mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Swift string literals are only permitted to contain well-formed UTF-8, but C does not share this restriction, and ClangImporter wasn't checking for that before it created `StringLiteralExpr`s for imported macros; this could cause crashes when importing a header. This commit makes us drop these macros instead. Although invalid UTF-8 always *did* cause a segfault in my testing, I'm not convinced that there isn't a way to cause a miscompile with a bug like this. If we somehow did generate code that fed ill-formed UTF-8 to the builtin literal init for Swift.String, the resulting string could cause undefined behavior at runtime. So I have additionally added a defensive assertion to StringLiteralInst that any UTF-8 string represented in SIL is well-formed. Hopefully that will catch any non-crashing compiler bugs like this one. Fixes rdar://67840900.
131 lines
4.1 KiB
C++
131 lines
4.1 KiB
C++
//===--- Unicode.cpp - Unicode utilities ----------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/Unicode.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
|
|
using namespace swift;
|
|
|
|
// HACK: Allow support for many newer emoji by overriding behavior of ZWJ and
|
|
// emoji modifiers. This does not make the breaks correct for any version of
|
|
// Unicode, but shifts the ways in which it is incorrect to be less harmful.
|
|
//
|
|
// TODO: Remove this hack and reevaluate whether we should have any static
|
|
// notion of what a grapheme is.
|
|
//
|
|
// Returns true if lhs and rhs shouldn't be considered as having a grapheme
|
|
// break between them. That is, whether we're overriding the behavior of the
|
|
// hard coded Unicode 8 rules surrounding ZWJ and emoji modifiers.
|
|
static inline bool graphemeBreakOverride(llvm::UTF32 lhs, llvm::UTF32 rhs) {
|
|
// Assume ZWJ sequences produce new emoji
|
|
if (lhs == 0x200D) {
|
|
return true;
|
|
}
|
|
|
|
// Permit continuing regional indicators
|
|
if (rhs >= 0x1F3FB && rhs <= 0x1F3FF) {
|
|
return true;
|
|
}
|
|
|
|
// Permit emoji tag sequences
|
|
if (rhs >= 0xE0020 && rhs <= 0xE007F) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
StringRef swift::unicode::extractFirstExtendedGraphemeCluster(StringRef S) {
|
|
// Extended grapheme cluster segmentation algorithm as described in Unicode
|
|
// Standard Annex #29.
|
|
if (S.empty())
|
|
return StringRef();
|
|
|
|
const llvm::UTF8 *SourceStart =
|
|
reinterpret_cast<const llvm::UTF8 *>(S.data());
|
|
|
|
const llvm::UTF8 *SourceNext = SourceStart;
|
|
llvm::UTF32 C[2];
|
|
llvm::UTF32 *TargetStart = C;
|
|
|
|
ConvertUTF8toUTF32(&SourceNext, SourceStart + S.size(), &TargetStart, C + 1,
|
|
llvm::lenientConversion);
|
|
if (TargetStart == C) {
|
|
// The source string contains an ill-formed subsequence at the end.
|
|
return S;
|
|
}
|
|
|
|
GraphemeClusterBreakProperty GCBForC0 = getGraphemeClusterBreakProperty(C[0]);
|
|
while (true) {
|
|
size_t C1Offset = SourceNext - SourceStart;
|
|
ConvertUTF8toUTF32(&SourceNext, SourceStart + S.size(), &TargetStart, C + 2,
|
|
llvm::lenientConversion);
|
|
|
|
if (TargetStart == C + 1) {
|
|
// End of source string or the source string contains an ill-formed
|
|
// subsequence at the end.
|
|
return S.slice(0, C1Offset);
|
|
}
|
|
|
|
GraphemeClusterBreakProperty GCBForC1 =
|
|
getGraphemeClusterBreakProperty(C[1]);
|
|
if (isExtendedGraphemeClusterBoundary(GCBForC0, GCBForC1) &&
|
|
!graphemeBreakOverride(C[0], C[1]))
|
|
return S.slice(0, C1Offset);
|
|
|
|
C[0] = C[1];
|
|
TargetStart = C + 1;
|
|
GCBForC0 = GCBForC1;
|
|
}
|
|
}
|
|
|
|
static bool extractFirstUnicodeScalarImpl(StringRef S, unsigned &Scalar) {
|
|
if (S.empty())
|
|
return false;
|
|
|
|
const llvm::UTF8 *SourceStart =
|
|
reinterpret_cast<const llvm::UTF8 *>(S.data());
|
|
|
|
const llvm::UTF8 *SourceNext = SourceStart;
|
|
llvm::UTF32 C;
|
|
llvm::UTF32 *TargetStart = &C;
|
|
|
|
ConvertUTF8toUTF32(&SourceNext, SourceStart + S.size(), &TargetStart,
|
|
TargetStart + 1, llvm::lenientConversion);
|
|
if (TargetStart == &C) {
|
|
// The source string contains an ill-formed subsequence at the end.
|
|
return false;
|
|
}
|
|
|
|
Scalar = C;
|
|
return size_t(SourceNext - SourceStart) == S.size();
|
|
}
|
|
|
|
bool swift::unicode::isSingleUnicodeScalar(StringRef S) {
|
|
unsigned Scalar;
|
|
return extractFirstUnicodeScalarImpl(S, Scalar);
|
|
}
|
|
|
|
unsigned swift::unicode::extractFirstUnicodeScalar(StringRef S) {
|
|
unsigned Scalar;
|
|
bool Result = extractFirstUnicodeScalarImpl(S, Scalar);
|
|
assert(Result && "string does not consist of one Unicode scalar");
|
|
(void)Result;
|
|
return Scalar;
|
|
}
|
|
|
|
bool swift::unicode::isWellFormedUTF8(StringRef S) {
|
|
const llvm::UTF8 *begin = S.bytes_begin();
|
|
return llvm::isLegalUTF8String(&begin, S.bytes_end());
|
|
}
|