mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
3133 lines
104 KiB
C++
3133 lines
104 KiB
C++
//===--- Decl.h - Swift Language Declaration ASTs ---------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Decl class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_DECL_H
|
|
#define SWIFT_DECL_H
|
|
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/CaptureInfo.h"
|
|
#include "swift/AST/DeclContext.h"
|
|
#include "swift/AST/DefaultArgumentKind.h"
|
|
#include "swift/AST/KnownProtocols.h"
|
|
#include "swift/AST/Identifier.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/AST/Substitution.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/AST/TypeLoc.h"
|
|
#include "swift/Basic/SourceLoc.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include <cstddef>
|
|
|
|
namespace clang {
|
|
class Decl;
|
|
class MacroInfo;
|
|
}
|
|
|
|
namespace swift {
|
|
class ArchetypeType;
|
|
class ASTContext;
|
|
class ASTWalker;
|
|
class Type;
|
|
class Expr;
|
|
class LiteralExpr;
|
|
class FuncDecl;
|
|
class BraceStmt;
|
|
class DeclAttributes;
|
|
class GenericTypeParamDecl;
|
|
class GenericTypeParamType;
|
|
class Module;
|
|
class NameAliasType;
|
|
class EnumElementDecl;
|
|
class Pattern;
|
|
struct PrintOptions;
|
|
class ProtocolDecl;
|
|
class ProtocolType;
|
|
enum class Resilience : unsigned char;
|
|
class TypeAliasDecl;
|
|
class Stmt;
|
|
class SubscriptDecl;
|
|
class ValueDecl;
|
|
class VarDecl;
|
|
|
|
typedef llvm::PointerUnion<const clang::Decl *, clang::MacroInfo *> ClangNode;
|
|
|
|
enum class DeclKind : uint8_t {
|
|
#define DECL(Id, Parent) Id,
|
|
#define DECL_RANGE(Id, FirstId, LastId) \
|
|
First_##Id##Decl = FirstId, Last_##Id##Decl = LastId,
|
|
#include "swift/AST/DeclNodes.def"
|
|
};
|
|
|
|
/// Keeps track of stage of circularity checking for the given protocol.
|
|
enum class CircularityCheck {
|
|
/// Circularity has not yet been checked.
|
|
Unchecked,
|
|
/// We're currently checking circularity.
|
|
Checking,
|
|
/// Circularity has already been checked.
|
|
Checked
|
|
};
|
|
|
|
/// Decl - Base class for all declarations in Swift.
|
|
class alignas(8) Decl {
|
|
// alignas(8) because we use three tag bits on Decl*.
|
|
|
|
class DeclBitfields {
|
|
friend class Decl;
|
|
unsigned Kind : 8;
|
|
|
|
/// \brief Whether this declaration is invalid.
|
|
unsigned Invalid : 1;
|
|
|
|
/// \brief Whether this declaration was implicitly created, e.g.,
|
|
/// an implicit constructor in a struct.
|
|
unsigned Implicit : 1;
|
|
|
|
/// \brief Whether this declaration was mapped directly from a Clang AST.
|
|
///
|
|
/// Use getClangAST() to retrieve the corresponding Clang AST.
|
|
unsigned FromClang : 1;
|
|
};
|
|
enum { NumDeclBits = 11 };
|
|
static_assert(NumDeclBits <= 32, "fits in an unsigned");
|
|
|
|
|
|
class PatternBindingDeclBitfields {
|
|
friend class PatternBindingDecl;
|
|
unsigned : NumDeclBits;
|
|
|
|
/// \brief Whether this pattern binding declares static variables.
|
|
unsigned IsStatic : 1;
|
|
};
|
|
enum { NumPatternBindingDeclBits = 1 };
|
|
static_assert(NumPatternBindingDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class ValueDeclBitfields {
|
|
friend class ValueDecl;
|
|
unsigned : NumDeclBits;
|
|
unsigned ConformsToProtocolRequrement : 1;
|
|
};
|
|
enum { NumValueDeclBits = NumDeclBits + 1 };
|
|
static_assert(NumValueDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class VarDeclBitfields {
|
|
friend class VarDecl;
|
|
unsigned : NumValueDeclBits;
|
|
|
|
/// \brief Whether this property is a type property (currently unfortunately
|
|
/// called 'static').
|
|
unsigned Static : 1;
|
|
};
|
|
enum { NumVarDeclBits = NumValueDeclBits + 1 };
|
|
static_assert(NumVarDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class AbstractFunctionDeclBitfields {
|
|
friend class AbstractFunctionDecl;
|
|
unsigned : NumValueDeclBits;
|
|
|
|
/// \see AbstractFunctionDecl::BodyKind
|
|
unsigned BodyKind : 2;
|
|
|
|
/// \brief Whether this function was declared with a selector-style
|
|
/// signature.
|
|
unsigned HasSelectorStyleSignature : 1;
|
|
};
|
|
enum { NumAbstractFunctionDeclBits = NumValueDeclBits + 3 };
|
|
static_assert(NumAbstractFunctionDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class FuncDeclBitfields {
|
|
friend class FuncDecl;
|
|
unsigned : NumAbstractFunctionDeclBits;
|
|
|
|
/// \brief Whether this function is a 'static' method.
|
|
unsigned Static : 1;
|
|
|
|
/// \brief Number of parameter patterns (tuples).
|
|
unsigned NumParamPatterns : 16;
|
|
};
|
|
enum { NumFuncDeclBits = NumAbstractFunctionDeclBits + 17 };
|
|
static_assert(NumFuncDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class TypeDeclBitfields {
|
|
friend class TypeDecl;
|
|
unsigned : NumValueDeclBits;
|
|
|
|
/// Whether we have already checked the inheritance clause.
|
|
///
|
|
/// FIXME: Is this too fine-grained?
|
|
unsigned CheckedInheritanceClause : 1;
|
|
|
|
/// Whether we have already set the protocols to which this type conforms.
|
|
unsigned ProtocolsSet : 1;
|
|
};
|
|
|
|
enum { NumTypeDeclBits = NumValueDeclBits + 2 };
|
|
static_assert(NumTypeDeclBits <= 32, "fits in an unsigned");
|
|
|
|
enum { NumNominalTypeDeclBits = NumTypeDeclBits};
|
|
static_assert(NumNominalTypeDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class ProtocolDeclBitfields {
|
|
friend class ProtocolDecl;
|
|
unsigned : NumNominalTypeDeclBits;
|
|
|
|
/// Whether the \c RequiresClass bit is valid.
|
|
unsigned RequiresClassValid : 1;
|
|
|
|
/// Whether this is a [class_bounded] protocol.
|
|
unsigned RequiresClass : 1;
|
|
|
|
/// Whether the \c ExistentialConformsToSelf bit is valid.
|
|
unsigned ExistentialConformsToSelfValid : 1;
|
|
|
|
/// Whether the existential of this protocol conforms to itself.
|
|
unsigned ExistentialConformsToSelf : 1;
|
|
|
|
/// If this is a compiler-known protocol, this will be a KnownProtocolKind
|
|
/// value, plus one. Otherwise, it will be 0.
|
|
unsigned KnownProtocol : 5;
|
|
|
|
/// The stage of the circularity check for this protocol.
|
|
unsigned Circularity : 2;
|
|
};
|
|
enum { NumProtocolDeclBits = NumNominalTypeDeclBits + 11 };
|
|
static_assert(NumProtocolDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class ClassDeclBitfields {
|
|
friend class ClassDecl;
|
|
unsigned : NumNominalTypeDeclBits;
|
|
|
|
/// The stage of the inheritance circularity check for this class.
|
|
unsigned Circularity : 2;
|
|
};
|
|
enum { NumClassDeclBits = NumNominalTypeDeclBits + 2 };
|
|
static_assert(NumClassDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class EnumDeclBitfields {
|
|
friend class EnumDecl;
|
|
unsigned : NumNominalTypeDeclBits;
|
|
|
|
/// The stage of the raw type circularity check for this class.
|
|
unsigned Circularity : 2;
|
|
};
|
|
enum { NumEnumDeclBits = NumNominalTypeDeclBits + 2 };
|
|
static_assert(NumEnumDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class InfixOperatorDeclBitfields {
|
|
friend class InfixOperatorDecl;
|
|
unsigned : NumDeclBits;
|
|
|
|
unsigned Associativity : 2;
|
|
unsigned Precedence : 8;
|
|
};
|
|
enum { NumInfixOperatorDeclBits = NumDeclBits + 10 };
|
|
static_assert(NumInfixOperatorDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class ImportDeclBitfields {
|
|
friend class ImportDecl;
|
|
unsigned : NumDeclBits;
|
|
|
|
unsigned ImportKind : 3;
|
|
unsigned IsExported : 1;
|
|
};
|
|
enum { NumImportDeclBits = NumDeclBits + 4 };
|
|
static_assert(NumImportDeclBits <= 32, "fits in an unsigned");
|
|
|
|
class ExtensionDeclBitfields {
|
|
friend class ExtensionDecl;
|
|
unsigned : NumDeclBits;
|
|
|
|
/// Whether we have already checked the inheritance clause.
|
|
///
|
|
/// FIXME: Is this too fine-grained?
|
|
unsigned CheckedInheritanceClause : 1;
|
|
};
|
|
enum { NumExtensionDeclBits = NumDeclBits + 4 };
|
|
static_assert(NumExtensionDeclBits <= 32, "fits in an unsigned");
|
|
|
|
protected:
|
|
union {
|
|
DeclBitfields DeclBits;
|
|
PatternBindingDeclBitfields PatternBindingDeclBits;
|
|
ValueDeclBitfields ValueDeclBits;
|
|
AbstractFunctionDeclBitfields AbstractFunctionDeclBits;
|
|
VarDeclBitfields VarDeclBits;
|
|
FuncDeclBitfields FuncDeclBits;
|
|
TypeDeclBitfields TypeDeclBits;
|
|
ProtocolDeclBitfields ProtocolDeclBits;
|
|
ClassDeclBitfields ClassDeclBits;
|
|
EnumDeclBitfields EnumDeclBits;
|
|
InfixOperatorDeclBitfields InfixOperatorDeclBits;
|
|
ImportDeclBitfields ImportDeclBits;
|
|
ExtensionDeclBitfields ExtensionDeclBits;
|
|
};
|
|
|
|
private:
|
|
DeclContext *Context;
|
|
|
|
Decl(const Decl&) = delete;
|
|
void operator=(const Decl&) = delete;
|
|
|
|
protected:
|
|
// Storage for the declaration attributes.
|
|
llvm::PointerIntPair<const DeclAttributes *, 1, bool> AttrsAndIsObjC;
|
|
static const DeclAttributes EmptyAttrs;
|
|
|
|
Decl(DeclKind kind, DeclContext *DC)
|
|
: Context(DC),
|
|
AttrsAndIsObjC(&EmptyAttrs, false) {
|
|
DeclBits.Kind = unsigned(kind);
|
|
DeclBits.Invalid = false;
|
|
DeclBits.Implicit = false;
|
|
DeclBits.FromClang = false;
|
|
}
|
|
|
|
ClangNode getClangNodeSlow();
|
|
|
|
public:
|
|
DeclKind getKind() const { return DeclKind(DeclBits.Kind); }
|
|
|
|
/// \brief Retrieve the name of the given declaration kind.
|
|
///
|
|
/// This name should only be used for debugging dumps and other
|
|
/// developer aids, and should never be part of a diagnostic or exposed
|
|
/// to the user of the compiler in any way.
|
|
static StringRef getKindName(DeclKind K);
|
|
|
|
DeclContext *getDeclContext() const { return Context; }
|
|
void setDeclContext(DeclContext *DC) { Context = DC; }
|
|
|
|
/// Retrieve the innermost declaration context corresponding to this
|
|
/// declaration, which will either be the declaration itself (if it's
|
|
/// also a declaration context) or its declaration context.
|
|
DeclContext *getInnermostDeclContext();
|
|
|
|
/// \brief Retrieve the module in which this declaration resides.
|
|
Module *getModuleContext() const;
|
|
|
|
/// getASTContext - Return the ASTContext that this decl lives in.
|
|
ASTContext &getASTContext() const {
|
|
assert(Context && "Decl doesn't have an assigned context");
|
|
return Context->getASTContext();
|
|
}
|
|
|
|
DeclAttributes &getMutableAttrs();
|
|
|
|
const DeclAttributes &getAttrs() const {
|
|
return *AttrsAndIsObjC.getPointer();
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return getSourceRange().Start; }
|
|
SourceLoc getEndLoc() const { return getSourceRange().End; }
|
|
SourceLoc getLoc() const;
|
|
SourceRange getSourceRange() const;
|
|
|
|
SourceLoc TrailingSemiLoc;
|
|
|
|
LLVM_ATTRIBUTE_DEPRECATED(
|
|
void dump() const LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger");
|
|
void dump(raw_ostream &OS, unsigned Indent = 0) const;
|
|
|
|
/// \brief Pretty-print the given declaration.
|
|
///
|
|
/// \param OS Output stream to which the declaration will be printed.
|
|
void print(raw_ostream &OS) const;
|
|
|
|
/// \brief Pretty-print the given declaration.
|
|
///
|
|
/// \param os Output stream to which the declaration will be printed.
|
|
///
|
|
/// \param options Options to control how pretty-printing is performed.
|
|
///
|
|
/// \param declOffsets If non-null, will be populated with the stream offsets
|
|
/// at which each declaration encountered is printed.
|
|
void print(raw_ostream &os, const PrintOptions &options,
|
|
SmallVectorImpl<std::pair<Decl *, uint64_t>> *declOffsets
|
|
= nullptr) const;
|
|
|
|
/// \brief Determine whether this declaration should be printed when
|
|
/// encountered in its declaration context's list of members.
|
|
bool shouldPrintInContext() const;
|
|
|
|
bool walk(ASTWalker &walker);
|
|
|
|
/// \brief Should this declaration be treated as if annotated with transparent
|
|
/// attribute.
|
|
bool isTransparent() const;
|
|
|
|
/// \brief Return whether this declaration has been determined invalid.
|
|
bool isInvalid() const { return DeclBits.Invalid; }
|
|
|
|
/// \brief Mark this declaration invalid.
|
|
void setInvalid() { DeclBits.Invalid = true; }
|
|
|
|
/// \brief Determine whether this declaration was implicitly generated by the
|
|
/// compiler (rather than explicitly written in source code).
|
|
bool isImplicit() const { return DeclBits.Implicit; }
|
|
|
|
/// \brief Mark this declaration as implicit.
|
|
void setImplicit() { DeclBits.Implicit = true; }
|
|
|
|
/// \brief Returns true if there is a Clang AST node associated
|
|
/// with self.
|
|
bool hasClangNode() const {
|
|
return DeclBits.FromClang;
|
|
}
|
|
|
|
/// \brief Retrieve the Clang AST node from which this declaration was
|
|
/// synthesized, if any.
|
|
ClangNode getClangNode() {
|
|
if (!DeclBits.FromClang)
|
|
return ClangNode();
|
|
|
|
return getClangNodeSlow();
|
|
}
|
|
|
|
/// \brief Retrieve the Clang declaration from which this declaration was
|
|
/// synthesized, if any.
|
|
const clang::Decl *getClangDecl() {
|
|
if (!DeclBits.FromClang)
|
|
return nullptr;
|
|
|
|
return getClangNodeSlow().dyn_cast<const clang::Decl *>();
|
|
}
|
|
|
|
/// \brief Retrieve the Clang macro from which this declaration was
|
|
/// synthesized, if any.
|
|
clang::MacroInfo *getClangMacro() {
|
|
if (!DeclBits.FromClang)
|
|
return nullptr;
|
|
|
|
return getClangNodeSlow().dyn_cast<clang::MacroInfo *>();
|
|
}
|
|
|
|
/// \brief Set the Clang node associated with this declaration.
|
|
void setClangNode(ClangNode node);
|
|
|
|
// Make vanilla new/delete illegal for Decls.
|
|
void *operator new(size_t Bytes) = delete;
|
|
void operator delete(void *Data) = delete;
|
|
|
|
// Only allow allocation of Decls using the allocator in ASTContext
|
|
// or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(Decl));
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
/// GenericParam - A parameter to a generic function or type, as declared in
|
|
/// the list of generic parameters, e.g., the T and U in:
|
|
///
|
|
/// \code
|
|
/// func f<T : Range, U>(t : T, u : U) { /* ... */ }
|
|
/// \endcode
|
|
class GenericParam {
|
|
GenericTypeParamDecl *TypeParam;
|
|
|
|
public:
|
|
/// Construct a generic parameter from a type parameter.
|
|
GenericParam(GenericTypeParamDecl *TypeParam) : TypeParam(TypeParam) { }
|
|
|
|
/// getDecl - Retrieve the generic parameter declaration.
|
|
ValueDecl *getDecl() const {
|
|
return reinterpret_cast<ValueDecl *>(TypeParam);
|
|
}
|
|
|
|
/// getAsTypeParam - Retrieve the generic parameter as a type parameter.
|
|
GenericTypeParamDecl *getAsTypeParam() const { return TypeParam; }
|
|
|
|
/// setDeclContext - Set the declaration context for the generic parameter,
|
|
/// once it is known.
|
|
void setDeclContext(DeclContext *DC);
|
|
};
|
|
|
|
/// \brief A single requirement in a 'where' clause, which places additional
|
|
/// restrictions on the generic parameters or associated types of a generic
|
|
/// function, type, or protocol.
|
|
///
|
|
/// This always represents a requirement spelled in the source code. It is
|
|
/// never generated implicitly.
|
|
class RequirementRepr {
|
|
SourceLoc SeparatorLoc;
|
|
RequirementKind Kind : 1;
|
|
bool Invalid : 1;
|
|
TypeLoc Types[2];
|
|
|
|
RequirementRepr(SourceLoc SeparatorLoc, RequirementKind Kind, TypeLoc FirstType,
|
|
TypeLoc SecondType)
|
|
: SeparatorLoc(SeparatorLoc), Kind(Kind), Invalid(false),
|
|
Types{FirstType, SecondType} { }
|
|
|
|
public:
|
|
/// \brief Construct a new conformance requirement.
|
|
///
|
|
/// \param Subject The type that must conform to the given protocol or
|
|
/// composition, or be a subclass of the given class type.
|
|
/// \param ColonLoc The location of the ':', or an invalid location if
|
|
/// this requirement was implied.
|
|
/// \param Constraint The protocol or protocol composition to which the
|
|
/// subject must conform, or superclass from which the subject must inherit.
|
|
static RequirementRepr getConformance(TypeLoc Subject,
|
|
SourceLoc ColonLoc,
|
|
TypeLoc Constraint) {
|
|
return { ColonLoc, RequirementKind::Conformance, Subject, Constraint };
|
|
}
|
|
|
|
/// \brief Construct a new same-type requirement.
|
|
///
|
|
/// \param FirstType The first type.
|
|
/// \param EqualLoc The location of the '==' in the same-type constraint, or
|
|
/// an invalid location if this requirement was implied.
|
|
/// \param SecondType The second type.
|
|
static RequirementRepr getSameType(TypeLoc FirstType,
|
|
SourceLoc EqualLoc,
|
|
TypeLoc SecondType) {
|
|
return { EqualLoc, RequirementKind::SameType, FirstType, SecondType };
|
|
}
|
|
|
|
/// \brief Determine the kind of requirement
|
|
RequirementKind getKind() const { return Kind; }
|
|
|
|
/// \brief Determine whether this requirement is invalid.
|
|
bool isInvalid() const { return Invalid; }
|
|
|
|
/// \brief Mark this requirement invalid.
|
|
void setInvalid() { Invalid = true; }
|
|
|
|
/// \brief For a conformance requirement, return the subject of the
|
|
/// conformance relationship.
|
|
Type getSubject() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[0].getType();
|
|
}
|
|
|
|
TypeRepr *getSubjectRepr() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[0].getTypeRepr();
|
|
}
|
|
|
|
TypeLoc &getSubjectLoc() {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[0];
|
|
}
|
|
|
|
const TypeLoc &getSubjectLoc() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[0];
|
|
}
|
|
|
|
/// \brief For a conformance requirement, return the protocol or to which
|
|
/// the subject conforms or superclass it inherits.
|
|
Type getConstraint() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[1].getType();
|
|
}
|
|
|
|
TypeLoc &getConstraintLoc() {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return Types[1];
|
|
}
|
|
|
|
/// \brief Retrieve the location of the ':' in an explicitly-written
|
|
/// conformance requirement.
|
|
SourceLoc getColonLoc() const {
|
|
assert(getKind() == RequirementKind::Conformance);
|
|
return SeparatorLoc;
|
|
}
|
|
|
|
/// \brief Retrieve the first type of a same-type requirement.
|
|
Type getFirstType() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[0].getType();
|
|
}
|
|
|
|
TypeRepr *getFirstTypeRepr() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[0].getTypeRepr();
|
|
}
|
|
|
|
TypeLoc &getFirstTypeLoc() {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[0];
|
|
}
|
|
|
|
const TypeLoc &getFirstTypeLoc() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[0];
|
|
}
|
|
|
|
/// \brief Retrieve the second type of a same-type requirement.
|
|
Type getSecondType() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[1].getType();
|
|
}
|
|
|
|
TypeRepr *getSecondTypeRepr() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[1].getTypeRepr();
|
|
}
|
|
|
|
TypeLoc &getSecondTypeLoc() {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[1];
|
|
}
|
|
|
|
const TypeLoc &getSecondTypeLoc() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return Types[1];
|
|
}
|
|
|
|
/// \brief Retrieve the location of the '==' in an explicitly-written
|
|
/// same-type requirement.
|
|
SourceLoc getEqualLoc() const {
|
|
assert(getKind() == RequirementKind::SameType);
|
|
return SeparatorLoc;
|
|
}
|
|
};
|
|
|
|
/// GenericParamList - A list of generic parameters that is part of a generic
|
|
/// function or type, along with extra requirements placed on those generic
|
|
/// parameters and types derived from them.
|
|
class GenericParamList {
|
|
SourceRange Brackets;
|
|
unsigned NumParams;
|
|
SourceLoc WhereLoc;
|
|
MutableArrayRef<RequirementRepr> Requirements;
|
|
ArrayRef<ArchetypeType *> AllArchetypes;
|
|
|
|
GenericParamList *OuterParameters;
|
|
|
|
GenericParamList(SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc WhereLoc,
|
|
MutableArrayRef<RequirementRepr> Requirements,
|
|
SourceLoc RAngleLoc);
|
|
|
|
public:
|
|
/// create - Create a new generic parameter list within the given AST context.
|
|
///
|
|
/// \param Context The ASTContext in which the generic parameter list will
|
|
/// be allocated.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<')
|
|
/// \param Params The list of generic parameters, which will be copied into
|
|
/// ASTContext-allocated memory.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>')
|
|
static GenericParamList *create(ASTContext &Context,
|
|
SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc RAngleLoc);
|
|
|
|
/// create - Create a new generic parameter list and "where" clause within
|
|
/// the given AST context.
|
|
///
|
|
/// \param Context The ASTContext in which the generic parameter list will
|
|
/// be allocated.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<')
|
|
/// \param Params The list of generic parameters, which will be copied into
|
|
/// ASTContext-allocated memory.
|
|
/// \param WhereLoc The location of the 'where' keyword, if any.
|
|
/// \param Requirements The list of requirements, which will be copied into
|
|
/// ASTContext-allocated memory.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>')
|
|
static GenericParamList *create(const ASTContext &Context,
|
|
SourceLoc LAngleLoc,
|
|
ArrayRef<GenericParam> Params,
|
|
SourceLoc WhereLoc,
|
|
MutableArrayRef<RequirementRepr> Requirements,
|
|
SourceLoc RAngleLoc);
|
|
|
|
MutableArrayRef<GenericParam> getParams() {
|
|
return MutableArrayRef<GenericParam>(
|
|
reinterpret_cast<GenericParam *>(this + 1), NumParams);
|
|
}
|
|
|
|
ArrayRef<GenericParam> getParams() const {
|
|
return ArrayRef<GenericParam>(
|
|
reinterpret_cast<const GenericParam *>(this + 1), NumParams);
|
|
}
|
|
|
|
unsigned size() const { return NumParams; }
|
|
GenericParam *begin() { return getParams().begin(); }
|
|
GenericParam *end() { return getParams().end(); }
|
|
const GenericParam *begin() const { return getParams().begin(); }
|
|
const GenericParam *end() const { return getParams().end(); }
|
|
|
|
/// \brief Retrieve the location of the 'where' keyword, or an invalid
|
|
/// location if 'where' was not present.
|
|
SourceLoc getWhereLoc() const { return WhereLoc; }
|
|
|
|
/// \brief Retrieve the set of additional requirements placed on these
|
|
/// generic parameters and types derived from them.
|
|
///
|
|
/// This list may contain both explicitly-written requirements as well as
|
|
/// implicitly-generated requirements, and may be non-empty even if no
|
|
/// 'where' keyword is present.
|
|
MutableArrayRef<RequirementRepr> getRequirements() { return Requirements; }
|
|
|
|
/// \brief Retrieve the set of additional requirements placed on these
|
|
/// generic parameters and types derived from them.
|
|
///
|
|
/// This list may contain both explicitly-written requirements as well as
|
|
/// implicitly-generated requirements, and may be non-empty even if no
|
|
/// 'where' keyword is present.
|
|
ArrayRef<RequirementRepr> getRequirements() const { return Requirements; }
|
|
|
|
/// \brief Override the set of requirements associated with this generic
|
|
/// parameter list.
|
|
///
|
|
/// \param NewRequirements The new set of requirements, which is expected
|
|
/// to be a superset of the existing set of requirements (although this
|
|
/// property is not checked here). It is assumed that the array reference
|
|
/// refers to ASTContext-allocated memory.
|
|
void overrideRequirements(MutableArrayRef<RequirementRepr> NewRequirements) {
|
|
Requirements = NewRequirements;
|
|
}
|
|
|
|
/// \brief Retrieves the list containing all archetypes described by this
|
|
/// generic parameter clause.
|
|
///
|
|
/// In this list of archetypes, the primary archetypes come first followed by
|
|
/// any non-primary archetypes (i.e., those archetypes that encode associated
|
|
/// types of another archetype).
|
|
ArrayRef<ArchetypeType *> getAllArchetypes() const { return AllArchetypes; }
|
|
|
|
/// \brief Retrieves the list containing only the primary archetypes described
|
|
/// by this generic parameter clause. This excludes archetypes for associated
|
|
/// types of the primary archetypes.
|
|
ArrayRef<ArchetypeType *> getPrimaryArchetypes() const {
|
|
return getAllArchetypes().slice(0, size());
|
|
}
|
|
|
|
/// \brief Retrieves the list containing only the associated archetypes.
|
|
ArrayRef<ArchetypeType *> getAssociatedArchetypes() const {
|
|
return getAllArchetypes().slice(size());
|
|
}
|
|
|
|
/// \brief Sets all archetypes *without* copying the source array.
|
|
void setAllArchetypes(ArrayRef<ArchetypeType *> AA) {
|
|
AllArchetypes = AA;
|
|
}
|
|
|
|
/// \brief Retrieve the outer generic parameter list, which provides the
|
|
/// generic parameters of the context in which this generic parameter list
|
|
/// exists.
|
|
///
|
|
/// Consider the following generic class:
|
|
///
|
|
/// \code
|
|
/// class Vector<T> {
|
|
/// constructor<R : Range where R.Element == T>(range : R) { }
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// The generic parameter list <T> has no outer parameters, because it is
|
|
/// the outermost generic parameter list. The generic parameter list
|
|
/// <R : Range...> for the constructor has the generic parameter list <T> as
|
|
/// its outer generic parameter list.
|
|
GenericParamList *getOuterParameters() const { return OuterParameters; }
|
|
|
|
/// \brief Set the outer generic parameter list. See \c getOuterParameters
|
|
/// for more information.
|
|
void setOuterParameters(GenericParamList *Outer) { OuterParameters = Outer; }
|
|
|
|
SourceRange getSourceRange() const { return Brackets; }
|
|
|
|
/// Retrieve the depth of this generic parameter list.
|
|
unsigned getDepth() const {
|
|
unsigned depth = 0;
|
|
for (auto gp = getOuterParameters(); gp; gp = gp->getOuterParameters())
|
|
++depth;
|
|
return depth;
|
|
}
|
|
};
|
|
|
|
/// Describes what kind of name is being imported.
|
|
///
|
|
/// If the enumerators here are changed, make sure to update all diagnostics
|
|
/// using ImportKind as a select index.
|
|
enum class ImportKind : uint8_t {
|
|
Module = 0,
|
|
Type,
|
|
Struct,
|
|
Class,
|
|
Enum,
|
|
Protocol,
|
|
Var,
|
|
Func
|
|
};
|
|
|
|
/// ImportDecl - This represents a single import declaration, e.g.:
|
|
/// import swift
|
|
/// import typealias swift.Int
|
|
class ImportDecl : public Decl {
|
|
public:
|
|
typedef std::pair<Identifier, SourceLoc> AccessPathElement;
|
|
|
|
private:
|
|
SourceLoc ImportLoc;
|
|
SourceLoc KindLoc;
|
|
|
|
/// The number of elements in this path.
|
|
unsigned NumPathElements;
|
|
|
|
AccessPathElement *getPathBuffer() {
|
|
return reinterpret_cast<AccessPathElement*>(this+1);
|
|
}
|
|
const AccessPathElement *getPathBuffer() const {
|
|
return reinterpret_cast<const AccessPathElement*>(this+1);
|
|
}
|
|
|
|
ImportDecl(DeclContext *DC, SourceLoc ImportLoc, ImportKind K,
|
|
SourceLoc KindLoc, bool Exported,
|
|
ArrayRef<AccessPathElement> Path);
|
|
|
|
public:
|
|
static ImportDecl *create(ASTContext &C, DeclContext *DC,
|
|
SourceLoc ImportLoc, ImportKind Kind,
|
|
SourceLoc KindLoc, bool Exported,
|
|
ArrayRef<AccessPathElement> Path);
|
|
|
|
ArrayRef<AccessPathElement> getFullAccessPath() const {
|
|
return ArrayRef<AccessPathElement>(getPathBuffer(), NumPathElements);
|
|
}
|
|
|
|
ArrayRef<AccessPathElement> getModulePath() const {
|
|
auto result = getFullAccessPath();
|
|
if (getImportKind() != ImportKind::Module)
|
|
result = result.slice(0, result.size()-1);
|
|
return result;
|
|
}
|
|
|
|
ArrayRef<AccessPathElement> getDeclPath() const {
|
|
if (getImportKind() == ImportKind::Module)
|
|
return {};
|
|
return getFullAccessPath().back();
|
|
}
|
|
|
|
ImportKind getImportKind() const {
|
|
return static_cast<ImportKind>(ImportDeclBits.ImportKind);
|
|
}
|
|
|
|
bool isExported() const {
|
|
return ImportDeclBits.IsExported;
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return ImportLoc; }
|
|
SourceLoc getLoc() const { return getFullAccessPath().front().second; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(ImportLoc, getFullAccessPath().back().second);
|
|
}
|
|
SourceLoc getKindLoc() const { return KindLoc; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Import;
|
|
}
|
|
};
|
|
|
|
/// ExtensionDecl - This represents a type extension containing methods
|
|
/// associated with the type. This is not a ValueDecl and has no Type because
|
|
/// there are no runtime values of the Extension's type.
|
|
class ExtensionDecl : public Decl, public DeclContext {
|
|
SourceLoc ExtensionLoc; // Location of 'extension' keyword.
|
|
SourceRange Braces;
|
|
|
|
/// ExtendedType - The type being extended.
|
|
TypeLoc ExtendedType;
|
|
MutableArrayRef<TypeLoc> Inherited;
|
|
ArrayRef<Decl*> Members;
|
|
|
|
/// \brief The set of protocols to which this extension conforms.
|
|
ArrayRef<ProtocolDecl *> Protocols;
|
|
|
|
/// \brief The set of protocol conformance mappings. The element order
|
|
/// corresponds to the order of Protocols.
|
|
ArrayRef<ProtocolConformance *> Conformances;
|
|
|
|
/// \brief The next extension in the linked list of extensions.
|
|
///
|
|
/// The bit indicates whether this extension has been resolved to refer to
|
|
/// a known nominal type.
|
|
llvm::PointerIntPair<ExtensionDecl *, 1, bool> NextExtension
|
|
= {nullptr, false};
|
|
|
|
friend class ExtensionIterator;
|
|
friend class NominalTypeDecl;
|
|
friend class MemberLookupTable;
|
|
|
|
public:
|
|
using Decl::getASTContext;
|
|
|
|
ExtensionDecl(SourceLoc ExtensionLoc, TypeLoc ExtendedType,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
DeclContext *Parent)
|
|
: Decl(DeclKind::Extension, Parent),
|
|
DeclContext(DeclContextKind::ExtensionDecl, Parent),
|
|
ExtensionLoc(ExtensionLoc),
|
|
ExtendedType(ExtendedType), Inherited(Inherited)
|
|
{
|
|
ExtensionDeclBits.CheckedInheritanceClause = false;
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return ExtensionLoc; }
|
|
SourceLoc getLoc() const { return ExtensionLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return { ExtensionLoc, Braces.End };
|
|
}
|
|
|
|
SourceRange getBraces() const { return Braces; }
|
|
|
|
Type getExtendedType() const { return ExtendedType.getType(); }
|
|
TypeLoc &getExtendedTypeLoc() { return ExtendedType; }
|
|
|
|
/// \brief Retrieve the set of protocols that this type inherits (i.e,
|
|
/// explicitly conforms to).
|
|
MutableArrayRef<TypeLoc> getInherited() { return Inherited; }
|
|
ArrayRef<TypeLoc> getInherited() const { return Inherited; }
|
|
|
|
/// Whether we already type-checked the inheritance clause.
|
|
bool checkedInheritanceClause() const {
|
|
return ExtensionDeclBits.CheckedInheritanceClause;
|
|
}
|
|
|
|
/// Note that we have already type-checked the inheritance clause.
|
|
void setCheckedInheritanceClause(bool checked = true) {
|
|
ExtensionDeclBits.CheckedInheritanceClause = checked;
|
|
}
|
|
|
|
/// \brief Retrieve the set of protocols to which this extension conforms.
|
|
ArrayRef<ProtocolDecl *> getProtocols() const { return Protocols; }
|
|
|
|
void setProtocols(ArrayRef<ProtocolDecl *> protocols) {
|
|
Protocols = protocols;
|
|
}
|
|
|
|
/// \brief Retrieve the set of protocol conformance mappings for this type.
|
|
///
|
|
/// Calculated during type-checking.
|
|
ArrayRef<ProtocolConformance *> getConformances() const {
|
|
return Conformances;
|
|
}
|
|
void setConformances(ArrayRef<ProtocolConformance *> c);
|
|
|
|
ArrayRef<Decl*> getMembers() const { return Members; }
|
|
void setMembers(ArrayRef<Decl*> M, SourceRange B);
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Extension;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return C->getContextKind() == DeclContextKind::ExtensionDecl;
|
|
}
|
|
|
|
using DeclContext::operator new;
|
|
};
|
|
|
|
/// \brief Iterator that walks the extensions of a particular type.
|
|
class ExtensionIterator {
|
|
ExtensionDecl *current;
|
|
|
|
public:
|
|
ExtensionIterator() : current() { }
|
|
explicit ExtensionIterator(ExtensionDecl *current) : current(current) { }
|
|
|
|
ExtensionDecl *operator*() const { return current; }
|
|
ExtensionDecl *operator->() const { return current; }
|
|
|
|
ExtensionIterator &operator++() {
|
|
current = current->NextExtension.getPointer();
|
|
return *this;
|
|
}
|
|
|
|
ExtensionIterator operator++(int) {
|
|
ExtensionIterator tmp = *this;
|
|
++(*this);
|
|
return tmp;
|
|
}
|
|
|
|
friend bool operator==(ExtensionIterator x, ExtensionIterator y) {
|
|
return x.current == y.current;
|
|
}
|
|
|
|
friend bool operator!=(ExtensionIterator x, ExtensionIterator y) {
|
|
return x.current != y.current;
|
|
}
|
|
};
|
|
|
|
/// \brief Range that covers a set of extensions.
|
|
class ExtensionRange {
|
|
ExtensionIterator first;
|
|
ExtensionIterator last;
|
|
|
|
public:
|
|
|
|
ExtensionRange(ExtensionIterator first, ExtensionIterator last)
|
|
: first(first), last(last) { }
|
|
|
|
typedef ExtensionIterator iterator;
|
|
iterator begin() const { return first; }
|
|
iterator end() const { return last; }
|
|
};
|
|
|
|
// PatternBindingDecl - This decl contains a pattern and optional initializer
|
|
// for a set of one or more VarDecls declared together. (For example, in
|
|
// "var (a,b) = foo()", this contains the pattern "(a,b)" and the intializer
|
|
// "foo()". The same applies to simpler declarations like "var a = foo()".)
|
|
class PatternBindingDecl : public Decl {
|
|
SourceLoc StaticLoc; ///< Location of the 'static' keyword, if present.
|
|
SourceLoc VarLoc; ///< Location of the 'var' keyword.
|
|
Pattern *Pat; ///< The pattern this decl binds.
|
|
|
|
/// The initializer, and whether it's been type-checked already.
|
|
llvm::PointerIntPair<Expr *, 1, bool> InitAndChecked;
|
|
|
|
friend class Decl;
|
|
|
|
public:
|
|
PatternBindingDecl(SourceLoc StaticLoc,
|
|
SourceLoc VarLoc, Pattern *Pat, Expr *E,
|
|
DeclContext *Parent)
|
|
: Decl(DeclKind::PatternBinding, Parent),
|
|
StaticLoc(StaticLoc), VarLoc(VarLoc), Pat(Pat),
|
|
InitAndChecked(E, false) {
|
|
PatternBindingDeclBits.IsStatic = StaticLoc.isValid();
|
|
}
|
|
|
|
SourceLoc getStartLoc() const {
|
|
return StaticLoc.isValid() ? StaticLoc : VarLoc;
|
|
}
|
|
SourceLoc getLoc() const { return VarLoc; }
|
|
SourceRange getSourceRange() const;
|
|
|
|
Pattern *getPattern() { return Pat; }
|
|
const Pattern *getPattern() const { return Pat; }
|
|
void setPattern(Pattern *P) { Pat = P; }
|
|
|
|
bool hasInit() const { return InitAndChecked.getPointer(); }
|
|
Expr *getInit() const { return InitAndChecked.getPointer(); }
|
|
bool wasInitChecked() const { return InitAndChecked.getInt(); }
|
|
void setInit(Expr *expr, bool checked) {
|
|
InitAndChecked.setPointerAndInt(expr, checked);
|
|
}
|
|
|
|
bool isStatic() const { return PatternBindingDeclBits.IsStatic; }
|
|
void setStatic(bool s) { PatternBindingDeclBits.IsStatic = s; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::PatternBinding;
|
|
}
|
|
|
|
};
|
|
|
|
/// TopLevelCodeDecl - This decl is used as a container for top-level
|
|
/// expressions and statements in the main module. It is always a direct
|
|
/// child of the body of a TranslationUnit. The primary reason for
|
|
/// building these is to give top-level statements a DeclContext which is
|
|
/// distinct from the TranslationUnit itself. This, among other things,
|
|
/// makes it easier to distinguish between local top-level variables (which
|
|
/// are not live past the end of the statement) and global variables.
|
|
class TopLevelCodeDecl : public Decl, public DeclContext {
|
|
BraceStmt *Body;
|
|
|
|
public:
|
|
TopLevelCodeDecl(DeclContext *Parent, BraceStmt *Body = nullptr)
|
|
: Decl(DeclKind::TopLevelCode, Parent),
|
|
DeclContext(DeclContextKind::TopLevelCodeDecl, Parent),
|
|
Body(Body) {}
|
|
|
|
BraceStmt *getBody() const { return Body; }
|
|
void setBody(BraceStmt *b) { Body = b; }
|
|
|
|
SourceLoc getStartLoc() const;
|
|
SourceLoc getLoc() const { return getStartLoc(); }
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::TopLevelCode;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return C->getContextKind() == DeclContextKind::TopLevelCodeDecl;
|
|
}
|
|
|
|
using DeclContext::operator new;
|
|
};
|
|
|
|
/// ValueDecl - All named decls that are values in the language. These can
|
|
/// have a type, etc.
|
|
class ValueDecl : public Decl {
|
|
Identifier Name;
|
|
SourceLoc NameLoc;
|
|
Type Ty;
|
|
|
|
protected:
|
|
ValueDecl(DeclKind K, DeclContext *DC, Identifier name, SourceLoc NameLoc)
|
|
: Decl(K, DC), Name(name), NameLoc(NameLoc) {
|
|
ValueDeclBits.ConformsToProtocolRequrement = false;
|
|
}
|
|
|
|
/// The interface type, mutable because some subclasses compute this lazily.
|
|
mutable Type InterfaceTy;
|
|
|
|
public:
|
|
/// \brief Return true if this is a definition of a decl, not a forward
|
|
/// declaration (e.g. of a function) that is implemented outside of the
|
|
/// swift code.
|
|
bool isDefinition() const;
|
|
|
|
Identifier getName() const { return Name; }
|
|
bool isOperator() const { return Name.isOperator(); }
|
|
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
|
|
bool hasType() const { return !Ty.isNull(); }
|
|
Type getType() const {
|
|
assert(!Ty.isNull() && "declaration has no type set yet");
|
|
return Ty;
|
|
}
|
|
|
|
/// Set the type of this declaration for the first time.
|
|
void setType(Type T);
|
|
|
|
/// Overwrite the type of this declaration.
|
|
void overwriteType(Type T);
|
|
|
|
/// Get the innermost declaration context that can provide generic
|
|
/// parameters used within this declaration.
|
|
DeclContext *getPotentialGenericDeclContext();
|
|
|
|
/// Retrieve the "interface" type of this value, which is the type used when
|
|
/// the declaration is viewed from the outside. For a generic function,
|
|
/// this will have generic function type using generic parameters rather than
|
|
/// archetypes, while a generic nominal type's interface type will be the
|
|
/// generic type specialized with its generic parameters.
|
|
///
|
|
/// FIXME: Eventually, this will simply become the type of the value, and
|
|
/// we will substitute in the appropriate archetypes within a particular
|
|
/// context.
|
|
Type getInterfaceType() const;
|
|
|
|
/// Set the interface type for the given value.
|
|
void setInterfaceType(Type type) { InterfaceTy = type; }
|
|
|
|
/// isReferencedAsLValue - Returns 'true' if references to this
|
|
/// declaration are l-values.
|
|
bool isReferencedAsLValue() const {
|
|
return getKind() == DeclKind::Var;
|
|
}
|
|
|
|
/// isSettable - Determine whether references to this decl may appear
|
|
/// on the left-hand side of an assignment or as the operand of a
|
|
/// `&` or [assignment] operator.
|
|
bool isSettable() const;
|
|
|
|
/// Determine whether references to this decl are settable in the
|
|
/// above sense when used on a base of the given type (which may be
|
|
/// null to indicate that there is no base).
|
|
bool isSettableOnBase(Type baseType) const;
|
|
|
|
/// isInstanceMember - Determine whether this value is an instance member
|
|
/// of an enum or protocol.
|
|
bool isInstanceMember() const;
|
|
|
|
/// needsCapture - Check whether referring to this decl from a nested
|
|
/// function requires capturing it.
|
|
bool needsCapture() const;
|
|
|
|
/// Retrieve the declaration that this declaration overrides, if any.
|
|
ValueDecl *getOverriddenDecl() const;
|
|
|
|
/// isObjC - Returns true if the decl requires Objective-C interop.
|
|
bool isObjC() const { return AttrsAndIsObjC.getInt(); }
|
|
|
|
void setIsObjC(bool value) {
|
|
AttrsAndIsObjC.setInt(value);
|
|
}
|
|
|
|
/// Returns true if this decl can be found by id-style dynamic lookup.
|
|
bool canBeAccessedByDynamicLookup() const;
|
|
|
|
/// Returns true if this decl conforms to a protocol requirement.
|
|
bool conformsToProtocolRequirement() const {
|
|
return ValueDeclBits.ConformsToProtocolRequrement;
|
|
}
|
|
void setConformsToProtocolRequirement(bool Value = true) {
|
|
ValueDeclBits.ConformsToProtocolRequrement = Value;
|
|
}
|
|
|
|
/// Returns the protocol requirements that this decl conforms to.
|
|
ArrayRef<ValueDecl *> getConformances();
|
|
|
|
/// Dump a reference to the given declaration.
|
|
void dumpRef(raw_ostream &os) const;
|
|
|
|
/// Dump a reference to the given declaration.
|
|
void dumpRef() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_ValueDecl &&
|
|
D->getKind() <= DeclKind::Last_ValueDecl;
|
|
}
|
|
};
|
|
|
|
/// This is a common base class for declarations which declare a type.
|
|
class TypeDecl : public ValueDecl {
|
|
MutableArrayRef<TypeLoc> Inherited;
|
|
|
|
/// \brief The set of protocols to which this type conforms.
|
|
ArrayRef<ProtocolDecl *> Protocols;
|
|
|
|
/// \brief The set of protocol conformance mappings. The element order
|
|
/// corresponds to the order of Protocols.
|
|
ArrayRef<ProtocolConformance *> Conformances;
|
|
|
|
protected:
|
|
TypeDecl(DeclKind K, DeclContext *DC, Identifier name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> inherited) :
|
|
ValueDecl(K, DC, name, NameLoc), Inherited(inherited)
|
|
{
|
|
TypeDeclBits.CheckedInheritanceClause = false;
|
|
TypeDeclBits.ProtocolsSet = false;
|
|
}
|
|
|
|
bool isProtocolsValid() const {
|
|
return TypeDeclBits.ProtocolsSet;
|
|
}
|
|
|
|
public:
|
|
Type getDeclaredType() const;
|
|
|
|
Type getDeclaredInterfaceType() const;
|
|
|
|
/// \brief Retrieve the set of protocols that this type inherits (i.e,
|
|
/// explicitly conforms to).
|
|
MutableArrayRef<TypeLoc> getInherited() { return Inherited; }
|
|
ArrayRef<TypeLoc> getInherited() const { return Inherited; }
|
|
|
|
/// Whether we already type-checked the inheritance clause.
|
|
bool checkedInheritanceClause() const {
|
|
return TypeDeclBits.CheckedInheritanceClause;
|
|
}
|
|
|
|
/// Note that we have already type-checked the inheritance clause.
|
|
void setCheckedInheritanceClause(bool checked = true) {
|
|
TypeDeclBits.CheckedInheritanceClause = checked;
|
|
}
|
|
|
|
/// \brief Retrieve the set of protocols to which this type conforms.
|
|
///
|
|
/// FIXME: Include protocol conformance from extensions? This will require
|
|
/// semantic analysis to compute.
|
|
ArrayRef<ProtocolDecl *> getProtocols() const { return Protocols; }
|
|
|
|
void setProtocols(ArrayRef<ProtocolDecl *> protocols) {
|
|
assert((!TypeDeclBits.ProtocolsSet || protocols.empty()) &&
|
|
"protocols already set");
|
|
TypeDeclBits.ProtocolsSet = true;
|
|
Protocols = protocols;
|
|
}
|
|
|
|
/// \brief True if the type can implicitly derive a conformance for the given
|
|
/// protocol.
|
|
///
|
|
/// If true, explicit conformance checking will synthesize implicit
|
|
/// declarations for requirements of the protocol that are not satisfied by
|
|
/// the type's explicit members.
|
|
bool derivesProtocolConformance(ProtocolDecl *protocol) const;
|
|
|
|
/// \brief Retrieve the set of protocol conformance mappings for this type.
|
|
///
|
|
/// Calculated during type-checking.
|
|
ArrayRef<ProtocolConformance *> getConformances() const {
|
|
return Conformances;
|
|
}
|
|
void setConformances(ArrayRef<ProtocolConformance *> c);
|
|
|
|
void setInherited(MutableArrayRef<TypeLoc> i) { Inherited = i; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_TypeDecl &&
|
|
D->getKind() <= DeclKind::Last_TypeDecl;
|
|
}
|
|
};
|
|
|
|
/// TypeAliasDecl - This is a declaration of a typealias, for example:
|
|
///
|
|
/// typealias foo = int
|
|
///
|
|
/// TypeAliasDecl's always have 'MetaTypeType' type.
|
|
///
|
|
class TypeAliasDecl : public TypeDecl {
|
|
/// The type that represents this (sugared) name alias.
|
|
mutable NameAliasType *AliasTy;
|
|
|
|
SourceLoc TypeAliasLoc; // The location of the 'typalias' keyword
|
|
TypeLoc UnderlyingTy;
|
|
|
|
public:
|
|
TypeAliasDecl(SourceLoc TypeAliasLoc, Identifier Name,
|
|
SourceLoc NameLoc, TypeLoc UnderlyingTy,
|
|
DeclContext *DC, MutableArrayRef<TypeLoc> Inherited);
|
|
|
|
SourceLoc getStartLoc() const { return TypeAliasLoc; }
|
|
SourceRange getSourceRange() const;
|
|
|
|
/// getUnderlyingType - Returns the underlying type, which is
|
|
/// assumed to have been set.
|
|
Type getUnderlyingType() const {
|
|
assert(!UnderlyingTy.getType().isNull() &&
|
|
"getting invalid underlying type");
|
|
return UnderlyingTy.getType();
|
|
}
|
|
|
|
/// \brief Determine whether this type alias has an underlying type.
|
|
bool hasUnderlyingType() const { return !UnderlyingTy.getType().isNull(); }
|
|
|
|
TypeLoc &getUnderlyingTypeLoc() { return UnderlyingTy; }
|
|
|
|
/// getAliasType - Return the sugared version of this decl as a Type.
|
|
NameAliasType *getAliasType() const { return AliasTy; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::TypeAlias;
|
|
}
|
|
};
|
|
|
|
/// Abstract class describing generic type parameters and associated types,
|
|
/// whose common purpose is to anchor the abstract type parameter and specify
|
|
/// requirements for any corresponding type argument.
|
|
class AbstractTypeParamDecl : public TypeDecl {
|
|
/// The superclass of the generic parameter.
|
|
Type SuperclassTy;
|
|
|
|
/// The archetype describing this abstract type parameter within its scope.
|
|
ArchetypeType *Archetype;
|
|
|
|
protected:
|
|
AbstractTypeParamDecl(DeclKind kind, DeclContext *dc, Identifier name,
|
|
SourceLoc NameLoc)
|
|
: TypeDecl(kind, dc, name, NameLoc, { }), Archetype(nullptr) { }
|
|
|
|
public:
|
|
/// Return the superclass of the generic parameter.
|
|
Type getSuperclass() const {
|
|
return SuperclassTy;
|
|
}
|
|
|
|
/// Set the superclass of the generic parameter.
|
|
void setSuperclass(Type superclassTy) {
|
|
SuperclassTy = superclassTy;
|
|
}
|
|
|
|
/// Retrieve the archetype that describes this abstract type parameter
|
|
/// within its scope.
|
|
ArchetypeType *getArchetype() const { return Archetype; }
|
|
|
|
/// Set the archetype used to describe this abstract type parameter within
|
|
/// its scope.
|
|
void setArchetype(ArchetypeType *archetype) { Archetype = archetype; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_AbstractTypeParamDecl &&
|
|
D->getKind() <= DeclKind::Last_AbstractTypeParamDecl;
|
|
}
|
|
};
|
|
|
|
/// A declaration of a generic type parameter.
|
|
///
|
|
/// A generic type parameter introduces a new, named type parameter along
|
|
/// with some set of requirements on any type argument used to realize this
|
|
/// type parameter. The requirements involve conformances to specific
|
|
/// protocols or inheritance from a specific class type.
|
|
///
|
|
/// In the following example, 'T' is a generic type parameter with the
|
|
/// requirement that the type argument conform to the 'Comparable' protocol.
|
|
///
|
|
/// \code
|
|
/// func min<T : Comparable>(x : T, y : T) -> T { ... }
|
|
/// \endcode
|
|
class GenericTypeParamDecl : public AbstractTypeParamDecl {
|
|
unsigned Depth : 16;
|
|
unsigned Index : 16;
|
|
|
|
public:
|
|
/// Construct a new generic type parameter.
|
|
///
|
|
/// \param dc The DeclContext in which the generic type parameter's owner
|
|
/// occurs. This should later be overwritten with the actual declaration
|
|
/// context that owns the type parameter.
|
|
///
|
|
/// \param name The name of the generic parameter.
|
|
/// \param nameLoc The location of the name.
|
|
GenericTypeParamDecl(DeclContext *dc, Identifier name, SourceLoc nameLoc,
|
|
unsigned depth, unsigned index);
|
|
|
|
/// The depth of this generic type parameter, i.e., the number of outer
|
|
/// levels of generic parameter lists that enclose this type parameter.
|
|
///
|
|
/// \code
|
|
/// struct X<T> {
|
|
/// func f<U>() { }
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Here 'T' has depth 0 and 'U' has depth 1. Both have index 0.
|
|
unsigned getDepth() const { return Depth; }
|
|
|
|
/// Set the depth of this generic type parameter.
|
|
///
|
|
/// \sa getDepth
|
|
void setDepth(unsigned depth) { Depth = depth; }
|
|
|
|
/// The index of this generic type parameter within its generic parameter
|
|
/// list.
|
|
///
|
|
/// \code
|
|
/// struct X<T, U> {
|
|
/// func f<V>() { }
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Here 'T' and 'U' have indexes 0 and 1, respectively. 'V' has index 0.
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
SourceLoc getStartLoc() const { return getNameLoc(); }
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::GenericTypeParam;
|
|
}
|
|
};
|
|
|
|
/// A declaration of an associated type.
|
|
///
|
|
/// An associated type introduces a new, named type in a protocol that
|
|
/// can vary from one conforming type to the next. Associated types have a
|
|
/// set of requirements to which the type that replaces it much realize,
|
|
/// describes via conformance to specific protocols, or inheritance from a
|
|
/// specific class type.
|
|
///
|
|
/// In the following example, 'Element' is an associated type with no
|
|
/// requirements.
|
|
///
|
|
/// \code
|
|
/// protocol Enumerator {
|
|
/// typealias Element
|
|
/// func getNext() -> Element?
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// Every protocol has an implicitly-created associated type 'Self' that
|
|
/// describes a type that conforms to the protocol.
|
|
class AssociatedTypeDecl : public AbstractTypeParamDecl {
|
|
/// The location of the initial keyword.
|
|
SourceLoc KeywordLoc;
|
|
|
|
public:
|
|
AssociatedTypeDecl(DeclContext *dc, SourceLoc keywordLoc, Identifier name,
|
|
SourceLoc nameLoc);
|
|
|
|
/// Get the protocol in which this associated type is declared.
|
|
ProtocolDecl *getProtocol() const {
|
|
return cast<ProtocolDecl>(getDeclContext());
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return KeywordLoc; }
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::AssociatedType;
|
|
}
|
|
};
|
|
|
|
class MemberLookupTable;
|
|
|
|
/// A class for iterating local declarations of a nominal type that are of
|
|
/// the given FilterDeclType and for which the FilterPredicate function returns
|
|
/// true.
|
|
template<typename FilterDeclType,
|
|
bool FilterPredicate(FilterDeclType*)>
|
|
class DeclFilterRange {
|
|
public:
|
|
class iterator {
|
|
/// The remaining declarations. We need both ends here so that
|
|
/// operator++ knows when to stop.
|
|
///
|
|
/// Invariant: either this is empty or its first element matches the
|
|
/// filter conditions.
|
|
ArrayRef<Decl*> Remaining;
|
|
|
|
friend class DeclFilterRange;
|
|
iterator(ArrayRef<Decl*> remaining) : Remaining(remaining) {}
|
|
|
|
void skipNonMatching() {
|
|
while (!Remaining.empty()) {
|
|
if (auto filtered = dyn_cast<FilterDeclType>(Remaining.front()))
|
|
if (FilterPredicate(filtered))
|
|
return;
|
|
Remaining = Remaining.slice(1);
|
|
}
|
|
}
|
|
|
|
public:
|
|
inline FilterDeclType *operator*() const {
|
|
assert(!Remaining.empty() && "dereferencing empty iterator!");
|
|
return cast<FilterDeclType>(Remaining.front());
|
|
}
|
|
iterator &operator++() {
|
|
assert(!Remaining.empty() && "incrementing empty iterator!");
|
|
Remaining = Remaining.slice(1);
|
|
skipNonMatching();
|
|
return *this;
|
|
}
|
|
iterator operator++(int) {
|
|
iterator old = *this;
|
|
++*this;
|
|
return old;
|
|
}
|
|
friend bool operator==(iterator lhs, iterator rhs) {
|
|
assert(lhs.Remaining.end() == rhs.Remaining.end() &&
|
|
"comparing iterators from different sources?");
|
|
return lhs.Remaining.begin() == rhs.Remaining.begin();
|
|
}
|
|
friend bool operator!=(iterator lhs, iterator rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
};
|
|
|
|
private:
|
|
/// Our iterator is actually a pretty reasonable representation of
|
|
/// the range itself.
|
|
iterator Members;
|
|
|
|
public:
|
|
DeclFilterRange(ArrayRef<Decl*> allMembers) : Members(allMembers) {
|
|
// Establish the iterator's invariant.
|
|
Members.skipNonMatching();
|
|
}
|
|
|
|
bool empty() const { return Members.Remaining.empty(); }
|
|
|
|
iterator begin() const { return Members; }
|
|
iterator end() const {
|
|
// For the benefit of operator==, construct a range whose
|
|
// begin() is the end of the members array.
|
|
auto endRange = Members.Remaining.slice(Members.Remaining.size());
|
|
return iterator(endRange);
|
|
}
|
|
|
|
FilterDeclType *front() const { return *begin(); }
|
|
};
|
|
|
|
/// Describes the generic signature of a particular declaration, including
|
|
/// both the generic type parameters and the requirements placed on those
|
|
/// generic parameters.
|
|
class GenericSignature {
|
|
unsigned NumGenericParams;
|
|
unsigned NumRequirements;
|
|
|
|
// Make vanilla new/delete illegal.
|
|
void *operator new(size_t Bytes) = delete;
|
|
void operator delete(void *Data) = delete;
|
|
|
|
/// Retrieve a mutable version of the generic parameters.
|
|
MutableArrayRef<GenericTypeParamType *> getGenericParamsBuffer() {
|
|
return { reinterpret_cast<GenericTypeParamType **>(this + 1),
|
|
NumGenericParams };
|
|
}
|
|
|
|
/// Retrieve a mutable verison of the requirements.
|
|
MutableArrayRef<Requirement> getRequirementsBuffer() {
|
|
void *genericParams = getGenericParamsBuffer().end();
|
|
return { reinterpret_cast<Requirement *>(genericParams),
|
|
NumRequirements };
|
|
}
|
|
|
|
GenericSignature(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements);
|
|
|
|
public:
|
|
/// Create a new generic signature with the given type parameters and
|
|
/// requirements.
|
|
static GenericSignature *get(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements,
|
|
ASTContext &ctx);
|
|
|
|
/// Retrieve the generic parameters.
|
|
ArrayRef<GenericTypeParamType *> getGenericParams() const {
|
|
return { reinterpret_cast<GenericTypeParamType * const *>(this + 1),
|
|
NumGenericParams };
|
|
}
|
|
|
|
/// Retrieve the requirements.
|
|
ArrayRef<Requirement> getRequirements() const {
|
|
const void *genericParams = getGenericParams().end();
|
|
return { reinterpret_cast<const Requirement *>(genericParams),
|
|
NumRequirements };
|
|
}
|
|
|
|
// Only allow allocation by doing a placement new.
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
/// NominalTypeDecl - a declaration of a nominal type, like a struct. This
|
|
/// decl is always a DeclContext.
|
|
class NominalTypeDecl : public TypeDecl, public DeclContext {
|
|
SourceRange Braces;
|
|
ArrayRef<Decl*> Members;
|
|
GenericParamList *GenericParams;
|
|
|
|
/// \brief The generic signature of this type.
|
|
///
|
|
/// This is the semantic representation of a generic parameters and the
|
|
/// requirements placed on them.
|
|
///
|
|
/// FIXME: The generic parameters here are also derivable from
|
|
/// \c GenericParams. However, we likely want to make \c GenericParams
|
|
/// the parsed representation, and not part of the module file.
|
|
GenericSignature *GenericSig = nullptr;
|
|
|
|
/// \brief The first extension of this type.
|
|
ExtensionDecl *FirstExtension = nullptr;
|
|
|
|
/// \brief The last extension of this type, used solely for efficient
|
|
/// insertion of new extensions.
|
|
ExtensionDecl *LastExtension = nullptr;
|
|
|
|
/// \brief The generation at which we last loaded extensions.
|
|
unsigned ExtensionGeneration = 0;
|
|
|
|
/// \brief A lookup table containing all of the members of this type and
|
|
/// its extensions.
|
|
///
|
|
/// The table itself is lazily constructed and updated when lookupDirect() is
|
|
/// called.
|
|
MemberLookupTable *LookupTable = nullptr;
|
|
|
|
friend class MemberLookupTable;
|
|
friend class ExtensionDecl;
|
|
|
|
protected:
|
|
Type DeclaredTy;
|
|
Type DeclaredTyInContext;
|
|
|
|
void setDeclaredType(Type declaredTy) {
|
|
assert(DeclaredTy.isNull() && "Already set declared type");
|
|
DeclaredTy = declaredTy;
|
|
}
|
|
|
|
NominalTypeDecl(DeclKind K, DeclContext *DC, Identifier name,
|
|
SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> inherited,
|
|
GenericParamList *GenericParams) :
|
|
TypeDecl(K, DC, name, NameLoc, inherited),
|
|
DeclContext(DeclContextKind::NominalTypeDecl, DC),
|
|
GenericParams(GenericParams), DeclaredTy(nullptr) {}
|
|
|
|
friend class ProtocolType;
|
|
|
|
public:
|
|
using TypeDecl::getASTContext;
|
|
|
|
ArrayRef<Decl*> getMembers() const { return Members; }
|
|
SourceRange getBraces() const { return Braces; }
|
|
void setMembers(ArrayRef<Decl*> M, SourceRange B);
|
|
|
|
GenericParamList *getGenericParams() const { return GenericParams; }
|
|
|
|
/// Provide the set of parameters to a generic type, or null if
|
|
/// this function is not generic.
|
|
void setGenericParams(GenericParamList *params) {
|
|
assert(!GenericParams && "Already has generic parameters");
|
|
GenericParams = params;
|
|
}
|
|
|
|
/// Set the generic signature of this type.
|
|
void setGenericSignature(ArrayRef<GenericTypeParamType *> params,
|
|
ArrayRef<Requirement> requirements);
|
|
|
|
/// Retrieve the generic parameter types.
|
|
ArrayRef<GenericTypeParamType *> getGenericParamTypes() const {
|
|
if (!GenericSig)
|
|
return { };
|
|
|
|
return GenericSig->getGenericParams();
|
|
}
|
|
|
|
/// Retrieve the generic requirements.
|
|
ArrayRef<Requirement> getGenericRequirements() const {
|
|
if (!GenericSig)
|
|
return { };
|
|
|
|
return GenericSig->getRequirements();
|
|
}
|
|
|
|
/// getDeclaredType - Retrieve the type declared by this entity.
|
|
Type getDeclaredType() const { return DeclaredTy; }
|
|
|
|
/// Compute the type (and declared type) of this nominal type.
|
|
void computeType();
|
|
|
|
Type getDeclaredTypeInContext();
|
|
|
|
/// Get the "interface" type of the given nominal type, which is the
|
|
/// type used to refer to the nominal type externally.
|
|
///
|
|
/// For a generic type, or a member thereof, this is the a specialization
|
|
/// of the type using its own generic parameters.
|
|
Type computeInterfaceType() const;
|
|
|
|
/// \brief Add a new extension to this nominal type.
|
|
void addExtension(ExtensionDecl *extension);
|
|
|
|
/// \brief Retrieve the set of extensions of this type.
|
|
ExtensionRange getExtensions();
|
|
|
|
/// Find all of the declarations with the given name within this nominal type
|
|
/// and its extensions.
|
|
///
|
|
/// This routine does not look into superclasses, nor does it consider
|
|
/// protocols to which the nominal type conforms. Furthermore, the resulting
|
|
/// set of declarations has not been filtered for visibility, nor have
|
|
/// overridden declarations been removed.
|
|
ArrayRef<ValueDecl *> lookupDirect(Identifier name);
|
|
|
|
/// Collect the set of protocols to which this type should implicitly
|
|
/// conform, such as DynamicLookup (for classes).
|
|
void getImplicitProtocols(SmallVectorImpl<ProtocolDecl *> &protocols);
|
|
|
|
private:
|
|
/// Predicate used to filter StoredPropertyRange.
|
|
static bool isStoredProperty(VarDecl *vd); // at end of file
|
|
|
|
public:
|
|
/// A range for iterating the stored member variables of a structure.
|
|
using StoredPropertyRange = DeclFilterRange<VarDecl, isStoredProperty>;
|
|
|
|
/// Return a collection of the stored member variables of this type.
|
|
StoredPropertyRange getStoredProperties() const {
|
|
return StoredPropertyRange(getMembers());
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_NominalTypeDecl &&
|
|
D->getKind() <= DeclKind::Last_NominalTypeDecl;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return C->getContextKind() == DeclContextKind::NominalTypeDecl;
|
|
}
|
|
static bool classof(const NominalTypeDecl *D) { return true; }
|
|
static bool classof(const ExtensionDecl *D) { return false; }
|
|
|
|
using DeclContext::operator new;
|
|
};
|
|
|
|
/// \brief This is the declaration of an enum.
|
|
///
|
|
/// For example:
|
|
///
|
|
/// \code
|
|
/// enum Bool {
|
|
/// case false
|
|
/// case true
|
|
/// }
|
|
///
|
|
/// enum Optional<T> {
|
|
/// case None
|
|
/// case Just(T)
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// The type of the decl itself is a MetaTypeType; use getDeclaredType()
|
|
/// to get the declared type ("Bool" or "Optional" in the above example).
|
|
class EnumDecl : public NominalTypeDecl {
|
|
SourceLoc EnumLoc;
|
|
Type RawType;
|
|
|
|
public:
|
|
EnumDecl(SourceLoc EnumLoc, Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *DC);
|
|
|
|
SourceLoc getStartLoc() const { return EnumLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(EnumLoc, getBraces().End);
|
|
}
|
|
|
|
EnumElementDecl *getElement(Identifier Name) const;
|
|
|
|
private:
|
|
/// Predicate used to filter ElementRange.
|
|
static bool isElement(EnumElementDecl *ued) { return true; }
|
|
|
|
public:
|
|
/// A range for iterating the elements of an enum.
|
|
using ElementRange = DeclFilterRange<EnumElementDecl, isElement>;
|
|
|
|
/// Return a range that iterates over all the elements of an enum.
|
|
ElementRange getAllElements() const {
|
|
return ElementRange(getMembers());
|
|
}
|
|
|
|
/// Insert all of the 'case' element declarations into a DenseSet.
|
|
void getAllElements(llvm::DenseSet<EnumElementDecl*> &elements) const {
|
|
for (auto elt : getAllElements())
|
|
elements.insert(elt);
|
|
}
|
|
|
|
/// Retrieve the status of circularity checking for class inheritance.
|
|
CircularityCheck getCircularityCheck() const {
|
|
return static_cast<CircularityCheck>(EnumDeclBits.Circularity);
|
|
}
|
|
|
|
/// Record the current stage of circularity checking.
|
|
void setCircularityCheck(CircularityCheck circularity) {
|
|
EnumDeclBits.Circularity = static_cast<unsigned>(circularity);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Enum;
|
|
}
|
|
static bool classof(const NominalTypeDecl *D) {
|
|
return D->getKind() == DeclKind::Enum;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return isa<NominalTypeDecl>(C) && classof(cast<NominalTypeDecl>(C));
|
|
}
|
|
|
|
/// Determine whether this enum declares a raw type in its inheritance clause.
|
|
bool hasRawType() const { return (bool)RawType; }
|
|
/// Retrieve the declared raw type of the enum from its inheritance clause,
|
|
/// or null if it has none.
|
|
Type getRawType() const { return RawType; }
|
|
|
|
/// Set the raw type of the enum from its inheritance clause.
|
|
void setRawType(Type rawType) { RawType = rawType; }
|
|
};
|
|
|
|
/// StructDecl - This is the declaration of a struct, for example:
|
|
///
|
|
/// struct Complex { var R : Double, I : Double }
|
|
///
|
|
/// The type of the decl itself is a MetaTypeType; use getDeclaredType()
|
|
/// to get the declared type ("Complex" in the above example).
|
|
class StructDecl : public NominalTypeDecl {
|
|
SourceLoc StructLoc;
|
|
|
|
public:
|
|
StructDecl(SourceLoc StructLoc, Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *DC);
|
|
|
|
SourceLoc getStartLoc() const { return StructLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(StructLoc, getBraces().End);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Struct;
|
|
}
|
|
static bool classof(const NominalTypeDecl *D) {
|
|
return D->getKind() == DeclKind::Struct;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return isa<NominalTypeDecl>(C) && classof(cast<NominalTypeDecl>(C));
|
|
}
|
|
};
|
|
|
|
/// ClassDecl - This is the declaration of a class, for example:
|
|
///
|
|
/// class Complex { var R : Double, I : Double }
|
|
///
|
|
/// The type of the decl itself is a MetaTypeType; use getDeclaredType()
|
|
/// to get the declared type ("Complex" in the above example).
|
|
class ClassDecl : public NominalTypeDecl {
|
|
SourceLoc ClassLoc;
|
|
Type Superclass;
|
|
|
|
public:
|
|
ClassDecl(SourceLoc ClassLoc, Identifier Name, SourceLoc NameLoc,
|
|
MutableArrayRef<TypeLoc> Inherited,
|
|
GenericParamList *GenericParams, DeclContext *DC);
|
|
|
|
SourceLoc getStartLoc() const { return ClassLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(ClassLoc, getBraces().End);
|
|
}
|
|
|
|
/// Determine whether this class has a superclass.
|
|
bool hasSuperclass() const { return (bool)Superclass; }
|
|
|
|
/// Retrieve the superclass of this class, or null if there is no superclass.
|
|
Type getSuperclass() const { return Superclass; }
|
|
|
|
/// Set the superclass of this class.
|
|
void setSuperclass(Type superclass) { Superclass = superclass; }
|
|
|
|
/// Retrieve the status of circularity checking for class inheritance.
|
|
CircularityCheck getCircularityCheck() const {
|
|
return static_cast<CircularityCheck>(ClassDeclBits.Circularity);
|
|
}
|
|
|
|
/// Record the current stage of circularity checking.
|
|
void setCircularityCheck(CircularityCheck circularity) {
|
|
ClassDeclBits.Circularity = static_cast<unsigned>(circularity);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Class;
|
|
}
|
|
static bool classof(const NominalTypeDecl *D) {
|
|
return D->getKind() == DeclKind::Class;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return isa<NominalTypeDecl>(C) && classof(cast<NominalTypeDecl>(C));
|
|
}
|
|
};
|
|
|
|
|
|
/// ProtocolDecl - A declaration of a protocol, for example:
|
|
///
|
|
/// protocol Drawable {
|
|
/// func draw()
|
|
/// }
|
|
class ProtocolDecl : public NominalTypeDecl {
|
|
SourceLoc ProtocolLoc;
|
|
|
|
bool requiresClassSlow();
|
|
|
|
public:
|
|
ProtocolDecl(DeclContext *DC, SourceLoc ProtocolLoc, SourceLoc NameLoc,
|
|
Identifier Name, MutableArrayRef<TypeLoc> Inherited);
|
|
|
|
using Decl::getASTContext;
|
|
|
|
void setMembers(MutableArrayRef<Decl *> M, SourceRange B) {
|
|
NominalTypeDecl::setMembers(M, B);
|
|
}
|
|
|
|
/// \brief Determine whether this protocol inherits from the given ("super")
|
|
/// protocol.
|
|
bool inheritsFrom(const ProtocolDecl *Super) const;
|
|
|
|
/// \brief Collect all of the inherited protocols into the given set.
|
|
void collectInherited(llvm::SmallPtrSet<ProtocolDecl *, 4> &Inherited);
|
|
|
|
ProtocolType *getDeclaredType() const {
|
|
return reinterpret_cast<ProtocolType *>(DeclaredTy.getPointer());
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return ProtocolLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(ProtocolLoc, getBraces().End);
|
|
}
|
|
|
|
/// \brief Retrieve the generic parameter 'Self'.
|
|
GenericTypeParamDecl *getSelf() const;
|
|
|
|
/// True if this protocol can only be conformed to by class types.
|
|
bool requiresClass() {
|
|
if (ProtocolDeclBits.RequiresClassValid)
|
|
return ProtocolDeclBits.RequiresClass;
|
|
|
|
return requiresClassSlow();
|
|
}
|
|
|
|
/// Determine whether an existential value conforming to just this protocol
|
|
/// conforms to the protocol itself.
|
|
///
|
|
/// \returns an empty optional if not yet known, true if the existential
|
|
/// does conform to this protocol, and false otherwise.
|
|
Optional<bool> existentialConformsToSelf() const {
|
|
if (ProtocolDeclBits.ExistentialConformsToSelfValid)
|
|
return ProtocolDeclBits.ExistentialConformsToSelf;
|
|
|
|
return Nothing;
|
|
}
|
|
|
|
/// Set whether the existential of this protocol type conforms to this
|
|
/// protocol.
|
|
void setExistentialConformsToSelf(bool conforms) {
|
|
ProtocolDeclBits.ExistentialConformsToSelfValid = true;
|
|
ProtocolDeclBits.ExistentialConformsToSelf = conforms;
|
|
}
|
|
|
|
/// If this is known to be a compiler-known protocol, returns the kind.
|
|
/// Otherwise returns Nothing.
|
|
///
|
|
/// Note that this is only valid after type-checking.
|
|
Optional<KnownProtocolKind> getKnownProtocolKind() const {
|
|
if (ProtocolDeclBits.KnownProtocol == 0)
|
|
return Nothing;
|
|
return static_cast<KnownProtocolKind>(ProtocolDeclBits.KnownProtocol - 1);
|
|
}
|
|
|
|
/// Check whether this protocol is of a specific, known protocol kind.
|
|
bool isSpecificProtocol(KnownProtocolKind kind) const {
|
|
if (auto knownKind = getKnownProtocolKind())
|
|
return *knownKind == kind;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Records that this is a compiler-known protocol.
|
|
void setKnownProtocolKind(KnownProtocolKind kind) {
|
|
assert((!getKnownProtocolKind() || *getKnownProtocolKind() == kind) &&
|
|
"can't reset known protocol kind");
|
|
ProtocolDeclBits.KnownProtocol = static_cast<unsigned>(kind) + 1;
|
|
assert(getKnownProtocolKind() && *getKnownProtocolKind() == kind &&
|
|
"not enough bits");
|
|
}
|
|
|
|
/// Retrieve the status of circularity checking for protocol inheritance.
|
|
CircularityCheck getCircularityCheck() const {
|
|
return static_cast<CircularityCheck>(ProtocolDeclBits.Circularity);
|
|
}
|
|
|
|
/// Record the current stage of circularity checking.
|
|
void setCircularityCheck(CircularityCheck circularity) {
|
|
ProtocolDeclBits.Circularity = static_cast<unsigned>(circularity);
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Protocol;
|
|
}
|
|
static bool classof(const NominalTypeDecl *D) {
|
|
return D->getKind() == DeclKind::Protocol;
|
|
}
|
|
static bool classof(const DeclContext *C) {
|
|
return isa<NominalTypeDecl>(C) && classof(cast<NominalTypeDecl>(C));
|
|
}
|
|
};
|
|
|
|
/// VarDecl - 'var' declaration.
|
|
class VarDecl : public ValueDecl {
|
|
private:
|
|
struct GetSetRecord {
|
|
SourceRange Braces;
|
|
FuncDecl *Get; // User-defined getter
|
|
FuncDecl *Set; // User-defined setter
|
|
};
|
|
|
|
// FIXME: These fields are useless for most of the VarDecls that are created
|
|
// for patterns. We should refactor to a new node.
|
|
GetSetRecord *GetSet = nullptr;
|
|
PatternBindingDecl *ParentPattern = nullptr;
|
|
VarDecl *OverriddenDecl = nullptr;
|
|
|
|
public:
|
|
VarDecl(bool IsStatic,
|
|
SourceLoc NameLoc, Identifier Name, Type Ty, DeclContext *DC)
|
|
: ValueDecl(DeclKind::Var, DC, Name, NameLoc)
|
|
{
|
|
VarDeclBits.Static = IsStatic;
|
|
setType(Ty);
|
|
}
|
|
|
|
SourceLoc getStartLoc() const { return getNameLoc(); }
|
|
SourceRange getSourceRange() const { return getNameLoc(); }
|
|
|
|
/// \brief Retrieve the source range of the variable type.
|
|
///
|
|
/// Only for use in diagnostics. It is not always possible to always
|
|
/// precisely point to the variable type because of type aliases.
|
|
SourceRange getTypeSourceRangeForDiagnostics() const;
|
|
|
|
/// \brief Determine whether this variable is computed, which means it
|
|
/// has no storage but does have a user-defined getter or setter.
|
|
///
|
|
/// The opposite of "computed" is "stored".
|
|
bool isComputed() const { return GetSet != nullptr; }
|
|
|
|
/// \brief Turn this into a computed variable, providing a getter and setter.
|
|
void setComputedAccessors(ASTContext &Context, SourceLoc LBraceLoc,
|
|
FuncDecl *Get, FuncDecl *Set, SourceLoc RBraceLoc);
|
|
|
|
/// \brief Retrieve the getter used to access the value of this variable.
|
|
FuncDecl *getGetter() const { return GetSet? GetSet->Get : nullptr; }
|
|
|
|
/// \brief Retrieve the setter used to mutate the value of this variable.
|
|
FuncDecl *getSetter() const { return GetSet? GetSet->Set : nullptr; }
|
|
|
|
/// Retrieve the type of the getter.
|
|
Type getGetterType() const;
|
|
|
|
/// Retrieve the type of the setter.
|
|
Type getSetterType() const;
|
|
|
|
/// \brief Returns whether the var is settable, either because it is a
|
|
/// stored var or because it has a custom setter.
|
|
bool isSettable() const { return !GetSet || GetSet->Set; }
|
|
|
|
VarDecl *getOverriddenDecl() const {
|
|
return OverriddenDecl;
|
|
}
|
|
void setOverriddenDecl(VarDecl *over) {
|
|
OverriddenDecl = over;
|
|
}
|
|
|
|
PatternBindingDecl *getParentPattern() const {
|
|
return ParentPattern;
|
|
}
|
|
void setParentPattern(PatternBindingDecl *PBD) {
|
|
ParentPattern = PBD;
|
|
}
|
|
|
|
/// Determine whether this declaration is an anonymous closure parameter.
|
|
bool isAnonClosureParam() const;
|
|
|
|
/// Given that this is an Objective-C property declaration, produce
|
|
/// its getter selector in the given buffer (as UTF-8).
|
|
StringRef getObjCGetterSelector(SmallVectorImpl<char> &buffer) const;
|
|
|
|
/// Given that this is an Objective-C property declaration, produce
|
|
/// its setter selector in the given buffer (as UTF-8).
|
|
StringRef getObjCSetterSelector(SmallVectorImpl<char> &buffer) const;
|
|
|
|
/// Is this a type ('static') variable?
|
|
bool isStatic() const { return VarDeclBits.Static; }
|
|
void setStatic(bool IsStatic) { VarDeclBits.Static = IsStatic; }
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Decl *D) { return D->getKind() == DeclKind::Var; }
|
|
};
|
|
|
|
/// \brief Base class for function-like declarations.
|
|
class AbstractFunctionDecl : public ValueDecl, public DeclContext {
|
|
public:
|
|
enum class BodyKind {
|
|
/// The function did not have a body in the source code file.
|
|
None,
|
|
|
|
/// Function body is delayed, to be parsed later.
|
|
Unparsed,
|
|
|
|
/// Function body is parsed and available as an AST subtree.
|
|
Parsed,
|
|
|
|
/// Function body is not available, although it was written in the source.
|
|
Skipped
|
|
};
|
|
|
|
BodyKind getBodyKind() const {
|
|
return BodyKind(AbstractFunctionDeclBits.BodyKind);
|
|
}
|
|
|
|
protected:
|
|
// If a function has a body at all, we have either a parsed body AST node or
|
|
// we have saved the end location of the unparsed body.
|
|
union {
|
|
/// This enum member is active if getBodyKind() == BodyKind::Parsed.
|
|
BraceStmt *Body;
|
|
|
|
/// End location of the function body when the body is delayed or skipped.
|
|
/// This enum member is active if getBodyKind() is BodyKind::Unparsed or
|
|
/// BodyKind::Skipped.
|
|
SourceLoc BodyEndLoc;
|
|
};
|
|
|
|
/// Pointer to the implicit 'self' decl and a bit that is set to true when
|
|
/// this pointer is computed already.
|
|
mutable llvm::PointerIntPair<VarDecl *, 1, bool> ImplicitSelfDeclAndIsCached;
|
|
|
|
GenericParamList *GenericParams;
|
|
|
|
CaptureInfo Captures;
|
|
|
|
AbstractFunctionDecl(DeclKind Kind, DeclContext *Parent, Identifier Name,
|
|
SourceLoc NameLoc,
|
|
VarDecl *ImplicitSelfDecl,
|
|
GenericParamList *GenericParams)
|
|
: ValueDecl(Kind, Parent, Name, NameLoc),
|
|
DeclContext(DeclContextKind::AbstractFunctionDecl, Parent),
|
|
Body(nullptr), GenericParams(GenericParams) {
|
|
if (ImplicitSelfDecl)
|
|
ImplicitSelfDeclAndIsCached.setPointerAndInt(ImplicitSelfDecl, true);
|
|
else
|
|
ImplicitSelfDeclAndIsCached.setPointerAndInt(nullptr, false);
|
|
setBodyKind(BodyKind::None);
|
|
AbstractFunctionDeclBits.HasSelectorStyleSignature = false;
|
|
}
|
|
|
|
VarDecl *getImplicitSelfDeclSlow() const;
|
|
|
|
MutableArrayRef<Pattern *> getArgParamBuffer();
|
|
MutableArrayRef<Pattern *> getBodyParamBuffer();
|
|
|
|
void setBodyKind(BodyKind K) {
|
|
AbstractFunctionDeclBits.BodyKind = unsigned(K);
|
|
}
|
|
|
|
public:
|
|
/// \brief If this is a method in a type extension for some type,
|
|
/// return that type, otherwise return Type().
|
|
Type getExtensionType() const;
|
|
|
|
/// Returns true if the function has a body written in the source file.
|
|
///
|
|
/// Note that a true return value does not imply that the body was actually
|
|
/// parsed.
|
|
bool hasBody() const {
|
|
return getBodyKind() != BodyKind::None;
|
|
}
|
|
|
|
/// Returns the function body, if it was parsed, or nullptr otherwise.
|
|
///
|
|
/// Note that a null return value does not imply that the source code did not
|
|
/// have a body for this function.
|
|
///
|
|
/// \sa hasBody()
|
|
BraceStmt *getBody() const {
|
|
if (getBodyKind() == BodyKind::Parsed)
|
|
return Body;
|
|
return nullptr;
|
|
}
|
|
void setBody(BraceStmt *S) {
|
|
assert(getBodyKind() != BodyKind::Skipped &&
|
|
"can not set a body if it was skipped");
|
|
|
|
Body = S;
|
|
setBodyKind(BodyKind::Parsed);
|
|
}
|
|
|
|
/// \brief Note that the body was skipped for this function. Function body
|
|
/// can not be attached after this call.
|
|
void setBodySkipped(SourceLoc EndLoc) {
|
|
assert(getBodyKind() == BodyKind::None);
|
|
BodyEndLoc = EndLoc;
|
|
setBodyKind(BodyKind::Skipped);
|
|
}
|
|
|
|
/// \brief Note that parsing for the body was delayed.
|
|
void setBodyDelayed(SourceLoc EndLoc) {
|
|
assert(getBodyKind() == BodyKind::None);
|
|
BodyEndLoc = EndLoc;
|
|
setBodyKind(BodyKind::Unparsed);
|
|
}
|
|
|
|
CaptureInfo &getCaptureInfo() { return Captures; }
|
|
const CaptureInfo &getCaptureInfo() const { return Captures; }
|
|
|
|
bool hasSelectorStyleSignature() const {
|
|
return AbstractFunctionDeclBits.HasSelectorStyleSignature;
|
|
}
|
|
|
|
void setHasSelectorStyleSignature() {
|
|
AbstractFunctionDeclBits.HasSelectorStyleSignature = true;
|
|
}
|
|
|
|
/// Determine the default argument kind and type for the given argument index
|
|
/// in this declaration, which must be a function or constructor.
|
|
///
|
|
/// \param Index The index of the argument for which we are querying the
|
|
/// default argument.
|
|
///
|
|
/// \returns the default argument kind and, if there is a default argument,
|
|
/// the type of the corresponding parameter.
|
|
std::pair<DefaultArgumentKind, Type> getDefaultArg(unsigned Index) const;
|
|
|
|
/// \brief Returns the argument pattern(s) for the function definition
|
|
/// that determine the function type.
|
|
//
|
|
/// - For a definition of the form `func foo(a:A, b:B)`, this will
|
|
/// be a one-element array containing the argument pattern `(a:A, b:B)`.
|
|
/// - For a curried definition such as `func foo(a:A)(b:B)`, this will
|
|
/// be a multiple-element array containing a pattern for each level
|
|
/// of currying, in this case two patterns `(a:A)` and `(b:B)`.
|
|
/// - For a selector-style definition such as `func foo(a:A) bar(b:B)`,
|
|
/// this will be a one-element array containing the argument pattern
|
|
/// of the keyword arguments, in this case `(_:A, bar:B)`. For selector-
|
|
/// style definitions, this is different from `getBodyParamPatterns`,
|
|
/// which would return the declared parameter names `(a:A, b:B)`.
|
|
///
|
|
/// If the function expression refers to a method definition, there will
|
|
/// be an additional first argument pattern for the `this` parameter.
|
|
MutableArrayRef<Pattern *> getArgParamPatterns() {
|
|
return getArgParamBuffer();
|
|
}
|
|
ArrayRef<const Pattern *> getArgParamPatterns() const {
|
|
auto Patterns =
|
|
const_cast<AbstractFunctionDecl *>(this)->getArgParamBuffer();
|
|
return ArrayRef<const Pattern *>(Patterns.data(), Patterns.size());
|
|
}
|
|
|
|
/// \brief Returns the parameter pattern(s) for the function definition that
|
|
/// determine the parameter names bound in the function body.
|
|
///
|
|
/// Typically, this is the same as \c getArgParamPatterns, unless the
|
|
/// function was defined with selector-style syntax such as:
|
|
/// \code
|
|
/// func foo(a:A) bar(b:B) {}
|
|
/// \endcode
|
|
///
|
|
/// For a selector-style definition, \c getArgParamPatterns will return the
|
|
/// pattern that describes the keyword argument names, in this case
|
|
/// `(_:A, bar:B)`, whereas \c getBodyParamPatterns will return a pattern
|
|
/// referencing the declared parameter names in the function body's scope,
|
|
/// in this case `(a:A, b:B)`.
|
|
///
|
|
/// In all cases `getArgParamPatterns().size()` should equal
|
|
/// `getBodyParamPatterns().size()`, and the corresponding elements of each
|
|
/// tuple type should have equivalent types.
|
|
MutableArrayRef<Pattern *> getBodyParamPatterns() {
|
|
return getBodyParamBuffer();
|
|
}
|
|
ArrayRef<const Pattern *> getBodyParamPatterns() const {
|
|
auto Patterns =
|
|
const_cast<AbstractFunctionDecl *>(this)->getBodyParamBuffer();
|
|
return ArrayRef<const Pattern *>(Patterns.data(), Patterns.size());
|
|
}
|
|
|
|
/// \brief If this is a method in a type or extension thereof, compute
|
|
/// and return the type to be used for the 'self' argument of the type, or an
|
|
/// empty Type() if no 'self' argument should exist. This can
|
|
/// only be used after name binding has resolved types.
|
|
///
|
|
/// \param outerGenericParams If non-NULL, and this function is an instance
|
|
/// of a generic type, will be set to the generic parameter list of that
|
|
/// generic type.
|
|
Type computeSelfType(GenericParamList **outerGenericParams = nullptr);
|
|
|
|
/// \brief This method returns the implicit 'self' decl.
|
|
///
|
|
/// Note that some functions don't have an implicit 'self' decl, for example,
|
|
/// free functions. In this case nullptr is returned.
|
|
VarDecl *getImplicitSelfDecl() const {
|
|
if (ImplicitSelfDeclAndIsCached.getInt())
|
|
return ImplicitSelfDeclAndIsCached.getPointer();
|
|
return getImplicitSelfDeclSlow();
|
|
}
|
|
|
|
/// \brief Retrieve the set of parameters to a generic function, or null if
|
|
/// this function is not generic.
|
|
GenericParamList *getGenericParams() const { return GenericParams; }
|
|
|
|
/// \brief Determine whether this is a generic function, which can only be
|
|
/// used when each of the archetypes is bound to a particular concrete type.
|
|
bool isGeneric() const { return GenericParams != nullptr; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_AbstractFunctionDecl &&
|
|
D->getKind() <= DeclKind::Last_AbstractFunctionDecl;
|
|
}
|
|
|
|
static bool classof(const DeclContext *DC) {
|
|
return DC->getContextKind() == DeclContextKind::AbstractFunctionDecl;
|
|
}
|
|
|
|
using DeclContext::operator new;
|
|
using Decl::getASTContext;
|
|
};
|
|
|
|
class OperatorDecl;
|
|
|
|
/// FuncDecl - 'func' declaration.
|
|
class FuncDecl : public AbstractFunctionDecl {
|
|
friend class AbstractFunctionDecl;
|
|
|
|
SourceLoc StaticLoc; // Location of the 'static' token or invalid.
|
|
SourceLoc FuncLoc; // Location of the 'func' token.
|
|
|
|
TypeLoc FnRetType;
|
|
|
|
/// The result type as seen from the body of the function.
|
|
///
|
|
/// \sa getBodyResultType()
|
|
Type BodyResultType;
|
|
|
|
llvm::PointerIntPair<ValueDecl *, 1, bool> GetOrSetDecl;
|
|
FuncDecl *OverriddenDecl;
|
|
OperatorDecl *Operator;
|
|
|
|
FuncDecl(SourceLoc StaticLoc, SourceLoc FuncLoc, Identifier Name,
|
|
SourceLoc NameLoc, unsigned NumParamPatterns,
|
|
GenericParamList *GenericParams, Type Ty, DeclContext *Parent)
|
|
: AbstractFunctionDecl(DeclKind::Func, Parent, Name, NameLoc, nullptr,
|
|
GenericParams),
|
|
StaticLoc(StaticLoc), FuncLoc(FuncLoc),
|
|
OverriddenDecl(nullptr), Operator(nullptr) {
|
|
FuncDeclBits.Static = StaticLoc.isValid() || getName().isOperator();
|
|
assert(NumParamPatterns > 0);
|
|
FuncDeclBits.NumParamPatterns = NumParamPatterns;
|
|
setType(Ty);
|
|
}
|
|
|
|
VarDecl *getImplicitSelfDeclImpl() const;
|
|
|
|
unsigned getNumParamPatternsImpl() const {
|
|
return FuncDeclBits.NumParamPatterns;
|
|
}
|
|
|
|
public:
|
|
/// Factory function only for use by deserialization.
|
|
static FuncDecl *createDeserialized(ASTContext &Context, SourceLoc StaticLoc,
|
|
SourceLoc FuncLoc, Identifier Name,
|
|
SourceLoc NameLoc,
|
|
GenericParamList *GenericParams, Type Ty,
|
|
unsigned NumParamPatterns,
|
|
DeclContext *Parent);
|
|
|
|
static FuncDecl *create(ASTContext &Context, SourceLoc StaticLoc,
|
|
SourceLoc FuncLoc, Identifier Name, SourceLoc NameLoc,
|
|
GenericParamList *GenericParams, Type Ty,
|
|
ArrayRef<Pattern *> ArgParams,
|
|
ArrayRef<Pattern *> BodyParams,
|
|
TypeLoc FnRetType, DeclContext *Parent);
|
|
|
|
bool isStatic() const {
|
|
return FuncDeclBits.Static;
|
|
}
|
|
void setStatic(bool Static = true) {
|
|
FuncDeclBits.Static = Static;
|
|
}
|
|
|
|
void setDeserializedSignature(ArrayRef<Pattern *> ArgParams,
|
|
ArrayRef<Pattern *> BodyParams,
|
|
TypeLoc FnRetType);
|
|
|
|
/// \brief Returns the "natural" number of argument clauses taken by this
|
|
/// function. This value is always at least one, and it may be more if the
|
|
/// function is implicitly or explicitly curried.
|
|
///
|
|
/// For example, this function:
|
|
/// \code
|
|
/// func negate(x : Int) -> Int { return -x }
|
|
/// \endcode
|
|
/// has a natural argument count of 1 if it is freestanding. If it is
|
|
/// a method, it has a natural argument count of 2, as does this
|
|
/// curried function:
|
|
/// \code
|
|
/// func add(x : Int)(y : Int) -> Int { return x + y }
|
|
/// \endcode
|
|
///
|
|
/// This value never exceeds the number of chained function types
|
|
/// in the function's type, but it can be less for functions which
|
|
/// return a value of function type:
|
|
/// \code
|
|
/// func const(x : Int) -> () -> Int { return { x } } // NAC==1
|
|
/// \endcode
|
|
unsigned getNaturalArgumentCount() const {
|
|
return getNumParamPatternsImpl();
|
|
}
|
|
|
|
SourceLoc getStaticLoc() const { return StaticLoc; }
|
|
SourceLoc getFuncLoc() const { return FuncLoc; }
|
|
|
|
SourceLoc getStartLoc() const {
|
|
return StaticLoc.isValid() ? StaticLoc : FuncLoc;
|
|
}
|
|
SourceRange getSourceRange() const;
|
|
|
|
TypeLoc &getBodyResultTypeLoc() { return FnRetType; }
|
|
const TypeLoc &getBodyResultTypeLoc() const { return FnRetType; }
|
|
|
|
/// Retrieve the result type of this function.
|
|
///
|
|
/// \sa getBodyResultType
|
|
Type getResultType() const;
|
|
|
|
/// Retrieve the result type of this function for use within the function
|
|
/// definition.
|
|
///
|
|
/// FIXME: The statement below is a wish, not reality.
|
|
/// The "body" result type will only differ from the result type within the
|
|
/// interface to the function for a polymorphic function, where the interface
|
|
/// may contain generic parameters while the definition will contain
|
|
/// the corresponding archetypes.
|
|
Type getBodyResultType() const { return BodyResultType; }
|
|
|
|
/// Set the result type as viewed from the function body.
|
|
///
|
|
/// \sa getBodyResultType
|
|
void setBodyResultType(Type bodyResultType) {
|
|
assert(BodyResultType.isNull() && "Already set body result type");
|
|
BodyResultType = bodyResultType;
|
|
}
|
|
|
|
/// Revert to an empty type.
|
|
void revertType() {
|
|
BodyResultType = Type();
|
|
overwriteType(Type());
|
|
}
|
|
|
|
/// isUnaryOperator - Determine whether this is a unary operator
|
|
/// implementation, in other words, the name of the function is an operator,
|
|
/// and the argument list consists syntactically of a single-element tuple
|
|
/// pattern. This check is syntactic rather than type-based in order to allow
|
|
/// for the definition of unary operators on tuples, as in:
|
|
/// func [prefix] + (_:(a:Int, b:Int))
|
|
/// This also allows the unary-operator-ness of a func decl to be determined
|
|
/// prior to type checking.
|
|
bool isUnaryOperator() const;
|
|
|
|
/// isBinaryOperator - Determine whether this is a binary operator
|
|
/// implementation, in other words, the name of the function is an operator,
|
|
/// and the argument list consists syntactically of a two-element tuple
|
|
/// pattern. This check is syntactic rather than type-based in order to
|
|
/// distinguish a binary operator from a unary operator on tuples, as in:
|
|
/// func [prefix] + (_:(a:Int, b:Int)) // unary operator +(1,2)
|
|
/// func [infix] + (a:Int, b:Int) // binary operator 1 + 2
|
|
/// This also allows the binary-operator-ness of a func decl to be determined
|
|
/// prior to type checking.
|
|
bool isBinaryOperator() const;
|
|
|
|
/// makeGetter - Note that this function is the getter for the given
|
|
/// declaration, which may be either a variable or a subscript declaration.
|
|
void makeGetter(ValueDecl *D) {
|
|
GetOrSetDecl.setPointer(D);
|
|
GetOrSetDecl.setInt(false);
|
|
}
|
|
|
|
/// makeSetter - Note that this function is the setter for the given
|
|
/// declaration, which may be either a variable or a subscript declaration.
|
|
void makeSetter(ValueDecl *D) {
|
|
GetOrSetDecl.setPointer(D);
|
|
GetOrSetDecl.setInt(true);
|
|
}
|
|
|
|
/// getGetterDecl - If this function is a getter, retrieve the declaration for
|
|
/// which it is a getter. Otherwise, returns null.
|
|
ValueDecl *getGetterDecl() const {
|
|
return GetOrSetDecl.getInt()? nullptr : GetOrSetDecl.getPointer();
|
|
}
|
|
|
|
/// getSetterDecl - If this function is a setter, retrieve the declaration for
|
|
/// which it is a setter. Otherwise, returns null.
|
|
ValueDecl *getSetterDecl() const {
|
|
return GetOrSetDecl.getInt()? GetOrSetDecl.getPointer() : nullptr;
|
|
}
|
|
|
|
/// isGetterOrSetter - Determine whether this is a getter or a setter vs.
|
|
/// a normal function.
|
|
bool isGetterOrSetter() const { return getGetterOrSetterDecl() != 0; }
|
|
|
|
/// getGetterOrSetterDecl - Return the declaration for which this function
|
|
/// is a getter or setter, if it is one.
|
|
ValueDecl *getGetterOrSetterDecl() const { return GetOrSetDecl.getPointer(); }
|
|
|
|
/// Given that this is an Objective-C method declaration, produce
|
|
/// its selector in the given buffer (as UTF-8).
|
|
StringRef getObjCSelector(SmallVectorImpl<char> &buffer) const;
|
|
|
|
FuncDecl *getOverriddenDecl() const { return OverriddenDecl; }
|
|
void setOverriddenDecl(FuncDecl *over) { OverriddenDecl = over; }
|
|
|
|
OperatorDecl *getOperatorDecl() const { return Operator; }
|
|
void setOperatorDecl(OperatorDecl *o) {
|
|
assert(isOperator() && "can't set an OperatorDecl for a non-operator");
|
|
Operator = o;
|
|
}
|
|
|
|
static bool classof(const Decl *D) { return D->getKind() == DeclKind::Func; }
|
|
};
|
|
|
|
/// \brief This represents a 'case' declaration in an 'enum', which may declare
|
|
/// one or more individual comma-separated EnumElementDecls.
|
|
class EnumCaseDecl : public Decl {
|
|
SourceLoc CaseLoc;
|
|
|
|
/// The number of tail-allocated element pointers.
|
|
unsigned NumElements;
|
|
|
|
EnumCaseDecl(SourceLoc CaseLoc,
|
|
ArrayRef<EnumElementDecl *> Elements,
|
|
DeclContext *DC)
|
|
: Decl(DeclKind::EnumCase, DC),
|
|
CaseLoc(CaseLoc), NumElements(Elements.size())
|
|
{
|
|
memcpy(this + 1, Elements.begin(), NumElements * sizeof(EnumElementDecl*));
|
|
}
|
|
|
|
EnumElementDecl * const *getElementsBuf() const {
|
|
return reinterpret_cast<EnumElementDecl * const*>(this + 1);
|
|
}
|
|
|
|
public:
|
|
static EnumCaseDecl *create(SourceLoc CaseLoc,
|
|
ArrayRef<EnumElementDecl*> Elements,
|
|
DeclContext *DC);
|
|
|
|
/// Get the list of elements declared in this case.
|
|
ArrayRef<EnumElementDecl *> getElements() const {
|
|
return {getElementsBuf(), NumElements};
|
|
}
|
|
|
|
SourceLoc getLoc() const {
|
|
return CaseLoc;
|
|
}
|
|
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::EnumCase;
|
|
}
|
|
};
|
|
|
|
/// \brief This represents a single case of an 'enum' declaration.
|
|
///
|
|
/// For example, the X, Y, and Z in this enum:
|
|
///
|
|
/// \code
|
|
/// enum V {
|
|
/// case X(Int), Y(Int)
|
|
/// case Z
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// The type of an EnumElementDecl is always the EnumType for the containing
|
|
/// enum. EnumElementDecls are represented in the AST as members of their
|
|
/// parent EnumDecl, although syntactically they are subordinate to the
|
|
/// EnumCaseDecl.
|
|
class EnumElementDecl : public ValueDecl {
|
|
/// This is the type specified with the enum element, for
|
|
/// example 'Int' in 'case Y(Int)'. This is null if there is no type
|
|
/// associated with this element, as in 'case Z' or in all elements of enum
|
|
/// definitions.
|
|
TypeLoc ArgumentType;
|
|
|
|
SourceLoc EqualsLoc;
|
|
|
|
/// The raw value literal for the enum element, or null.
|
|
LiteralExpr *RawValueExpr;
|
|
/// The type-checked raw value expression.
|
|
Expr *TypeCheckedRawValueExpr = nullptr;
|
|
|
|
public:
|
|
EnumElementDecl(SourceLoc IdentifierLoc, Identifier Name,
|
|
TypeLoc ArgumentType,
|
|
SourceLoc EqualsLoc,
|
|
LiteralExpr *RawValueExpr,
|
|
DeclContext *DC)
|
|
: ValueDecl(DeclKind::EnumElement, DC, Name, IdentifierLoc),
|
|
ArgumentType(ArgumentType),
|
|
EqualsLoc(EqualsLoc),
|
|
RawValueExpr(RawValueExpr)
|
|
{}
|
|
|
|
bool hasArgumentType() const { return !ArgumentType.getType().isNull(); }
|
|
Type getArgumentType() const { return ArgumentType.getType(); }
|
|
TypeLoc &getArgumentTypeLoc() { return ArgumentType; }
|
|
|
|
bool hasRawValueExpr() const { return RawValueExpr; }
|
|
LiteralExpr *getRawValueExpr() const { return RawValueExpr; }
|
|
void setRawValueExpr(LiteralExpr *e) { RawValueExpr = e; }
|
|
|
|
Expr *getTypeCheckedRawValueExpr() const {
|
|
return TypeCheckedRawValueExpr;
|
|
}
|
|
void setTypeCheckedRawValueExpr(Expr *e) {
|
|
TypeCheckedRawValueExpr = e;
|
|
}
|
|
|
|
/// Return the containing EnumDecl.
|
|
EnumDecl *getParentEnum() const {
|
|
return cast<EnumDecl>(getDeclContext());
|
|
}
|
|
|
|
SourceLoc getStartLoc() const {
|
|
return getNameLoc();
|
|
}
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::EnumElement;
|
|
}
|
|
};
|
|
|
|
inline SourceRange EnumCaseDecl::getSourceRange() const {
|
|
auto subRange = getElements().back()->getSourceRange();
|
|
if (subRange.isValid())
|
|
return {CaseLoc, subRange.End};
|
|
return {};
|
|
}
|
|
|
|
/// Describes the kind of subscripting used in Objective-C.
|
|
enum class ObjCSubscriptKind {
|
|
/// Not an Objective-C subscripting kind.
|
|
None,
|
|
/// Objective-C indexed subscripting, which is based on an integral
|
|
/// index.
|
|
Indexed,
|
|
/// Objective-C keyed subscripting, which is based on an object
|
|
/// argument or metatype thereof.
|
|
Keyed
|
|
};
|
|
|
|
/// \brief Declares a subscripting operator for a type.
|
|
///
|
|
/// A subscript declaration is defined as a get/set pair that produces a
|
|
/// specific type. For example:
|
|
///
|
|
/// \code
|
|
/// subscript (i : Int) -> String {
|
|
/// get: /* return ith String */
|
|
/// set: /* set ith string to value */
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// A type with a subscript declaration can be used as the base of a subscript
|
|
/// expression a[i], where a is of the subscriptable type and i is the type
|
|
/// of the index. A subscript can have multiple indices:
|
|
///
|
|
/// \code
|
|
/// struct Matrix {
|
|
/// subscript (i : Int, j : Int) -> Double {
|
|
/// get: /* return element at position (i, j) */
|
|
/// set: /* set element at position (i, j) */
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
///
|
|
/// A given type can have multiple subscript declarations, so long as the
|
|
/// signatures (indices and element type) are distinct.
|
|
///
|
|
/// FIXME: SubscriptDecl isn't naturally a ValueDecl, but it's currently useful
|
|
/// to get name lookup to find it with a bogus name.
|
|
class SubscriptDecl : public ValueDecl {
|
|
SourceLoc ArrowLoc;
|
|
Pattern *Indices;
|
|
TypeLoc ElementTy;
|
|
SourceRange Braces;
|
|
FuncDecl *Get;
|
|
FuncDecl *Set;
|
|
SubscriptDecl *OverriddenDecl;
|
|
|
|
public:
|
|
SubscriptDecl(Identifier NameHack, SourceLoc SubscriptLoc, Pattern *Indices,
|
|
SourceLoc ArrowLoc, TypeLoc ElementTy,
|
|
SourceRange Braces, FuncDecl *Get, FuncDecl *Set,
|
|
DeclContext *Parent)
|
|
: ValueDecl(DeclKind::Subscript, Parent, NameHack, SubscriptLoc),
|
|
ArrowLoc(ArrowLoc), Indices(Indices), ElementTy(ElementTy),
|
|
Braces(Braces), Get(Get), Set(Set), OverriddenDecl(nullptr) { }
|
|
|
|
SourceLoc getSubscriptLoc() const { return getNameLoc(); }
|
|
SourceLoc getStartLoc() const { return getSubscriptLoc(); }
|
|
SourceRange getSourceRange() const;
|
|
|
|
/// \brief Retrieve the indices for this subscript operation.
|
|
Pattern *getIndices() { return Indices; }
|
|
const Pattern *getIndices() const { return Indices; }
|
|
void setIndices(Pattern *p) { Indices = p; }
|
|
|
|
/// \brief Retrieve the type of the element referenced by a subscript
|
|
/// operation.
|
|
Type getElementType() const { return ElementTy.getType(); }
|
|
TypeLoc &getElementTypeLoc() { return ElementTy; }
|
|
|
|
/// \brief Retrieve the subscript getter, a function that takes the indices
|
|
/// and produces a value of the element type.
|
|
FuncDecl *getGetter() const { return Get; }
|
|
|
|
/// \brief Retrieve the subscript setter, a function that takes the indices
|
|
/// and a new value of the lement type and updates the corresponding value.
|
|
///
|
|
/// The subscript setter is optional.
|
|
FuncDecl *getSetter() const { return Set; }
|
|
|
|
/// \brief Returns whether the subscript operation has a setter.
|
|
bool isSettable() const { return Set; }
|
|
|
|
/// Retrieve the type of the getter.
|
|
Type getGetterType() const;
|
|
|
|
/// Retrieve the type of the setter.
|
|
Type getSetterType() const;
|
|
|
|
/// Determine the kind of Objective-C subscripting this declaration
|
|
/// implies.
|
|
ObjCSubscriptKind getObjCSubscriptKind() const;
|
|
|
|
/// Given that this is an Objective-C subscript declaration, produce
|
|
/// its getter selector.
|
|
StringRef getObjCGetterSelector() const;
|
|
|
|
/// Given that this is an Objective-C subscript declaration, produce
|
|
/// its setter selector.
|
|
StringRef getObjCSetterSelector() const;
|
|
|
|
SubscriptDecl *getOverriddenDecl() const { return OverriddenDecl; }
|
|
void setOverriddenDecl(SubscriptDecl *over) { OverriddenDecl = over; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Subscript;
|
|
}
|
|
};
|
|
|
|
/// ConstructorDecl - Declares a constructor for a type. For example:
|
|
///
|
|
/// \code
|
|
/// struct X {
|
|
/// var x : Int
|
|
/// constructor(i : Int) {
|
|
/// x = i
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
class ConstructorDecl : public AbstractFunctionDecl {
|
|
friend class AbstractFunctionDecl;
|
|
|
|
Pattern *ArgParams;
|
|
Pattern *BodyParams;
|
|
|
|
/// The type of the initializing constructor.
|
|
Type InitializerType;
|
|
|
|
/// The interface type of the initializing constructor.
|
|
Type InitializerInterfaceType;
|
|
|
|
public:
|
|
ConstructorDecl(Identifier NameHack, SourceLoc ConstructorLoc,
|
|
Pattern *ArgParams, Pattern *BodyParams,
|
|
VarDecl *ImplicitSelfDecl,
|
|
GenericParamList *GenericParams, DeclContext *Parent)
|
|
: AbstractFunctionDecl(DeclKind::Constructor, Parent, NameHack,
|
|
ConstructorLoc, ImplicitSelfDecl, GenericParams),
|
|
ArgParams(ArgParams), BodyParams(BodyParams) {
|
|
assert(ImplicitSelfDecl && "constructors should have a non-null self");
|
|
}
|
|
|
|
SourceLoc getConstructorLoc() const { return getNameLoc(); }
|
|
SourceLoc getStartLoc() const { return getConstructorLoc(); }
|
|
SourceRange getSourceRange() const;
|
|
|
|
Pattern *getArgParams() { return ArgParams; }
|
|
const Pattern *getArgParams() const { return ArgParams; }
|
|
|
|
void setArgParams(Pattern *argParams) {
|
|
ArgParams = argParams;
|
|
}
|
|
|
|
Pattern *getBodyParams() { return BodyParams; }
|
|
const Pattern *getBodyParams() const { return BodyParams; }
|
|
|
|
void setBodyParams(Pattern *bodyParams) {
|
|
BodyParams = bodyParams;
|
|
}
|
|
|
|
/// getArgumentType - get the type of the argument tuple
|
|
Type getArgumentType() const;
|
|
|
|
/// \brief Get the type of the constructed object.
|
|
Type getResultType() const;
|
|
|
|
/// Given that this is an Objective-C method declaration, produce
|
|
/// its selector in the given buffer (as UTF-8).
|
|
StringRef getObjCSelector(SmallVectorImpl<char> &buffer) const;
|
|
|
|
/// Get the type of the initializing constructor.
|
|
Type getInitializerType() const { return InitializerType; }
|
|
void setInitializerType(Type t) { InitializerType = t; }
|
|
|
|
/// Get the interface type of the initializing constructor.
|
|
Type getInitializerInterfaceType() const { return InitializerInterfaceType; }
|
|
void setInitializerInterfaceType(Type t) { InitializerInterfaceType = t; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Constructor;
|
|
}
|
|
};
|
|
|
|
/// DestructorDecl - Declares a destructor for a type. For example:
|
|
///
|
|
/// \code
|
|
/// struct X {
|
|
/// var fd : Int
|
|
/// destructor() {
|
|
/// close(fd)
|
|
/// }
|
|
/// }
|
|
/// \endcode
|
|
class DestructorDecl : public AbstractFunctionDecl {
|
|
|
|
public:
|
|
DestructorDecl(Identifier NameHack, SourceLoc DestructorLoc,
|
|
VarDecl *ImplicitSelfDecl, DeclContext *Parent)
|
|
: AbstractFunctionDecl(DeclKind::Destructor, Parent, NameHack,
|
|
DestructorLoc, ImplicitSelfDecl, nullptr) {
|
|
assert(ImplicitSelfDecl && "destructors should have a non-null self");
|
|
}
|
|
|
|
SourceLoc getDestructorLoc() const { return getNameLoc(); }
|
|
SourceLoc getStartLoc() const { return getDestructorLoc(); }
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::Destructor;
|
|
}
|
|
};
|
|
|
|
/// Abstract base class of operator declarations.
|
|
class OperatorDecl : public Decl {
|
|
SourceLoc OperatorLoc, NameLoc, LBraceLoc, RBraceLoc;
|
|
|
|
Identifier name;
|
|
|
|
public:
|
|
OperatorDecl(DeclKind kind,
|
|
DeclContext *DC,
|
|
SourceLoc OperatorLoc,
|
|
Identifier Name,
|
|
SourceLoc NameLoc,
|
|
SourceLoc LBraceLoc,
|
|
SourceLoc RBraceLoc)
|
|
: Decl(kind, DC),
|
|
OperatorLoc(OperatorLoc), NameLoc(NameLoc),
|
|
LBraceLoc(LBraceLoc), RBraceLoc(RBraceLoc),
|
|
name(Name) {}
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
SourceRange getSourceRange() const { return {OperatorLoc, RBraceLoc}; }
|
|
|
|
SourceLoc getOperatorLoc() const { return OperatorLoc; }
|
|
SourceLoc getLBraceLoc() const { return LBraceLoc; }
|
|
SourceLoc getRBraceLoc() const { return RBraceLoc; }
|
|
Identifier getName() const { return name; }
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() >= DeclKind::First_OperatorDecl
|
|
&& D->getKind() <= DeclKind::Last_OperatorDecl;
|
|
}
|
|
};
|
|
|
|
/// Declares the behavior of an infix operator. For example:
|
|
///
|
|
/// \code
|
|
/// operator infix /+/ {
|
|
/// associativity left
|
|
/// precedence 123
|
|
/// }
|
|
/// \endcode
|
|
class InfixOperatorDecl : public OperatorDecl {
|
|
SourceLoc InfixLoc,
|
|
AssociativityLoc, AssociativityValueLoc,
|
|
PrecedenceLoc, PrecedenceValueLoc;
|
|
|
|
public:
|
|
InfixOperatorDecl(DeclContext *DC,
|
|
SourceLoc OperatorLoc,
|
|
SourceLoc InfixLoc,
|
|
Identifier Name,
|
|
SourceLoc NameLoc,
|
|
SourceLoc LBraceLoc,
|
|
SourceLoc AssociativityLoc,
|
|
SourceLoc AssociativityValueLoc,
|
|
SourceLoc PrecedenceLoc,
|
|
SourceLoc PrecedenceValueLoc,
|
|
SourceLoc RBraceLoc,
|
|
InfixData InfixData)
|
|
: OperatorDecl(DeclKind::InfixOperator, DC,
|
|
OperatorLoc,
|
|
Name,
|
|
NameLoc,
|
|
LBraceLoc,
|
|
RBraceLoc),
|
|
InfixLoc(InfixLoc),
|
|
AssociativityLoc(AssociativityLoc),
|
|
AssociativityValueLoc(AssociativityValueLoc),
|
|
PrecedenceLoc(PrecedenceLoc),
|
|
PrecedenceValueLoc(PrecedenceValueLoc) {
|
|
if (!InfixData.isValid()) {
|
|
setInvalid();
|
|
} else {
|
|
InfixOperatorDeclBits.Precedence = InfixData.getPrecedence();
|
|
InfixOperatorDeclBits.Associativity =
|
|
static_cast<unsigned>(InfixData.getAssociativity());
|
|
}
|
|
}
|
|
|
|
SourceLoc getInfixLoc() const { return InfixLoc; }
|
|
SourceLoc getAssociativityLoc() const { return AssociativityLoc; }
|
|
SourceLoc getAssociativityValueLoc() const { return AssociativityValueLoc; }
|
|
SourceLoc getPrecedenceLoc() const { return PrecedenceLoc; }
|
|
SourceLoc getPrecedenceValueLoc() const { return PrecedenceValueLoc; }
|
|
|
|
unsigned getPrecedence() const {
|
|
return InfixOperatorDeclBits.Precedence;
|
|
}
|
|
|
|
Associativity getAssociativity() const {
|
|
return Associativity(InfixOperatorDeclBits.Associativity);
|
|
}
|
|
|
|
InfixData getInfixData() const {
|
|
if (isInvalid())
|
|
return InfixData();
|
|
return InfixData(getPrecedence(), getAssociativity());
|
|
}
|
|
|
|
/// True if this decl's attributes conflict with those declared by another
|
|
/// operator.
|
|
bool conflictsWith(InfixOperatorDecl *other) {
|
|
return getInfixData() != other->getInfixData();
|
|
}
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::InfixOperator;
|
|
}
|
|
};
|
|
|
|
/// Declares the behavior of a prefix operator. For example:
|
|
///
|
|
/// \code
|
|
/// operator prefix /+/ {}
|
|
/// \endcode
|
|
class PrefixOperatorDecl : public OperatorDecl {
|
|
SourceLoc PrefixLoc;
|
|
public:
|
|
PrefixOperatorDecl(DeclContext *DC,
|
|
SourceLoc OperatorLoc,
|
|
SourceLoc PrefixLoc,
|
|
Identifier Name,
|
|
SourceLoc NameLoc,
|
|
SourceLoc LBraceLoc,
|
|
SourceLoc RBraceLoc)
|
|
: OperatorDecl(DeclKind::PrefixOperator, DC,
|
|
OperatorLoc,
|
|
Name,
|
|
NameLoc,
|
|
LBraceLoc,
|
|
RBraceLoc),
|
|
PrefixLoc(PrefixLoc) {}
|
|
|
|
SourceLoc getPrefixLoc() const { return PrefixLoc; }
|
|
|
|
/// True if this decl's attributes conflict with those declared by another
|
|
/// PrefixOperatorDecl.
|
|
bool conflictsWith(PrefixOperatorDecl *other) {
|
|
return false;
|
|
}
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::PrefixOperator;
|
|
}
|
|
};
|
|
|
|
/// Declares the behavior of a postfix operator. For example:
|
|
///
|
|
/// \code
|
|
/// operator postfix /+/ {}
|
|
/// \endcode
|
|
class PostfixOperatorDecl : public OperatorDecl {
|
|
SourceLoc PostfixLoc;
|
|
public:
|
|
PostfixOperatorDecl(DeclContext *DC,
|
|
SourceLoc OperatorLoc,
|
|
SourceLoc PostfixLoc,
|
|
Identifier Name,
|
|
SourceLoc NameLoc,
|
|
SourceLoc LBraceLoc,
|
|
SourceLoc RBraceLoc)
|
|
: OperatorDecl(DeclKind::PostfixOperator, DC,
|
|
OperatorLoc,
|
|
Name,
|
|
NameLoc,
|
|
LBraceLoc,
|
|
RBraceLoc),
|
|
PostfixLoc(PostfixLoc) {}
|
|
|
|
SourceLoc getPostfixLoc() const { return PostfixLoc; }
|
|
|
|
/// True if this decl's attributes conflict with those declared by another
|
|
/// PostfixOperatorDecl.
|
|
bool conflictsWith(PostfixOperatorDecl *other) {
|
|
return false;
|
|
}
|
|
|
|
static bool classof(const Decl *D) {
|
|
return D->getKind() == DeclKind::PostfixOperator;
|
|
}
|
|
};
|
|
|
|
inline void GenericParam::setDeclContext(DeclContext *DC) {
|
|
TypeParam->setDeclContext(DC);
|
|
}
|
|
|
|
inline bool ValueDecl::isSettable() const {
|
|
if (auto vd = dyn_cast<VarDecl>(this)) {
|
|
return vd->isSettable();
|
|
} else if (auto sd = dyn_cast<SubscriptDecl>(this)) {
|
|
return sd->isSettable();
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
inline bool NominalTypeDecl::isStoredProperty(VarDecl *vd) {
|
|
return !vd->isStatic() && !vd->isComputed();
|
|
}
|
|
|
|
inline MutableArrayRef<Pattern *> AbstractFunctionDecl::getArgParamBuffer() {
|
|
switch (getKind()) {
|
|
case DeclKind::Constructor:
|
|
return MutableArrayRef<Pattern *>(&cast<ConstructorDecl>(this)->ArgParams,
|
|
1);
|
|
|
|
case DeclKind::Destructor:
|
|
return {};
|
|
|
|
case DeclKind::Func: {
|
|
auto *FD = cast<FuncDecl>(this);
|
|
return MutableArrayRef<Pattern *>(reinterpret_cast<Pattern **>(FD + 1),
|
|
FD->getNumParamPatternsImpl());
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unhandled derived decl kind");
|
|
}
|
|
}
|
|
|
|
inline MutableArrayRef<Pattern *> AbstractFunctionDecl::getBodyParamBuffer() {
|
|
switch (getKind()) {
|
|
case DeclKind::Constructor:
|
|
return MutableArrayRef<Pattern *>(&cast<ConstructorDecl>(this)->BodyParams,
|
|
1);
|
|
|
|
case DeclKind::Destructor:
|
|
return {};
|
|
|
|
case DeclKind::Func: {
|
|
auto *FD = cast<FuncDecl>(this);
|
|
unsigned NumParamPatterns = FD->getNumParamPatternsImpl();
|
|
return MutableArrayRef<Pattern *>(
|
|
reinterpret_cast<Pattern **>(FD + 1) + NumParamPatterns,
|
|
NumParamPatterns);
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unhandled derived decl kind");
|
|
}
|
|
}
|
|
|
|
} // end namespace swift
|
|
|
|
#endif
|