Files
swift-mirror/stdlib/core/ContiguousArrayBuffer.swift
Dave Abrahams 4bdb9462c7 [stdlib] ArrayBufferType: identity is base address
Buffer identity is only used by tests.  The switch to an identity
representation that accounts for the buffer length was actually
incorrect for the way many tests used it.

Swift SVN r22771
2014-10-15 20:27:57 +00:00

574 lines
17 KiB
Swift

//===--- ArrayBridge.swift - Array<T> <=> NSArray bridging ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
/// Class used whose sole instance is used as storage for empty
/// arrays. The instance is defined in the runtime and statically
/// initialized. See stdlib/runtime/GlobalObjects.cpp for details.
internal final class _EmptyArrayStorage
: _ContiguousArrayStorageBase {
init(_doNotCallMe: ()) {
_sanityCheckFailure("creating instance of _EmptyArrayStorage")
}
var countAndCapacity: _ArrayBody
override func _withVerbatimBridgedUnsafeBuffer<R>(
body: (UnsafeBufferPointer<AnyObject>)->R
) -> R? {
return body(UnsafeBufferPointer(start: .null(), count: 0))
}
override func _getNonVerbatimBridgedCount(dummy: Void) -> Int {
return 0
}
override func _getNonVerbatimBridgedHeapBuffer(
dummy: Void
) -> _HeapBuffer<Int, AnyObject> {
return _HeapBuffer<Int, AnyObject>(
_HeapBufferStorage<Int, AnyObject>.self, 0, 0)
}
override func canStoreElementsOfDynamicType(_: Any.Type) -> Bool {
return false
}
/// A type that every element in the array is.
override var staticElementType: Any.Type {
return Void.self
}
}
/// The empty array prototype. We use the same object for all empty
/// [Native]Array<T>s.
internal var _emptyArrayStorage : _EmptyArrayStorage {
return Builtin.bridgeFromRawPointer(
Builtin.addressof(&_swiftEmptyArrayStorage))
}
// FIXME: This whole class is a workaround for
// <rdar://problem/18560464> Can't override generic method in generic
// subclass. If it weren't for that bug, we'd override
// _withVerbatimBridgedUnsafeBuffer directly in
// _ContiguousArrayStorage<T>.
class _ContiguousArrayStorage1 : _ContiguousArrayStorageBase {
/// If the `T` is bridged verbatim, invoke `body` on an
/// `UnsafeBufferPointer` to the elements and return the result.
/// Otherwise, return `nil`.
final override func _withVerbatimBridgedUnsafeBuffer<R>(
body: (UnsafeBufferPointer<AnyObject>)->R
) -> R? {
var result: R? = nil
self._withVerbatimBridgedUnsafeBufferImpl {
result = body($0)
}
return result
}
/// If `T` is bridged verbatim, invoke `body` on an
/// `UnsafeBufferPointer` to the elements.
internal func _withVerbatimBridgedUnsafeBufferImpl(
body: (UnsafeBufferPointer<AnyObject>)->Void
) {
_sanityCheckFailure(
"Must override _withVerbatimBridgedUnsafeBufferImpl in derived classes")
}
}
// The class that implements the storage for a ContiguousArray<T>
final class _ContiguousArrayStorage<T> : _ContiguousArrayStorage1 {
typealias Buffer = _ContiguousArrayBuffer<T>
deinit {
let b = Buffer(self)
b.baseAddress.destroy(b.count)
b._base._value.destroy()
}
final func __getInstanceSizeAndAlignMask() -> (Int,Int) {
return Buffer(self)._base._allocatedSizeAndAlignMask()
}
/// If `T` is bridged verbatim, invoke `body` on an
/// `UnsafeBufferPointer` to the elements.
internal final override func _withVerbatimBridgedUnsafeBufferImpl(
body: (UnsafeBufferPointer<AnyObject>)->Void
) {
if _isBridgedVerbatimToObjectiveC(T.self) {
let nativeBuffer = Buffer(self)
body(
UnsafeBufferPointer(
start: UnsafePointer(nativeBuffer.baseAddress),
count: nativeBuffer.count))
_fixLifetime(self)
}
}
/// Returns the number of elements in the array.
///
/// Precondition: `T` is bridged non-verbatim.
override internal func _getNonVerbatimBridgedCount(dummy: Void) -> Int {
_sanityCheck(
!_isBridgedVerbatimToObjectiveC(T.self),
"Verbatim bridging should be handled separately")
return Buffer(self).count
}
/// Bridge array elements and return a new buffer that owns them.
///
/// Precondition: `T` is bridged non-verbatim.
override internal func _getNonVerbatimBridgedHeapBuffer(dummy: Void) ->
_HeapBuffer<Int, AnyObject> {
_sanityCheck(
!_isBridgedVerbatimToObjectiveC(T.self),
"Verbatim bridging should be handled separately")
let nativeBuffer = Buffer(self)
let count = nativeBuffer.count
let result = _HeapBuffer<Int, AnyObject>(
_HeapBufferStorage<Int, AnyObject>.self, count, count)
let resultPtr = result.baseAddress
for i in 0..<count {
(resultPtr + i).initialize(
_bridgeToObjectiveCUnconditional(nativeBuffer[i]))
}
return result
}
/// Return true if the `proposedElementType` is `T` or a subclass of
/// `T`. We can't store anything else without violating type
/// safety; for example, the destructor has static knowledge that
/// all of the elements can be destroyed as `T`
override func canStoreElementsOfDynamicType(
proposedElementType: Any.Type
) -> Bool {
return proposedElementType is T.Type
}
/// A type that every element in the array is.
override var staticElementType: Any.Type {
return T.self
}
}
public struct _ContiguousArrayBuffer<T> : _ArrayBufferType {
/// Make a buffer with uninitialized elements. After using this
/// method, you must either initialize the count elements at the
/// result's .baseAddress or set the result's .count to zero.
public init(count: Int, minimumCapacity: Int)
{
let realMinimumCapacity = max(count, minimumCapacity)
if realMinimumCapacity == 0 {
self = _ContiguousArrayBuffer<T>()
}
else {
_base = _HeapBuffer(
_ContiguousArrayStorage<T>.self,
_ArrayBody(),
realMinimumCapacity)
var bridged = false
if _canBeClass(T.self) != 0 {
bridged = _isBridgedVerbatimToObjectiveC(T.self)
}
_base.value = _ArrayBody(
count: count, capacity: _base._capacity(),
elementTypeIsBridgedVerbatim: bridged)
}
}
init(_ storage: _ContiguousArrayStorage<T>?) {
_base = unsafeBitCast(storage , _HeapBuffer<_ArrayBody, T>.self)
}
public var hasStorage: Bool {
return _base.hasStorage
}
/// If the elements are stored contiguously, a pointer to the first
/// element. Otherwise, nil.
public var baseAddress: UnsafeMutablePointer<T> {
return _base.hasStorage ? _base.baseAddress : nil
}
/// A pointer to the first element, assuming that the elements are stored
/// contiguously.
var _unsafeElementStorage: UnsafeMutablePointer<T> {
return _base.baseAddress
}
/// Call `body(p)`, where `p` is an `UnsafeBufferPointer` over the
/// underlying contiguous storage.
public func withUnsafeBufferPointer<R>(
body: (UnsafeBufferPointer<Element>)->R
) -> R {
let ret = body(UnsafeBufferPointer(start: self.baseAddress, count: count))
_fixLifetime(self)
return ret
}
/// Call `body(p)`, where `p` is an `UnsafeMutableBufferPointer`
/// over the underlying contiguous storage.
public mutating func withUnsafeMutableBufferPointer<R>(
body: (UnsafeMutableBufferPointer<T>)->R
) -> R {
let ret = body(
UnsafeMutableBufferPointer(start: baseAddress, count: count))
_fixLifetime(self)
return ret
}
//===--- _ArrayBufferType conformance -----------------------------------===//
/// The type of elements stored in the buffer
public typealias Element = T
/// create an empty buffer
public init() {
_base = unsafeBitCast(_emptyArrayStorage, _HeapBuffer<_ArrayBody, T>.self)
}
/// Adopt the storage of x
public init(_ buffer: _ContiguousArrayBuffer) {
self = buffer
}
public mutating func requestUniqueMutableBackingBuffer(minimumCapacity: Int)
-> _ContiguousArrayBuffer<Element>?
{
if _fastPath(isUniquelyReferenced() && capacity >= minimumCapacity) {
return self
}
return nil
}
public mutating func isMutableAndUniquelyReferenced() -> Bool {
return isUniquelyReferenced()
}
/// If this buffer is backed by a `_ContiguousArrayBuffer`
/// containing the same number of elements as `self`, return it.
/// Otherwise, return `nil`.
public func requestNativeBuffer() -> _ContiguousArrayBuffer<Element>? {
return self
}
/// Replace the given subRange with the first newCount elements of
/// the given collection.
///
/// Requires: this buffer is backed by a uniquely-referenced
/// _ContiguousArrayBuffer
public mutating func replace<
C: CollectionType where C.Generator.Element == Element
>(
#subRange: Range<Int>, with newCount: Int, elementsOf newValues: C
) {
_arrayNonSliceInPlaceReplace(&self, subRange, newCount, newValues)
}
/// Get/set the value of the ith element
public subscript(i: Int) -> T {
get {
_sanityCheck(_isValidSubscript(i), "Array index out of range")
// If the index is in bounds, we can assume we have storage.
return _unsafeElementStorage[i]
}
nonmutating set {
_sanityCheck(i >= 0 && i < count, "Array index out of range")
// If the index is in bounds, we can assume we have storage.
// FIXME: Manually swap because it makes the ARC optimizer happy. See
// <rdar://problem/16831852> check retain/release order
// _unsafeElementStorage[i] = newValue
var nv = newValue
let tmp = nv
nv = _unsafeElementStorage[i]
_unsafeElementStorage[i] = tmp
}
}
/// How many elements the buffer stores
public var count: Int {
get {
return _base.hasStorage ? _base.value.count : 0
}
nonmutating set {
_sanityCheck(newValue >= 0)
_sanityCheck(
newValue <= capacity,
"Can't grow an array buffer past its capacity")
_sanityCheck(_base.hasStorage || newValue == 0)
if _base.hasStorage {
_base.value.count = newValue
}
}
}
/// Return whether the given `index` is valid for subscripting, i.e. `0
/// index < count`
func _isValidSubscript(index : Int) -> Bool {
/// Instead of returning 0 for no storage, we explicitly check
/// for the existance of storage.
/// Note that this is better than folding hasStorage in to
/// the return from this function, as this implementation generates
/// no shortcircuiting blocks.
_precondition(_base.hasStorage, "Cannot index empty buffer")
return (index >= 0) & (index < _base.value.count)
}
/// How many elements the buffer can store without reallocation
public var capacity: Int {
return _base.hasStorage ? _base.value.capacity : 0
}
/// Copy the given subRange of this buffer into uninitialized memory
/// starting at target. Return a pointer past-the-end of the
/// just-initialized memory.
public func _uninitializedCopy(
subRange: Range<Int>, target: UnsafeMutablePointer<T>
) -> UnsafeMutablePointer<T> {
_sanityCheck(subRange.startIndex >= 0)
_sanityCheck(subRange.endIndex >= subRange.startIndex)
_sanityCheck(subRange.endIndex <= count)
var dst = target
var src = baseAddress + subRange.startIndex
for i in subRange {
dst++.initialize(src++.memory)
}
_fixLifetime(owner)
return dst
}
/// Return a _SliceBuffer containing the given subRange of values
/// from this buffer.
public subscript(subRange: Range<Int>) -> _SliceBuffer<T>
{
return _SliceBuffer(
owner: _base.storage,
start: baseAddress + subRange.startIndex,
count: subRange.endIndex - subRange.startIndex,
hasNativeBuffer: true)
}
/// Return true iff this buffer's storage is uniquely-referenced.
/// NOTE: this does not mean the buffer is mutable. Other factors
/// may need to be considered, such as whether the buffer could be
/// some immutable Cocoa container.
public mutating func isUniquelyReferenced() -> Bool {
return _base.isUniquelyReferenced()
}
/// Returns true iff this buffer is mutable. NOTE: a true result
/// does not mean the buffer is uniquely-referenced.
public func isMutable() -> Bool {
return true
}
/// Convert to an NSArray.
/// Precondition: T is bridged to Objective-C
/// O(1).
public func _asCocoaArray() -> _SwiftNSArrayRequiredOverridesType {
_sanityCheck(
_isBridgedToObjectiveC(T.self),
"Array element type is not bridged to ObjectiveC")
if count == 0 {
return _NSSwiftArray(
_nativeStorage: _emptyArrayStorage)
}
return _NSSwiftArray(_nativeStorage: _storage!)
}
/// An object that keeps the elements stored in this buffer alive
public var owner: AnyObject? {
return _storage
}
/// A value that identifies the storage used by the buffer. Two
/// buffers address the same elements when they have the same
/// identity and count.
public var identity: UnsafePointer<Void> {
return withUnsafeBufferPointer { UnsafePointer($0.baseAddress) }
}
/// Return true iff we have storage for elements of the given
/// `proposedElementType`. If not, we'll be treated as immutable.
func canStoreElementsOfDynamicType(proposedElementType: Any.Type) -> Bool {
if let s = _storage {
return s.canStoreElementsOfDynamicType(proposedElementType)
}
return false
}
/// Return true if the buffer stores only elements of type `U`.
/// Requires: `U` is a class or `@objc` existential. O(N)
func storesOnlyElementsOfType<U>(
_: U.Type
) -> Bool {
_sanityCheck(_isClassOrObjCExistential(U.self))
// Start with the base class so that optimizations based on
// 'final' don't bypass dynamic type check.
let s: _ContiguousArrayStorageBase? = _storage
if _fastPath(s != nil){
if _fastPath(s!.staticElementType is U.Type) {
// Done in O(1)
return true
}
}
// Check the elements
for x in self {
if !(x is U) {
return false
}
}
return true
}
//===--- private --------------------------------------------------------===//
typealias _OptionalStorage = _ContiguousArrayStorage<T>?
var _storage: _ContiguousArrayStorage<T>? {
return unsafeBitCast(_base.storage, _OptionalStorage.self)
}
typealias _Base = _HeapBuffer<_ArrayBody, T>
var _base: _Base
}
/// Append the elements of rhs to lhs
public func += <
T, C: CollectionType where C._Element == T
> (
inout lhs: _ContiguousArrayBuffer<T>, rhs: C
) {
let oldCount = lhs.count
let newCount = oldCount + numericCast(count(rhs))
if _fastPath(newCount <= lhs.capacity) {
lhs.count = newCount
(lhs.baseAddress + oldCount).initializeFrom(rhs)
}
else {
let newLHS = _ContiguousArrayBuffer<T>(
count: newCount,
minimumCapacity: _growArrayCapacity(lhs.capacity))
if lhs._base.hasStorage {
newLHS.baseAddress.moveInitializeFrom(lhs.baseAddress, count: oldCount)
lhs._base.value.count = 0
}
lhs._base = newLHS._base
(lhs._base.baseAddress + oldCount).initializeFrom(rhs)
}
}
/// Append rhs to lhs
public func += <T> (inout lhs: _ContiguousArrayBuffer<T>, rhs: T) {
lhs += CollectionOfOne(rhs)
}
func === <T>(
lhs: _ContiguousArrayBuffer<T>, rhs: _ContiguousArrayBuffer<T>
) -> Bool {
return lhs._base == rhs._base
}
func !== <T>(
lhs: _ContiguousArrayBuffer<T>, rhs: _ContiguousArrayBuffer<T>
) -> Bool {
return lhs._base != rhs._base
}
extension _ContiguousArrayBuffer : CollectionType {
/// The position of the first element in a non-empty collection.
///
/// Identical to `endIndex` in an empty collection.
public var startIndex: Int {
return 0
}
/// The collection's "past the end" position.
///
/// `endIndex` is not a valid argument to `subscript`, and is always
/// reachable from `startIndex` by zero or more applications of
/// `successor()`.
public var endIndex: Int {
return count
}
/// Return a *generator* over the elements of this *sequence*.
///
/// Complexity: O(1)
public func generate() -> IndexingGenerator<_ContiguousArrayBuffer> {
return IndexingGenerator(self)
}
}
public func ~> <
S: _Sequence_Type
>(
source: S, _: (_CopyToNativeArrayBuffer,())
) -> _ContiguousArrayBuffer<S.Generator.Element>
{
let initialCapacity = source~>_underestimateCount()
var result = _ContiguousArrayBuffer<S.Generator.Element>(
count: 0, minimumCapacity: initialCapacity)
// Using GeneratorSequence here essentially promotes the sequence to
// a SequenceType from _Sequence_Type so we can iterate the elements
for x in GeneratorSequence(source.generate()) {
result += x
}
return result
}
public func ~> <
C: protocol<_CollectionType, _Sequence_Type>
where C._Element == C.Generator.Element
>(
source: C, _:(_CopyToNativeArrayBuffer, ())
) -> _ContiguousArrayBuffer<C.Generator.Element>
{
return _copyCollectionToNativeArrayBuffer(source)
}
func _copyCollectionToNativeArrayBuffer<
C: protocol<_CollectionType, _Sequence_Type>
where C._Element == C.Generator.Element
>(source: C) -> _ContiguousArrayBuffer<C.Generator.Element>
{
let count: Int = numericCast(Swift.count(source))
if count == 0 {
return _ContiguousArrayBuffer()
}
var result = _ContiguousArrayBuffer<C.Generator.Element>(
count: numericCast(count),
minimumCapacity: 0
)
var p = result.baseAddress
var i = source.startIndex
for _ in 0..<count {
(p++).initialize(source[i++])
}
_expectEnd(i, source)
return result
}