mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
970 lines
23 KiB
C++
970 lines
23 KiB
C++
//===--- CrashHandlerLinux.cpp - Swift crash handler for Linux ----------- ===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2022 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The Linux crash handler implementation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifdef __linux__
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/futex.h>
|
|
|
|
#include <sys/mman.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/wait.h>
|
|
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <sched.h>
|
|
#include <setjmp.h>
|
|
#include <signal.h>
|
|
#include <stdbool.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "swift/Runtime/Backtrace.h"
|
|
|
|
#include <cstring>
|
|
|
|
// Run the memserver in a thread (0) or separate process (1)
|
|
#define MEMSERVER_USE_PROCESS 0
|
|
|
|
#ifndef lengthof
|
|
#define lengthof(x) (sizeof(x) / sizeof(x[0]))
|
|
#endif
|
|
|
|
using namespace swift::runtime::backtrace;
|
|
|
|
namespace {
|
|
|
|
void handle_fatal_signal(int signum, siginfo_t *pinfo, void *uctx);
|
|
void suspend_other_threads(struct thread *self);
|
|
void resume_other_threads();
|
|
void take_thread_lock();
|
|
void release_thread_lock();
|
|
void notify_paused();
|
|
uint32_t currently_paused();
|
|
void wait_paused(uint32_t expected, const struct timespec *timeout);
|
|
int memserver_start();
|
|
int memserver_entry(void *);
|
|
bool run_backtracer(int fd);
|
|
void format_unsigned(unsigned u, char buffer[22]);
|
|
|
|
ssize_t safe_read(int fd, void *buf, size_t len) {
|
|
uint8_t *ptr = (uint8_t *)buf;
|
|
uint8_t *end = ptr + len;
|
|
ssize_t total = 0;
|
|
|
|
while (ptr < end) {
|
|
ssize_t ret;
|
|
do {
|
|
ret = read(fd, buf, len);
|
|
} while (ret < 0 && errno == EINTR);
|
|
if (ret < 0)
|
|
return ret;
|
|
total += ret;
|
|
ptr += ret;
|
|
len -= ret;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
ssize_t safe_write(int fd, const void *buf, size_t len) {
|
|
const uint8_t *ptr = (const uint8_t *)buf;
|
|
const uint8_t *end = ptr + len;
|
|
ssize_t total = 0;
|
|
|
|
while (ptr < end) {
|
|
ssize_t ret;
|
|
do {
|
|
ret = write(fd, buf, len);
|
|
} while (ret < 0 && errno == EINTR);
|
|
if (ret < 0)
|
|
return ret;
|
|
total += ret;
|
|
ptr += ret;
|
|
len -= ret;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
CrashInfo crashInfo;
|
|
|
|
const int signalsToHandle[] = {
|
|
SIGQUIT,
|
|
SIGABRT,
|
|
SIGBUS,
|
|
SIGFPE,
|
|
SIGILL,
|
|
SIGSEGV,
|
|
SIGTRAP
|
|
};
|
|
|
|
} // namespace
|
|
|
|
namespace swift {
|
|
namespace runtime {
|
|
namespace backtrace {
|
|
|
|
SWIFT_RUNTIME_STDLIB_INTERNAL int
|
|
_swift_installCrashHandler()
|
|
{
|
|
stack_t ss;
|
|
|
|
// See if an alternate signal stack already exists
|
|
if (sigaltstack(NULL, &ss) < 0)
|
|
return errno;
|
|
|
|
if (ss.ss_sp == 0) {
|
|
/* No, so set one up; note that if we end up having to do a PLT lookup
|
|
for a function we call from the signal handler, we need additional
|
|
stack space for the dynamic linker, or we'll just explode. That's
|
|
what the extra 16KB is for here. */
|
|
ss.ss_flags = 0;
|
|
ss.ss_size = SIGSTKSZ + 16384;
|
|
ss.ss_sp = mmap(0, ss.ss_size, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (ss.ss_sp == MAP_FAILED)
|
|
return errno;
|
|
|
|
if (sigaltstack(&ss, NULL) < 0)
|
|
return errno;
|
|
}
|
|
|
|
// Now register signal handlers
|
|
struct sigaction sa;
|
|
sigfillset(&sa.sa_mask);
|
|
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
|
|
sigdelset(&sa.sa_mask, signalsToHandle[n]);
|
|
}
|
|
|
|
sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_NODEFER;
|
|
sa.sa_sigaction = handle_fatal_signal;
|
|
|
|
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n) {
|
|
struct sigaction osa;
|
|
|
|
// See if a signal handler for this signal is already installed
|
|
if (sigaction(signalsToHandle[n], NULL, &osa) < 0)
|
|
return errno;
|
|
|
|
if (osa.sa_handler == SIG_DFL) {
|
|
// No, so install ours
|
|
if (sigaction(signalsToHandle[n], &sa, NULL) < 0)
|
|
return errno;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace backtrace
|
|
} // namespace runtime
|
|
} // namespace swift
|
|
|
|
namespace {
|
|
|
|
// Older glibc and musl don't have these two syscalls
|
|
pid_t
|
|
gettid()
|
|
{
|
|
return (pid_t)syscall(SYS_gettid);
|
|
}
|
|
|
|
int
|
|
tgkill(int tgid, int tid, int sig) {
|
|
return syscall(SYS_tgkill, tgid, tid, sig);
|
|
}
|
|
|
|
void
|
|
reset_signal(int signum)
|
|
{
|
|
struct sigaction sa;
|
|
sa.sa_handler = SIG_DFL;
|
|
sa.sa_flags = 0;
|
|
sigemptyset(&sa.sa_mask);
|
|
|
|
sigaction(signum, &sa, NULL);
|
|
}
|
|
|
|
void
|
|
handle_fatal_signal(int signum,
|
|
siginfo_t *pinfo,
|
|
void *uctx)
|
|
{
|
|
int old_err = errno;
|
|
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
|
|
|
|
// Prevent this from exploding if more than one thread gets here at once
|
|
suspend_other_threads(&self);
|
|
|
|
// Remove our signal handlers; crashes should kill us here
|
|
for (unsigned n = 0; n < lengthof(signalsToHandle); ++n)
|
|
reset_signal(signalsToHandle[n]);
|
|
|
|
// Fill in crash info
|
|
crashInfo.crashing_thread = self.tid;
|
|
crashInfo.signal = signum;
|
|
crashInfo.fault_address = (uint64_t)pinfo->si_addr;
|
|
|
|
// Start the memory server
|
|
int fd = memserver_start();
|
|
|
|
// Actually start the backtracer
|
|
run_backtracer(fd);
|
|
|
|
#if !MEMSERVER_USE_PROCESS
|
|
/* If the memserver is in-process, it may have set signal handlers,
|
|
so reset SIGSEGV and SIGBUS again */
|
|
reset_signal(SIGSEGV);
|
|
reset_signal(SIGBUS);
|
|
#endif
|
|
|
|
// Restart the other threads
|
|
resume_other_threads();
|
|
|
|
// Restore errno and exit (to crash)
|
|
errno = old_err;
|
|
}
|
|
|
|
// .. Thread handling ..........................................................
|
|
|
|
void
|
|
reset_threads(struct thread *first) {
|
|
__atomic_store_n(&crashInfo.thread_list, (uint64_t)first, __ATOMIC_RELEASE);
|
|
}
|
|
|
|
void
|
|
add_thread(struct thread *thread) {
|
|
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
|
|
do {
|
|
thread->next = next;
|
|
} while (!__atomic_compare_exchange_n(&crashInfo.thread_list, &next,
|
|
(uint64_t)thread,
|
|
false,
|
|
__ATOMIC_RELEASE, __ATOMIC_ACQUIRE));
|
|
}
|
|
|
|
bool
|
|
seen_thread(pid_t tid) {
|
|
uint64_t next = __atomic_load_n(&crashInfo.thread_list, __ATOMIC_ACQUIRE);
|
|
while (next) {
|
|
struct thread *pthread = (struct thread *)next;
|
|
if (pthread->tid == tid)
|
|
return true;
|
|
next = pthread->next;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
pause_thread(int signum __attribute__((unused)),
|
|
siginfo_t *pinfo __attribute__((unused)),
|
|
void *uctx)
|
|
{
|
|
int old_err = errno;
|
|
struct thread self = { 0, (int64_t)gettid(), (uint64_t)uctx };
|
|
|
|
add_thread(&self);
|
|
|
|
notify_paused();
|
|
|
|
take_thread_lock();
|
|
release_thread_lock();
|
|
|
|
errno = old_err;
|
|
}
|
|
|
|
struct linux_dirent64 {
|
|
ino64_t d_ino;
|
|
off64_t d_off;
|
|
unsigned short d_reclen;
|
|
unsigned char d_type;
|
|
char d_name[256];
|
|
};
|
|
|
|
int
|
|
getdents(int fd, void *buf, size_t bufsiz)
|
|
{
|
|
return syscall(SYS_getdents64, fd, buf, bufsiz);
|
|
}
|
|
|
|
/* Find the signal to use to suspend the given thread.
|
|
|
|
Sadly, libdispatch blocks SIGUSR1, so we can't just use that everywhere;
|
|
and on Ubuntu 20.04 *something* is starting a thread with SIGPROF blocked,
|
|
so we can't just use that either.
|
|
|
|
We also can't modify the signal mask for another thread, since there is
|
|
no syscall to do that.
|
|
|
|
As a workaround, read /proc/<pid>/task/<tid>/status to find the signal
|
|
mask so that we can decide which signal to try and send. */
|
|
int
|
|
signal_for_suspend(int pid, int tid)
|
|
{
|
|
char pid_buffer[22];
|
|
char tid_buffer[22];
|
|
|
|
format_unsigned((unsigned)pid, pid_buffer);
|
|
format_unsigned((unsigned)tid, tid_buffer);
|
|
|
|
char status_file[6 + 22 + 6 + 22 + 7 + 1];
|
|
|
|
strcpy(status_file, "/proc/"); // 6
|
|
strcat(status_file, pid_buffer); // 22
|
|
strcat(status_file, "/task/"); // 6
|
|
strcat(status_file, tid_buffer); // 22
|
|
strcat(status_file, "/status"); // 7 + 1 for NUL
|
|
|
|
int fd = open(status_file, O_RDONLY);
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
enum match_state {
|
|
Matching,
|
|
EatLine,
|
|
AfterMatch,
|
|
InHex,
|
|
|
|
// states after this terminate the loop
|
|
Done,
|
|
Bad
|
|
};
|
|
|
|
enum match_state state = Matching;
|
|
const char *toMatch = "SigBlk:";
|
|
const char *matchPtr = toMatch;
|
|
char buffer[256];
|
|
uint64_t mask = 0;
|
|
ssize_t count;
|
|
while (state < Done && (count = read(fd, buffer, sizeof(buffer))) > 0) {
|
|
char *ptr = buffer;
|
|
char *end = buffer + count;
|
|
|
|
while (state < Done && ptr < end) {
|
|
int ch = *ptr++;
|
|
|
|
switch (state) {
|
|
case Matching:
|
|
if (ch != *matchPtr) {
|
|
state = EatLine;
|
|
matchPtr = toMatch;
|
|
} else if (!*++matchPtr) {
|
|
state = AfterMatch;
|
|
}
|
|
break;
|
|
case EatLine:
|
|
if (ch == '\n')
|
|
state = Matching;
|
|
break;
|
|
case AfterMatch:
|
|
if (ch == ' ' || ch == '\t') {
|
|
break;
|
|
}
|
|
state = InHex;
|
|
SWIFT_FALLTHROUGH;
|
|
case InHex:
|
|
if (ch >= '0' && ch <= '9') {
|
|
mask = (mask << 4) | (ch - '0');
|
|
} else if (ch >= 'a' && ch <= 'f') {
|
|
mask = (mask << 4) | (ch - 'a' + 10);
|
|
} else if (ch >= 'A' && ch <= 'F') {
|
|
mask = (mask << 4) | (ch - 'A' + 10);
|
|
} else if (ch == '\n') {
|
|
state = Done;
|
|
break;
|
|
} else {
|
|
state = Bad;
|
|
}
|
|
break;
|
|
case Done:
|
|
case Bad:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
close(fd);
|
|
|
|
if (state == Done) {
|
|
if (!(mask & (1 << (SIGUSR1 - 1))))
|
|
return SIGUSR1;
|
|
else if (!(mask & (1 << (SIGUSR2 - 1))))
|
|
return SIGUSR2;
|
|
else if (!(mask & (1 << (SIGPROF - 1))))
|
|
return SIGPROF;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
// Write a string to stderr
|
|
void
|
|
warn(const char *str) {
|
|
write(STDERR_FILENO, str, strlen(str));
|
|
}
|
|
|
|
/* Stop all other threads in this process; we do this by establishing a
|
|
signal handler for SIGPROF, then iterating through the threads sending
|
|
SIGPROF.
|
|
|
|
Finding the other threads is a pain, because Linux has no actual API
|
|
for that; instead, you have to read /proc. Unfortunately, opendir()
|
|
and readdir() are not async signal safe, so we get to do this with
|
|
the getdents system call instead.
|
|
|
|
The SIGPROF signals also serve to build the thread list. */
|
|
void
|
|
suspend_other_threads(struct thread *self)
|
|
{
|
|
struct sigaction sa, sa_old_prof, sa_old_usr1, sa_old_usr2;
|
|
|
|
// Take the lock
|
|
take_thread_lock();
|
|
|
|
// Start the thread list with this thread
|
|
reset_threads(self);
|
|
|
|
// Swap out the signal handlers first
|
|
sigfillset(&sa.sa_mask);
|
|
sa.sa_flags = 0;
|
|
sa.sa_handler = NULL;
|
|
sa.sa_sigaction = pause_thread;
|
|
|
|
sigaction(SIGPROF, &sa, &sa_old_prof);
|
|
sigaction(SIGUSR1, &sa, &sa_old_usr1);
|
|
sigaction(SIGUSR2, &sa, &sa_old_usr2);
|
|
|
|
/* Now scan /proc/self/task to get the tids of the threads in this
|
|
process. We need to ignore our own thread. */
|
|
int fd = open("/proc/self/task",
|
|
O_RDONLY|O_NDELAY|O_DIRECTORY|O_LARGEFILE|O_CLOEXEC);
|
|
int our_pid = getpid();
|
|
char buffer[4096];
|
|
size_t offset = 0;
|
|
size_t count = 0;
|
|
|
|
unsigned max_loops = 15;
|
|
uint32_t pending = 0;
|
|
|
|
do {
|
|
uint32_t paused = currently_paused();
|
|
|
|
pending = 0;
|
|
|
|
lseek(fd, 0, SEEK_SET);
|
|
|
|
for (;;) {
|
|
if (offset >= count) {
|
|
ssize_t bytes = getdents(fd, buffer, sizeof(buffer));
|
|
if (bytes <= 0)
|
|
break;
|
|
count = (size_t)bytes;
|
|
offset = 0;
|
|
}
|
|
|
|
struct linux_dirent64 *dp = (struct linux_dirent64 *)&buffer[offset];
|
|
offset += dp->d_reclen;
|
|
|
|
if (strcmp(dp->d_name, ".") == 0
|
|
|| strcmp(dp->d_name, "..") == 0)
|
|
continue;
|
|
|
|
int tid = atoi(dp->d_name);
|
|
|
|
if ((int64_t)tid != self->tid && !seen_thread(tid)) {
|
|
int sig_to_use = signal_for_suspend(our_pid, tid);
|
|
|
|
if (sig_to_use > 0) {
|
|
tgkill(our_pid, tid, sig_to_use);
|
|
++pending;
|
|
} else {
|
|
warn("swift-runtime: unable to suspend thread ");
|
|
warn(dp->d_name);
|
|
warn("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we find no new threads, we're done
|
|
if (!pending)
|
|
break;
|
|
|
|
// Wait for the threads to suspend
|
|
struct timespec timeout = { 2, 0 };
|
|
wait_paused(paused + pending, &timeout);
|
|
} while (max_loops--);
|
|
|
|
// Close the directory
|
|
close(fd);
|
|
|
|
// Finally, reset the signal handlers
|
|
sigaction(SIGPROF, &sa_old_prof, NULL);
|
|
sigaction(SIGUSR1, &sa_old_usr1, NULL);
|
|
sigaction(SIGUSR2, &sa_old_usr2, NULL);
|
|
}
|
|
|
|
void
|
|
resume_other_threads()
|
|
{
|
|
// All we need to do here is release the lock.
|
|
release_thread_lock();
|
|
}
|
|
|
|
// .. Locking ..................................................................
|
|
|
|
/* We use a futex to block the threads; we also use one to let us work out
|
|
when all the threads we've asked to pause have actually paused. */
|
|
int
|
|
futex(uint32_t *uaddr, int futex_op, uint32_t val,
|
|
const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
|
|
{
|
|
return syscall(SYS_futex, uaddr, futex_op, val, timeout, uaddr2, val3);
|
|
}
|
|
|
|
uint32_t thread_lock = 0;
|
|
|
|
void
|
|
take_thread_lock()
|
|
{
|
|
do {
|
|
uint32_t zero = 0;
|
|
if (__atomic_compare_exchange_n(&thread_lock,
|
|
&zero,
|
|
1,
|
|
true,
|
|
__ATOMIC_ACQUIRE,
|
|
__ATOMIC_RELAXED))
|
|
return;
|
|
} while (!futex(&thread_lock, FUTEX_WAIT, 1, NULL, NULL, 0)
|
|
|| errno == EAGAIN);
|
|
}
|
|
|
|
void
|
|
release_thread_lock()
|
|
{
|
|
__atomic_store_n(&thread_lock, 0, __ATOMIC_RELEASE);
|
|
futex(&thread_lock, FUTEX_WAKE, 1, NULL, NULL, 0);
|
|
}
|
|
|
|
uint32_t threads_paused = 0;
|
|
|
|
void
|
|
notify_paused()
|
|
{
|
|
__atomic_fetch_add(&threads_paused, 1, __ATOMIC_RELEASE);
|
|
futex(&threads_paused, FUTEX_WAKE, 1, NULL, NULL, 0);
|
|
}
|
|
|
|
uint32_t
|
|
currently_paused()
|
|
{
|
|
return __atomic_load_n(&threads_paused, __ATOMIC_ACQUIRE);
|
|
}
|
|
|
|
void
|
|
wait_paused(uint32_t expected, const struct timespec *timeout)
|
|
{
|
|
uint32_t current;
|
|
do {
|
|
current = __atomic_load_n(&threads_paused, __ATOMIC_ACQUIRE);
|
|
if (current == expected)
|
|
return;
|
|
} while (!futex(&threads_paused, FUTEX_WAIT, current, timeout, NULL, 0)
|
|
|| errno == EAGAIN);
|
|
}
|
|
|
|
// .. Memory server ............................................................
|
|
|
|
/* The memory server exists so that we can gain access to the crashing
|
|
process's memory space from the backtracer without having to use ptrace()
|
|
or process_vm_readv(), both of which need CAP_SYS_PTRACE.
|
|
|
|
We don't want to require CAP_SYS_PTRACE because we're potentially being
|
|
used inside of a Docker container, which won't have that enabled. */
|
|
|
|
char memserver_stack[4096] __attribute__((aligned(SWIFT_PAGE_SIZE)));
|
|
char memserver_buffer[4096];
|
|
int memserver_fd;
|
|
bool memserver_has_ptrace;
|
|
sigjmp_buf memserver_fault_buf;
|
|
pid_t memserver_pid;
|
|
|
|
int
|
|
memserver_start()
|
|
{
|
|
int ret;
|
|
int fds[2];
|
|
|
|
ret = socketpair(AF_UNIX, SOCK_STREAM, 0, fds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
memserver_fd = fds[0];
|
|
ret = clone(memserver_entry, memserver_stack + sizeof(memserver_stack),
|
|
#if MEMSERVER_USE_PROCESS
|
|
0,
|
|
#else
|
|
CLONE_THREAD | CLONE_VM | CLONE_FILES
|
|
| CLONE_FS | CLONE_IO | CLONE_SIGHAND,
|
|
#endif
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
#if MEMSERVER_USE_PROCESS
|
|
memserver_pid = ret;
|
|
|
|
/* Tell the Yama LSM module, if it's running, that it's OK for
|
|
the memserver to read process memory */
|
|
prctl(PR_SET_PTRACER, ret);
|
|
|
|
close(fds[0]);
|
|
#else
|
|
memserver_pid = getpid();
|
|
#endif
|
|
|
|
return fds[1];
|
|
}
|
|
|
|
void
|
|
memserver_fault(int sig) {
|
|
(void)sig;
|
|
siglongjmp(memserver_fault_buf, -1);
|
|
}
|
|
|
|
ssize_t __attribute__((noinline))
|
|
memserver_read(void *to, const void *from, size_t len) {
|
|
if (memserver_has_ptrace) {
|
|
// This won't run for older Android APIs anyway, but it can't be compiled
|
|
// either, as process_vm_readv() isn't available.
|
|
#if !(defined(__ANDROID_API__) && __ANDROID_API__ < 23)
|
|
struct iovec local = { to, len };
|
|
struct iovec remote = { const_cast<void *>(from), len };
|
|
return process_vm_readv(memserver_pid, &local, 1, &remote, 1, 0);
|
|
#endif
|
|
} else {
|
|
if (!sigsetjmp(memserver_fault_buf, 1)) {
|
|
memcpy(to, from, len);
|
|
return len;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
memserver_entry(void *dummy __attribute__((unused))) {
|
|
int fd = memserver_fd;
|
|
int result = 1;
|
|
|
|
#if MEMSERVER_USE_PROCESS
|
|
prctl(PR_SET_NAME, "[backtrace]");
|
|
#endif
|
|
|
|
// process_vm_readv() is not available for older Android APIs.
|
|
#if defined(__ANDROID_API__) && __ANDROID_API__ < 23
|
|
memserver_has_ptrace = false;
|
|
#else
|
|
memserver_has_ptrace = !!prctl(PR_CAPBSET_READ, CAP_SYS_PTRACE);
|
|
#endif
|
|
|
|
if (!memserver_has_ptrace) {
|
|
struct sigaction sa;
|
|
sigfillset(&sa.sa_mask);
|
|
sa.sa_handler = memserver_fault;
|
|
sa.sa_flags = SA_NODEFER;
|
|
sigaction(SIGSEGV, &sa, NULL);
|
|
sigaction(SIGBUS, &sa, NULL);
|
|
}
|
|
|
|
for (;;) {
|
|
struct memserver_req req;
|
|
ssize_t ret;
|
|
|
|
ret = safe_read(fd, &req, sizeof(req));
|
|
if (ret != sizeof(req))
|
|
break;
|
|
|
|
uint64_t addr = req.addr;
|
|
uint64_t bytes = req.len;
|
|
|
|
while (bytes) {
|
|
uint64_t todo = (bytes < sizeof(memserver_buffer)
|
|
? bytes : sizeof(memserver_buffer));
|
|
|
|
ret = memserver_read(memserver_buffer, (void *)addr, (size_t)todo);
|
|
|
|
struct memserver_resp resp;
|
|
|
|
resp.addr = addr;
|
|
resp.len = ret;
|
|
|
|
ret = safe_write(fd, &resp, sizeof(resp));
|
|
if (ret != sizeof(resp))
|
|
goto fail;
|
|
|
|
if (resp.len < 0)
|
|
break;
|
|
|
|
ret = safe_write(fd, memserver_buffer, resp.len);
|
|
if (ret != resp.len)
|
|
goto fail;
|
|
|
|
addr += resp.len;
|
|
bytes -= resp.len;
|
|
}
|
|
}
|
|
|
|
result = 0;
|
|
|
|
fail:
|
|
close(fd);
|
|
return result;
|
|
}
|
|
|
|
// .. Starting the backtracer ..................................................
|
|
|
|
char addr_buf[18];
|
|
char timeout_buf[22];
|
|
char limit_buf[22];
|
|
char top_buf[22];
|
|
const char *backtracer_argv[] = {
|
|
"swift-backtrace", // 0
|
|
"--unwind", // 1
|
|
"precise", // 2
|
|
"--demangle", // 3
|
|
"true", // 4
|
|
"--interactive", // 5
|
|
"true", // 6
|
|
"--color", // 7
|
|
"true", // 8
|
|
"--timeout", // 9
|
|
timeout_buf, // 10
|
|
"--preset", // 11
|
|
"friendly", // 12
|
|
"--crashinfo", // 13
|
|
addr_buf, // 14
|
|
"--threads", // 15
|
|
"preset", // 16
|
|
"--registers", // 17
|
|
"preset", // 18
|
|
"--images", // 19
|
|
"preset", // 20
|
|
"--limit", // 21
|
|
limit_buf, // 22
|
|
"--top", // 23
|
|
top_buf, // 24
|
|
"--sanitize", // 25
|
|
"preset", // 26
|
|
"--cache", // 27
|
|
"true", // 28
|
|
"--output-to", // 29
|
|
"stdout", // 30
|
|
NULL
|
|
};
|
|
|
|
// We can't call sprintf() here because we're in a signal handler,
|
|
// so we need to be async-signal-safe.
|
|
void
|
|
format_address(uintptr_t addr, char buffer[18])
|
|
{
|
|
char *ptr = buffer + 18;
|
|
*--ptr = '\0';
|
|
while (ptr > buffer) {
|
|
char digit = '0' + (addr & 0xf);
|
|
if (digit > '9')
|
|
digit += 'a' - '0' - 10;
|
|
*--ptr = digit;
|
|
addr >>= 4;
|
|
if (!addr)
|
|
break;
|
|
}
|
|
|
|
// Left-justify in the buffer
|
|
if (ptr > buffer) {
|
|
char *pt2 = buffer;
|
|
while (*ptr)
|
|
*pt2++ = *ptr++;
|
|
*pt2++ = '\0';
|
|
}
|
|
}
|
|
void
|
|
format_address(const void *ptr, char buffer[18])
|
|
{
|
|
format_address(reinterpret_cast<uintptr_t>(ptr), buffer);
|
|
}
|
|
|
|
// See above; we can't use sprintf() here.
|
|
void
|
|
format_unsigned(unsigned u, char buffer[22])
|
|
{
|
|
char *ptr = buffer + 22;
|
|
*--ptr = '\0';
|
|
while (ptr > buffer) {
|
|
char digit = '0' + (u % 10);
|
|
*--ptr = digit;
|
|
u /= 10;
|
|
if (!u)
|
|
break;
|
|
}
|
|
|
|
// Left-justify in the buffer
|
|
if (ptr > buffer) {
|
|
char *pt2 = buffer;
|
|
while (*ptr)
|
|
*pt2++ = *ptr++;
|
|
*pt2++ = '\0';
|
|
}
|
|
}
|
|
|
|
const char *
|
|
trueOrFalse(bool b) {
|
|
return b ? "true" : "false";
|
|
}
|
|
|
|
const char *
|
|
trueOrFalse(OnOffTty oot) {
|
|
return trueOrFalse(oot == OnOffTty::On);
|
|
}
|
|
|
|
bool
|
|
run_backtracer(int memserver_fd)
|
|
{
|
|
// Set-up the backtracer's command line arguments
|
|
switch (_swift_backtraceSettings.algorithm) {
|
|
case UnwindAlgorithm::Fast:
|
|
backtracer_argv[2] = "fast";
|
|
break;
|
|
default:
|
|
backtracer_argv[2] = "precise";
|
|
break;
|
|
}
|
|
|
|
// (The TTY option has already been handled at this point, so these are
|
|
// all either "On" or "Off".)
|
|
backtracer_argv[4] = trueOrFalse(_swift_backtraceSettings.demangle);
|
|
backtracer_argv[6] = trueOrFalse(_swift_backtraceSettings.interactive);
|
|
backtracer_argv[8] = trueOrFalse(_swift_backtraceSettings.color);
|
|
|
|
switch (_swift_backtraceSettings.threads) {
|
|
case ThreadsToShow::Preset:
|
|
backtracer_argv[16] = "preset";
|
|
break;
|
|
case ThreadsToShow::All:
|
|
backtracer_argv[16] = "all";
|
|
break;
|
|
case ThreadsToShow::Crashed:
|
|
backtracer_argv[16] = "crashed";
|
|
break;
|
|
}
|
|
|
|
switch (_swift_backtraceSettings.registers) {
|
|
case RegistersToShow::Preset:
|
|
backtracer_argv[18] = "preset";
|
|
break;
|
|
case RegistersToShow::None:
|
|
backtracer_argv[18] = "none";
|
|
break;
|
|
case RegistersToShow::All:
|
|
backtracer_argv[18] = "all";
|
|
break;
|
|
case RegistersToShow::Crashed:
|
|
backtracer_argv[18] = "crashed";
|
|
break;
|
|
}
|
|
|
|
switch (_swift_backtraceSettings.images) {
|
|
case ImagesToShow::Preset:
|
|
backtracer_argv[20] = "preset";
|
|
break;
|
|
case ImagesToShow::None:
|
|
backtracer_argv[20] = "none";
|
|
break;
|
|
case ImagesToShow::All:
|
|
backtracer_argv[20] = "all";
|
|
break;
|
|
case ImagesToShow::Mentioned:
|
|
backtracer_argv[20] = "mentioned";
|
|
break;
|
|
}
|
|
|
|
switch (_swift_backtraceSettings.preset) {
|
|
case Preset::Friendly:
|
|
backtracer_argv[12] = "friendly";
|
|
break;
|
|
case Preset::Medium:
|
|
backtracer_argv[12] = "medium";
|
|
break;
|
|
default:
|
|
backtracer_argv[12] = "full";
|
|
break;
|
|
}
|
|
|
|
switch (_swift_backtraceSettings.sanitize) {
|
|
case SanitizePaths::Preset:
|
|
backtracer_argv[26] = "preset";
|
|
break;
|
|
case SanitizePaths::Off:
|
|
backtracer_argv[26] = "false";
|
|
break;
|
|
case SanitizePaths::On:
|
|
backtracer_argv[26] = "true";
|
|
break;
|
|
}
|
|
|
|
switch (_swift_backtraceSettings.outputTo) {
|
|
case OutputTo::Stdout:
|
|
backtracer_argv[30] = "stdout";
|
|
break;
|
|
case OutputTo::Auto: // Shouldn't happen, but if it does pick stderr
|
|
case OutputTo::Stderr:
|
|
backtracer_argv[30] = "stderr";
|
|
break;
|
|
}
|
|
|
|
backtracer_argv[28] = trueOrFalse(_swift_backtraceSettings.cache);
|
|
|
|
format_unsigned(_swift_backtraceSettings.timeout, timeout_buf);
|
|
|
|
if (_swift_backtraceSettings.limit < 0)
|
|
std::strcpy(limit_buf, "none");
|
|
else
|
|
format_unsigned(_swift_backtraceSettings.limit, limit_buf);
|
|
|
|
format_unsigned(_swift_backtraceSettings.top, top_buf);
|
|
format_address(&crashInfo, addr_buf);
|
|
|
|
// Actually execute it
|
|
return _swift_spawnBacktracer(backtracer_argv, memserver_fd);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#endif // __linux__
|
|
|