvm::find_if(caseBodyVars, [&](VarDecl *caseBodyVar) {
return caseBodyVar->getName() == name;
});
return (result != caseBodyVars.end()) ? *result : nullptr;
}
bool VarDecl::isSelfParameter() const {
if (isa<ParamDecl>(this)) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDeclContext()))
return AFD->getImplicitSelfDecl(/*createIfNeeded=*/false) == this;
if (auto *PBI = dyn_cast<PatternBindingInitializer>(getDeclContext()))
return PBI->getImplicitSelfDecl() == this;
}
return false;
}
bool VarDecl::isActorSelf() const {
if (!isSelfParameter() && !isSelfParamCapture())
return false;
auto *dc = getDeclContext();
while (!dc->isTypeContext() && !dc->isModuleScopeContext())
dc = dc->getParent();
// Check if this `self` parameter belongs to an actor declaration or
// extension.
auto nominal = dc->getSelfNominalTypeDecl();
return nominal && nominal->isActor();
}
/// Whether the given variable is the backing storage property for
/// a declared property that is either `lazy` or has an attached
/// property wrapper.
static bool isBackingStorageForDeclaredProperty(const VarDecl *var) {
if (var->isLazyStorageProperty())
return true;
if (var->getOriginalWrappedProperty())
return true;
return false;
}
/// Whether the given variable is a declared property that has separate backing storage.
static bool isDeclaredPropertyWithBackingStorage(const VarDecl *var) {
if (var->getAttrs().hasAttribute<LazyAttr>())
return true;
if (var->hasAttachedPropertyWrapper())
return true;
return false;
}
bool VarDecl::isMemberwiseInitialized(bool preferDeclaredProperties) const {
// Only non-static properties in type context can be part of a memberwise
// initializer.
if (!getDeclContext()->isTypeContext() || isStatic())
return false;
// If this is a stored property, and not a backing property in a case where
// we only want to see the declared properties, it can be memberwise
// initialized.
if (hasStorage() && preferDeclaredProperties &&
isBackingStorageForDeclaredProperty(this))
return false;
// If this is a computed property with `init` accessor, it's
// memberwise initializable when it could be used to initialize
// other stored properties.
if (hasInitAccessor()) {
if (auto *init = getAccessor(AccessorKind::Init))
return true;
}
// If this is a computed property, it's not memberwise initialized unless
// the caller has asked for the declared properties and it is either a
// `lazy` property or a property with an attached wrapper.
if (!hasStorage() &&
!(preferDeclaredProperties &&
isDeclaredPropertyWithBackingStorage(this)))
return false;
// Initialized 'let' properties have storage, but don't get an argument
// to the memberwise initializer since they already have an initial
// value that cannot be overridden.
if (isLet() && isParentInitialized())
return false;
// Properties with attached wrappers that have an access level < internal
// but do have an initializer don't participate in the memberwise
// initializer, because they would arbitrarily lower the access of the
// memberwise initializer.
auto origVar = this;
if (auto origWrapped = getOriginalWrappedProperty())
origVar = origWrapped;
if (origVar->getFormalAccess() < AccessLevel::Internal &&
origVar->hasAttachedPropertyWrapper() &&
(origVar->isParentInitialized() ||
(origVar->getParentPatternBinding() &&
origVar->getParentPatternBinding()->isDefaultInitializable())))
return false;
return true;
}
bool VarDecl::isLet() const {
// An awful hack that stabilizes the value of 'isLet' for ParamDecl instances.
//
// All of the callers in SIL are actually looking for the semantic
// "is immutable" predicate (present on ParamDecl) and should be migrated to
// a high-level request. Once this is done, all callers of the introducer and
// specifier setters can be removed.
if (auto *PD = dyn_cast<ParamDecl>(this)) {
return PD->isImmutableInFunctionBody();
}
return getIntroducer() == Introducer::Let
|| getIntroducer() == Introducer::Borrowing;
}
bool VarDecl::isAsyncLet() const {
return getAttrs().hasAttribute<AsyncAttr>();
}
bool VarDecl::isKnownToBeLocal() const {
return getAttrs().hasAttribute<KnownToBeLocalAttr>();
}
bool VarDecl::isOrdinaryStoredProperty() const {
// we assume if it hasAttachedPropertyWrapper, it has no storage.
//
// also, we don't expect someone to call this on a local property, so for
// efficiency we don't check if it's not async-let. feel free to promote
// the assert into a full-fledged part of the condition if needed.
assert(!isAsyncLet());
return hasStorage() && !hasObservers();
}
VarDecl *VarDecl::createImplicitStringInterpolationVar(DeclContext *DC) {
// Make the variable which will contain our temporary value.
ASTContext &C = DC->getASTContext();
auto var =
new (C) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Var,
/*NameLoc=*/SourceLoc(), C.Id_dollarInterpolation, DC);
var->setImplicit(true);
var->setUserAccessible(false);
return var;
}
void ParamDecl::setSpecifier(Specifier specifier) {
VarDecl::Introducer introducer;
switch (specifier) {
// Unannotated or `borrowing` parameters are locally immutable.
// So are parameters using the legacy `__shared` or `__owned` modifiers.
case ParamSpecifier::Default:
case ParamSpecifier::Borrowing:
case ParamSpecifier::LegacyShared:
case ParamSpecifier::LegacyOwned:
introducer = VarDecl::Introducer::Let;
break;
// `inout` and `consuming` parameters are locally mutable.
case ParamSpecifier::InOut:
case ParamSpecifier::Consuming:
case ParamSpecifier::ImplicitlyCopyableConsuming:
introducer = VarDecl::Introducer::Var;
break;
}
setIntroducer(introducer);
Bits.ParamDecl.OwnershipSpecifier = static_cast<unsigned>(specifier) + 1;
assert(getCachedSpecifier() == specifier
&& "not enough bits in ParamDecl flags for specifier anymore!");
}
bool ParamDecl::isAnonClosureParam() const {
auto name = getName();
if (name.empty())
return false;
auto nameStr = name.str();
if (nameStr.empty())
return false;
return nameStr[0] == '$';
}
bool ParamDecl::isVariadic() const {
(void) getInterfaceType();
return getOptions().contains(Flag::IsVariadic);
}
ParamDecl::Specifier ParamDecl::getSpecifier() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<ParamDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ParamSpecifierRequest{mutableThis},
ParamDecl::Specifier::Default);
}
LifetimeAnnotation ParamDecl::getLifetimeAnnotation() const {
auto specifier = getSpecifier();
// Copyable parameters which are consumed have eager-move semantics.
if (specifier == ParamDecl::Specifier::Consuming &&
!getTypeInContext()->isNoncopyable()) {
if (getAttrs().hasAttribute<NoEagerMoveAttr>())
return LifetimeAnnotation::Lexical;
return LifetimeAnnotation::EagerMove;
}
return getLifetimeAnnotationFromAttributes();
}
StringRef ParamDecl::getSpecifierSpelling(ParamSpecifier specifier) {
switch (specifier) {
case ParamSpecifier::Default:
return "";
case ParamSpecifier::Borrowing:
return "borrowing";
case ParamSpecifier::Consuming:
return "consuming";
case ParamSpecifier::InOut:
return "inout";
case ParamSpecifier::LegacyShared:
return "__shared";
case ParamSpecifier::LegacyOwned:
return "__owned";
case ParamSpecifier::ImplicitlyCopyableConsuming:
return "implicitly_copyable_consuming";
}
llvm_unreachable("invalid ParamSpecifier");
}
StaticSpellingKind AbstractStorageDecl::getCorrectStaticSpelling() const {
if (!isStatic())
return StaticSpellingKind::None;
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (auto *PBD = VD->getParentPatternBinding()) {
if (PBD->getStaticSpelling() != StaticSpellingKind::None)
return PBD->getStaticSpelling();
}
} else if (auto *SD = dyn_cast<SubscriptDecl>(this)) {
return SD->getStaticSpelling();
}
return getCorrectStaticSpellingForDecl(this);
}
llvm::TinyPtrVector<CustomAttr *> VarDecl::getAttachedPropertyWrappers() const {
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
AttachedPropertyWrappersRequest{mutableThis},
{ });
}
/// Whether this property has any attached property wrappers.
bool VarDecl::hasAttachedPropertyWrapper() const {
if (!getAttachedPropertyWrappers().empty())
return true;
if (hasImplicitPropertyWrapper())
return true;
return false;
}
bool VarDecl::hasImplicitPropertyWrapper() const {
if (getAttrs().hasAttribute<CustomAttr>()) {
if (!getAttachedPropertyWrappers().empty())
return false;
}
if (isImplicit())
return false;
if (!isa<ParamDecl>(this))
return false;
if (!isa<AbstractClosureExpr>(getDeclContext()))
return false;
return getName().hasDollarPrefix();
}
bool VarDecl::hasExternalPropertyWrapper() const {
if (!hasAttachedPropertyWrapper() || !isa<ParamDecl>(this))
return false;
// This decision needs to be made before closures are type checked (and
// the wrapper types are potentially inferred) so closure parameters with
// property wrappers are always "external". This is fine, because the
// type checker will always inject a thunk with the wrapped or projected type
// around the closure, so the wrapper will never affect the caller's
// arguments directly anyway.
if (isa<AbstractClosureExpr>(getDeclContext()))
return true;
// Wrappers with attribute arguments are always implementation-detail.
if (getOutermostAttachedPropertyWrapper()->hasArgs())
return false;
auto wrapperInfo = getAttachedPropertyWrapperTypeInfo(0);
return wrapperInfo.projectedValueVar && wrapperInfo.hasProjectedValueInit;
}
/// Whether all of the attached property wrappers have an init(wrappedValue:)
/// initializer.
bool VarDecl::allAttachedPropertyWrappersHaveWrappedValueInit() const {
for (unsigned i : indices(getAttachedPropertyWrappers())) {
if (!getAttachedPropertyWrapperTypeInfo(i).wrappedValueInit)
return false;
}
return true;
}
PropertyWrapperTypeInfo
VarDecl::getAttachedPropertyWrapperTypeInfo(unsigned i) const {
NominalTypeDecl *nominal;
if (hasImplicitPropertyWrapper()) {
assert(i == 0);
nominal = getInterfaceType()->getAnyNominal();
} else {
auto attrs = getAttachedPropertyWrappers();
if (i >= attrs.size())
return PropertyWrapperTypeInfo();
auto attr = attrs[i];
auto dc = getDeclContext();
ASTContext &ctx = getASTContext();
nominal = evaluateOrDefault(
ctx.evaluator, CustomAttrNominalRequest{attr, dc}, nullptr);
}
if (!nominal)
return PropertyWrapperTypeInfo();
return nominal->getPropertyWrapperTypeInfo();
}
Type VarDecl::getAttachedPropertyWrapperType(unsigned index) const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
AttachedPropertyWrapperTypeRequest{mutableThis, index},
Type());
}
Type VarDecl::getPropertyWrapperBackingPropertyType() const {
ASTContext &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, PropertyWrapperBackingPropertyTypeRequest{mutableThis},
Type());
}
PropertyWrapperAuxiliaryVariables
VarDecl::getPropertyWrapperAuxiliaryVariables() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
PropertyWrapperAuxiliaryVariablesRequest{mutableThis},
PropertyWrapperAuxiliaryVariables());
}
PropertyWrapperInitializerInfo
VarDecl::getPropertyWrapperInitializerInfo() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
PropertyWrapperInitializerInfoRequest{mutableThis},
PropertyWrapperInitializerInfo());
}
std::optional<PropertyWrapperMutability>
VarDecl::getPropertyWrapperMutability() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
PropertyWrapperMutabilityRequest{mutableThis},
std::nullopt);
}
std::optional<PropertyWrapperSynthesizedPropertyKind>
VarDecl::getPropertyWrapperSynthesizedPropertyKind() const {
if (getOriginalWrappedProperty(
PropertyWrapperSynthesizedPropertyKind::Backing))
return PropertyWrapperSynthesizedPropertyKind::Backing;
if (getOriginalWrappedProperty(
PropertyWrapperSynthesizedPropertyKind::Projection))
return PropertyWrapperSynthesizedPropertyKind::Projection;
return std::nullopt;
}
VarDecl *VarDecl::getPropertyWrapperBackingProperty() const {
return getPropertyWrapperAuxiliaryVariables().backingVar;
}
VarDecl *VarDecl::getPropertyWrapperProjectionVar() const {
return getPropertyWrapperAuxiliaryVariables().projectionVar;
}
VarDecl *VarDecl::getPropertyWrapperWrappedValueVar() const {
return getPropertyWrapperAuxiliaryVariables().localWrappedValueVar;
}
bool VarDecl::hasStorageOrWrapsStorage() const {
if (hasStorage())
return true;
if (getAttrs().hasAttribute<LazyAttr>())
return true;
auto *backing = getPropertyWrapperBackingProperty();
if (backing && backing->hasStorage())
return true;
return false;
}
void VarDecl::visitAuxiliaryDecls(llvm::function_ref<void(VarDecl *)> visit) const {
if (getDeclContext()->isTypeContext() ||
(isImplicit() && !isa<ParamDecl>(this)))
return;
if (getAttrs().hasAttribute<LazyAttr>()) {
if (auto *backingVar = getLazyStorageProperty())
visit(backingVar);
}
if (getAttrs().hasAttribute<CustomAttr>() || hasImplicitPropertyWrapper()) {
if (auto *backingVar = getPropertyWrapperBackingProperty())
visit(backingVar);
if (auto *projectionVar = getPropertyWrapperProjectionVar())
visit(projectionVar);
if (auto *wrappedValueVar = getPropertyWrapperWrappedValueVar())
visit(wrappedValueVar);
}
}
VarDecl *VarDecl::getLazyStorageProperty() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<VarDecl *>(this);
return evaluateOrDefault(
ctx.evaluator,
LazyStoragePropertyRequest{mutableThis},
{});
}
bool VarDecl::isGlobalStorage() const {
if (!hasStorage()) {
return false;
}
const auto *dc = getDeclContext();
return isStatic() || dc->isModuleScopeContext() ||
(dc->isTypeContext() && !isInstanceMember());
}
bool VarDecl::isPropertyMemberwiseInitializedWithWrappedType() const {
auto customAttrs = getAttachedPropertyWrappers();
if (customAttrs.empty())
return false;
auto *PBD = getParentPatternBinding();
if (!PBD)
return false;
// If there was an initializer on the original property, initialize
// via the initial value.
if (PBD->getEqualLoc(0).isValid())
return true;
// If there was an initializer on the outermost wrapper, initialize
// via the full wrapper.
if (customAttrs[0]->hasArgs())
return false;
// Default initialization does not use a value.
if (getAttachedPropertyWrapperTypeInfo(0).defaultInit)
return false;
// If all property wrappers have a wrappedValue initializer, the property
// wrapper will be initialized that way.
return allAttachedPropertyWrappersHaveWrappedValueInit();
}
Type VarDecl::getPropertyWrapperInitValueInterfaceType() const {
auto initInfo = getPropertyWrapperInitializerInfo();
if (!initInfo.getWrappedValuePlaceholder())
return Type();
Type valueInterfaceTy = initInfo.getWrappedValuePlaceholder()->getType();
if (valueInterfaceTy->hasArchetype())
valueInterfaceTy = valueInterfaceTy->mapTypeOutOfContext();
return valueInterfaceTy;
}
Identifier VarDecl::getObjCPropertyName() const {
if (auto attr = getAttrs().getAttribute<ObjCAttr>()) {
if (auto name = attr->getName())
return name->getSelectorPieces()[0];
}
return getName();
}
ObjCSelector VarDecl::getDefaultObjCGetterSelector(ASTContext &ctx,
Identifier propertyName) {
return ObjCSelector(ctx, 0, propertyName);
}
ObjCSelector VarDecl::getDefaultObjCSetterSelector(ASTContext &ctx,
Identifier propertyName) {
llvm::SmallString<16> scratch;
scratch += "set";
camel_case::appendSentenceCase(scratch, propertyName.str());
return ObjCSelector(ctx, 1, ctx.getIdentifier(scratch));
}
/// If this is a simple 'let' constant, emit a note with a fixit indicating
/// that it can be rewritten to a 'var'. This is used in situations where the
/// compiler detects obvious attempts to mutate a constant.
void VarDecl::emitLetToVarNoteIfSimple(DeclContext *UseDC) const {
// If it isn't a 'let', don't touch it.
if (!isLet()) return;
// If this is the 'self' argument of a non-mutating method in a value type,
// suggest adding 'mutating' to the method.
if (isSelfParameter() && UseDC) {
// If the problematic decl is 'self', then we might be trying to mutate
// a property in a non-mutating method.
auto FD = dyn_cast_or_null<FuncDecl>(UseDC->getInnermostMethodContext());
if (FD && !FD->isMutating() && !FD->isImplicit() && FD->isInstanceMember()&&
!FD->getDeclContext()->getDeclaredInterfaceType()
->hasReferenceSemantics()) {
// Do not suggest the fix-it in implicit getters
if (auto AD = dyn_cast<AccessorDecl>(FD)) {
if (AD->isImplicitGetter())
return;
}
auto &d = getASTContext().Diags;
auto diags = d.diagnose(FD->getFuncLoc(), diag::change_to_mutating,
isa<AccessorDecl>(FD));
if (auto nonmutatingAttr =
FD->getAttrs().getAttribute<NonMutatingAttr>()) {
diags.fixItReplace(nonmutatingAttr->getLocation(), "mutating");
} else {
diags.fixItInsert(FD->getFuncLoc(), "mutating ");
}
return;
}
}
// Besides self, don't suggest mutability for explicit function parameters.
if (isa<ParamDecl>(this)) return;
// Don't suggest any fixes for capture list elements.
if (isCaptureList()) return;
// If this is a normal variable definition, then we can change 'let' to 'var'.
// We even are willing to suggest this for multi-variable binding, like
// "let (a,b) = "
// since the user has to choose to apply this anyway.
if (auto *PBD = getParentPatternBinding()) {
// Don't touch generated or invalid code.
if (PBD->getLoc().isInvalid() || PBD->isImplicit())
return;
auto &d = getASTContext().Diags;
d.diagnose(PBD->getLoc(), diag::convert_let_to_var)
.fixItReplace(PBD->getLoc(), "var");
return;
}
}
clang::PointerAuthQualifier VarDecl::getPointerAuthQualifier() const {
if (auto *clangDecl = getClangDecl()) {
if (auto *valueDecl = dyn_cast<clang::ValueDecl>(clangDecl)) {
return valueDecl->getType().getPointerAuth();
}
}
return clang::PointerAuthQualifier();
}
ParamDecl::ParamDecl(SourceLoc specifierLoc, SourceLoc argumentNameLoc,
Identifier argumentName, SourceLoc parameterNameLoc,
Identifier parameterName, DeclContext *dc)
: VarDecl(DeclKind::Param,
/*IsStatic*/ false, VarDecl::Introducer::Let, parameterNameLoc,
parameterName, dc, StorageIsNotMutable),
ArgumentNameAndFlags(argumentName, std::nullopt),
ParameterNameLoc(parameterNameLoc), ArgumentNameLoc(argumentNameLoc),
SpecifierLoc(specifierLoc) {
Bits.ParamDecl.OwnershipSpecifier = 0;
Bits.ParamDecl.defaultArgumentKind =
static_cast<unsigned>(DefaultArgumentKind::None);
}
ParamDecl *
ParamDecl::cloneWithoutType(const ASTContext &Ctx, ParamDecl *PD,
std::optional<DefaultArgumentKind> defaultArgKind) {
auto *Clone = new (Ctx) ParamDecl(
SourceLoc(), SourceLoc(), PD->getArgumentName(),
SourceLoc(), PD->getParameterName(), PD->getDeclContext());
Clone->setOptionsAndPointers(nullptr, nullptr, PD->getOptions());
if (defaultArgKind) {
Clone->setDefaultArgumentKind(*defaultArgKind);
} else {
Clone->setDefaultArgumentKind(PD->getDefaultArgumentKind());
}
Clone->setSpecifier(PD->getSpecifier());
Clone->setImplicitlyUnwrappedOptional(PD->isImplicitlyUnwrappedOptional());
if (PD->isImplicit()) {
Clone->setImplicit();
}
return Clone;
}
ParamDecl *ParamDecl::clone(const ASTContext &Ctx, ParamDecl *PD) {
auto *Clone = ParamDecl::cloneWithoutType(Ctx, PD);
Clone->setInterfaceType(PD->getInterfaceType());
return Clone;
}
ParamDecl *
ParamDecl::createImplicit(ASTContext &Context, SourceLoc specifierLoc,
SourceLoc argumentNameLoc, Identifier argumentName,
SourceLoc parameterNameLoc, Identifier parameterName,
Type interfaceType, DeclContext *Parent,
ParamSpecifier specifier) {
auto decl =
new (Context) ParamDecl(specifierLoc, argumentNameLoc, argumentName,
parameterNameLoc, parameterName, Parent);
decl->setImplicit();
// implicit ParamDecls must have a specifier set
decl->setSpecifier(specifier);
decl->setInterfaceType(interfaceType);
return decl;
}
ParamDecl *ParamDecl::createImplicit(ASTContext &Context,
Identifier argumentName,
Identifier parameterName,
Type interfaceType, DeclContext *Parent,
ParamSpecifier specifier) {
return ParamDecl::createImplicit(Context, SourceLoc(), SourceLoc(),
argumentName, SourceLoc(), parameterName,
interfaceType, Parent, specifier);
}
/// Determine the kind of a default argument for the given expression.
static DefaultArgumentKind computeDefaultArgumentKind(DeclContext *dc,
Expr *init) {
if (!init)
return DefaultArgumentKind::None;
// Parse an as-written 'nil' expression as the special NilLiteral kind,
// which is emitted by the caller and can participate in rethrows
// checking.
if (isa<NilLiteralExpr>(init))
return DefaultArgumentKind::NilLiteral;
if (isa<MacroExpansionExpr>(init))
return DefaultArgumentKind::ExpressionMacro;
if (isa<SuperRefExpr>(init)) {
// The compiler does not synthesize inherited initializers when
// type-checking Swift module interfaces. Instead, module interfaces are
// expected to include them explicitly in subclasses. A default argument of
// '= super' in a parameter of such initializer indicates that the default
// argument is inherited.
if (dc->getParentSourceFile()->Kind == SourceFileKind::Interface) {
return DefaultArgumentKind::Inherited;
} else {
return DefaultArgumentKind::Normal;
}
}
auto magic = dyn_cast<MagicIdentifierLiteralExpr>(init);
if (!magic)
return DefaultArgumentKind::Normal;
switch (magic->getKind()) {
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case MagicIdentifierLiteralExpr::NAME: \
return DefaultArgumentKind::NAME;
#include "swift/AST/MagicIdentifierKinds.def"
}
llvm_unreachable("Unhandled MagicIdentifierLiteralExpr in switch.");
}
ParamDecl *ParamDecl::createParsed(ASTContext &Context, SourceLoc specifierLoc,
SourceLoc argumentNameLoc,
Identifier argumentName,
SourceLoc parameterNameLoc,
Identifier parameterName, Expr *defaultValue,
DeclContext *dc) {
auto *decl =
new (Context) ParamDecl(specifierLoc, argumentNameLoc, argumentName,
parameterNameLoc, parameterName, dc);
const auto kind = computeDefaultArgumentKind(dc, defaultValue);
if (kind == DefaultArgumentKind::Inherited) {
// The 'super' in inherited default arguments is a specifier rather than an
// expression.
// TODO: However, we may want to retain its location for diagnostics.
defaultValue = nullptr;
}
decl->setDefaultExpr(defaultValue);
decl->setDefaultArgumentKind(kind);
return decl;
}
void ParamDecl::setDefaultArgumentKind(DefaultArgumentKind K) {
assert(getDefaultArgumentKind() == DefaultArgumentKind::None &&
"Overwrite of default argument kind");
Bits.ParamDecl.defaultArgumentKind = static_cast<unsigned>(K);
}
/// Retrieve the type of 'self' for the given context.
Type DeclContext::getSelfTypeInContext() const {
return mapTypeIntoContext(getSelfInterfaceType());
}
TupleType *BuiltinTupleDecl::getTupleSelfType(const ExtensionDecl *owner) const {
auto &ctx = getASTContext();
// Get the generic parameter type 'each T'.
GenericParamList *genericParams;
if (owner != nullptr) {
genericParams = owner->getGenericParams();
} else {
genericParams = getGenericParams();
}
assert(genericParams != nullptr);
assert(genericParams->getParams().size() == 1);
assert(genericParams->getOuterParameters() == nullptr);
auto paramType = genericParams->getParams()[0]->getDeclaredInterfaceType();
// Build the pack expansion type 'repeat each T'.
Type packExpansionType = PackExpansionType::get(paramType, paramType);
// Build the one-element tuple type '(repeat each T)'.
SmallVector<TupleTypeElt, 1> elts;
elts.push_back(packExpansionType);
return TupleType::get(elts, ctx);
}
/// Retrieve the interface type of 'self' for the given context.
Type DeclContext::getSelfInterfaceType() const {
assert(isTypeContext());
if (auto *nominalDecl = getSelfNominalTypeDecl()) {
if (auto *builtinTupleDecl = dyn_cast<BuiltinTupleDecl>(nominalDecl))
return builtinTupleDecl->getTupleSelfType(dyn_cast<ExtensionDecl>(this));
if (isa<ProtocolDecl>(nominalDecl)) {
auto *genericParams = nominalDecl->getGenericParams();
return genericParams->getParams().front()
->getDeclaredInterfaceType();
}
return getDeclaredInterfaceType();
}
return ErrorType::get(getASTContext());
}
/// Return the full source range of this parameter.
SourceRange ParamDecl::getSourceRange() const {
SourceLoc APINameLoc = getArgumentNameLoc();
SourceLoc nameLoc = getNameLoc();
SourceLoc startLoc;
if (APINameLoc.isValid())
startLoc = APINameLoc;
else if (nameLoc.isValid())
startLoc = nameLoc;
else if (auto *repr = getTypeRepr())
startLoc = repr->getStartLoc();
if (startLoc.isInvalid())
return SourceRange();
// It would be nice to extend the front of the range to show where inout is,
// but we don't have that location info. Extend the back of the range to the
// location of the default argument, or the typeloc if they are valid.
if (auto expr = getStructuralDefaultExpr()) {
auto endLoc = expr->getEndLoc();
if (endLoc.isValid())
return SourceRange(startLoc, endLoc);
}
// If the typeloc has a valid location, use it to end the range.
if (auto typeRepr = getTypeRepr()) {
auto endLoc = typeRepr->getEndLoc();
if (endLoc.isValid())
return SourceRange(startLoc, endLoc);
}
// The name has a location we can use.
if (nameLoc.isValid())
return SourceRange(startLoc, nameLoc);
return startLoc;
}
bool ParamDecl::isNonEphemeral() const {
if (getAttrs().hasAttribute<NonEphemeralAttr>())
return true;
// Only enum element parameters are non-ephemeral without '@_nonEphemeral'.
auto *parentDecl = getDeclContext()->getAsDecl();
if (!parentDecl || !isa<EnumElementDecl>(parentDecl))
return false;
// Only pointer parameters can be non-ephemeral.
auto ty = getInterfaceType();
if (!ty->lookThroughSingleOptionalType()->getAnyPointerElementType())
return false;
return true;
}
void ParamDecl::setNonEphemeralIfPossible() {
assert(hasInterfaceType() && "Must be pre-typechecked.");
// Don't apply the attribute if this isn't a pointer param.
auto type = getInterfaceType();
if (!type->lookThroughSingleOptionalType()->getAnyPointerElementType())
return;
if (!getAttrs().hasAttribute<NonEphemeralAttr>()) {
auto &ctx = getASTContext();
getAttrs().add(new (ctx) NonEphemeralAttr(/*IsImplicit*/ true));
}
}
Type ParamDecl::getVarargBaseTy(Type VarArgT) {
TypeBase *T = VarArgT.getPointer();
if (auto *AT = dyn_cast<VariadicSequenceType>(T))
return AT->getBaseType();
if (auto *BGT = dyn_cast<BoundGenericType>(T)) {
// It's the stdlib Array<T>.
return BGT->getGenericArgs()[0];
}
return T;
}
AnyFunctionType::Param ParamDecl::toFunctionParam(Type type) const {
if (!type) {
type = getInterfaceType();
if (hasExternalPropertyWrapper()) {
if (auto wrapper = getPropertyWrapperBackingPropertyType()) {
type = wrapper;
}
}
}
if (isVariadic())
type = ParamDecl::getVarargBaseTy(type);
auto label = getArgumentName();
auto internalLabel = getParameterName();
auto flags = ParameterTypeFlags::fromParameterType(
type, isVariadic(), isAutoClosure(), isNonEphemeral(), getSpecifier(),
isIsolated(), /*isNoDerivative*/ false, isCompileTimeConst(),
hasResultDependsOn(), isTransferring());
return AnyFunctionType::Param(type, label, flags, internalLabel);
}
std::optional<Initializer *>
ParamDecl::getCachedDefaultArgumentInitContext() const {
if (auto *defaultInfo = DefaultValueAndFlags.getPointer())
if (auto *init = defaultInfo->InitContextAndIsTypeChecked.getPointer())
return init;
return std::nullopt;
}
Initializer *ParamDecl::getDefaultArgumentInitContext() const {
// If this param doesn't need a context, don't bother kicking off a request.
if (!hasDefaultExpr() && !getStoredProperty())
return nullptr;
auto &ctx = getASTContext();
auto *mutableThis = const_cast<ParamDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, DefaultArgumentInitContextRequest{mutableThis}, nullptr);
}
bool ParamDecl::hasDefaultExpr() const {
switch (getDefaultArgumentKind()) {
case DefaultArgumentKind::None:
case DefaultArgumentKind::Inherited:
case DefaultArgumentKind::StoredProperty:
return false;
case DefaultArgumentKind::Normal:
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME:
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::ExpressionMacro:
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
// Check if we have a structural default expr. This ensures we return false
// for deserialized decls.
return getStructuralDefaultExpr();
}
llvm_unreachable("Unhandled case in switch");
}
bool ParamDecl::hasCallerSideDefaultExpr() const {
switch (getDefaultArgumentKind()) {
case DefaultArgumentKind::None:
case DefaultArgumentKind::Inherited:
case DefaultArgumentKind::StoredProperty:
case DefaultArgumentKind::Normal:
return false;
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME:
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
case DefaultArgumentKind::ExpressionMacro:
return true;
}
llvm_unreachable("invalid default argument kind");
}
Expr *ParamDecl::getTypeCheckedDefaultExpr() const {
// Don't kick off a request if we know there's no default expr. The only
// exception is for inherited default args which we need to perform a couple
// of semantic checks for.
if (!hasDefaultExpr() &&
getDefaultArgumentKind() != DefaultArgumentKind::Inherited) {
return nullptr;
}
auto &ctx = getASTContext();
if (Expr *E = evaluateOrDefault(
ctx.evaluator,
DefaultArgumentExprRequest{const_cast<ParamDecl *>(this)}, nullptr)) {
return E;
}
return new (ctx) ErrorExpr(getSourceRange(), ErrorType::get(ctx));
}
Type ParamDecl::getTypeOfDefaultExpr() const {
auto &ctx = getASTContext();
// If this is a caller-side default, the type is determined based on
// a particular call site.
assert(!hasCallerSideDefaultExpr());
if (Type type = evaluateOrDefault(
ctx.evaluator,
DefaultArgumentTypeRequest{const_cast<ParamDecl *>(this)}, nullptr)) {
return type;
}
return Type();
}
void ParamDecl::setDefaultExpr(Expr *E) {
auto *defaultInfo = DefaultValueAndFlags.getPointer();
if (defaultInfo) {
assert(defaultInfo->DefaultArg.isNull() ||
defaultInfo->DefaultArg.is<Expr *>());
auto *const oldE = defaultInfo->DefaultArg.dyn_cast<Expr *>();
assert((bool)E == (bool)oldE && "Overwrite of non-null default with null");
assert((!oldE || !oldE->getType() || (bool)E->getType()) &&
"Overwrite of type-checked default with non-type-checked default");
} else {
if (!E) return;
defaultInfo = getASTContext().Allocate<StoredDefaultArgument>();
DefaultValueAndFlags.setPointer(defaultInfo);
defaultInfo->InitContextAndIsTypeChecked.setInt(false);
}
defaultInfo->DefaultArg = E;
}
void ParamDecl::setTypeCheckedDefaultExpr(Expr *E) {
assert(E || getDefaultArgumentKind() == DefaultArgumentKind::Inherited);
setDefaultExpr(E);
auto *defaultInfo = DefaultValueAndFlags.getPointer();
if (!defaultInfo) {
defaultInfo = getASTContext().Allocate<StoredDefaultArgument>();
DefaultValueAndFlags.setPointer(defaultInfo);
}
defaultInfo->InitContextAndIsTypeChecked.setInt(true);
}
void ParamDecl::setDefaultExprType(Type type) {
if (!DefaultValueAndFlags.getPointer()) {
// If there is no type, let's not allocate storage.
if (!type)
return;
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
auto *defaultInfo = DefaultValueAndFlags.getPointer();
defaultInfo->ExprType = type;
}
void ParamDecl::setStoredProperty(VarDecl *var) {
if (!DefaultValueAndFlags.getPointer()) {
if (!var) return;
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
auto *defaultInfo = DefaultValueAndFlags.getPointer();
assert(defaultInfo->DefaultArg.isNull() ||
defaultInfo->DefaultArg.is<VarDecl *>());
defaultInfo->DefaultArg = var;
}
Type ValueDecl::getResultBuilderType() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<ValueDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ResultBuilderTypeRequest{mutableThis},
Type());
}
CustomAttr *ValueDecl::getAttachedResultBuilder() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<ValueDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
AttachedResultBuilderRequest{mutableThis},
nullptr);
}
void ParamDecl::setDefaultArgumentInitContext(Initializer *initContext) {
auto oldContext = getCachedDefaultArgumentInitContext();
assert((!oldContext || oldContext == initContext) &&
"Cannot change init context after setting");
auto *defaultInfo = DefaultValueAndFlags.getPointer();
assert(defaultInfo);
defaultInfo->InitContextAndIsTypeChecked.setPointer(initContext);
}
CaptureInfo ParamDecl::getDefaultArgumentCaptureInfo() const {
if (!DefaultValueAndFlags.getPointer())
return CaptureInfo::empty();
auto &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
ParamCaptureInfoRequest{const_cast<ParamDecl *>(this)},
CaptureInfo::empty());
}
void ParamDecl::setDefaultArgumentCaptureInfo(CaptureInfo captures) {
assert(DefaultValueAndFlags.getPointer());
assert(captures.hasBeenComputed());
DefaultValueAndFlags.getPointer()->Captures = captures;
}
PropertyWrapperValuePlaceholderExpr *
swift::findWrappedValuePlaceholder(Expr *init) {
class Walker : public ASTWalker {
public:
PropertyWrapperValuePlaceholderExpr *placeholder = nullptr;
/// Only walk the arguments of a macro, to represent the source as written.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Arguments;
}
virtual PreWalkResult<Expr *> walkToExprPre(Expr *E) override {
if (placeholder)
return Action::SkipNode(E);
if (auto *value = dyn_cast<PropertyWrapperValuePlaceholderExpr>(E)) {
placeholder = value;
return Action::SkipNode(value);
}
return Action::Continue(E);
}
} walker;
init->walk(walker);
return walker.placeholder;
}
/// Writes a tuple expression where each element is either `nil` or another such
/// tuple of nils.
/// This comes up when printing default arguments for memberwise initializers
/// that were created implicitly.
/// For example, this var:
/// ```
/// var x: (Int?, (Int?, Int?, ()))
/// ```
/// will produce `(nil, (nil, nil, ()))`
static void writeTupleOfNils(TupleType *type, llvm::raw_ostream &os) {
os << '(';
for (unsigned i = 0; i < type->getNumElements(); ++i) {
auto &elt = type->getElement(i);
if (elt.hasName()) {
os << elt.getName().str() << ": ";
}
if (elt.getType()->getOptionalObjectType()) {
os << "nil";
} else {
writeTupleOfNils(elt.getType()->castTo<TupleType>(), os);
}
if (i < type->getNumElements() - 1) {
os << ", ";
}
}
os << ')';
}
/// Determines if the given type is a potentially nested tuple of optional
/// types.
static bool isTupleOfOptionals(Type type) {
auto tuple = type->getAs<TupleType>();
if (!tuple) return false;
for (auto elt : tuple->getElementTypes())
if (!elt->getOptionalObjectType() && !isTupleOfOptionals(elt))
return false;
return true;
}
StringRef
ParamDecl::getDefaultValueStringRepresentation(
SmallVectorImpl<char> &scratch) const {
switch (getDefaultArgumentKind()) {
case DefaultArgumentKind::None:
llvm_unreachable("called on a ParamDecl with no default value");
case DefaultArgumentKind::ExpressionMacro:
case DefaultArgumentKind::Normal: {
assert(DefaultValueAndFlags.getPointer() &&
"default value not provided yet");
auto existing = DefaultValueAndFlags.getPointer()->StringRepresentation;
if (!existing.empty())
return existing;
assert(hasDefaultExpr()
&& "Normal default argument with no default expression?!");
return extractInlinableText(getASTContext().SourceMgr,
getStructuralDefaultExpr(), scratch);
}
case DefaultArgumentKind::StoredProperty: {
assert(DefaultValueAndFlags.getPointer() &&
"default value not provided yet");
auto existing = DefaultValueAndFlags.getPointer()->StringRepresentation;
if (!existing.empty())
return existing;
auto var = getStoredProperty();
if (auto original = var->getOriginalWrappedProperty()) {
auto wrapperAttrs = original->getAttachedPropertyWrappers();
if (wrapperAttrs.size() > 0) {
auto attr = wrapperAttrs.front();
if (auto *args = attr->getArgs()) {
SourceRange fullRange(attr->getTypeRepr()->getSourceRange().Start,
args->getEndLoc());
auto charRange = Lexer::getCharSourceRangeFromSourceRange(
getASTContext().SourceMgr, fullRange);
return getASTContext().SourceMgr.extractText(charRange);
}
// If there is no initial wrapped value, we used the default initializer.
Expr *wrappedValue = nullptr;
if (auto *parentInit = original->getParentInitializer())
if (auto *placeholder = findWrappedValuePlaceholder(parentInit))
wrappedValue = placeholder->getOriginalWrappedValue();
if (!wrappedValue) {
if (auto type = original->getPropertyWrapperBackingPropertyType()) {
if (auto nominal = type->getAnyNominal()) {
scratch.clear();
auto typeName = nominal->getName().str();
scratch.append(typeName.begin(), typeName.end());
scratch.push_back('(');
scratch.push_back(')');
return {scratch.data(), scratch.size()};
}
}
return ".init()";
}
auto &sourceMgr = getASTContext().SourceMgr;
return extractInlinableText(sourceMgr, wrappedValue, scratch);
}
}
auto init = var->getParentInitializer();
if (!init || !init->getSourceRange().isValid()) {
// Special case: There are two possible times where we will synthesize a
// default initial value for a stored property: if the type
// is Optional, or if it's a (potentially nested) tuple of
// all Optional elements. If it's Optional, we'll set
// the DefaultArgumentKind to NilLiteral, but if we're still
// handling a StoredProperty, then we know it's a tuple.
if (isTupleOfOptionals(getInterfaceType())) {
llvm::raw_svector_ostream os(scratch);
writeTupleOfNils(getInterfaceType()->castTo<TupleType>(), os);
return os.str();
}
return "<<empty>>";
}
return extractInlinableText(getASTContext().SourceMgr,
init,
scratch);
}
case DefaultArgumentKind::Inherited: return "super";
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME: return STRING;
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::NilLiteral: return "nil";
case DefaultArgumentKind::EmptyArray: return "[]";
case DefaultArgumentKind::EmptyDictionary: return "[:]";
}
llvm_unreachable("unhandled kind");
}
void
ParamDecl::setDefaultValueStringRepresentation(StringRef stringRepresentation) {
assert(getDefaultArgumentKind() == DefaultArgumentKind::Normal ||
getDefaultArgumentKind() == DefaultArgumentKind::StoredProperty ||
getDefaultArgumentKind() == DefaultArgumentKind::ExpressionMacro);
assert(!stringRepresentation.empty());
if (!DefaultValueAndFlags.getPointer()) {
DefaultValueAndFlags.setPointer(
getASTContext().Allocate<StoredDefaultArgument>());
}
DefaultValueAndFlags.getPointer()->StringRepresentation =
stringRepresentation;
}
void DefaultArgumentInitializer::changeFunction(
DeclContext *parent, ParameterList *paramList) {
if (parent->isLocalContext()) {
setParent(parent);
}
auto param = paramList->get(getIndex());
if (param->hasDefaultExpr() || param->getStoredProperty())
param->setDefaultArgumentInitContext(this);
}
/// Determine whether the given Swift type is an integral type, i.e.,
/// a type that wraps a builtin integer.
static bool isIntegralType(Type type) {
// Consider structs in the standard library module that wrap a builtin
// integer type to be integral types.
if (auto structTy = type->getAs<StructType>()) {
auto structDecl = structTy->getDecl();
const DeclContext *DC = structDecl->getDeclContext();
if (!DC->isModuleScopeContext() || !DC->getParentModule()->isStdlibModule())
return false;
// Find the single ivar.
VarDecl *singleVar = nullptr;
for (auto member : structDecl->getStoredProperties()) {
if (singleVar)
return false;
singleVar = member;
}
if (!singleVar)
return false;
// Check whether it has integer type.
return singleVar->getInterfaceType()->is<BuiltinIntegerType>();
}
return false;
}
void SubscriptDecl::setIndices(ParameterList *p) {
Indices = p;
if (Indices)
Indices->setDeclContextOfParamDecls(this);
}
Type SubscriptDecl::getElementInterfaceType() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<SubscriptDecl *>(this);
if (auto type = evaluateOrDefault(ctx.evaluator,
ResultTypeRequest{mutableThis},
Type()))
return type;
return ErrorType::get(ctx);
}
ObjCSubscriptKind SubscriptDecl::getObjCSubscriptKind() const {
// If the index type is an integral type, we have an indexed
// subscript.
if (auto funcTy = getInterfaceType()->getAs<AnyFunctionType>()) {
auto params = funcTy->getParams();
if (params.size() == 1)
if (isIntegralType(params[0].getPlainType()))
return ObjCSubscriptKind::Indexed;
}
// If the index type is an object type in Objective-C, we have a
// keyed subscript.
return ObjCSubscriptKind::Keyed;
}
void SubscriptDecl::setElementInterfaceType(Type type) {
getASTContext().evaluator.cacheOutput(ResultTypeRequest{this},
std::move(type));
}
SubscriptDecl *
SubscriptDecl::createDeserialized(ASTContext &Context, DeclName Name,
StaticSpellingKind StaticSpelling,
Type ElementTy, DeclContext *Parent,
GenericParamList *GenericParams) {
assert(ElementTy && "Deserialized element type must not be null");
auto *const SD = new (Context)
SubscriptDecl(Name, SourceLoc(), StaticSpelling, SourceLoc(), nullptr,
SourceLoc(), /*ElementTyR=*/nullptr, Parent, GenericParams);
SD->setElementInterfaceType(ElementTy);
return SD;
}
SubscriptDecl *SubscriptDecl::createParsed(
ASTContext &Context, SourceLoc StaticLoc, StaticSpellingKind StaticSpelling,
SourceLoc SubscriptLoc, ParameterList *Indices, SourceLoc ArrowLoc,
TypeRepr *ElementTyR, DeclContext *Parent,
GenericParamList *GenericParams) {
assert(ElementTyR);
auto Name = DeclName(Context, DeclBaseName::createSubscript(), Indices);
auto *const SD = new (Context)
SubscriptDecl(Name, StaticLoc, StaticSpelling, SubscriptLoc, Indices,
ArrowLoc, ElementTyR, Parent, GenericParams);
return SD;
}
SubscriptDecl *SubscriptDecl::create(ASTContext &Context, DeclName Name,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc SubscriptLoc,
ParameterList *Indices, SourceLoc ArrowLoc,
Type ElementTy, DeclContext *Parent,
GenericParamList *GenericParams) {
auto *const SD = new (Context)
SubscriptDecl(Name, StaticLoc, StaticSpelling, SubscriptLoc, Indices,
ArrowLoc, nullptr, Parent, GenericParams);
SD->setElementInterfaceType(ElementTy);
return SD;
}
SubscriptDecl *SubscriptDecl::createImported(ASTContext &Context, DeclName Name,
SourceLoc SubscriptLoc,
ParameterList *Indices,
SourceLoc ArrowLoc, Type ElementTy,
DeclContext *Parent,
GenericParamList *GenericParams,
ClangNode ClangN) {
assert(ClangN && ElementTy);
auto *DeclPtr = allocateMemoryForDecl<SubscriptDecl>(
Context, sizeof(SubscriptDecl), /*includeSpaceForClangNode=*/true);
auto *const SD = ::new (DeclPtr)
SubscriptDecl(Name, SourceLoc(), StaticSpellingKind::None, SubscriptLoc,
Indices, ArrowLoc, /*ElementTyR=*/nullptr, Parent,
GenericParams);
SD->setElementInterfaceType(ElementTy);
SD->setClangNode(ClangN);
return SD;
}
SourceRange SubscriptDecl::getSourceRange() const {
auto Start = getStaticLoc().isValid() ? getStaticLoc() : getSubscriptLoc();
if (Start.isInvalid())
return SourceRange();
if (auto End = getBracesRange().End)
return SourceRange(Start, End);
if (auto *Where = getTrailingWhereClause()) {
if (auto End = Where->getSourceRange().End)
return SourceRange(Start, End);
}
if (auto *ElementTy = getElementTypeRepr()) {
if (auto End = ElementTy->getEndLoc())
return SourceRange(Start, End);
}
if (ArrowLoc)
return SourceRange(Start, ArrowLoc);
if (auto *Indices = getIndices()) {
if (auto End = Indices->getEndLoc())
return SourceRange(Start, End);
}
return SourceRange(Start);
}
SourceRange SubscriptDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
if (auto Indices = getIndices()) {
auto End = Indices->getEndLoc();
if (End.isValid()) {
return SourceRange(getSubscriptLoc(), End);
}
}
return getSubscriptLoc();
}
DeclName AbstractFunctionDecl::getEffectiveFullName() const {
if (getName())
return getName();
if (auto accessor = dyn_cast<AccessorDecl>(this)) {
auto &ctx = getASTContext();
auto storage = accessor->getStorage();
auto subscript = dyn_cast<SubscriptDecl>(storage);
switch (accessor->getAccessorKind()) {
// These don't have any extra implicit parameters.
case AccessorKind::Address:
case AccessorKind::MutableAddress:
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Read:
case AccessorKind::Modify:
return subscript ? subscript->getName()
: DeclName(ctx, storage->getBaseName(),
ArrayRef<Identifier>());
case AccessorKind::Set:
case AccessorKind::DidSet:
case AccessorKind::WillSet:
case AccessorKind::Init: {
SmallVector<Identifier, 4> argNames;
// The implicit value/buffer parameter.
argNames.push_back(Identifier());
// The subscript index parameters.
if (subscript) {
argNames.append(subscript->getName().getArgumentNames().begin(),
subscript->getName().getArgumentNames().end());
}
return DeclName(ctx, storage->getBaseName(), argNames);
}
}
llvm_unreachable("bad accessor kind");
}
return DeclName();
}
ParameterList *swift::getParameterList(ValueDecl *source) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(source)) {
return AFD->getParameters();
} else if (auto *EED = dyn_cast<EnumElementDecl>(source)) {
return EED->getParameterList();
} else if (auto *SD = dyn_cast<SubscriptDecl>(source)) {
return SD->getIndices();
} else if (auto *MD = dyn_cast<MacroDecl>(source)) {
return MD->parameterList;
}
return nullptr;
}
ParameterList *swift::getParameterList(DeclContext *source) {
if (auto *D = source->getAsDecl()) {
if (auto *VD = dyn_cast<ValueDecl>(D)) {
return getParameterList(VD);
}
} else if (auto *CE = dyn_cast<AbstractClosureExpr>(source)) {
return CE->getParameters();
}
return nullptr;
}
const ParamDecl *swift::getParameterAt(ConcreteDeclRef declRef,
unsigned index) {
auto *source = declRef.getDecl();
if (auto *params = getParameterList(const_cast<ValueDecl *>(source))) {
unsigned origIndex = params->getOrigParamIndex(declRef.getSubstitutions(),
index);
return params->get(origIndex);
}
return nullptr;
}
const ParamDecl *swift::getParameterAt(const ValueDecl *source,
unsigned index) {
if (auto *params = getParameterList(const_cast<ValueDecl *>(source))) {
return index < params->size() ? params->get(index) : nullptr;
}
return nullptr;
}
const ParamDecl *swift::getParameterAt(const DeclContext *source,
unsigned index) {
if (auto *params = getParameterList(const_cast<DeclContext *>(source))) {
return index < params->size() ? params->get(index) : nullptr;
}
return nullptr;
}
CaptureInfo AbstractFunctionDecl::getCaptureInfo() const {
auto &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
CaptureInfoRequest{const_cast<AbstractFunctionDecl *>(this)},
CaptureInfo::empty());
}
Type AbstractFunctionDecl::getMethodInterfaceType() const {
assert(getDeclContext()->isTypeContext());
auto Ty = getInterfaceType();
if (Ty->is<ErrorType>())
return Ty;
return Ty->castTo<AnyFunctionType>()->getResult();
}
bool AbstractFunctionDecl::hasDynamicSelfResult() const {
if (auto *funcDecl = dyn_cast<FuncDecl>(this))
return funcDecl->getResultInterfaceType()->hasDynamicSelfType();
return isa<ConstructorDecl>(this);
}
AbstractFunctionDecl *AbstractFunctionDecl::getAsyncAlternative() const {
// Async functions can't have async alternatives
if (hasAsync())
return nullptr;
const AvailableAttr *avAttr = nullptr;
for (const auto *attr : getAttrs().getAttributes<AvailableAttr>()) {
// If there's an attribute with an already-resolved rename decl, use it
if (attr->RenameDecl) {
avAttr = attr;
break;
}
// Otherwise prefer the first availability attribute with no platform and
// rename parameter, falling back to the first with a rename. Note that
// `getAttrs` is in reverse source order, so the last attribute is the
// first in source
if (!attr->Rename.empty() &&
(attr->Platform == PlatformKind::none || !avAttr) && !attr->isNoAsync()) {
avAttr = attr;
}
}
auto *renamedDecl = evaluateOrDefault(
getASTContext().evaluator, RenamedDeclRequest{this, avAttr}, nullptr);
auto *alternative = dyn_cast_or_null<AbstractFunctionDecl>(renamedDecl);
if (!alternative || !alternative->hasAsync())
return nullptr;
return alternative;
}
static bool isPotentialCompletionHandler(const ParamDecl *param) {
if (!param->getInterfaceType())
return false;
auto *paramType = param->getInterfaceType()->getAs<AnyFunctionType>();
return paramType && paramType->getResult()->isVoid() &&
!paramType->isNoEscape() && !param->isAutoClosure();
}
std::optional<unsigned>
AbstractFunctionDecl::findPotentialCompletionHandlerParam(
const AbstractFunctionDecl *asyncAlternative) const {
const ParameterList *params = getParameters();
if (params->size() == 0)
return std::nullopt;
// If no async alternative given, just find the last parameter that matches
// a completion handler signature
if (!asyncAlternative) {
for (int i = params->size() - 1; i >= 0; --i) {
if (isPotentialCompletionHandler(params->get(i)))
return i;
}
return std::nullopt;
}
// If this is an imported function with an async convention then we already
// have the index, grab it from there
auto asyncConvention = asyncAlternative->getForeignAsyncConvention();
if (asyncConvention) {
auto errorConvention = asyncAlternative->getForeignErrorConvention();
unsigned handlerIndex = asyncConvention->completionHandlerParamIndex();
if (errorConvention &&
!errorConvention->isErrorParameterReplacedWithVoid() &&
handlerIndex >= errorConvention->getErrorParameterIndex()) {
handlerIndex--;
}
return handlerIndex;
}
// Otherwise, match up the parameters of each function and return the single
// missing parameter that must also match a completion handler signature.
// Ignore any defaulted params in the alternative if their label is different
// to the corresponding param in the original function.
const ParameterList *asyncParams = asyncAlternative->getParameters();
unsigned paramIndex = 0;
unsigned asyncParamIndex = 0;
std::optional<unsigned> potentialParam;
while (paramIndex < params->size() || asyncParamIndex < asyncParams->size()) {
if (paramIndex >= params->size()) {
// Have more async params than original params, if we haven't found a
// completion handler then there isn't going to be any. If we have then
// ensure the rest of the async params are defaulted
if (!potentialParam ||
!asyncParams->get(asyncParamIndex)->isDefaultArgument())
return std::nullopt;
asyncParamIndex++;
continue;
}
auto *param = params->get(paramIndex);
bool paramMatches = false;
if (asyncParamIndex < asyncParams->size()) {
const ParamDecl *asyncParam = asyncParams->get(asyncParamIndex);
// Skip if the labels are different and it's defaulted
if (param->getArgumentName() != asyncParam->getArgumentName() &&
asyncParam->isDefaultArgument()) {
asyncParamIndex++;
continue;
}
// Don't have types for some reason, just return no match
if (!param->getInterfaceType() || !asyncParam->getInterfaceType())
return std::nullopt;
paramMatches = param->getInterfaceType()->matchesParameter(
asyncParam->getInterfaceType(), TypeMatchOptions());
}
if (paramMatches) {
paramIndex++;
asyncParamIndex++;
continue;
}
// Param doesn't match, either it's the first completion handler or these
// functions don't match
if (potentialParam || !isPotentialCompletionHandler(param))
return std::nullopt;
// The next original param should match the current async, so don't
// increment the async index
potentialParam = paramIndex;
paramIndex++;
}
return potentialParam;
}
bool AbstractFunctionDecl::argumentNameIsAPIByDefault() const {
// Initializers have argument labels.
if (isa<ConstructorDecl>(this))
return true;
if (auto func = dyn_cast<FuncDecl>(this)) {
// Operators do not have argument labels.
if (func->isOperator())
return false;
// Other functions have argument labels for all arguments
return true;
}
assert(isa<DestructorDecl>(this));
return false;
}
bool AbstractFunctionDecl::isSendable() const {
return getAttrs().hasAttribute<SendableAttr>();
}
bool AbstractFunctionDecl::hasBody() const {
switch (getBodyKind()) {
case BodyKind::Deserialized:
case BodyKind::Parsed:
case BodyKind::SILSynthesize:
case BodyKind::Synthesize:
case BodyKind::Unparsed:
return true;
case BodyKind::None:
return false;
case BodyKind::TypeChecked:
return BodyAndFP.getBody() != nullptr;
}
}
/// Expand all preamble macros attached to the given function declaration.
static std::vector<ASTNode> expandPreamble(AbstractFunctionDecl *func) {
std::vector<ASTNode> preamble;
ASTContext &ctx = func->getASTContext();
ExpandPreambleMacroRequest request{func};
auto module = func->getParentModule();
for (auto bufferID : evaluateOrDefault(ctx.evaluator, request, { })) {
auto bufferStart = ctx.SourceMgr.getLocForBufferStart(bufferID);
auto preambleSF = module->getSourceFileContainingLocation(bufferStart);
preamble.insert(preamble.end(),
preambleSF->getTopLevelItems().begin(),
preambleSF->getTopLevelItems().end());
}
return preamble;
}
/// Expand body macros and produce the resulting body.
static BraceStmt *expandBodyMacro(AbstractFunctionDecl *fn) {
ASTContext &ctx = fn->getASTContext();
// Expand a body macro, if there is one.
BraceStmt *macroExpandedBody = nullptr;
if (auto bufferID = evaluateOrDefault(
ctx.evaluator, ExpandBodyMacroRequest{fn}, std::nullopt)) {
CharSourceRange bufferRange = ctx.SourceMgr.getRangeForBuffer(*bufferID);
auto bufferStart = bufferRange.getStart();
auto module = fn->getParentModule();
auto macroSourceFile = module->getSourceFileContainingLocation(bufferStart);
if (macroSourceFile->getTopLevelItems().size() == 1) {
auto stmt = macroSourceFile->getTopLevelItems()[0].dyn_cast<Stmt *>();
macroExpandedBody = dyn_cast<BraceStmt>(stmt);
}
}
// Expand the preamble.
auto preamble = expandPreamble(fn);
// If there is no preamble, we're done one way or the other: return the
// macro-expanded body.
if (preamble.empty())
return macroExpandedBody;
// We have a preamble. The body is either the one produced by macro expansion,
// or if not that, the one that was written.
auto body = macroExpandedBody ? macroExpandedBody : fn->getBody();
// If there is no body at this point, the preamble has nowhere to go.
if (!body) {
// FIXME: diagnose this
return nullptr;
}
// Merge the preamble into the body.
auto contents = std::move(preamble);
contents.insert(
contents.end(),
body->getElements().begin(),
body->getElements().end());
return BraceStmt::create(
ctx, body->getStartLoc(), contents, body->getEndLoc());
}
BraceStmt *AbstractFunctionDecl::getMacroExpandedBody() const {
auto mutableThis = const_cast<AbstractFunctionDecl *>(this);
switch (getBodyKind()) {
case BodyKind::None:
case BodyKind::Unparsed:
case BodyKind::Parsed:
switch (getBodyExpandedStatus()) {
case BodyExpandedStatus::NotExpanded:
if (auto expandedBody = expandBodyMacro(mutableThis)) {
// Save the original body's source range.
mutableThis->keepOriginalBodySourceRange();
// Cache the expanded macro body as the parsed body of the function.
mutableThis->setBodyExpandedStatus(BodyExpandedStatus::Expanded);
mutableThis->setBodyParsed(expandedBody);
return expandedBody;
}
mutableThis->setBodyExpandedStatus(BodyExpandedStatus::NoMacros);
break;
case BodyExpandedStatus::NoMacros:
case BodyExpandedStatus::Expanded:
break;
}
// Fall through to get the body.
LLVM_FALLTHROUGH;
case BodyKind::Synthesize:
case BodyKind::TypeChecked:
case BodyKind::SILSynthesize:
case BodyKind::Deserialized:
return getBody(/*canSynthesize=*/true);
}
}
BraceStmt *AbstractFunctionDecl::getBody(bool canSynthesize) const {
if ((getBodyKind() == BodyKind::Synthesize ||
getBodyKind() == BodyKind::Unparsed) &&
!canSynthesize)
return nullptr;
ASTContext &ctx = getASTContext();
// Don't allow getBody() to trigger parsing of an unparsed body containing the
// IDE inspection location.
// FIXME: We should be properly constructing the range of the body as a
// CharSourceRange but we can't because we don't have access to the lexer
// here. Using the end location of the SourceRange works good enough here
// because the last token is a '}' and the IDE inspection point is not inside
// the closing brace.
if (getBodyKind() == BodyKind::Unparsed &&
ctx.SourceMgr.rangeContainsIDEInspectionTarget(
CharSourceRange(ctx.SourceMgr, getBodySourceRange().Start,
getBodySourceRange().End))) {
return nullptr;
}
auto mutableThis = const_cast<AbstractFunctionDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ParseAbstractFunctionBodyRequest{mutableThis}, {})
.getBody();
}
BraceStmt *AbstractFunctionDecl::getTypecheckedBody() const {
auto &ctx = getASTContext();
auto *mutableThis = const_cast<AbstractFunctionDecl *>(this);
return evaluateOrDefault(
ctx.evaluator, TypeCheckFunctionBodyRequest{mutableThis}, nullptr);
}
void AbstractFunctionDecl::setBody(BraceStmt *S, BodyKind NewBodyKind) {
std::optional<Fingerprint> fp = std::nullopt;
if (getBodyKind() == BodyKind::TypeChecked ||
getBodyKind() == BodyKind::Parsed) {
fp = BodyAndFP.getFingerprint();
}
BodyAndFP = BodyAndFingerprint(S, fp);
setBodyKind(NewBodyKind);
// Need to recompute init body kind.
if (NewBodyKind < BodyKind::TypeChecked) {
if (auto *ctor = dyn_cast<ConstructorDecl>(this))
ctor->clearCachedDelegatingOrChainedInitKind();
}
}
bool AbstractFunctionDecl::isBodySkipped() const {
return evaluateOrDefault(getASTContext().evaluator,
IsFunctionBodySkippedRequest{this}, false);
}
/// Determines whether typechecking can be skipped for a function body. Bodies
/// are skipped as a performance optimization when an
/// `-experimental-skip-*-function-bodies` flag is specified and the body meets
/// the criteria for skipping. If a body is skipped during typechecking, it is
/// also skipped during SILGen. Some bodies cannot be skipped, even when they
/// otherwise meet the criteria, because typechecking them has essential
/// side-effects that are required for correctness of the AST.
bool IsFunctionBodySkippedRequest::evaluate(
Evaluator &evaluator, const AbstractFunctionDecl *afd) const {
auto &Ctx = afd->getASTContext();
auto skippingMode = Ctx.TypeCheckerOpts.SkipFunctionBodies;
if (skippingMode == FunctionBodySkipping::None)
return false;
// Functions that have been synthesized for clang modules will be serialized
// because they have shared linkage.
if (isa<ClangModuleUnit>(afd->getDeclContext()->getModuleScopeContext()))
return false;
if (auto *accessor = dyn_cast<AccessorDecl>(afd)) {
// didSet accessors needs to be checked to determine whether to keep their
// parameters.
if (accessor->getAccessorKind() == AccessorKind::DidSet)
return false;
// Synthesized accessors with forced static dispatch are emitted on-demand
// and are serialized. Since they are serialized we must be willing to
// typecheck them.
if (accessor->hasForcedStaticDispatch())
return false;
}
// Actor initializers need to be checked to determine delegation status.
if (auto *ctor = dyn_cast<ConstructorDecl>(afd))
if (auto *nom = ctor->getParent()->getSelfNominalTypeDecl())
if (nom->isAnyActor())
return false;
// Skipping all bodies won't serialize anything, so we can skip everything
// else.
if (skippingMode == FunctionBodySkipping::All)
return true;
// If we want all types (for LLDB) then we can't skip functions with nested
// types. We could probably improve upon this and type-check only the nested
// types instead for better performances.
if (afd->hasNestedTypeDeclarations() &&
skippingMode == FunctionBodySkipping::NonInlinableWithoutTypes)
return false;
// Skip functions that don't need to be serialized.
return afd->getResilienceExpansion() != ResilienceExpansion::Minimal;
}
void AbstractFunctionDecl::setBodyToBeReparsed(SourceRange bodyRange) {
assert(bodyRange.isValid());
assert(getBodyKind() == BodyKind::Unparsed ||
getBodyKind() == BodyKind::Parsed ||
getBodyKind() == BodyKind::TypeChecked);
keepOriginalBodySourceRange();
BodyRange = bodyRange;
setBodyKind(BodyKind::Unparsed);
if (auto SF = getParentSourceFile()) {
SF->getASTContext().evaluator.clearCachedOutput(LocalTypeDeclsRequest{SF});
}
}
SourceRange AbstractFunctionDecl::getBodySourceRange() const {
switch (getBodyKind()) {
case BodyKind::None:
case BodyKind::SILSynthesize:
case BodyKind::Deserialized:
case BodyKind::Synthesize:
return SourceRange();
case BodyKind::Parsed:
case BodyKind::TypeChecked:
if (auto body = getBody(/*canSynthesize=*/false))
return body->getSourceRange();
return SourceRange();
case BodyKind::Unparsed:
return BodyRange;
}
llvm_unreachable("bad BodyKind");
}
SourceRange AbstractFunctionDecl::getSignatureSourceRange() const {
if (isImplicit())
return SourceRange();
auto paramList = getParameters();
auto endLoc = paramList->getSourceRange().End;
if (endLoc.isValid())
return SourceRange(getNameLoc(), endLoc);
return getNameLoc();
}
std::optional<Fingerprint> AbstractFunctionDecl::getBodyFingerprint() const {
ASTContext &ctx = getASTContext();
auto mutableThis = const_cast<AbstractFunctionDecl *>(this);
return evaluateOrDefault(ctx.evaluator,
ParseAbstractFunctionBodyRequest{mutableThis}, {})
.getFingerprint();
}
std::optional<Fingerprint>
AbstractFunctionDecl::getBodyFingerprintIncludingLocalTypeMembers() const {
class HashCombiner : public ASTWalker {
StableHasher &hasher;
public:
HashCombiner(StableHasher &hasher) : hasher(hasher) {}
/// Only walk the arguments of a macro, to represent the source as written.
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Arguments;
}
PreWalkAction walkToDeclPre(Decl *D) override {
if (D->isImplicit())
return Action::SkipNode();
if (auto *idc = dyn_cast<IterableDeclContext>(D)) {
if (auto fp = idc->getBodyFingerprint())
hasher.combine(*fp);
// Since ASTWalker calls 'getMembers()' which might tries to synthesize
// members etc., manually recurse into `getParsedMembers()`.
for (auto *d : idc->getParsedMembers())
const_cast<Decl *>(d)->walk(*this);
return Action::SkipNode();
}
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
if (auto fp = afd->getBodyFingerprint())
hasher.combine(*fp);
}
return Action::Continue();
}
};
StableHasher hasher = StableHasher::defaultHasher();
HashCombiner combiner(hasher);
const_cast<AbstractFunctionDecl *>(this)->walk(combiner);
return Fingerprint(std::move(hasher));
}
ObjCSelector
AbstractFunctionDecl::getObjCSelector(DeclName preferredName,
bool skipIsObjCResolution) const {
// FIXME: Forces computation of the Objective-C selector.
if (!skipIsObjCResolution)
(void)isObjC();
// If there is an @objc attribute with a name, use that name.
auto *objc = getAttrs().getAttribute<ObjCAttr>();
if (auto name = getNameFromObjcAttribute(objc, preferredName)) {
return *name;
}
auto &ctx = getASTContext();
StringRef baseNameStr;
if (auto destructor = dyn_cast<DestructorDecl>(this)) {
return destructor->getObjCSelector();
} else if (auto func = dyn_cast<FuncDecl>(this)) {
// Otherwise cast this to be able to access getName()
baseNameStr = func->getBaseIdentifier().str();
} else if (isa<ConstructorDecl>(this)) {
baseNameStr = "init";
} else {
llvm_unreachable("Unknown subclass of AbstractFunctionDecl");
}
auto argNames = getName().getArgumentNames();
// Use the preferred name if specified
if (preferredName) {
// Return invalid selector if argument count doesn't match.
if (argNames.size() != preferredName.getArgumentNames().size()) {
return ObjCSelector();
}
baseNameStr = preferredName.getBaseName().userFacingName();
argNames = preferredName.getArgumentNames();
}
auto baseName = ctx.getIdentifier(baseNameStr);
if (auto accessor = dyn_cast<AccessorDecl>(this)) {
// For a getter or setter, go through the variable or subscript decl.
auto asd = accessor->getStorage();
if (accessor->isGetter())
return asd->getObjCGetterSelector(baseName);
if (accessor->isSetter())
return asd->getObjCSetterSelector(baseName);
}
// If this is a zero-parameter initializer with a long selector
// name, form that selector.
auto ctor = dyn_cast<ConstructorDecl>(this);
if (ctor && ctor->isObjCZeroParameterWithLongSelector()) {
Identifier firstName = argNames[0];
llvm::SmallString<16> scratch;
scratch += "init";
// If the first argument name doesn't start with a preposition, add "with".
if (!isPreposition(camel_case::getFirstWord(firstName.str()))) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
return ObjCSelector(ctx, 0, ctx.getIdentifier(scratch));
}
// The number of selector pieces we'll have.
std::optional<ForeignAsyncConvention> asyncConvention =
getForeignAsyncConvention();
std::optional<ForeignErrorConvention> errorConvention =
getForeignErrorConvention();
unsigned numSelectorPieces
= argNames.size() + (asyncConvention.has_value() ? 1 : 0)
+ (errorConvention.has_value() ? 1 : 0);
// If we have no arguments, it's a nullary selector.
if (numSelectorPieces == 0) {
return ObjCSelector(ctx, 0, baseName);
}
// If it's a unary selector with no name for the first argument, we're done.
if (numSelectorPieces == 1 && argNames.size() == 1 && argNames[0].empty()) {
return ObjCSelector(ctx, 1, baseName);
}
/// Collect the selector pieces.
SmallVector<Identifier, 4> selectorPieces;
selectorPieces.reserve(numSelectorPieces);
bool didStringManipulation = false;
unsigned argIndex = 0;
for (unsigned piece = 0; piece != numSelectorPieces; ++piece) {
if (piece > 0) {
// If we have an async convention that inserts a completion handler
// parameter here, add "completionHandler".
if (asyncConvention &&
piece == asyncConvention->completionHandlerParamIndex()) {
selectorPieces.push_back(ctx.getIdentifier("completionHandler"));
continue;
}
// If we have an error convention that inserts an error parameter
// here, add "error".
if (errorConvention &&
piece == errorConvention->getErrorParameterIndex()) {
selectorPieces.push_back(ctx.Id_error);
continue;
}
// Selector pieces beyond the first are simple.
selectorPieces.push_back(argNames[argIndex++]);
continue;
}
// For the first selector piece, attach either the first parameter,
// "withCompletionHandler", or "AndReturnError" to the base name,
// if appropriate.
auto firstPiece = baseName;
llvm::SmallString<32> scratch;
scratch += firstPiece.str();
if (asyncConvention &&
piece == asyncConvention->completionHandlerParamIndex()) {
// The completion handler is first; append "WithCompletionHandler".
camel_case::appendSentenceCase(scratch, "WithCompletionHandler");
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else if (errorConvention &&
piece == errorConvention->getErrorParameterIndex()) {
// The error is first; append "AndReturnError".
camel_case::appendSentenceCase(scratch, "AndReturnError");
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else if (!argNames[argIndex].empty()) {
// If the first argument name doesn't start with a preposition, and the
// method name doesn't end with a preposition, add "with".
auto firstName = argNames[argIndex++];
if (!isPreposition(camel_case::getFirstWord(firstName.str())) &&
!isPreposition(camel_case::getLastWord(firstPiece.str()))) {
camel_case::appendSentenceCase(scratch, "With");
}
camel_case::appendSentenceCase(scratch, firstName.str());
firstPiece = ctx.getIdentifier(scratch);
didStringManipulation = true;
} else {
++argIndex;
}
selectorPieces.push_back(firstPiece);
}
assert(argIndex == argNames.size());
// Form the result.
auto result = ObjCSelector(ctx, selectorPieces.size(), selectorPieces);
// If we did any string manipulation, cache the result. We don't want to
// do that again.
if (didStringManipulation && objc && !preferredName)
const_cast<ObjCAttr *>(objc)->setName(result, /*implicit=*/true);
return result;
}
bool AbstractFunctionDecl::isObjCInstanceMethod() const {
return isInstanceMember() || isa<ConstructorDecl>(this);
}
bool AbstractFunctionDecl::needsNewVTableEntry() const {
auto &ctx = getASTContext();
return evaluateOrDefault(
ctx.evaluator,
NeedsNewVTableEntryRequest{const_cast<AbstractFunctionDecl *>(this)},
false);
}
ParamDecl *AbstractFunctionDecl::getImplicitSelfDecl(bool createIfNeeded) {
auto **selfDecl = getImplicitSelfDeclStorage();
// If this is not a method, return nullptr.
if (selfDecl == nullptr)
return nullptr;
// If we've already created a 'self' parameter, just return it.
if (*selfDecl != nullptr)
return *selfDecl;
// If we're not allowed to create one, return nullptr.
if (!createIfNeeded)
return nullptr;
// Create and save our 'self' parameter.
auto &ctx = getASTContext();
*selfDecl = new (ctx) ParamDecl(SourceLoc(), SourceLoc(), Identifier(),
getLoc(), ctx.Id_self, this);
(*selfDecl)->setImplicit();
return *selfDecl;
}
void AbstractFunctionDecl::setParameters(ParameterList *BodyParams) {
#ifndef NDEBUG
const auto Name = getName();
if (!isa<DestructorDecl>(this))
assert((!Name || !Name.isSimpleName()) && "Must have a compound name");
assert(!Name || (Name.getArgumentNames().size() == BodyParams->size()));
#endif
Params = BodyParams;
BodyParams->setDeclContextOfParamDecls(this);
}
OpaqueTypeDecl::OpaqueTypeDecl(ValueDecl *NamingDecl,
GenericParamList *GenericParams, DeclContext *DC,
GenericSignature OpaqueInterfaceGenericSignature,
ArrayRef<TypeRepr *>
OpaqueReturnTypeReprs)
: GenericTypeDecl(DeclKind::OpaqueType, DC, Identifier(), SourceLoc(), {},
GenericParams),
NamingDeclAndHasOpaqueReturnTypeRepr(
NamingDecl, !OpaqueReturnTypeReprs.empty()),
OpaqueInterfaceGenericSignature(OpaqueInterfaceGenericSignature) {
// Always implicit.
setImplicit();
/// We either have no opaque return type representations ('some P'), or we
/// have one for each opaque generic parameter.
assert(OpaqueReturnTypeReprs.empty() ||
OpaqueReturnTypeReprs.size() ==
OpaqueInterfaceGenericSignature.getInnermostGenericParams().size());
std::uninitialized_copy(
OpaqueReturnTypeReprs.begin(), OpaqueReturnTypeReprs.end(),
getTrailingObjects<TypeRepr *>());
}
OpaqueTypeDecl *OpaqueTypeDecl::get(
ValueDecl *NamingDecl, GenericParamList *GenericParams,
DeclContext *DC,
GenericSignature OpaqueInterfaceGenericSignature,
ArrayRef<TypeRepr *> OpaqueReturnTypeReprs) {
ASTContext &ctx = DC->getASTContext();
auto size = totalSizeToAlloc<TypeRepr *>(
OpaqueReturnTypeReprs.size());
auto mem = ctx.Allocate(size, alignof(OpaqueTypeDecl));
return new (mem) OpaqueTypeDecl(
NamingDecl, GenericParams, DC, OpaqueInterfaceGenericSignature,
OpaqueReturnTypeReprs);
}
bool OpaqueTypeDecl::isOpaqueReturnTypeOfFunction(
const AbstractFunctionDecl *func) const {
// Either the function is declared with its own opaque return type...
if (getNamingDecl() == func)
return true;
// ...or the function is a getter for a property or subscript with an
// opaque return type.
if (auto accessor = dyn_cast<AccessorDecl>(func)) {
return accessor->isGetter() && getNamingDecl() == accessor->getStorage();
}
return false;
}
bool OpaqueTypeDecl::hasExplicitGenericParams() const {
return getExplicitGenericParam(0) != nullptr;
}
GenericTypeParamDecl *OpaqueTypeDecl::getExplicitGenericParam(
unsigned ordinal) const {
if (ordinal >= getOpaqueGenericParams().size())
return nullptr;
auto genericParamType = getOpaqueGenericParams()[ordinal];
return genericParamType->getDecl();
}
bool OpaqueTypeDecl::exportUnderlyingType() const {
auto mod = getDeclContext()->getParentModule();
if (mod->getResilienceStrategy() != ResilienceStrategy::Resilient)
return true;
ValueDecl *namingDecl = getNamingDecl();
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(namingDecl))
return AFD->getResilienceExpansion() == ResilienceExpansion::Minimal;
if (auto *ASD = dyn_cast<AbstractStorageDecl>(namingDecl)) {
for (auto *accessor : ASD->getAllAccessors())
if (accessor->getResilienceExpansion() == ResilienceExpansion::Minimal)
return true;
return false;
}
llvm_unreachable("The naming decl is expected to be either an AFD or ASD");
}
std::optional<SubstitutionMap>
OpaqueTypeDecl::getUniqueUnderlyingTypeSubstitutions() const {
return evaluateOrDefault(getASTContext().evaluator,
UniqueUnderlyingTypeSubstitutionsRequest{this}, {});
}
std::optional<unsigned>
OpaqueTypeDecl::getAnonymousOpaqueParamOrdinal(TypeRepr *repr) const {
assert(NamingDeclAndHasOpaqueReturnTypeRepr.getInt() &&
"can't do opaque param lookup without underlying interface repr");
auto opaqueReprs = getOpaqueReturnTypeReprs();
auto found = std::find(opaqueReprs.begin(), opaqueReprs.end(), repr);
if (found != opaqueReprs.end())
return found - opaqueReprs.begin();
return std::nullopt;
}
Identifier OpaqueTypeDecl::getOpaqueReturnTypeIdentifier() const {
assert(getNamingDecl() && "not an opaque return type");
if (!OpaqueReturnTypeIdentifier.empty())
return OpaqueReturnTypeIdentifier;
SmallString<64> mangleBuf;
{
llvm::raw_svector_ostream os(mangleBuf);
Mangle::ASTMangler mangler;
os << mangler.mangleOpaqueTypeDecl(this);
}
OpaqueReturnTypeIdentifier = getASTContext().getIdentifier(mangleBuf);
return OpaqueReturnTypeIdentifier;
}
void OpaqueTypeDecl::setConditionallyAvailableSubstitutions(
ArrayRef<ConditionallyAvailableSubstitutions *> substitutions) {
assert(!ConditionallyAvailableTypes &&
"resetting conditionally available substitutions?!");
ConditionallyAvailableTypes = getASTContext().AllocateCopy(substitutions);
}
OpaqueTypeDecl::ConditionallyAvailableSubstitutions *
OpaqueTypeDecl::ConditionallyAvailableSubstitutions::get(
ASTContext &ctx,
ArrayRef<AvailabilityCondition> availabilityContext,
SubstitutionMap substitutions) {
auto size =
totalSizeToAlloc<AvailabilityCondition>(availabilityContext.size());
auto mem = ctx.Allocate(size, alignof(ConditionallyAvailableSubstitutions));
return new (mem)
ConditionallyAvailableSubstitutions(availabilityContext, substitutions);
}
bool AbstractFunctionDecl::hasInlinableBodyText() const {
switch (getBodyKind()) {
case BodyKind::Deserialized:
return true;
case BodyKind::Unparsed:
case BodyKind::Parsed:
case BodyKind::TypeChecked:
if (auto body = getBody())
return !body->isImplicit();
return false;
case BodyKind::None:
case BodyKind::Synthesize:
case BodyKind::SILSynthesize:
return false;
}
llvm_unreachable("covered switch");
}
StringRef AbstractFunctionDecl::getInlinableBodyText(
SmallVectorImpl<char> &scratch) const {
assert(hasInlinableBodyText() &&
"can't get string representation of function with no text");
if (getBodyKind() == BodyKind::Deserialized)
return BodyStringRepresentation;
auto body = getBody();
return extractInlinableText(getASTContext().SourceMgr, body, scratch);
}
/// A uniqued list of derivative function configurations.
struct AbstractFunctionDecl::DerivativeFunctionConfigurationList
: public ASTAllocated<DerivativeFunctionConfigurationList>,
public llvm::SetVector<AutoDiffConfig> {};
void AbstractFunctionDecl::prepareDerivativeFunctionConfigurations() {
if (DerivativeFunctionConfigs)
return;
auto &ctx = getASTContext();
DerivativeFunctionConfigs = new (ctx) DerivativeFunctionConfigurationList();
// Register an `ASTContext` cleanup calling the list destructor.
ctx.addCleanup([this]() {
this->DerivativeFunctionConfigs->~DerivativeFunctionConfigurationList();
});
}
ArrayRef<AutoDiffConfig>
AbstractFunctionDecl::getDerivativeFunctionConfigurations() {
prepareDerivativeFunctionConfigurations();
// Resolve derivative function configurations from `@differentiable`
// attributes by type-checking them.
for (auto *diffAttr : getAttrs().getAttributes<DifferentiableAttr>())
(void)diffAttr->getParameterIndices();
// For accessors: resolve derivative function configurations from storage
// `@differentiable` attributes by type-checking them.
if (auto *accessor = dyn_cast<AccessorDecl>(this)) {
auto *storage = accessor->getStorage();
for (auto *diffAttr : storage->getAttrs().getAttributes<DifferentiableAttr>())
(void)diffAttr->getParameterIndices();
}
// Load derivative configurations from imported modules.
auto &ctx = getASTContext();
if (ctx.getCurrentGeneration() > DerivativeFunctionConfigGeneration) {
unsigned previousGeneration = DerivativeFunctionConfigGeneration;
DerivativeFunctionConfigGeneration = ctx.getCurrentGeneration();
ctx.loadDerivativeFunctionConfigurations(this, previousGeneration,
*DerivativeFunctionConfigs);
}
return DerivativeFunctionConfigs->getArrayRef();
}
void AbstractFunctionDecl::addDerivativeFunctionConfiguration(
const AutoDiffConfig &config) {
prepareDerivativeFunctionConfigurations();
DerivativeFunctionConfigs->insert(config);
}
std::optional<LifetimeDependenceInfo>
AbstractFunctionDecl::getLifetimeDependenceInfo() const {
if (!isa<FuncDecl>(this) && !isa<ConstructorDecl>(this)) {
return std::nullopt;
}
return evaluateOrDefault(
getASTContext().evaluator,
LifetimeDependenceInfoRequest{const_cast<AbstractFunctionDecl *>(this)},
std::nullopt);
}
void FuncDecl::setResultInterfaceType(Type type) {
getASTContext().evaluator.cacheOutput(ResultTypeRequest{this},
std::move(type));
}
void FuncDecl::setDeserializedResultTypeLoc(TypeLoc ResultTyR) {
FnRetType = ResultTyR;
}
FuncDecl *FuncDecl::createImpl(ASTContext &Context,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling,
SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc,
bool Async, SourceLoc AsyncLoc,
bool Throws, SourceLoc ThrowsLoc,
TypeLoc ThrownTy,
GenericParamList *GenericParams,
DeclContext *Parent,
ClangNode ClangN) {
bool HasImplicitSelfDecl = Parent->isTypeContext();
size_t Size = sizeof(FuncDecl) + (HasImplicitSelfDecl
? sizeof(ParamDecl *)
: 0);
void *DeclPtr = allocateMemoryForDecl<FuncDecl>(Context, Size,
!ClangN.isNull());
auto D = ::new (DeclPtr)
FuncDecl(DeclKind::Func, StaticLoc, StaticSpelling, FuncLoc,
Name, NameLoc, Async, AsyncLoc, Throws, ThrowsLoc, ThrownTy,
HasImplicitSelfDecl, GenericParams, Parent);
if (ClangN)
D->setClangNode(ClangN);
if (HasImplicitSelfDecl)
*D->getImplicitSelfDeclStorage() = nullptr;
return D;
}
FuncDecl *FuncDecl::createDeserialized(ASTContext &Context,
StaticSpellingKind StaticSpelling,
DeclName Name, bool Async, bool Throws,
Type ThrownType,
GenericParamList *GenericParams,
Type FnRetType, DeclContext *Parent) {
assert(FnRetType && "Deserialized result type must not be null");
auto *const FD =
FuncDecl::createImpl(Context, SourceLoc(), StaticSpelling, SourceLoc(),
Name, SourceLoc(), Async, SourceLoc(), Throws,
SourceLoc(), TypeLoc::withoutLoc(ThrownType),
GenericParams, Parent,
ClangNode());
FD->setResultInterfaceType(FnRetType);
return FD;
}
FuncDecl *FuncDecl::create(ASTContext &Context, SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling, SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc, bool Async,
SourceLoc AsyncLoc, bool Throws, SourceLoc ThrowsLoc,
TypeRepr *ThrownTyR,
GenericParamList *GenericParams,
ParameterList *BodyParams, TypeRepr *ResultTyR,
DeclContext *Parent) {
auto *const FD = FuncDecl::createImpl(
Context, StaticLoc, StaticSpelling, FuncLoc, Name, NameLoc, Async,
AsyncLoc, Throws, ThrowsLoc, ThrownTyR, GenericParams, Parent,
ClangNode());
FD->setParameters(BodyParams);
FD->FnRetType = TypeLoc(ResultTyR);
if (llvm::isa_and_nonnull<TransferringTypeRepr>(ResultTyR))
FD->setTransferringResult();
return FD;
}
FuncDecl *FuncDecl::createImplicit(ASTContext &Context,
StaticSpellingKind StaticSpelling,
DeclName Name, SourceLoc NameLoc, bool Async,
bool Throws, Type ThrownType,
GenericParamList *GenericParams,
ParameterList *BodyParams, Type FnRetType,
DeclContext *Parent) {
assert(FnRetType);
auto *const FD = FuncDecl::createImpl(
Context, SourceLoc(), StaticSpelling, SourceLoc(), Name, NameLoc, Async,
SourceLoc(), Throws, SourceLoc(), TypeLoc::withoutLoc(ThrownType),
GenericParams, Parent, ClangNode());
FD->setImplicit();
FD->setParameters(BodyParams);
FD->setResultInterfaceType(FnRetType);
return FD;
}
FuncDecl *FuncDecl::createImported(ASTContext &Context, SourceLoc FuncLoc,
DeclName Name, SourceLoc NameLoc, bool Async,
bool Throws, Type ThrownType,
ParameterList *BodyParams,
Type FnRetType,
GenericParamList *GenericParams,
DeclContext *Parent, ClangNode ClangN) {
assert(ClangN);
auto *const FD = FuncDecl::createImpl(
Context, SourceLoc(), StaticSpellingKind::None, FuncLoc, Name, NameLoc,
Async, SourceLoc(), Throws, SourceLoc(), TypeLoc::withoutLoc(ThrownType),
GenericParams, Parent, ClangN);
FD->setParameters(BodyParams);
FD->setResultInterfaceType(FnRetType);
return FD;
}
OperatorDecl *FuncDecl::getOperatorDecl() const {
// Fast-path: Most functions are not operators.
if (!isOperator()) {
return nullptr;
}
return evaluateOrDefault(getASTContext().evaluator,
FunctionOperatorRequest{
const_cast<FuncDecl *>(this)
},
nullptr);
}
bool FuncDecl::isStatic() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
IsStaticRequest{const_cast<FuncDecl *>(this)},
false);
}
AccessorDecl *AccessorDecl::createImpl(
ASTContext &ctx, SourceLoc declLoc, SourceLoc accessorKeywordLoc,
AccessorKind accessorKind, AbstractStorageDecl *storage, bool async,
SourceLoc asyncLoc, bool throws, SourceLoc throwsLoc, TypeLoc thrownType,
DeclContext *parent, ClangNode clangNode) {
bool hasImplicitSelfDecl = parent->isTypeContext();
size_t size = sizeof(AccessorDecl) + (hasImplicitSelfDecl
? sizeof(ParamDecl *)
: 0);
void *buffer = allocateMemoryForDecl<AccessorDecl>(ctx, size,
!clangNode.isNull());
auto D = ::new (buffer) AccessorDecl(
declLoc, accessorKeywordLoc, accessorKind, storage, async, asyncLoc,
throws, throwsLoc, thrownType, hasImplicitSelfDecl, parent);
if (clangNode)
D->setClangNode(clangNode);
if (hasImplicitSelfDecl)
*D->getImplicitSelfDeclStorage() = nullptr;
return D;
}
AccessorDecl *AccessorDecl::createDeserialized(ASTContext &ctx,
AccessorKind accessorKind,
AbstractStorageDecl *storage,
bool async, bool throws,
Type thrownType, Type fnRetType,
DeclContext *parent) {
assert(fnRetType && "Deserialized result type must not be null");
auto *const D = AccessorDecl::createImpl(
ctx, SourceLoc(), SourceLoc(), accessorKind, storage, async, SourceLoc(),
throws, SourceLoc(), TypeLoc::withoutLoc(thrownType), parent,
ClangNode());
D->setResultInterfaceType(fnRetType);
return D;
}
AccessorDecl *AccessorDecl::create(ASTContext &ctx, SourceLoc declLoc,
SourceLoc accessorKeywordLoc,
AccessorKind accessorKind,
AbstractStorageDecl *storage, bool async,
SourceLoc asyncLoc, bool throws,
SourceLoc throwsLoc, TypeLoc thrownType,
ParameterList *bodyParams, Type fnRetType,
DeclContext *parent, ClangNode clangNode) {
auto *D = AccessorDecl::createImpl(
ctx, declLoc, accessorKeywordLoc, accessorKind, storage, async, asyncLoc,
throws, throwsLoc, thrownType, parent, clangNode);
D->setParameters(bodyParams);
D->setResultInterfaceType(fnRetType);
return D;
}
AccessorDecl *AccessorDecl::createImplicit(ASTContext &ctx,
AccessorKind accessorKind,
AbstractStorageDecl *storage,
bool async, bool throws,
TypeLoc thrownType,
Type fnRetType,
DeclContext *parent) {
AccessorDecl *D = AccessorDecl::createImpl(
ctx, /*declLoc=*/SourceLoc(),
/*accessorKeywordLoc=*/SourceLoc(), accessorKind,
storage, async, /*asyncLoc=*/SourceLoc(),
/*throws=*/true, /*throwsLoc=*/SourceLoc(),
thrownType, parent,
/*clangNode=*/ClangNode());
D->setImplicit();
D->setResultInterfaceType(fnRetType);
return D;
}
AccessorDecl *AccessorDecl::createParsed(
ASTContext &ctx, AccessorKind accessorKind, AbstractStorageDecl *storage,
SourceLoc declLoc, SourceLoc accessorKeywordLoc, ParameterList *paramList,
SourceLoc asyncLoc, SourceLoc throwsLoc, TypeRepr *thrownType,
DeclContext *dc) {
auto *accessor = AccessorDecl::createImpl(
ctx, declLoc, accessorKeywordLoc, accessorKind, storage,
/*async*/ asyncLoc.isValid(), asyncLoc,
/*throws*/ throwsLoc.isValid(), throwsLoc, thrownType, dc,
/*clangNode*/ ClangNode());
// Set up the parameter list. This is the "newValue" name (for setters),
// followed by the index list (for subscripts). For non-subscript getters,
// this degenerates down to "()".
//
// We put the 'newValue' argument before the subscript index list as a
// micro-optimization for Objective-C thunk generation.
SmallVector<ParamDecl *, 2> newParams;
SourceLoc paramsStart, paramsEnd;
if (paramList) {
assert(paramList->size() == 1 &&
"Should only have a single parameter in the list");
newParams.push_back(paramList->get(0));
paramsStart = paramList->getStartLoc();
paramsEnd = paramList->getEndLoc();
} else {
// No parameter list, if we have an implicit parameter name, fill it in.
auto implicitName = AccessorDecl::implicitParameterNameFor(accessorKind);
if (!implicitName.empty()) {
auto *implicitParam = new (ctx)
ParamDecl(SourceLoc(), SourceLoc(), Identifier(), declLoc,
ctx.getIdentifier(implicitName), /*declContext*/ accessor);
implicitParam->setImplicit();
newParams.push_back(implicitParam);
}
}
// If this is a subscript accessor, we need to splice in the subscript
// parameters into the accessor's parameter list.
if (auto *SD = dyn_cast<SubscriptDecl>(storage)) {
auto *indices = SD->getIndices();
if (paramsStart.isInvalid()) {
paramsStart = indices->getStartLoc();
paramsEnd = indices->getEndLoc();
}
for (auto *subscriptParam : *indices) {
// Clone the parameter.
auto *param = new (ctx) ParamDecl(
subscriptParam->getSpecifierLoc(),
subscriptParam->getArgumentNameLoc(),
subscriptParam->getArgumentName(), subscriptParam->getNameLoc(),
subscriptParam->getName(), /*declContext*/ accessor);
param->setAutoClosure(subscriptParam->isAutoClosure());
// The cloned parameter is implicit.
param->setImplicit();
newParams.push_back(param);
}
}
accessor->setParameters(
ParameterList::create(ctx, paramsStart, newParams, paramsEnd));
return accessor;
}
StringRef AccessorDecl::implicitParameterNameFor(AccessorKind kind) {
switch (kind) {
case AccessorKind::Set:
case AccessorKind::WillSet:
case AccessorKind::Init:
return "newValue";
case AccessorKind::DidSet:
return "oldValue";
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Read:
case AccessorKind::Modify:
case AccessorKind::Address:
case AccessorKind::MutableAddress:
return StringRef();
}
}
bool AccessorDecl::isAssumedNonMutating() const {
switch (getAccessorKind()) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Address:
case AccessorKind::Read:
return true;
case AccessorKind::Set:
case AccessorKind::WillSet:
case AccessorKind::DidSet:
case AccessorKind::MutableAddress:
case AccessorKind::Modify:
case AccessorKind::Init:
return false;
}
llvm_unreachable("bad accessor kind");
}
bool AccessorDecl::isExplicitNonMutating() const {
return !isMutating() &&
!isAssumedNonMutating() &&
isInstanceMember() &&
!getDeclContext()->getDeclaredInterfaceType()->hasReferenceSemantics();
}
bool AccessorDecl::isSimpleDidSet() const {
auto mutableThis = const_cast<AccessorDecl *>(this);
return evaluateOrDefault(getASTContext().evaluator,
SimpleDidSetRequest{mutableThis}, false);
}
void AccessorDecl::printUserFacingName(raw_ostream &out) const {
switch (getAccessorKind()) {
case AccessorKind::Get:
out << "getter:";
break;
case AccessorKind::DistributedGet:
out << "_distributed_getter:";
break;
case AccessorKind::Set:
out << "setter:";
break;
default:
out << getName();
return;
}
out << getStorage()->getName() << "(";
if (this->isSetter()) {
for (const auto *param : *getParameters()) {
out << param->getName() << ":";
}
}
out << ")";
}
ArrayRef<VarDecl *> AccessorDecl::getInitializedProperties() const {
assert(isInitAccessor());
if (auto *SR = getAttrs().getAttribute<StorageRestrictionsAttr>())
return SR->getInitializesProperties(const_cast<AccessorDecl *>(this));
return {};
}
ArrayRef<VarDecl *> AccessorDecl::getAccessedProperties() const {
assert(isInitAccessor());
if (auto *SR = getAttrs().getAttribute<StorageRestrictionsAttr>())
return SR->getAccessesProperties(const_cast<AccessorDecl *>(this));
return {};
}
StaticSpellingKind FuncDecl::getCorrectStaticSpelling() const {
assert(getDeclContext()->isTypeContext());
if (!isStatic())
return StaticSpellingKind::None;
if (getStaticSpelling() != StaticSpellingKind::None)
return getStaticSpelling();
return getCorrectStaticSpellingForDecl(this);
}
Type FuncDecl::getResultInterfaceType() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<FuncDecl *>(this);
if (auto type = evaluateOrDefault(ctx.evaluator,
ResultTypeRequest{mutableThis},
Type()))
return type;
return ErrorType::get(ctx);
}
bool FuncDecl::isUnaryOperator() const {
if (!isOperator())
return false;
auto *params = getParameters();
return params->size() == 1 && !params->get(0)->isVariadic();
}
bool FuncDecl::isBinaryOperator() const {
if (!isOperator())
return false;
auto *params = getParameters();
return params->size() == 2 &&
!params->get(0)->isVariadic() &&
!params->get(1)->isVariadic();
}
SelfAccessKind FuncDecl::getSelfAccessKind() const {
auto &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SelfAccessKindRequest{const_cast<FuncDecl *>(this)},
SelfAccessKind::NonMutating);
}
LifetimeAnnotation FuncDecl::getLifetimeAnnotation() const {
// Copyable parameters which are consumed have eager-move semantics.
if (getSelfAccessKind() == SelfAccessKind::Consuming) {
auto *selfDecl = getImplicitSelfDecl();
if (selfDecl && !selfDecl->getTypeInContext()->isNoncopyable()) {
if (getAttrs().hasAttribute<NoEagerMoveAttr>())
return LifetimeAnnotation::Lexical;
return LifetimeAnnotation::EagerMove;
}
}
return getLifetimeAnnotationFromAttributes();
}
bool FuncDecl::isCallAsFunctionMethod() const {
return getBaseIdentifier() == getASTContext().Id_callAsFunction &&
isInstanceMember();
}
bool FuncDecl::isMainTypeMainMethod() const {
return (getBaseIdentifier() == getASTContext().Id_main) &&
!isInstanceMember() && getResultInterfaceType()->isVoid() &&
getParameters()->size() == 0;
}
ConstructorDecl::ConstructorDecl(DeclName Name, SourceLoc ConstructorLoc,
bool Failable, SourceLoc FailabilityLoc,
bool Async, SourceLoc AsyncLoc,
bool Throws, SourceLoc ThrowsLoc,
TypeLoc ThrownType,
ParameterList *BodyParams,
GenericParamList *GenericParams,
DeclContext *Parent, TypeRepr *ResultTyR)
: AbstractFunctionDecl(DeclKind::Constructor, Parent, Name, ConstructorLoc,
Async, AsyncLoc, Throws, ThrowsLoc, ThrownType,
/*HasImplicitSelfDecl=*/true,
GenericParams),
FailabilityLoc(FailabilityLoc),
SelfDecl(nullptr)
{
if (BodyParams)
setParameters(BodyParams);
InitRetType = TypeLoc(ResultTyR);
Bits.ConstructorDecl.HasStubImplementation = 0;
Bits.ConstructorDecl.Failable = Failable;
assert(Name.getBaseName().isConstructor());
}
ConstructorDecl *ConstructorDecl::createImported(
ASTContext &ctx, ClangNode clangNode, DeclName name,
SourceLoc constructorLoc, bool failable, SourceLoc failabilityLoc,
bool async, SourceLoc asyncLoc,
bool throws, SourceLoc throwsLoc, Type thrownType,
ParameterList *bodyParams,
GenericParamList *genericParams, DeclContext *parent) {
void *declPtr = allocateMemoryForDecl<ConstructorDecl>(
ctx, sizeof(ConstructorDecl), true);
auto ctor = ::new (declPtr)
ConstructorDecl(name, constructorLoc,
failable, failabilityLoc,
async, asyncLoc,
throws, throwsLoc, TypeLoc::withoutLoc(thrownType),
bodyParams, genericParams, parent,
/*LifetimeDependenceTypeRepr*/ nullptr);
ctor->setClangNode(clangNode);
return ctor;
}
void ConstructorDecl::setDeserializedResultTypeLoc(TypeLoc ResultTyR) {
InitRetType = ResultTyR;
}
bool ConstructorDecl::isObjCZeroParameterWithLongSelector() const {
// The initializer must have a single, non-empty argument name.
if (getName().getArgumentNames().size() != 1 ||
getName().getArgumentNames()[0].empty())
return false;
auto *params = getParameters();
if (params->size() != 1)
return false;
return params->get(0)->getInterfaceType()->isVoid();
}
bool ConstructorDecl::hasLifetimeDependentReturn() const {
return isa_and_nonnull<LifetimeDependentReturnTypeRepr>(getResultTypeRepr());
}
DestructorDecl::DestructorDecl(SourceLoc DestructorLoc, DeclContext *Parent)
: AbstractFunctionDecl(DeclKind::Destructor, Parent,
DeclBaseName::createDestructor(), DestructorLoc,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(),
/*HasImplicitSelfDecl=*/true,
/*GenericParams=*/nullptr),
SelfDecl(nullptr) {
setParameters(ParameterList::createEmpty(Parent->getASTContext()));
}
ObjCSelector DestructorDecl::getObjCSelector() const {
// Deinitializers are always called "dealloc".
auto &ctx = getASTContext();
return ObjCSelector(ctx, 0, ctx.Id_dealloc);
}
SourceRange FuncDecl::getSourceRange() const {
SourceLoc StartLoc = getStartLoc();
if (StartLoc.isInvalid())
return SourceRange();
if (getBodyKind() == BodyKind::Unparsed)
return { StartLoc, BodyRange.End };
SourceLoc RBraceLoc = getOriginalBodySourceRange().End;
if (RBraceLoc.isValid()) {
return { StartLoc, RBraceLoc };
}
if (isa<AccessorDecl>(this))
return StartLoc;
if (getBodyKind() == BodyKind::Synthesize)
return SourceRange();
auto TrailingWhereClauseSourceRange = getGenericTrailingWhereClauseSourceRange();
if (TrailingWhereClauseSourceRange.isValid())
return { StartLoc, TrailingWhereClauseSourceRange.End };
const auto ResultTyEndLoc = getResultTypeSourceRange().End;
if (ResultTyEndLoc.isValid())
return { StartLoc, ResultTyEndLoc };
if (hasThrows())
return { StartLoc, getThrowsLoc() };
if (hasAsync())
return { StartLoc, getAsyncLoc() };
auto LastParamListEndLoc = getParameters()->getSourceRange().End;
if (LastParamListEndLoc.isValid())
return { StartLoc, LastParamListEndLoc };
return StartLoc;
}
EnumElementDecl::EnumElementDecl(SourceLoc IdentifierLoc, DeclName Name,
ParameterList *Params,
SourceLoc EqualsLoc,
LiteralExpr *RawValueExpr,
DeclContext *DC)
: DeclContext(DeclContextKind::EnumElementDecl, DC),
ValueDecl(DeclKind::EnumElement, DC, Name, IdentifierLoc),
EqualsLoc(EqualsLoc),
RawValueExpr(RawValueExpr) {
setParameterList(Params);
}
SourceRange EnumElementDecl::getSourceRange() const {
if (RawValueExpr && !RawValueExpr->isImplicit())
return {getStartLoc(), RawValueExpr->getEndLoc()};
if (auto *PL = getParameterList())
return {getStartLoc(), PL->getSourceRange().End};
return {getStartLoc(), getNameLoc()};
}
Type EnumElementDecl::getArgumentInterfaceType() const {
if (!hasAssociatedValues())
return nullptr;
auto interfaceType = getInterfaceType();
if (interfaceType->is<ErrorType>()) {
return interfaceType;
}
auto funcTy = interfaceType->castTo<AnyFunctionType>();
funcTy = funcTy->getResult()->castTo<FunctionType>();
// The payload type of an enum is an imploded tuple of the internal arguments
// of the case constructor. As such, compose a tuple type with the parameter
// flags dropped.
return AnyFunctionType::composeTuple(getASTContext(), funcTy->getParams(),
ParameterFlagHandling::IgnoreNonEmpty);
}
void EnumElementDecl::setParameterList(ParameterList *params) {
Params = params;
if (params)
params->setDeclContextOfParamDecls(this);
}
EnumCaseDecl *EnumElementDecl::getParentCase() const {
for (EnumCaseDecl *EC : getParentEnum()->getAllCases()) {
ArrayRef<EnumElementDecl *> CaseElements = EC->getElements();
if (std::find(CaseElements.begin(), CaseElements.end(), this) !=
CaseElements.end()) {
return EC;
}
}
llvm_unreachable("enum element not in case of parent enum");
}
LiteralExpr *EnumElementDecl::getRawValueExpr() const {
// The return value of this request is irrelevant - it exists as
// a cache-warmer.
(void)evaluateOrDefault(
getASTContext().evaluator,
EnumRawValuesRequest{getParentEnum(), TypeResolutionStage::Interface},
{});
return RawValueExpr;
}
LiteralExpr *EnumElementDecl::getStructuralRawValueExpr() const {
// The return value of this request is irrelevant - it exists as
// a cache-warmer.
(void)evaluateOrDefault(
getASTContext().evaluator,
EnumRawValuesRequest{getParentEnum(), TypeResolutionStage::Structural},
{});
return RawValueExpr;
}
void EnumElementDecl::setRawValueExpr(LiteralExpr *e) {
assert((!RawValueExpr || e == RawValueExpr || e->getType()) &&
"Illegal mutation of raw value expr");
RawValueExpr = e;
}
SourceRange ConstructorDecl::getSourceRange() const {
if (isImplicit())
return getConstructorLoc();
SourceLoc End = getOriginalBodySourceRange().End;
if (End.isInvalid())
End = getGenericTrailingWhereClauseSourceRange().End;
if (End.isInvalid())
End = getThrowsLoc();
if (End.isInvalid())
End = getSignatureSourceRange().End;
return { getConstructorLoc(), End };
}
Type ConstructorDecl::getResultInterfaceType() const {
Type resultTy;
auto *dc = getDeclContext();
if (!dc->isTypeContext())
resultTy = ErrorType::get(getASTContext());
else
resultTy = dc->getSelfInterfaceType();
// Adjust result type for failability.
if (isFailable())
return OptionalType::get(resultTy);
return resultTy;
}
Type ConstructorDecl::getInitializerInterfaceType() {
if (InitializerInterfaceType)
return InitializerInterfaceType;
// Lazily calculate initializer type.
auto allocatorTy = getInterfaceType();
if (!allocatorTy->is<AnyFunctionType>()) {
InitializerInterfaceType = ErrorType::get(getASTContext());
return InitializerInterfaceType;
}
auto funcTy = allocatorTy->castTo<AnyFunctionType>()->getResult();
assert(funcTy->is<FunctionType>());
// Constructors have an initializer type that takes an instance
// instead of a metatype.
auto initSelfParam = computeSelfParam(this, /*isInitializingCtor=*/true);
// FIXME: Verify ExtInfo state is correct, not working by accident.
AnyFunctionType::ExtInfo info;
if (initSelfParam.isIsolated())
info = info.withIsolation(FunctionTypeIsolation::forParameter());
Type initFuncTy;
if (auto sig = getGenericSignature()) {
initFuncTy = GenericFunctionType::get(sig, {initSelfParam}, funcTy, info);
} else {
initFuncTy = FunctionType::get({initSelfParam}, funcTy, info);
}
InitializerInterfaceType = initFuncTy;
return InitializerInterfaceType;
}
CtorInitializerKind ConstructorDecl::getInitKind() const {
const auto *ED =
dyn_cast_or_null<ExtensionDecl>(getDeclContext()->getAsDecl());
if (ED && !ED->hasBeenBound()) {
// When the declaration context is an extension and this is called when the
// extended nominal hasn't be bound yet, e.g. dumping pre-typechecked AST,
// there is not enough information about extended nominal to use for
// computing init kind on InitKindRequest as bindExtensions is done at
// typechecking, so in that case just look to parsed attribute in init
// declaration.
return getAttrs().hasAttribute<ConvenienceAttr>()
? CtorInitializerKind::Convenience
: CtorInitializerKind::Designated;
}
return evaluateOrDefault(getASTContext().evaluator,
InitKindRequest{const_cast<ConstructorDecl *>(this)},
CtorInitializerKind::Designated);
}
BodyInitKindAndExpr
ConstructorDecl::getDelegatingOrChainedInitKind() const {
return evaluateOrDefault(getASTContext().evaluator,
BodyInitKindRequest{const_cast<ConstructorDecl *>(this)},
BodyInitKindAndExpr());
assert(hasBody() && "Constructor does not have a definition");
}
void ConstructorDecl::clearCachedDelegatingOrChainedInitKind() {
getASTContext().evaluator.clearCachedOutput(
BodyInitKindRequest{const_cast<ConstructorDecl *>(this)});
}
SourceRange DestructorDecl::getSourceRange() const {
SourceLoc End = getOriginalBodySourceRange().End;
if (End.isInvalid()) {
End = getDestructorLoc();
}
return { getDestructorLoc(), End };
}
StringRef swift::getAssociativitySpelling(Associativity value) {
switch (value) {
case Associativity::None: return "none";
case Associativity::Left: return "left";
case Associativity::Right: return "right";
}
llvm_unreachable("Unhandled Associativity in switch.");
}
PrecedenceGroupDecl *
PrecedenceGroupDecl::create(DeclContext *dc,
SourceLoc precedenceGroupLoc,
SourceLoc nameLoc,
Identifier name,
SourceLoc lbraceLoc,
SourceLoc associativityKeywordLoc,
SourceLoc associativityValueLoc,
Associativity associativity,
SourceLoc assignmentKeywordLoc,
SourceLoc assignmentValueLoc,
bool isAssignment,
SourceLoc higherThanLoc,
ArrayRef<Relation> higherThan,
SourceLoc lowerThanLoc,
ArrayRef<Relation> lowerThan,
SourceLoc rbraceLoc) {
void *memory = dc->getASTContext().Allocate(sizeof(PrecedenceGroupDecl) +
(higherThan.size() + lowerThan.size()) * sizeof(Relation),
alignof(PrecedenceGroupDecl));
return new (memory) PrecedenceGroupDecl(dc, precedenceGroupLoc, nameLoc, name,
lbraceLoc, associativityKeywordLoc,
associativityValueLoc, associativity,
assignmentKeywordLoc,
assignmentValueLoc, isAssignment,
higherThanLoc, higherThan,
lowerThanLoc, lowerThan, rbraceLoc);
}
PrecedenceGroupDecl::PrecedenceGroupDecl(DeclContext *dc,
SourceLoc precedenceGroupLoc,
SourceLoc nameLoc,
Identifier name,
SourceLoc lbraceLoc,
SourceLoc associativityKeywordLoc,
SourceLoc associativityValueLoc,
Associativity associativity,
SourceLoc assignmentKeywordLoc,
SourceLoc assignmentValueLoc,
bool isAssignment,
SourceLoc higherThanLoc,
ArrayRef<Relation> higherThan,
SourceLoc lowerThanLoc,
ArrayRef<Relation> lowerThan,
SourceLoc rbraceLoc)
: Decl(DeclKind::PrecedenceGroup, dc),
PrecedenceGroupLoc(precedenceGroupLoc), NameLoc(nameLoc),
LBraceLoc(lbraceLoc), RBraceLoc(rbraceLoc),
AssociativityKeywordLoc(associativityKeywordLoc),
AssociativityValueLoc(associativityValueLoc),
AssignmentKeywordLoc(assignmentKeywordLoc),
AssignmentValueLoc(assignmentValueLoc),
HigherThanLoc(higherThanLoc), LowerThanLoc(lowerThanLoc), Name(name),
NumHigherThan(higherThan.size()), NumLowerThan(lowerThan.size()) {
Bits.PrecedenceGroupDecl.Associativity = unsigned(associativity);
Bits.PrecedenceGroupDecl.IsAssignment = isAssignment;
memcpy(getHigherThanBuffer(), higherThan.data(),
higherThan.size() * sizeof(Relation));
memcpy(getLowerThanBuffer(), lowerThan.data(),
lowerThan.size() * sizeof(Relation));
}
PrecedenceGroupDecl *InfixOperatorDecl::getPrecedenceGroup() const {
return evaluateOrDefault(
getASTContext().evaluator,
OperatorPrecedenceGroupRequest{const_cast<InfixOperatorDecl *>(this)},
nullptr);
}
bool FuncDecl::isDeferBody() const {
return getBaseIdentifier() == getASTContext().getIdentifier("$defer");
}
bool FuncDecl::isPotentialIBActionTarget() const {
return isInstanceMember() &&
getDeclContext()->getSelfClassDecl() &&
!isa<AccessorDecl>(this);
}
void FuncDecl::setHasTopLevelLocalContextCaptures(bool hasCaptures) {
assert(!hasCaptures || isa<SourceFile>(getDeclContext()));
Bits.FuncDecl.HasTopLevelLocalContextCaptures = hasCaptures;
}
Type TypeBase::getSwiftNewtypeUnderlyingType() {
auto structDecl = getStructOrBoundGenericStruct();
if (!structDecl)
return {};
// Make sure the clang node has swift_newtype attribute
auto clangNode = structDecl->getClangDecl();
if (!clangNode || !clangNode->hasAttr<clang::SwiftNewTypeAttr>())
return {};
// Underlying type is the type of rawValue
for (auto member : structDecl->getMembers())
if (auto varDecl = dyn_cast<VarDecl>(member))
if (varDecl->getName() == getASTContext().Id_rawValue)
return varDecl->getInterfaceType();
return {};
}
const VarDecl *ClassDecl::getUnownedExecutorProperty() const {
auto &C = getASTContext();
if (!isAnyActor())
return nullptr;
llvm::SmallVector<ValueDecl *, 2> results;
this->lookupQualified(getSelfNominalTypeDecl(),
DeclNameRef(C.Id_unownedExecutor),
getLoc(), NL_ProtocolMembers,
results);
for (auto candidate: results) {
if (isa<ProtocolDecl>(candidate->getDeclContext()))
continue;
if (VarDecl *var = dyn_cast<VarDecl>(candidate))
return var;
}
return nullptr;
}
bool ClassDecl::isRootDefaultActor() const {
return isRootDefaultActor(getModuleContext(), ResilienceExpansion::Maximal);
}
bool ClassDecl::isRootDefaultActor(ModuleDecl *M,
ResilienceExpansion expansion) const {
if (!isDefaultActor(M, expansion)) return false;
auto superclass = getSuperclassDecl();
return (!superclass || superclass->isNSObject());
}
bool ClassDecl::isNonDefaultExplicitDistributedActor() const {
return isNonDefaultExplicitDistributedActor(getModuleContext(), ResilienceExpansion::Maximal);
}
bool ClassDecl::isNonDefaultExplicitDistributedActor(ModuleDecl *M,
ResilienceExpansion expansion) const {
return !isDefaultActor(M, expansion) && isExplicitDistributedActor();
}
bool ClassDecl::isNativeNSObjectSubclass() const {
// @objc actors implicitly inherit from NSObject.
if (isActor()) {
if (getAttrs().hasAttribute<ObjCAttr>()) {
return true;
}
ClassDecl *superclass = getSuperclassDecl();
return superclass && superclass->isNSObject();
}
// For now, non-actor classes cannot use the native NSObject subclass.
// Eventually we should roll this out to more classes that directly
// inherit NSObject, but we have to do it with ABI compatibility.
return false;
}
bool ClassDecl::isNSObject() const {
if (!getName().is("NSObject")) return false;
ASTContext &ctx = getASTContext();
return (getModuleContext()->getName() == ctx.Id_Foundation ||
getModuleContext()->getName() == ctx.Id_ObjectiveC ||
getModuleContext()->getName().is("SwiftFoundation"));
}
Type ClassDecl::getSuperclass() const {
ASTContext &ctx = getASTContext();
return evaluateOrDefault(ctx.evaluator,
SuperclassTypeRequest{const_cast<ClassDecl *>(this),
TypeResolutionStage::Interface},
Type());
}
ClassDecl *ClassDecl::getSuperclassDecl() const {
ASTContext &ctx = getASTContext();
auto result = evaluateOrDefault(ctx.evaluator,
SuperclassDeclRequest{const_cast<ClassDecl *>(this)},
const_cast<ClassDecl *>(this));
if (result == this)
return nullptr;
return result;
}
void ClassDecl::setSuperclass(Type superclass) {
assert((!superclass || !superclass->hasArchetype())
&& "superclass must be interface type");
LazySemanticInfo.SuperclassType.setPointerAndInt(superclass, true);
LazySemanticInfo.SuperclassDecl.setPointerAndInt(
superclass ? superclass->getClassOrBoundGenericClass() : nullptr,
true);
}
bool VarDecl::isSelfParamCaptureIsolated() const {
assert(isSelfParamCapture());
// Find the "self" parameter that we captured and determine whether
// it is potentially isolated.
for (auto dc = getDeclContext(); dc; dc = dc->getParent()) {
if (auto func = dyn_cast<AbstractFunctionDecl>(dc)) {
if (auto selfDecl = func->getImplicitSelfDecl()) {
return selfDecl->isIsolated();
}
if (auto capture = func->getCaptureInfo().getIsolatedParamCapture())
return capture->isSelfParameter() || capture->isSelfParamCapture();
}
if (auto closure = dyn_cast<AbstractClosureExpr>(dc)) {
switch (auto isolation = closure->getActorIsolation()) {
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
case ActorIsolation::GlobalActor:
case ActorIsolation::Erased:
return false;
case ActorIsolation::ActorInstance:
auto isolatedVar = isolation.getActorInstance();
return isolatedVar->isSelfParameter() ||
isolatedVar-isSelfParamCapture();
}
}
if (dc->isModuleScopeContext() || dc->isTypeContext())
break;
}
return false;
}
ActorIsolation swift::getActorIsolation(ValueDecl *value) {
auto &ctx = value->getASTContext();
return evaluateOrDefault(
ctx.evaluator, ActorIsolationRequest{value},
ActorIsolation::forUnspecified());
}
ActorIsolation swift::getActorIsolationOfContext(
DeclContext *dc,
llvm::function_ref<ActorIsolation(AbstractClosureExpr *)>
getClosureActorIsolation) {
auto &ctx = dc->getASTContext();
auto dcToUse = dc;
// Defer bodies share actor isolation of their enclosing context.
if (auto FD = dyn_cast<FuncDecl>(dcToUse)) {
if (FD->isDeferBody()) {
dcToUse = FD->getDeclContext();
}
}
if (auto *vd = dyn_cast_or_null<ValueDecl>(dcToUse->getAsDecl()))
return getActorIsolation(vd);
// In the context of the initializing or default-value expression of a
// stored property:
// - For a static stored property, the isolation matches the VarDecl.
// Static properties are initialized upon first use, so the isolation
// of the initializer must match the isolation required to access the
// property.
// - For a field of a nominal type, the expression can require the same
// actor isolation as the field itself. That default expression may only
// be used from inits that meet the required isolation.
if (auto *var = dcToUse->getNonLocalVarDecl()) {
// If IsolatedDefaultValues are enabled, treat this context as having
// unspecified isolation. We'll compute the required isolation for
// the initializer and validate that it matches the isolation of the
// var itself in the DefaultInitializerIsolation request.
if (ctx.LangOpts.hasFeature(Feature::IsolatedDefaultValues))
return ActorIsolation::forUnspecified();
return getActorIsolation(var);
}
if (auto *closure = dyn_cast<AbstractClosureExpr>(dcToUse)) {
return getClosureActorIsolation(closure);
}
if (auto *tld = dyn_cast<TopLevelCodeDecl>(dcToUse)) {
if (dcToUse->isAsyncContext() ||
dcToUse->getASTContext().LangOpts.StrictConcurrencyLevel >=
StrictConcurrency::Complete) {
if (Type mainActor = dcToUse->getASTContext().getMainActorType())
return ActorIsolation::forGlobalActor(mainActor)
.withPreconcurrency(
!dcToUse->getASTContext().isSwiftVersionAtLeast(6));
}
}
return ActorIsolation::forUnspecified();
}
bool swift::isSameActorIsolated(ValueDecl *value, DeclContext *dc) {
auto valueIsolation = getActorIsolation(value);
auto dcIsolation = getActorIsolationOfContext(dc);
return valueIsolation.isActorIsolated() && dcIsolation.isActorIsolated() &&
valueIsolation.getActor() == dcIsolation.getActor();
}
ClangNode Decl::getClangNodeImpl() const {
assert(Bits.Decl.FromClang);
void * const *ptr = nullptr;
switch (getKind()) {
#define DECL(Id, Parent) \
case DeclKind::Id: \
ptr = reinterpret_cast<void * const*>(static_cast<const Id##Decl*>(this)); \
break;
#include "swift/AST/DeclNodes.def"
}
return ClangNode::getFromOpaqueValue(*(ptr - 1));
}
void Decl::setClangNode(ClangNode Node) {
Bits.Decl.FromClang = true;
// The extra/preface memory is allocated by the importer.
void **ptr = nullptr;
switch (getKind()) {
#define DECL(Id, Parent) \
case DeclKind::Id: \
ptr = reinterpret_cast<void **>(static_cast<Id##Decl*>(this)); \
break;
#include "swift/AST/DeclNodes.def"
}
*(ptr - 1) = Node.getOpaqueValue();
}
// See swift/Basic/Statistic.h for declaration: this enables tracing Decls, is
// defined here to avoid too much layering violation / circular linkage
// dependency.
struct DeclTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const Decl *D = static_cast<const Decl *>(Entity);
if (auto const *VD = dyn_cast<const ValueDecl>(D)) {
VD->getName().print(OS, false);
} else {
OS << "<"
<< Decl::getDescriptiveKindName(D->getDescriptiveKind())
<< ">";
}
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const Decl *D = static_cast<const Decl *>(Entity);
D->getSourceRange().print(OS, *SM, false);
}
};
static DeclTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const Decl *>() {
return &TF;
}
TypeOrExtensionDecl::TypeOrExtensionDecl(NominalTypeDecl *D) : Decl(D) {}
TypeOrExtensionDecl::TypeOrExtensionDecl(ExtensionDecl *D) : Decl(D) {}
Decl *TypeOrExtensionDecl::getAsDecl() const {
if (auto NTD = Decl.dyn_cast<NominalTypeDecl *>())
return NTD;
return Decl.get<ExtensionDecl *>();
}
DeclContext *TypeOrExtensionDecl::getAsDeclContext() const {
return getAsDecl()->getInnermostDeclContext();
}
IterableDeclContext *TypeOrExtensionDecl::getAsIterableDeclContext() const {
if (auto nominal = Decl.dyn_cast<NominalTypeDecl *>())
return nominal;
return Decl.get<ExtensionDecl *>();
}
NominalTypeDecl *TypeOrExtensionDecl::getBaseNominal() const {
return getAsDeclContext()->getSelfNominalTypeDecl();
}
bool TypeOrExtensionDecl::isNull() const { return Decl.isNull(); }
void swift::simple_display(llvm::raw_ostream &out, const Decl *decl) {
if (!decl) {
out << "(null)";
return;
}
if (auto value = dyn_cast<ValueDecl>(decl)) {
return simple_display(out, value);
} else if (auto ext = dyn_cast<ExtensionDecl>(decl)) {
out << "extension of ";
if (auto typeRepr = ext->getExtendedTypeRepr())
typeRepr->print(out);
else
ext->getSelfNominalTypeDecl()->dumpRef(out);
} else if (auto med = dyn_cast<MacroExpansionDecl>(decl)) {
out << '#' << med->getMacroName() << " in ";
printContext(out, med->getDeclContext());
} else {
out << "(unknown decl)";
}
if (decl->getLoc().isValid()) {
out << '@';
decl->getLoc().print(out, decl->getASTContext().SourceMgr);
}
}
void swift::simple_display(llvm::raw_ostream &out,
OptionSet<NominalTypeDecl::LookupDirectFlags> opts) {
out << "{ ";
using LookupFlags = NominalTypeDecl::LookupDirectFlags;
if (opts.contains(LookupFlags::IncludeAttrImplements))
out << "IncludeAttrImplements";
out << " }";
}
void swift::simple_display(llvm::raw_ostream &out,
TypeOrExtensionDecl container) {
simple_display(out, container.getAsDecl());
}
void swift::simple_display(llvm::raw_ostream &out, const ValueDecl *decl) {
if (decl) decl->dumpRef(out);
else out << "(null)";
}
void swift::simple_display(llvm::raw_ostream &out, const GenericParamList *GPL) {
if (GPL) GPL->print(out);
else out << "(null)";
}
StringRef swift::getAccessorLabel(AccessorKind kind) {
switch (kind) {
#define SINGLETON_ACCESSOR(ID, KEYWORD) \
case AccessorKind::ID: return #KEYWORD;
#define ACCESSOR(ID)
#include "swift/AST/AccessorKinds.def"
}
llvm_unreachable("bad accessor kind");
}
void swift::simple_display(llvm::raw_ostream &out, AccessorKind kind) {
out << getAccessorLabel(kind);
}
SourceLoc swift::extractNearestSourceLoc(const Decl *decl) {
auto loc = decl->getLoc(/*SerializedOK=*/false);
if (loc.isValid())
return loc;
return extractNearestSourceLoc(decl->getDeclContext());
}
SourceLoc swift::extractNearestSourceLoc(TypeOrExtensionDecl container) {
return extractNearestSourceLoc(container.Decl);
}
std::optional<BodyAndFingerprint>
ParseAbstractFunctionBodyRequest::getCachedResult() const {
using BodyKind = AbstractFunctionDecl::BodyKind;
auto afd = std::get<0>(getStorage());
switch (afd->getBodyKind()) {
case BodyKind::Deserialized:
case BodyKind::SILSynthesize:
case BodyKind::None:
return BodyAndFingerprint{};
case BodyKind::TypeChecked:
case BodyKind::Parsed:
return afd->BodyAndFP;
case BodyKind::Synthesize:
case BodyKind::Unparsed:
return std::nullopt;
}
llvm_unreachable("Unhandled BodyKing in switch");
}
void ParseAbstractFunctionBodyRequest::cacheResult(
BodyAndFingerprint value) const {
using BodyKind = AbstractFunctionDecl::BodyKind;
auto afd = std::get<0>(getStorage());
switch (afd->getBodyKind()) {
case BodyKind::Deserialized:
case BodyKind::SILSynthesize:
// The body is always empty, so don't cache anything.
assert(!value.getFingerprint().has_value() && value.getBody() == nullptr);
return;
case BodyKind::Parsed:
case BodyKind::TypeChecked:
case BodyKind::None:
afd->BodyAndFP = value;
return;
case BodyKind::Synthesize:
case BodyKind::Unparsed:
llvm_unreachable("evaluate() did not set the body kind");
return;
}
}
std::optional<bool> IsFunctionBodySkippedRequest::getCachedResult() const {
using BodySkippedStatus = AbstractFunctionDecl::BodySkippedStatus;
auto afd = std::get<0>(getStorage());
switch (afd->getBodySkippedStatus()) {
case BodySkippedStatus::Unknown:
return std::nullopt;
case BodySkippedStatus::Skipped:
return true;
case BodySkippedStatus::NotSkipped:
return false;
}
llvm_unreachable("bad BodySkippedStatus");
}
void IsFunctionBodySkippedRequest::cacheResult(bool isSkipped) const {
using BodySkippedStatus = AbstractFunctionDecl::BodySkippedStatus;
auto afd = std::get<0>(getStorage());
const_cast<AbstractFunctionDecl *>(afd)->setBodySkippedStatus(
isSkipped ? BodySkippedStatus::Skipped : BodySkippedStatus::NotSkipped);
}
void swift::simple_display(llvm::raw_ostream &out, BodyAndFingerprint value) {
out << "(";
simple_display(out, value.getBody());
out << ", ";
simple_display(out, value.getFingerprint());
out << ")";
}
void swift::simple_display(llvm::raw_ostream &out, AnyFunctionRef fn) {
if (auto func = fn.getAbstractFunctionDecl())
simple_display(out, func);
else
out << "closure";
}
ActorIsolation::ActorIsolation(Kind kind, NominalTypeDecl *actor,
unsigned parameterIndex)
: actorInstance(actor), kind(kind), isolatedByPreconcurrency(false),
silParsed(false), parameterIndex(parameterIndex) {}
ActorIsolation::ActorIsolation(Kind kind, VarDecl *actor,
unsigned parameterIndex)
: actorInstance(actor), kind(kind), isolatedByPreconcurrency(false),
silParsed(false), parameterIndex(parameterIndex) {}
ActorIsolation::ActorIsolation(Kind kind, Expr *actor,
unsigned parameterIndex)
: actorInstance(actor), kind(kind), isolatedByPreconcurrency(false),
silParsed(false), parameterIndex(parameterIndex) {}
ActorIsolation
ActorIsolation::forActorInstanceParameter(Expr *actor,
unsigned parameterIndex) {
auto &ctx = actor->getType()->getASTContext();
// An isolated value of `nil` is statically nonisolated.
// FIXME: Also allow 'Optional.none'
if (dyn_cast<NilLiteralExpr>(actor))
return ActorIsolation::forNonisolated(/*unsafe*/false);
// An isolated value of `<global actor type>.shared` is statically
// global actor isolated.
if (auto *memberRef = dyn_cast<MemberRefExpr>(actor)) {
// Check that the member declaration witnesses the `shared`
// requirement of the `GlobalActor` protocol.
auto declRef = memberRef->getDecl();
auto baseType =
memberRef->getBase()->getType()->getMetatypeInstanceType();
if (auto globalActor = ctx.getProtocol(KnownProtocolKind::GlobalActor)) {
auto *dc = declRef.getDecl()->getDeclContext();
auto *module = dc->getParentModule();
auto conformance = module->checkConformance(baseType, globalActor);
if (conformance &&
conformance.getWitnessByName(baseType, ctx.Id_shared) == declRef) {
return ActorIsolation::forGlobalActor(baseType);
}
}
}
return ActorIsolation(ActorInstance, actor, parameterIndex + 1);
}
ActorIsolation
ActorIsolation::forActorInstanceSelf(ValueDecl *decl) {
if (auto *fn = dyn_cast<AbstractFunctionDecl>(decl))
return ActorIsolation(ActorInstance, fn->getImplicitSelfDecl(), 0);
if (auto *storage = dyn_cast<AbstractStorageDecl>(decl)) {
if (auto *fn = storage->getAccessor(AccessorKind::Get)) {
return ActorIsolation(ActorInstance, fn->getImplicitSelfDecl(), 0);
}
}
auto *dc = decl->getDeclContext();
return ActorIsolation(ActorInstance, dc->getSelfNominalTypeDecl(), 0);
}
ActorIsolation ActorIsolation::forActorInstanceSelf(NominalTypeDecl *selfDecl) {
return ActorIsolation(ActorInstance, selfDecl, 0);
}
NominalTypeDecl *ActorIsolation::getActor() const {
assert(getKind() == ActorInstance ||
getKind() == GlobalActor);
if (silParsed)
return nullptr;
Type actorType;
if (auto *instance = actorInstance.dyn_cast<VarDecl *>()) {
actorType = instance->getTypeInContext();
} else if (auto *instance = actorInstance.dyn_cast<Expr *>()) {
actorType = instance->getType();
}
if (actorType) {
if (auto wrapped = actorType->getOptionalObjectType()) {
actorType = wrapped;
}
return actorType
->getReferenceStorageReferent()->getAnyActor();
}
return actorInstance.get<NominalTypeDecl *>();
}
NominalTypeDecl *ActorIsolation::getActorOrNullPtr() const {
if (getKind() != ActorInstance || getKind() != GlobalActor)
return nullptr;
if (silParsed)
return nullptr;
Type actorType;
if (auto *instance = actorInstance.dyn_cast<VarDecl *>()) {
actorType = instance->getTypeInContext();
} else if (auto *instance = actorInstance.dyn_cast<Expr *>()) {
actorType = instance->getType();
}
if (actorType) {
if (auto wrapped = actorType->getOptionalObjectType()) {
actorType = wrapped;
}
return actorType->getReferenceStorageReferent()->getAnyActor();
}
return actorInstance.get<NominalTypeDecl *>();
}
VarDecl *ActorIsolation::getActorInstance() const {
assert(getKind() == ActorInstance);
if (silParsed)
return nullptr;
return actorInstance.dyn_cast<VarDecl *>();
}
Expr *ActorIsolation::getActorInstanceExpr() const {
assert(getKind() == ActorInstance);
if (silParsed)
return nullptr;
return actorInstance.dyn_cast<Expr *>();
}
bool ActorIsolation::isMainActor() const {
if (silParsed)
return false;
if (isGlobalActor()) {
if (auto *nominal = getGlobalActor()->getAnyNominal())
return nominal->isMainActor();
}
return false;
}
bool ActorIsolation::isDistributedActor() const {
if (silParsed)
return false;
return getKind() == ActorInstance && getActor()->isDistributedActor();
}
bool ActorIsolation::isEqual(const ActorIsolation &lhs,
const ActorIsolation &rhs) {
if (lhs.getKind() != rhs.getKind())
return false;
switch (lhs.getKind()) {
case Nonisolated:
case NonisolatedUnsafe:
case Unspecified:
return true;
case Erased:
// Different functions with erased isolation have the same *kind* of
// isolation, but we must generally assume that they're not isolated
// the *same way*, which is what this function is apparently supposed
// to answer.
return false;
case ActorInstance: {
auto *lhsActor = lhs.getActorInstance();
auto *rhsActor = rhs.getActorInstance();
if (lhsActor && rhsActor) {
// FIXME: This won't work for arbitrary isolated parameter captures.
if ((lhsActor->isSelfParameter() && rhsActor->isSelfParamCapture()) ||
(lhsActor->isSelfParamCapture() && rhsActor->isSelfParameter())) {
return true;
}
}
// The parameter index doesn't matter; only the actor instance
// values must be equal.
return (lhs.getActor() == rhs.getActor() &&
lhs.actorInstance == rhs.actorInstance);
}
case GlobalActor:
return areTypesEqual(lhs.globalActor, rhs.globalActor);
}
}
BuiltinTupleDecl::BuiltinTupleDecl(Identifier Name, DeclContext *Parent)
: NominalTypeDecl(DeclKind::BuiltinTuple, Parent, Name, SourceLoc(),
ArrayRef<InheritedEntry>(), nullptr) {}
std::vector<MacroRole> swift::getAllMacroRoles() {
return {
#define MACRO_ROLE(Name, Description) MacroRole::Name,
#include "swift/Basic/MacroRoles.def"
};
}
StringRef swift::getMacroRoleString(MacroRole role) {
switch (role) {
#define MACRO_ROLE(Name, Description) \
case MacroRole::Name: \
return Description;
#include "swift/Basic/MacroRoles.def"
}
}
std::vector<MacroIntroducedDeclNameKind>
swift::getAllMacroIntroducedDeclNameKinds() {
return {
MacroIntroducedDeclNameKind::Named,
MacroIntroducedDeclNameKind::Overloaded,
MacroIntroducedDeclNameKind::Prefixed,
MacroIntroducedDeclNameKind::Suffixed,
MacroIntroducedDeclNameKind::Arbitrary,
};
}
bool swift::macroIntroducedNameRequiresArgument(
MacroIntroducedDeclNameKind kind
) {
switch (kind) {
case MacroIntroducedDeclNameKind::Named:
case MacroIntroducedDeclNameKind::Prefixed:
case MacroIntroducedDeclNameKind::Suffixed:
return true;
case MacroIntroducedDeclNameKind::Overloaded:
case MacroIntroducedDeclNameKind::Arbitrary:
return false;
}
}
StringRef swift::getMacroIntroducedDeclNameString(
MacroIntroducedDeclNameKind kind) {
switch (kind) {
case MacroIntroducedDeclNameKind::Named:
return "named";
case MacroIntroducedDeclNameKind::Overloaded:
return "overloaded";
case MacroIntroducedDeclNameKind::Prefixed:
return "prefixed";
case MacroIntroducedDeclNameKind::Suffixed:
return "suffixed";
case MacroIntroducedDeclNameKind::Arbitrary:
return "arbitrary";
}
}
static MacroRoles freestandingMacroRoles =
(MacroRoles()
#define FREESTANDING_MACRO_ROLE(Name, Description) | MacroRole::Name
#define ATTACHED_MACRO_ROLE(Name, Description, MangledChar)
#include "swift/Basic/MacroRoles.def"
);
static MacroRoles attachedMacroRoles =
(MacroRoles()
#define ATTACHED_MACRO_ROLE(Name, Description, MangledChar) | MacroRole::Name
#define FREESTANDING_MACRO_ROLE(Name, Description)
#include "swift/Basic/MacroRoles.def"
);
bool swift::isFreestandingMacro(MacroRoles contexts) {
return bool(contexts & freestandingMacroRoles);
}
MacroRoles swift::getFreestandingMacroRoles() {
return freestandingMacroRoles;
}
bool swift::isAttachedMacro(MacroRoles contexts) {
return bool(contexts & attachedMacroRoles);
}
MacroRoles swift::getAttachedMacroRoles() {
return attachedMacroRoles;
}
bool swift::isMacroSupported(MacroRole role, ASTContext &ctx) {
switch (role) {
#define EXPERIMENTAL_ATTACHED_MACRO_ROLE(Name, Description, MangledChar, FeatureName) \
case MacroRole::Name: \
return ctx.LangOpts.hasFeature(Feature::FeatureName);
#define EXPERIMENTAL_FREESTANDING_MACRO_ROLE(Name, Description, FeatureName) \
case MacroRole::Name: return ctx.LangOpts.hasFeature(Feature::FeatureName);
#define MACRO_ROLE(Name, Description)
#include "swift/Basic/MacroRoles.def"
#define EXPERIMENTAL_ATTACHED_MACRO_ROLE(Name, Description, MangledChar, FeatureName)
#define EXPERIMENTAL_FREESTANDING_MACRO_ROLE(Name, Description, FeatureName)
#define MACRO_ROLE(Name, Description) case MacroRole::Name:
#include "swift/Basic/MacroRoles.def"
return true;
}
}
void MissingDecl::forEachMacroExpandedDecl(MacroExpandedDeclCallback callback) {
auto macroRef = unexpandedMacro.macroRef;
auto *baseDecl = unexpandedMacro.baseDecl;
// If the macro itself is a macro expansion expression, it should come with
// a top-level code declaration that we can use for resolution. For such
// cases, resolve the macro to determine whether it is a declaration or
// code-item macro, meaning that it can produce declarations. In such cases,
// expand the macro and use its substituted declaration (a MacroExpansionDecl)
// instead.
if (auto freestanding = macroRef.dyn_cast<FreestandingMacroExpansion *>()) {
if (auto expr = dyn_cast<MacroExpansionExpr>(freestanding)) {
bool replacedWithDecl = false;
if (auto tlcd = dyn_cast_or_null<TopLevelCodeDecl>(baseDecl)) {
ASTContext &ctx = tlcd->getASTContext();
if (auto macro = evaluateOrDefault(
ctx.evaluator,
ResolveMacroRequest{macroRef, tlcd->getDeclContext()},
nullptr)) {
auto macroDecl = cast<MacroDecl>(macro.getDecl());
auto roles = macroDecl->getMacroRoles();
if (roles.contains(MacroRole::Declaration) ||
roles.contains(MacroRole::CodeItem)) {
(void)evaluateOrDefault(ctx.evaluator,
ExpandMacroExpansionExprRequest{expr},
std::nullopt);
if (auto substituted = expr->getSubstituteDecl()) {
macroRef = substituted;
baseDecl = substituted;
replacedWithDecl = true;
}
}
}
}
// If we didn't end up replacing the macro expansion expression with
// a declaration, we're done.
if (!replacedWithDecl)
return;
}
}
if (!macroRef || !baseDecl)
return;
auto *module = getModuleContext();
baseDecl->visitAuxiliaryDecls([&](Decl *auxiliaryDecl) {
SourceFile *sf = auxiliaryDecl->getLoc()
? module->getSourceFileContainingLocation(auxiliaryDecl->getLoc())
: auxiliaryDecl->getInnermostDeclContext()->getParentSourceFile();
// We only visit auxiliary decls that are macro expansions associated with
// this macro reference.
if (auto *med = macroRef.dyn_cast<FreestandingMacroExpansion *>()) {
auto medAsDecl = dyn_cast<MacroExpansionDecl>(med);
auto medAsExpr = dyn_cast<MacroExpansionExpr>(med);
if ((!medAsDecl || medAsDecl != sf->getMacroExpansion().dyn_cast<Decl *>()) &&
(!medAsExpr || medAsExpr != sf->getMacroExpansion().dyn_cast<Expr *>()))
return;
} else if (auto *attr = macroRef.dyn_cast<CustomAttr *>()) {
if (attr != sf->getAttachedMacroAttribute())
return;
} else {
return;
}
if (auto *vd = dyn_cast<ValueDecl>(auxiliaryDecl))
callback(vd);
});
}
MacroDecl::MacroDecl(
SourceLoc macroLoc, DeclName name, SourceLoc nameLoc,
GenericParamList *genericParams,
ParameterList *parameterList,
SourceLoc arrowLoc,
TypeRepr *resultType,
Expr *definition,
DeclContext *parent
) : GenericContext(DeclContextKind::MacroDecl, parent, genericParams),
ValueDecl(DeclKind::Macro, parent, name, nameLoc),
macroLoc(macroLoc), parameterList(parameterList),
arrowLoc(arrowLoc),
resultType(resultType),
definition(definition) {
if (parameterList)
parameterList->setDeclContextOfParamDecls(this);
}
Type MacroDecl::getResultInterfaceType() const {
auto &ctx = getASTContext();
auto mutableThis = const_cast<MacroDecl *>(this);
if (auto type = evaluateOrDefault(ctx.evaluator,
ResultTypeRequest{mutableThis},
Type()))
return type;
return ErrorType::get(ctx);
}
SourceRange MacroDecl::getSourceRange() const {
SourceLoc endLoc = getNameLoc();
if (parameterList)
endLoc = parameterList->getEndLoc();
if (resultType.getSourceRange().isValid())
endLoc = resultType.getSourceRange().End;
if (definition)
endLoc = definition->getEndLoc();
if (auto trailing = getTrailingWhereClause())
endLoc = trailing->getSourceRange().End;
return SourceRange(macroLoc, endLoc);
}
MacroRoles MacroDecl::getMacroRoles() const {
MacroRoles contexts = std::nullopt;
for (auto attr : getAttrs().getAttributes<MacroRoleAttr>())
contexts |= attr->getMacroRole();
return contexts;
}
const MacroRoleAttr *MacroDecl::getMacroRoleAttr(MacroRole role) const {
for (auto attr : getAttrs().getAttributes<MacroRoleAttr>())
if (attr->getMacroRole() == role)
return attr;
return nullptr;
}
DeclName MacroDecl::getUniqueNamePlaceholder(ASTContext &ctx) {
return ctx.getIdentifier("$");
}
bool MacroDecl::isUniqueNamePlaceholder(DeclName name) {
return name.getBaseName().userFacingName() == "$";
}
bool MacroDecl::isUniqueMacroName(StringRef name) {
// Unique macro names are mangled names, which always start with "$s".
if (!name.starts_with("$s"))
return false;
// Unique macro names end with fMu<digits>_. Match that.
// Strip off the trailing _.
if (name.back() != '_')
return false;
name = name.drop_back();
// Strip off trailing digits. This is the discriminator.
while (isdigit(name.back()))
name = name.drop_back();
// Check for fMu.
return name.ends_with("fMu");
}
bool MacroDecl::isUniqueMacroName(DeclBaseName name) {
return isUniqueMacroName(name.userFacingName());
}
void MacroDecl::getIntroducedNames(MacroRole role, ValueDecl *attachedTo,
SmallVectorImpl<DeclName> &names) const {
ASTContext &ctx = getASTContext();
auto *attr = getMacroRoleAttr(role);
if (!attr)
return;
for (auto expandedName : attr->getNames()) {
switch (expandedName.getKind()) {
case MacroIntroducedDeclNameKind::Named: {
names.push_back(DeclName(expandedName.getName()));
break;
}
case MacroIntroducedDeclNameKind::Overloaded: {
if (!attachedTo)
break;
names.push_back(attachedTo->getBaseName());
break;
}
case MacroIntroducedDeclNameKind::Prefixed: {
if (!attachedTo)
break;
auto baseName = attachedTo->getBaseName();
std::string prefixedName;
{
llvm::raw_string_ostream out(prefixedName);
out << expandedName.getName();
out << baseName.getIdentifier();
}
Identifier nameId = ctx.getIdentifier(prefixedName);
names.push_back(DeclName(nameId));
break;
}
case MacroIntroducedDeclNameKind::Suffixed: {
if (!attachedTo)
break;
auto baseName = attachedTo->getBaseName();
std::string suffixedName;
{
llvm::raw_string_ostream out(suffixedName);
out << baseName.getIdentifier();
out << expandedName.getName();
}
Identifier nameId = ctx.getIdentifier(suffixedName);
names.push_back(DeclName(nameId));
break;
}
case MacroIntroducedDeclNameKind::Arbitrary:
names.push_back(MacroDecl::getArbitraryName());
break;
}
}
// Add the unique name, if the macro can introduce declarations anywhere.
switch (role) {
case MacroRole::Expression:
case MacroRole::Declaration:
case MacroRole::Member:
case MacroRole::Peer:
case MacroRole::CodeItem:
case MacroRole::Extension:
names.push_back(MacroDecl::getUniqueNamePlaceholder(getASTContext()));
break;
case MacroRole::Accessor:
case MacroRole::Conformance:
case MacroRole::MemberAttribute:
case MacroRole::Preamble:
case MacroRole::Body:
break;
}
}
void MacroDecl::getIntroducedConformances(
NominalTypeDecl *attachedTo,
MacroRole role,
SmallVectorImpl<ProtocolDecl *> &conformances) const {
auto *attr = getMacroRoleAttr(role);
if (!attr)
return;
auto &ctx = getASTContext();
auto constraintTypes = evaluateOrDefault(
ctx.evaluator,
ResolveMacroConformances{attr, this},
{});
for (auto constraint : constraintTypes) {
assert(constraint->isConstraintType());
std::function<void(Type)> addConstraint =
[&](Type constraint) -> void {
if (auto *proto = constraint->getAs<ParameterizedProtocolType>()) {
conformances.push_back(proto->getProtocol());
return;
} else if (auto *proto = constraint->getAs<ProtocolType>()) {
conformances.push_back(proto->getDecl());
return;
}
auto *composition =
constraint->castTo<ProtocolCompositionType>();
for (auto constraint : composition->getMembers()) {
addConstraint(constraint);
}
};
addConstraint(constraint);
}
}
MacroDefinition MacroDecl::getDefinition() const {
return evaluateOrDefault(
getASTContext().evaluator,
MacroDefinitionRequest{const_cast<MacroDecl *>(this)},
MacroDefinition::forUndefined());
}
void MacroDecl::setDefinition(MacroDefinition definition) {
getASTContext().evaluator.cacheOutput(MacroDefinitionRequest{this},
std::move(definition));
}
std::optional<BuiltinMacroKind> MacroDecl::getBuiltinKind() const {
auto def = getDefinition();
if (def.kind != MacroDefinition::Kind::Builtin)
return std::nullopt;
return def.getBuiltinKind();
}
MacroDefinition MacroDefinition::forExpanded(
ASTContext &ctx,
StringRef expansionText,
ArrayRef<ExpandedMacroReplacement> replacements,
ArrayRef<ExpandedMacroReplacement> genericReplacements
) {
return ExpandedMacroDefinition{ctx.AllocateCopy(expansionText),
ctx.AllocateCopy(replacements),
ctx.AllocateCopy(genericReplacements)};
}
MacroExpansionDecl::MacroExpansionDecl(DeclContext *dc,
MacroExpansionInfo *info)
: Decl(DeclKind::MacroExpansion, dc),
FreestandingMacroExpansion(FreestandingMacroKind::Decl, info) {
}
MacroExpansionDecl *
MacroExpansionDecl::create(
DeclContext *dc, SourceLoc poundLoc, DeclNameRef macro,
DeclNameLoc macroLoc, SourceLoc leftAngleLoc,
ArrayRef<TypeRepr *> genericArgs, SourceLoc rightAngleLoc,
ArgumentList *args
) {
ASTContext &ctx = dc->getASTContext();
MacroExpansionInfo *info = new (ctx)
MacroExpansionInfo{poundLoc,
/*moduleName*/ DeclNameRef(),
/*moduleNameLoc*/ DeclNameLoc(),
macro,
macroLoc,
leftAngleLoc,
rightAngleLoc,
genericArgs,
args ? args : ArgumentList::createImplicit(ctx, {})};
return new (ctx) MacroExpansionDecl(dc, info);
}
void MacroExpansionDecl::forEachExpandedNode(
llvm::function_ref<void(ASTNode)> callback
) const {
auto mutableThis = const_cast<MacroExpansionDecl *>(this);
auto bufferID = evaluateOrDefault(
getASTContext().evaluator,
ExpandMacroExpansionDeclRequest{mutableThis}, {});
auto &sourceMgr = getASTContext().SourceMgr;
auto *moduleDecl = getModuleContext();
if (!bufferID)
return;
auto startLoc = sourceMgr.getLocForBufferStart(*bufferID);
auto *sourceFile = moduleDecl->getSourceFileContainingLocation(startLoc);
auto *macro = dyn_cast<MacroDecl>(getMacroRef().getDecl());
auto roles = macro->getMacroRoles();
for (auto node : sourceFile->getTopLevelItems()) {
// The assumption here is that macros can only have a single
// freestanding macro role. Expression macros can only produce
// expressions, declaration macros can only produce declarations,
// and code item macros can produce expressions, declarations, and
// statements.
if (roles.contains(MacroRole::Expression) && !node.is<Expr *>())
continue;
if (roles.contains(MacroRole::Declaration) && !node.is<Decl *>())
continue;
callback(node);
}
}
/// Adjust the declaration context to find a point in the context hierarchy
/// that the macro can be anchored on.
DeclContext *
MacroDiscriminatorContext::getInnermostMacroContext(DeclContext *dc) {
switch (dc->getContextKind()) {
case DeclContextKind::SubscriptDecl:
// For a subscript, return its parent context.
return getInnermostMacroContext(dc->getParent());
case DeclContextKind::EnumElementDecl:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SerializedAbstractClosure:
case DeclContextKind::SerializedTopLevelCodeDecl:
case DeclContextKind::Package:
case DeclContextKind::Module:
case DeclContextKind::FileUnit:
case DeclContextKind::GenericTypeDecl:
case DeclContextKind::ExtensionDecl:
case DeclContextKind::MacroDecl:
// These contexts are always fine
return dc;
case DeclContextKind::TopLevelCodeDecl:
// For top-level code, use the enclosing source file as the context.
return getInnermostMacroContext(dc->getParent());
case DeclContextKind::AbstractClosureExpr: {
// For closures, we can mangle the closure if we're in a context we can
// mangle. Check that context.
auto adjustedParentDC = getInnermostMacroContext(dc->getParent());
if (adjustedParentDC == dc->getParent())
return dc;
return adjustedParentDC;
}
case DeclContextKind::Initializer:
// Initializers can be part of inferring types for variables, so we need
// their context.
return getInnermostMacroContext(dc->getParent());
}
}
/// Retrieve the parent discriminator context for the given macro.
MacroDiscriminatorContext MacroDiscriminatorContext::getParentOf(
SourceLoc loc, DeclContext *origDC) {
origDC = getInnermostMacroContext(origDC);
if (loc.isInvalid())
return origDC;
ASTContext &ctx = origDC->getASTContext();
SourceManager &sourceMgr = ctx.SourceMgr;
auto bufferID = sourceMgr.findBufferContainingLoc(loc);
auto generatedSourceInfo = sourceMgr.getGeneratedSourceInfo(bufferID);
if (!generatedSourceInfo)
return origDC;
switch (generatedSourceInfo->kind) {
// Attached macros
#define FREESTANDING_MACRO_ROLE(Name, Description) \
case GeneratedSourceInfo::Name##MacroExpansion:
#define ATTACHED_MACRO_ROLE(Name, Description, MangledChar)
#include "swift/Basic/MacroRoles.def"
{
auto node = ASTNode::getFromOpaqueValue(generatedSourceInfo->astNode);
if (auto expansion = cast_or_null<MacroExpansionExpr>(
node.dyn_cast<Expr *>())) {
if (!origDC->isChildContextOf(expansion->getDeclContext()))
return MacroDiscriminatorContext(expansion);
} else {
auto expansionDecl = cast<MacroExpansionDecl>(node.get<Decl *>());
if (!origDC->isChildContextOf(expansionDecl->getDeclContext()))
return MacroDiscriminatorContext(expansionDecl);
}
return origDC;
}
// Attached macros
#define FREESTANDING_MACRO_ROLE(Name, Description)
#define ATTACHED_MACRO_ROLE(Name, Description, MangledChar) \
case GeneratedSourceInfo::Name##MacroExpansion:
#include "swift/Basic/MacroRoles.def"
case GeneratedSourceInfo::PrettyPrinted:
case GeneratedSourceInfo::ReplacedFunctionBody:
case GeneratedSourceInfo::DefaultArgument:
return origDC;
}
}
MacroDiscriminatorContext
MacroDiscriminatorContext::getParentOf(FreestandingMacroExpansion *expansion) {
return getParentOf(
expansion->getPoundLoc(), expansion->getDeclContext());
}
std::optional<Type>
CatchNode::getThrownErrorTypeInContext(ASTContext &ctx) const {
if (auto func = dyn_cast<AbstractFunctionDecl *>()) {
if (auto thrownError = func->getEffectiveThrownErrorType())
return func->mapTypeIntoContext(*thrownError);
return std::nullopt;
}
if (auto closure = dyn_cast<ClosureExpr *>()) {
if (closure->getType())
return closure->getEffectiveThrownType();
if (Type thrownType = closure->getExplicitThrownType()) {
if (thrownType->isNever())
return std::nullopt;
return thrownType;
}
return std::nullopt;
}
if (auto doCatch = dyn_cast<DoCatchStmt *>()) {
if (auto thrownError = doCatch->getCaughtErrorType()) {
if (thrownError->isNever())
return std::nullopt;
return thrownError;
}
// If we haven't computed the error type yet, return 'any Error'.
return ctx.getErrorExistentialType();
}
auto tryExpr = get<AnyTryExpr *>();
if (auto forceTry = llvm::dyn_cast<ForceTryExpr>(tryExpr)) {
if (auto thrownError = forceTry->getThrownError())
return thrownError;
// If we haven't computed the error type yet, return 'any Error'.
return ctx.getErrorExistentialType();
}
if (auto optTry = llvm::dyn_cast<OptionalTryExpr>(tryExpr)) {
if (auto thrownError = optTry->getThrownError())
return thrownError;
// If we haven't computed the error type yet, return 'any Error'.
return ctx.getErrorExistentialType();
}
llvm_unreachable("Unhandled catch node kind");
}
Type CatchNode::getExplicitCaughtType(ASTContext &ctx) const {
return evaluateOrDefault(
ctx.evaluator, ExplicitCaughtTypeRequest{&ctx, *this}, Type());
}
void swift::simple_display(llvm::raw_ostream &out, CatchNode catchNode) {
out << "catch node";
}
SourceLoc swift::extractNearestSourceLoc(CatchNode catchNode) {
if (auto func = catchNode.dyn_cast<AbstractFunctionDecl *>())
return func->getLoc();
if (auto closure = catchNode.dyn_cast<ClosureExpr *>())
return closure->getLoc();
if (auto doCatch = catchNode.dyn_cast<DoCatchStmt *>())
return doCatch->getDoLoc();
if (auto tryExpr = catchNode.dyn_cast<AnyTryExpr *>())
return tryExpr->getTryLoc();
llvm_unreachable("Unhandled catch node");
}
//----------------------------------------------------------------------------//
// ExplicitCaughtTypeRequest computation.
//----------------------------------------------------------------------------//
bool ExplicitCaughtTypeRequest::isCached() const {
auto catchNode = std::get<1>(getStorage());
// try? and try! never need to be cached.
if (catchNode.is<AnyTryExpr *>())
return false;
// Functions with explicitly-written thrown types need the result cached.
if (auto func = catchNode.dyn_cast<AbstractFunctionDecl *>()) {
return func->ThrownType.getTypeRepr() != nullptr;
}
// Closures with explicitly-written thrown types need the result cached.
if (auto closure = catchNode.dyn_cast<ClosureExpr *>()) {
return closure->ThrownType != nullptr;
}
// Do..catch with explicitly-written thrown types need the result cached.
if (auto doCatch = catchNode.dyn_cast<DoCatchStmt *>()) {
return doCatch->getThrowsLoc().isValid();
}
llvm_unreachable("Unhandled catch node");
}
std::optional<Type> ExplicitCaughtTypeRequest::getCachedResult() const {
// Map a possibly-null Type to std::optional<Type>.
auto nonnullTypeOrNone = [](Type type) -> std::optional<Type> {
if (type.isNull())
return std::nullopt;
return type;
};
auto catchNode = std::get<1>(getStorage());
if (auto func = catchNode.dyn_cast<AbstractFunctionDecl *>()) {
return nonnullTypeOrNone(func->ThrownType.getType());
}
if (auto closure = catchNode.dyn_cast<ClosureExpr *>()) {
if (closure->ThrownType) {
return nonnullTypeOrNone(closure->ThrownType->getInstanceType());
}
return std::nullopt;
}
if (auto doCatch = catchNode.dyn_cast<DoCatchStmt *>()) {
return nonnullTypeOrNone(doCatch->ThrownType.getType());
}
llvm_unreachable("Unhandled catch node");
}
void ExplicitCaughtTypeRequest::cacheResult(Type type) const {
auto catchNode = std::get<1>(getStorage());
if (auto func = catchNode.dyn_cast<AbstractFunctionDecl *>()) {
func->ThrownType.setType(type);
return;
}
if (auto closure = catchNode.dyn_cast<ClosureExpr *>()) {
if (closure->ThrownType)
closure->ThrownType->setType(MetatypeType::get(type));
else
closure->ThrownType =
TypeExpr::createImplicit(type, type->getASTContext());
return;
}
if (auto doCatch = catchNode.dyn_cast<DoCatchStmt *>()) {
doCatch->ThrownType.setType(type);
return;
}
llvm_unreachable("Unhandled catch node");
}