Files
swift-mirror/lib/SILOptimizer/Utils/InstOptUtils.cpp
Anton Korobeynikov 4f05096594 Propagate location from destination alloca in salvageDebugInfo(). (#58763)
`salvageDebugInfo` is called during SIL Mem2Reg and could produce misleading debug info in the following case:

```
%a = alloc_stack $MyModel.TangentVector, var, name "self", argno 1, implicit, loc "debug2.swift":37:17 ...
...
store %b to %a : $*MyModel.TangentVector
```

Such SIL could be created as a result of inlining (where store comes from the inlined function).
Before this patch we'd end with `debug_value` instruction with variable information, but without or incorrect location.

This caused LLVM IR debug info verifier assertions when there might be another instruction with complete debug info (including location) for the same argument.

After this patch we always reuse it from destination alloca

Fixes #58660
2022-05-11 13:28:23 -07:00

1936 lines
70 KiB
C++

//===--- InstOptUtils.cpp - SILOptimizer instruction utilities ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugInfoExpression.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include <deque>
using namespace swift;
static llvm::cl::opt<bool> EnableExpandAll("enable-expand-all",
llvm::cl::init(false));
static llvm::cl::opt<bool> KeepWillThrowCall(
"keep-will-throw-call", llvm::cl::init(false),
llvm::cl::desc(
"Keep calls to swift_willThrow, even if the throw is optimized away"));
Optional<SILBasicBlock::iterator> swift::getInsertAfterPoint(SILValue val) {
if (auto *inst = val->getDefiningInstruction()) {
return std::next(inst->getIterator());
}
if (isa<SILArgument>(val)) {
return cast<SILArgument>(val)->getParentBlock()->begin();
}
return None;
}
/// Creates an increment on \p Ptr before insertion point \p InsertPt that
/// creates a strong_retain if \p Ptr has reference semantics itself or a
/// retain_value if \p Ptr is a non-trivial value without reference-semantics.
NullablePtr<SILInstruction>
swift::createIncrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Set up the builder we use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
// If we have a trivial type, just bail, there is no work to do.
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If Ptr is refcounted itself, create the strong_retain and
// return.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Retain(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRetain(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise, create the retain_value.
return builder.createRetainValue(loc, ptr, builder.getDefaultAtomicity());
}
/// Creates a decrement on \p ptr before insertion point \p InsertPt that
/// creates a strong_release if \p ptr has reference semantics itself or
/// a release_value if \p ptr is a non-trivial value without
/// reference-semantics.
NullablePtr<SILInstruction>
swift::createDecrementBefore(SILValue ptr, SILInstruction *insertPt) {
// Setup the builder we will use to insert at our insertion point.
SILBuilder builder(insertPt);
auto loc = RegularLocation::getAutoGeneratedLocation();
if (ptr->getType().isTrivial(builder.getFunction()))
return nullptr;
// If ptr has reference semantics itself, create a strong_release.
if (ptr->getType().isReferenceCounted(builder.getModule())) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
if (ptr->getType().is<Name##StorageType>()) \
return builder.create##Name##Release(loc, ptr, \
builder.getDefaultAtomicity());
#include "swift/AST/ReferenceStorage.def"
return builder.createStrongRelease(loc, ptr,
builder.getDefaultAtomicity());
}
// Otherwise create a release value.
return builder.createReleaseValue(loc, ptr, builder.getDefaultAtomicity());
}
static bool isOSSAEndScopeWithNoneOperand(SILInstruction *i) {
if (!isa<EndBorrowInst>(i) && !isa<DestroyValueInst>(i))
return false;
return i->getOperand(0).getOwnershipKind() == OwnershipKind::None;
}
/// Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool swift::isInstructionTriviallyDead(SILInstruction *inst) {
// At Onone, consider all uses, including the debug_info.
// This way, debug_info is preserved at Onone.
if (inst->hasUsesOfAnyResult()
&& inst->getFunction()->getEffectiveOptimizationMode()
<= OptimizationMode::NoOptimization)
return false;
if (!onlyHaveDebugUsesOfAllResults(inst) || isa<TermInst>(inst))
return false;
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
if (bi->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath)
return false;
return !bi->mayHaveSideEffects();
}
// condfail instructions that obviously can't fail are dead.
if (auto *cfi = dyn_cast<CondFailInst>(inst))
if (auto *ili = dyn_cast<IntegerLiteralInst>(cfi->getOperand()))
if (!ili->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(inst))
return false;
if (isa<DebugValueInst>(inst))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(inst))
return true;
// An ossa end scope instruction is trivially dead if its operand has
// OwnershipKind::None. This can occur after CFG simplification in the
// presence of non-payloaded or trivial payload cases of non-trivial enums.
//
// Examples of ossa end_scope instructions: end_borrow, destroy_value.
if (inst->getFunction()->hasOwnership() &&
isOSSAEndScopeWithNoneOperand(inst))
return true;
if (!inst->mayHaveSideEffects())
return true;
return false;
}
/// Return true if this is a release instruction and the released value
/// is a part of a guaranteed parameter.
bool swift::isIntermediateRelease(SILInstruction *inst,
EpilogueARCFunctionInfo *eafi) {
// Check whether this is a release instruction.
if (!isa<StrongReleaseInst>(inst) && !isa<ReleaseValueInst>(inst))
return false;
// OK. we have a release instruction.
// Check whether this is a release on part of a guaranteed function argument.
SILValue Op = stripValueProjections(inst->getOperand(0));
auto *arg = dyn_cast<SILFunctionArgument>(Op);
if (!arg)
return false;
// This is a release on a guaranteed parameter. Its not the final release.
if (arg->hasConvention(SILArgumentConvention::Direct_Guaranteed))
return true;
// This is a release on an owned parameter and its not the epilogue release.
// Its not the final release.
auto rel = eafi->computeEpilogueARCInstructions(
EpilogueARCContext::EpilogueARCKind::Release, arg);
if (rel.size() && !rel.count(inst))
return true;
// Failed to prove anything.
return false;
}
bool swift::hasOnlyEndOfScopeOrEndOfLifetimeUses(SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
bool isDebugUser = user->isDebugInstruction();
if (!isa<DestroyValueInst>(user) && !isa<EndLifetimeInst>(user)
&& !isa<DeallocStackInst>(user) && !isEndOfScopeMarker(user)
&& !isDebugUser) {
return false;
}
// Include debug uses only in Onone mode.
if (isDebugUser && inst->getFunction()->getEffectiveOptimizationMode() <=
OptimizationMode::NoOptimization)
if (auto DbgVarInst = DebugVarCarryingInst(user)) {
auto VarInfo = DbgVarInst.getVarInfo();
if (VarInfo && !VarInfo->Implicit)
return false;
}
}
}
return true;
}
unsigned swift::getNumInOutArguments(FullApplySite applySite) {
assert(applySite);
auto substConv = applySite.getSubstCalleeConv();
unsigned numIndirectResults = substConv.getNumIndirectSILResults();
unsigned numInOutArguments = 0;
for (unsigned argIndex = 0; argIndex < applySite.getNumArguments();
argIndex++) {
// Skip indirect results.
if (argIndex < numIndirectResults) {
continue;
}
auto paramNumber = argIndex - numIndirectResults;
auto ParamConvention =
substConv.getParameters()[paramNumber].getConvention();
switch (ParamConvention) {
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable: {
++numInOutArguments;
break;
default:
break;
}
}
}
return numInOutArguments;
}
/// If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param inst The instruction to be deleted.
/// \param force If force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
void swift::recursivelyDeleteTriviallyDeadInstructions(
SILInstruction *inst, bool force, InstModCallbacks callbacks) {
ArrayRef<SILInstruction *> ai = ArrayRef<SILInstruction *>(inst);
recursivelyDeleteTriviallyDeadInstructions(ai, force, callbacks);
}
void swift::collectUsesOfValue(SILValue v,
llvm::SmallPtrSetImpl<SILInstruction *> &insts) {
for (auto ui = v->use_begin(), E = v->use_end(); ui != E; ++ui) {
auto *user = ui->getUser();
// Instruction has been processed.
if (!insts.insert(user).second)
continue;
// Collect the users of this instruction.
for (auto result : user->getResults())
collectUsesOfValue(result, insts);
}
}
void swift::eraseUsesOfValue(SILValue v) {
llvm::SmallPtrSet<SILInstruction *, 4> insts;
// Collect the uses.
collectUsesOfValue(v, insts);
// Erase the uses, we can have instructions that become dead because
// of the removal of these instructions, leave to DCE to cleanup.
// Its not safe to do recursively delete here as some of the SILInstruction
// maybe tracked by this set.
for (auto inst : insts) {
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
SILValue swift::
getConcreteValueOfExistentialBox(AllocExistentialBoxInst *existentialBox,
SILInstruction *ignoreUser) {
StoreInst *singleStore = nullptr;
SmallPtrSetVector<Operand *, 32> worklist;
for (auto *use : getNonDebugUses(existentialBox)) {
worklist.insert(use);
}
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndBorrowInst:
break;
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::BeginBorrowInst:
// Look through copy_value, begin_borrow
for (SILValue result : user->getResults())
for (auto *transitiveUse : result->getUses())
worklist.insert(transitiveUse);
break;
case SILInstructionKind::ProjectExistentialBoxInst: {
auto *projectedAddr = cast<ProjectExistentialBoxInst>(user);
for (Operand *addrUse : getNonDebugUses(projectedAddr)) {
if (auto *store = dyn_cast<StoreInst>(addrUse->getUser())) {
assert(store->getSrc() != projectedAddr && "cannot store an address");
// Bail if there are multiple stores.
if (singleStore)
return SILValue();
singleStore = store;
continue;
}
// If there are other users to the box value address then bail out.
return SILValue();
}
break;
}
case SILInstructionKind::BuiltinInst: {
auto *builtin = cast<BuiltinInst>(user);
if (KeepWillThrowCall ||
builtin->getBuiltinInfo().ID != BuiltinValueKind::WillThrow) {
return SILValue();
}
break;
}
default:
if (user != ignoreUser)
return SILValue();
break;
}
}
if (!singleStore)
return SILValue();
return singleStore->getSrc();
}
SILValue swift::
getConcreteValueOfExistentialBoxAddr(SILValue addr, SILInstruction *ignoreUser) {
auto *stackLoc = dyn_cast<AllocStackInst>(addr);
if (!stackLoc)
return SILValue();
StoreInst *singleStackStore = nullptr;
for (Operand *stackUse : stackLoc->getUses()) {
SILInstruction *stackUser = stackUse->getUser();
switch (stackUser->getKind()) {
case SILInstructionKind::DestroyAddrInst: {
// Make sure the destroy_addr is the instruction before one of our
// dealloc_stack insts and is directly on the stack location.
auto next = std::next(stackUser->getIterator());
if (auto *dsi = dyn_cast<DeallocStackInst>(next))
if (dsi->getOperand() != stackLoc)
return SILValue();
break;
}
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::LoadInst:
break;
case SILInstructionKind::DebugValueInst:
if (!DebugValueInst::hasAddrVal(stackUser)) {
if (stackUser != ignoreUser)
return SILValue();
}
break;
case SILInstructionKind::StoreInst: {
auto *store = cast<StoreInst>(stackUser);
assert(store->getSrc() != stackLoc && "cannot store an address");
// Bail if there are multiple stores.
if (singleStackStore)
return SILValue();
singleStackStore = store;
break;
}
default:
if (stackUser != ignoreUser)
return SILValue();
break;
}
}
if (!singleStackStore)
return SILValue();
// Look through copy value insts.
SILValue val = singleStackStore->getSrc();
while (auto *cvi = dyn_cast<CopyValueInst>(val))
val = cvi->getOperand();
auto *box = dyn_cast<AllocExistentialBoxInst>(val);
if (!box)
return SILValue();
return getConcreteValueOfExistentialBox(box, singleStackStore);
}
bool swift::mayBindDynamicSelf(SILFunction *F) {
if (!F->hasDynamicSelfMetadata())
return false;
SILValue mdArg = F->getDynamicSelfMetadata();
for (Operand *mdUse : mdArg->getUses()) {
SILInstruction *mdUser = mdUse->getUser();
for (Operand &typeDepOp : mdUser->getTypeDependentOperands()) {
if (typeDepOp.get() == mdArg)
return true;
}
}
return false;
}
static SILValue skipAddrProjections(SILValue v) {
for (;;) {
switch (v->getKind()) {
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
v = cast<SingleValueInstruction>(v)->getOperand(0);
break;
default:
return v;
}
}
llvm_unreachable("there is no escape from an infinite loop");
}
/// Check whether the \p addr is an address of a tail-allocated array element.
bool swift::isAddressOfArrayElement(SILValue addr) {
addr = stripAddressProjections(addr);
if (auto *md = dyn_cast<MarkDependenceInst>(addr))
addr = stripAddressProjections(md->getValue());
// High-level SIL: check for an get_element_address array semantics call.
if (auto *ptrToAddr = dyn_cast<PointerToAddressInst>(addr))
if (auto *sei = dyn_cast<StructExtractInst>(ptrToAddr->getOperand())) {
ArraySemanticsCall call(sei->getOperand());
if (call && call.getKind() == ArrayCallKind::kGetElementAddress)
return true;
}
// Check for an tail-address (of an array buffer object).
if (isa<RefTailAddrInst>(skipAddrProjections(addr)))
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FunctionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *ai, DominanceInfo *domInfo) {
FunctionRefInst *funcRef = cast<FunctionRefInst>(ai->getCallee());
SILBasicBlock *domBB = domInfo->findNearestCommonDominator(
ai->getParent(), funcRef->getParent());
if (domBB == ai->getParent() && domBB != funcRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
funcRef->moveBefore(ai);
else
// Otherwise, conservatively stick it at the beginning of the block.
funcRef->moveBefore(&*domBB->begin());
}
/// Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentsToBranch(ArrayRef<SILValue> vals,
SILBasicBlock *dest, TermInst *branch) {
SILBuilderWithScope builder(branch);
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
for (auto arg : cbi->getTrueArgs())
trueArgs.push_back(arg);
for (auto arg : cbi->getFalseArgs())
falseArgs.push_back(arg);
if (dest == cbi->getTrueBB()) {
for (auto val : vals)
trueArgs.push_back(val);
assert(trueArgs.size() == dest->getNumArguments());
} else {
for (auto val : vals)
falseArgs.push_back(val);
assert(falseArgs.size() == dest->getNumArguments());
}
return builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
for (auto arg : bi->getArgs())
args.push_back(arg);
for (auto val : vals)
args.push_back(val);
assert(args.size() == dest->getNumArguments());
return builder.createBranch(bi->getLoc(), bi->getDestBB(), args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILFunction *f, SILLinkage linkage) {
if (hasPrivateVisibility(linkage) && !f->isSerialized()) {
// Specializations of private symbols should remain so, unless
// they were serialized, which can only happen when specializing
// definitions from a standard library built with -sil-serialize-all.
return SILLinkage::Private;
}
return SILLinkage::Shared;
}
/// Cast a value into the expected, ABI compatible type if necessary.
/// This may happen e.g. when:
/// - a type of the return value is a subclass of the expected return type.
/// - actual return type and expected return type differ in optionality.
/// - both types are tuple-types and some of the elements need to be casted.
/// Return the cast value and true if a CFG modification was required
/// NOTE: We intentionally combine the checking of the cast's handling
/// possibility and the transformation performing the cast in the same function,
/// to avoid any divergence between the check and the implementation in the
/// future.
///
/// \p usePoints are required when \p value has guaranteed ownership. It must be
/// the last users of the returned, casted value. A usePoint cannot be a
/// BranchInst (a phi is never the last guaranteed user). \p builder's current
/// insertion point must dominate all \p usePoints. \p usePoints must
/// collectively post-dominate \p builder's current insertion point.
///
/// NOTE: The implementation of this function is very closely related to the
/// rules checked by SILVerifier::requireABICompatibleFunctionTypes. It must
/// handle all cases recognized by SILFunctionType::isABICompatibleWith (see
/// areABICompatibleParamsOrReturns()).
std::pair<SILValue, bool /* changedCFG */>
swift::castValueToABICompatibleType(SILBuilder *builder, SILLocation loc,
SILValue value, SILType srcTy,
SILType destTy,
ArrayRef<SILInstruction *> usePoints) {
assert(value.getOwnershipKind() != OwnershipKind::Guaranteed
|| !usePoints.empty() && "guaranteed value must have use points");
// No cast is required if types are the same.
if (srcTy == destTy)
return {value, false};
if (srcTy.isAddress() && destTy.isAddress()) {
// Cast between two addresses and that's it.
return {builder->createUncheckedAddrCast(loc, value, destTy), false};
}
// If both types are classes and dest is the superclass of src,
// simply perform an upcast.
if (destTy.isExactSuperclassOf(srcTy)) {
return {builder->createUpcast(loc, value, destTy), false};
}
if (srcTy.isHeapObjectReferenceType() && destTy.isHeapObjectReferenceType()) {
return {builder->createUncheckedRefCast(loc, value, destTy), false};
}
if (auto mt1 = srcTy.getAs<AnyMetatypeType>()) {
if (auto mt2 = destTy.getAs<AnyMetatypeType>()) {
if (mt1->getRepresentation() == mt2->getRepresentation()) {
// If builder.Type needs to be casted to A.Type and
// A is a superclass of builder, then it can be done by means
// of a simple upcast.
if (mt2.getInstanceType()->isExactSuperclassOf(mt1.getInstanceType())) {
return {builder->createUpcast(loc, value, destTy), false};
}
// Cast between two metatypes and that's it.
return {builder->createUncheckedReinterpretCast(loc, value, destTy),
false};
}
}
}
// Check if src and dest types are optional.
auto optionalSrcTy = srcTy.getOptionalObjectType();
auto optionalDestTy = destTy.getOptionalObjectType();
// Both types are optional.
if (optionalDestTy && optionalSrcTy) {
// If both wrapped types are classes and dest is the superclass of src,
// simply perform an upcast.
if (optionalDestTy.isExactSuperclassOf(optionalSrcTy)) {
// Insert upcast.
return {builder->createUpcast(loc, value, destTy), false};
}
// Unwrap the original optional value.
auto *someDecl = builder->getASTContext().getOptionalSomeDecl();
auto *curBB = builder->getInsertionPoint()->getParent();
auto *contBB = curBB->split(builder->getInsertionPoint());
auto *someBB = builder->getFunction().createBasicBlockAfter(curBB);
auto *noneBB = builder->getFunction().createBasicBlockAfter(someBB);
auto *phi = contBB->createPhiArgument(destTy, value.getOwnershipKind());
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
auto createEndBorrow = [&](SILBasicBlock::iterator insertPt) {
builder->setInsertionPoint(insertPt);
builder->createEndBorrow(loc, phi);
};
for (SILInstruction *user : usePoints) {
if (isa<TermInst>(user)) {
assert(!isa<BranchInst>(user) && "no branch as guaranteed use point");
for (auto *succBB : user->getParent()->getSuccessorBlocks()) {
createEndBorrow(succBB->begin());
}
continue;
}
createEndBorrow(std::next(user->getIterator()));
}
}
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 1> caseBBs;
caseBBs.push_back(std::make_pair(someDecl, someBB));
builder->setInsertionPoint(curBB);
auto *switchEnum = builder->createSwitchEnum(loc, value, noneBB, caseBBs);
// In OSSA switch_enum destinations have terminator results.
//
// TODO: This should be in a switchEnum utility.
SILValue unwrappedValue;
if (builder->hasOwnership()) {
unwrappedValue = switchEnum->createOptionalSomeResult();
builder->setInsertionPoint(someBB);
} else {
builder->setInsertionPoint(someBB);
unwrappedValue = builder->createUncheckedEnumData(loc, value, someDecl);
}
// Cast the unwrapped value.
SILValue castedUnwrappedValue;
std::tie(castedUnwrappedValue, std::ignore) = castValueToABICompatibleType(
builder, loc, unwrappedValue, optionalSrcTy, optionalDestTy, usePoints);
// Wrap into optional. An owned value is forwarded through the cast and into
// the Optional. A borrowed value will have a nested borrow for the
// rewrapped Optional.
SILValue someValue =
builder->createOptionalSome(loc, castedUnwrappedValue, destTy);
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
someValue = builder->createBeginBorrow(loc, someValue);
}
builder->createBranch(loc, contBB, {someValue});
// Handle the None case.
builder->setInsertionPoint(noneBB);
SILValue noneValue = builder->createOptionalNone(loc, destTy);
if (phi->getOwnershipKind() == OwnershipKind::Guaranteed) {
noneValue = builder->createBeginBorrow(loc, noneValue);
}
builder->createBranch(loc, contBB, {noneValue});
builder->setInsertionPoint(contBB->begin());
return {phi, true};
}
// Src is not optional, but dest is optional.
if (!optionalSrcTy && optionalDestTy) {
auto optionalSrcCanTy =
OptionalType::get(srcTy.getASTType())->getCanonicalType();
auto loweredOptionalSrcType =
SILType::getPrimitiveObjectType(optionalSrcCanTy);
// Wrap the source value into an optional first.
SILValue wrappedValue =
builder->createOptionalSome(loc, value, loweredOptionalSrcType);
// Cast the wrapped value.
return castValueToABICompatibleType(builder, loc, wrappedValue,
wrappedValue->getType(), destTy,
usePoints);
}
// Handle tuple types.
// Extract elements, cast each of them, create a new tuple.
if (auto srcTupleTy = srcTy.getAs<TupleType>()) {
SmallVector<SILValue, 8> expectedTuple;
bool changedCFG = false;
auto castElement = [&](unsigned idx, SILValue element) {
// Cast the value if necessary.
bool neededCFGChange;
std::tie(element, neededCFGChange) = castValueToABICompatibleType(
builder, loc, element, srcTy.getTupleElementType(idx),
destTy.getTupleElementType(idx), usePoints);
changedCFG |= neededCFGChange;
expectedTuple.push_back(element);
};
builder->emitDestructureValueOperation(loc, value, castElement);
return {builder->createTuple(loc, destTy, expectedTuple), changedCFG};
}
// Function types are interchangeable if they're also ABI-compatible.
if (srcTy.is<SILFunctionType>()) {
if (destTy.is<SILFunctionType>()) {
assert(srcTy.getAs<SILFunctionType>()->isNoEscape()
== destTy.getAs<SILFunctionType>()->isNoEscape()
|| srcTy.getAs<SILFunctionType>()->getRepresentation()
!= SILFunctionType::Representation::Thick
&& "Swift thick functions that differ in escapeness are "
"not ABI "
"compatible");
// Insert convert_function.
return {builder->createConvertFunction(loc, value, destTy,
/*WithoutActuallyEscaping=*/false),
false};
}
}
llvm::errs() << "Source type: " << srcTy << "\n";
llvm::errs() << "Destination type: " << destTy << "\n";
llvm_unreachable("Unknown combination of types for casting");
}
ProjectBoxInst *swift::getOrCreateProjectBox(AllocBoxInst *abi,
unsigned index) {
SILBasicBlock::iterator iter(abi);
++iter;
assert(iter != abi->getParent()->end()
&& "alloc_box cannot be the last instruction of a block");
SILInstruction *nextInst = &*iter;
if (auto *pbi = dyn_cast<ProjectBoxInst>(nextInst)) {
if (pbi->getOperand() == abi && pbi->getFieldIndex() == index)
return pbi;
}
SILBuilder builder(nextInst);
return builder.createProjectBox(abi->getLoc(), abi, index);
}
// Peek through trivial Enum initialization, typically for pointless
// Optionals.
//
// Given an UncheckedTakeEnumDataAddrInst, check that there are no
// other uses of the Enum value and return the address used to initialized the
// enum's payload:
//
// %stack_adr = alloc_stack
// %data_adr = init_enum_data_addr %stk_adr
// %enum_adr = inject_enum_addr %stack_adr
// %copy_src = unchecked_take_enum_data_addr %enum_adr
// dealloc_stack %stack_adr
// (No other uses of %stack_adr.)
InitEnumDataAddrInst *
swift::findInitAddressForTrivialEnum(UncheckedTakeEnumDataAddrInst *utedai) {
auto *asi = dyn_cast<AllocStackInst>(utedai->getOperand());
if (!asi)
return nullptr;
SILInstruction *singleUser = nullptr;
for (auto use : asi->getUses()) {
auto *user = use->getUser();
if (user == utedai)
continue;
// As long as there's only one UncheckedTakeEnumDataAddrInst and one
// InitEnumDataAddrInst, we don't care how many InjectEnumAddr and
// DeallocStack users there are.
if (isa<InjectEnumAddrInst>(user) || isa<DeallocStackInst>(user))
continue;
if (singleUser)
return nullptr;
singleUser = user;
}
if (!singleUser)
return nullptr;
// Assume, without checking, that the returned InitEnumDataAddr dominates the
// given UncheckedTakeEnumDataAddrInst, because that's how SIL is defined. I
// don't know where this is actually verified.
return dyn_cast<InitEnumDataAddrInst>(singleUser);
}
//===----------------------------------------------------------------------===//
// Closure Deletion
//===----------------------------------------------------------------------===//
/// NOTE: Instructions with transitive ownership kind are assumed to not keep
/// the underlying value alive as well. This is meant for instructions only
/// with non-transitive users.
static bool useDoesNotKeepValueAlive(const SILInstruction *inst) {
switch (inst->getKind()) {
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::EndBorrowInst:
return true;
default:
return false;
}
}
static bool useHasTransitiveOwnership(const SILInstruction *inst) {
// convert_escape_to_noescape is used to convert to a @noescape function type.
// It does not change ownership of the function value.
if (isa<ConvertEscapeToNoEscapeInst>(inst))
return true;
// Look through copy_value, begin_borrow. They are inert for our purposes, but
// we need to look through it.
return isa<CopyValueInst>(inst) || isa<BeginBorrowInst>(inst);
}
static bool shouldDestroyPartialApplyCapturedArg(SILValue arg,
SILParameterInfo paramInfo,
const SILFunction &F) {
// If we have a non-trivial type and the argument is passed in @inout, we do
// not need to destroy it here. This is something that is implicit in the
// partial_apply design that will be revisited when partial_apply is
// redesigned.
if (paramInfo.isIndirectMutating())
return false;
// If we have a trivial type, we do not need to put in any extra releases.
if (arg->getType().isTrivial(F))
return false;
// We handle all other cases.
return true;
}
void swift::emitDestroyOperation(SILBuilder &builder, SILLocation loc,
SILValue operand, InstModCallbacks callbacks) {
// If we have an address, we insert a destroy_addr and return. Any live range
// issues must have been dealt with by our caller.
if (operand->getType().isAddress()) {
// Then emit the destroy_addr for this operand. This function does not
// delete any instructions
SILInstruction *newInst = builder.emitDestroyAddrAndFold(loc, operand);
if (newInst != nullptr)
callbacks.createdNewInst(newInst);
return;
}
// Otherwise, we have an object. We emit the most optimized form of release
// possible for that value.
// If we have qualified ownership, we should just emit a destroy value.
if (builder.getFunction().hasOwnership()) {
callbacks.createdNewInst(builder.createDestroyValue(loc, operand));
return;
}
if (operand->getType().hasReferenceSemantics()) {
auto u = builder.emitStrongRelease(loc, operand);
if (u.isNull())
return;
if (auto *SRI = u.dyn_cast<StrongRetainInst *>()) {
callbacks.deleteInst(SRI);
return;
}
callbacks.createdNewInst(u.get<StrongReleaseInst *>());
return;
}
auto u = builder.emitReleaseValue(loc, operand);
if (u.isNull())
return;
if (auto *rvi = u.dyn_cast<RetainValueInst *>()) {
callbacks.deleteInst(rvi);
return;
}
callbacks.createdNewInst(u.get<ReleaseValueInst *>());
}
// *HEY YOU, YES YOU, PLEASE READ*. Even though a textual partial apply is
// printed with the convention of the closed over function upon it, all
// non-inout arguments to a partial_apply are passed at +1. This includes
// arguments that will eventually be passed as guaranteed or in_guaranteed to
// the closed over function. This is because the partial apply is building up a
// boxed aggregate to send off to the closed over function. Of course when you
// call the function, the proper conventions will be used.
void swift::releasePartialApplyCapturedArg(SILBuilder &builder, SILLocation loc,
SILValue arg,
SILParameterInfo paramInfo,
InstModCallbacks callbacks) {
if (!shouldDestroyPartialApplyCapturedArg(arg, paramInfo,
builder.getFunction()))
return;
emitDestroyOperation(builder, loc, arg, callbacks);
}
void swift::deallocPartialApplyCapturedArg(SILBuilder &builder, SILLocation loc,
SILValue arg,
SILParameterInfo paramInfo) {
if (!paramInfo.isIndirectInGuaranteed())
return;
builder.createDeallocStack(loc, arg);
}
static bool
deadMarkDependenceUser(SILInstruction *inst,
SmallVectorImpl<SILInstruction *> &deleteInsts) {
if (!isa<MarkDependenceInst>(inst))
return false;
deleteInsts.push_back(inst);
for (auto *use : cast<SingleValueInstruction>(inst)->getUses()) {
if (!deadMarkDependenceUser(use->getUser(), deleteInsts))
return false;
}
return true;
}
void swift::getConsumedPartialApplyArgs(PartialApplyInst *pai,
SmallVectorImpl<Operand *> &argOperands,
bool includeTrivialAddrArgs) {
ApplySite applySite(pai);
SILFunctionConventions calleeConv = applySite.getSubstCalleeConv();
unsigned firstCalleeArgIdx = applySite.getCalleeArgIndexOfFirstAppliedArg();
auto argList = pai->getArgumentOperands();
SILFunction *F = pai->getFunction();
for (unsigned i : indices(argList)) {
auto argConv = calleeConv.getSILArgumentConvention(firstCalleeArgIdx + i);
if (argConv.isInoutConvention())
continue;
Operand &argOp = argList[i];
SILType ty = argOp.get()->getType();
if (!ty.isTrivial(*F) || (includeTrivialAddrArgs && ty.isAddress()))
argOperands.push_back(&argOp);
}
}
bool swift::collectDestroys(SingleValueInstruction *inst,
SmallVectorImpl<SILInstruction *> &destroys) {
bool isDead = true;
for (Operand *use : inst->getUses()) {
SILInstruction *user = use->getUser();
if (useHasTransitiveOwnership(user)) {
if (!collectDestroys(cast<SingleValueInstruction>(user), destroys))
isDead = false;
destroys.push_back(user);
} else if (useDoesNotKeepValueAlive(user)) {
destroys.push_back(user);
} else {
isDead = false;
}
}
return isDead;
}
/// Move the original arguments of the partial_apply into newly created
/// temporaries to extend the lifetime of the arguments until the partial_apply
/// is finally destroyed.
///
/// TODO: figure out why this is needed at all. Probably because of some
/// weirdness of the old retain/release ARC model. Most likely this will
/// not be needed anymore with OSSA.
static bool keepArgsOfPartialApplyAlive(PartialApplyInst *pai,
ArrayRef<SILInstruction *> paiUsers,
SILBuilderContext &builderCtxt,
InstModCallbacks callbacks) {
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
if (argsToHandle.empty())
return true;
// Compute the set of endpoints, which will be used to insert destroys of
// temporaries. This may fail if the frontier is located on a critical edge
// which we may not split.
ValueLifetimeAnalysis vla(pai, paiUsers);
ValueLifetimeAnalysis::Frontier partialApplyFrontier;
if (!vla.computeFrontier(partialApplyFrontier,
ValueLifetimeAnalysis::DontModifyCFG)) {
return false;
}
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
SILValue tmp = arg;
if (arg->getType().isAddress()) {
// Move the value to a stack-allocated temporary.
SILBuilderWithScope builder(pai, builderCtxt);
tmp = builder.createAllocStack(pai->getLoc(), arg->getType());
builder.createCopyAddr(pai->getLoc(), arg, tmp, IsTake_t::IsTake,
IsInitialization_t::IsInitialization);
}
// Delay the destroy of the value (either as SSA value or in the stack-
// allocated temporary) at the end of the partial_apply's lifetime.
endLifetimeAtFrontier(tmp, partialApplyFrontier, builderCtxt, callbacks);
}
return true;
}
bool swift::tryDeleteDeadClosure(SingleValueInstruction *closure,
InstModCallbacks callbacks,
bool needKeepArgsAlive) {
auto *pa = dyn_cast<PartialApplyInst>(closure);
// We currently only handle locally identified values that do not escape. We
// also assume that the partial apply does not capture any addresses.
if (!pa && !isa<ThinToThickFunctionInst>(closure))
return false;
// A stack allocated partial apply does not have any release users. Delete it
// if the only users are the dealloc_stack and mark_dependence instructions.
if (pa && pa->isOnStack()) {
SmallVector<SILInstruction *, 8> deleteInsts;
for (auto *use : pa->getUses()) {
if (isa<DeallocStackInst>(use->getUser())
|| isa<DebugValueInst>(use->getUser()))
deleteInsts.push_back(use->getUser());
else if (!deadMarkDependenceUser(use->getUser(), deleteInsts))
return false;
}
for (auto *inst : reverse(deleteInsts))
callbacks.deleteInst(inst);
callbacks.deleteInst(pa);
// Note: the lifetime of the captured arguments is managed outside of the
// trivial closure value i.e: there will already be releases for the
// captured arguments. Releasing captured arguments is not necessary.
return true;
}
// Collect all destroys of the closure (transitively including destorys of
// copies) and check if those are the only uses of the closure.
SmallVector<SILInstruction *, 16> closureDestroys;
if (!collectDestroys(closure, closureDestroys))
return false;
// If we have a partial_apply, release each captured argument at each one of
// the final release locations of the partial apply.
if (auto *pai = dyn_cast<PartialApplyInst>(closure)) {
assert(!pa->isOnStack() &&
"partial_apply [stack] should have been handled before");
SILBuilderContext builderCtxt(pai->getModule());
if (needKeepArgsAlive) {
if (!keepArgsOfPartialApplyAlive(pai, closureDestroys, builderCtxt,
callbacks))
return false;
} else {
// A preceeding partial_apply -> apply conversion (done in
// tryOptimizeApplyOfPartialApply) already ensured that the arguments are
// kept alive until the end of the partial_apply's lifetime.
SmallVector<Operand *, 8> argsToHandle;
getConsumedPartialApplyArgs(pai, argsToHandle,
/*includeTrivialAddrArgs*/ false);
// We can just destroy the arguments at the point of the partial_apply
// (remember: partial_apply consumes all arguments).
for (Operand *argOp : argsToHandle) {
SILValue arg = argOp->get();
SILBuilderWithScope builder(pai, builderCtxt);
emitDestroyOperation(builder, pai->getLoc(), arg, callbacks);
}
}
}
// Delete all copy and destroy instructions in order so that leaf uses are
// deleted first.
for (SILInstruction *user : closureDestroys) {
assert(
(useDoesNotKeepValueAlive(user) || useHasTransitiveOwnership(user)) &&
"We expect only ARC operations without "
"results or a cast from escape to noescape without users");
callbacks.deleteInst(user);
}
callbacks.deleteInst(closure);
return true;
}
bool swift::simplifyUsers(SingleValueInstruction *inst) {
bool changed = false;
InstModCallbacks callbacks;
for (auto ui = inst->use_begin(), ue = inst->use_end(); ui != ue;) {
SILInstruction *user = ui->getUser();
++ui;
auto svi = dyn_cast<SingleValueInstruction>(user);
if (!svi)
continue;
callbacks.resetHadCallbackInvocation();
simplifyAndReplaceAllSimplifiedUsesAndErase(svi, callbacks);
changed |= callbacks.hadCallbackInvocation();
}
return changed;
}
/// True if a type can be expanded without a significant increase to code size.
bool swift::shouldExpand(SILModule &module, SILType ty) {
// FIXME: Expansion
auto expansion = TypeExpansionContext::minimal();
if (module.Types.getTypeLowering(ty, expansion).isAddressOnly()) {
return false;
}
if (EnableExpandAll) {
return true;
}
unsigned numFields = module.Types.countNumberOfFields(ty, expansion);
return (numFields <= 6);
}
/// Some support functions for the global-opt and let-properties-opts
// Encapsulate the state used for recursive analysis of a static
// initializer. Discover all the instruction in a use-def graph and return them
// in topological order.
//
// TODO: We should have a DFS utility for this sort of thing so it isn't
// recursive.
class StaticInitializerAnalysis {
SmallVectorImpl<SILInstruction *> &postOrderInstructions;
llvm::SmallDenseSet<SILValue, 8> visited;
int recursionLevel = 0;
public:
StaticInitializerAnalysis(
SmallVectorImpl<SILInstruction *> &postOrderInstructions)
: postOrderInstructions(postOrderInstructions) {}
// Perform a recursive DFS on on the use-def graph rooted at `V`. Insert
// values in the `visited` set in preorder. Insert values in
// `postOrderInstructions` in postorder so that the instructions are
// topologically def-use ordered (in execution order).
bool analyze(SILValue rootValue) {
return recursivelyAnalyzeOperand(rootValue);
}
protected:
bool recursivelyAnalyzeOperand(SILValue v) {
if (!visited.insert(v).second)
return true;
if (++recursionLevel > 50)
return false;
// TODO: For multi-result instructions, we could simply insert all result
// values in the visited set here.
auto *inst = dyn_cast<SingleValueInstruction>(v);
if (!inst)
return false;
if (!recursivelyAnalyzeInstruction(inst))
return false;
postOrderInstructions.push_back(inst);
--recursionLevel;
return true;
}
bool recursivelyAnalyzeInstruction(SILInstruction *inst) {
if (auto *si = dyn_cast<StructInst>(inst)) {
// If it is not a struct which is a simple type, bail.
if (!si->getType().isTrivial(*si->getFunction()))
return false;
return llvm::all_of(si->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *ti = dyn_cast<TupleInst>(inst)) {
// If it is not a tuple which is a simple type, bail.
if (!ti->getType().isTrivial(*ti->getFunction()))
return false;
return llvm::all_of(ti->getAllOperands(), [&](Operand &operand) -> bool {
return recursivelyAnalyzeOperand(operand.get());
});
}
if (auto *bi = dyn_cast<BuiltinInst>(inst)) {
switch (bi->getBuiltinInfo().ID) {
case BuiltinValueKind::FPTrunc:
if (auto *li = dyn_cast<LiteralInst>(bi->getArguments()[0])) {
return recursivelyAnalyzeOperand(li);
}
return false;
default:
return false;
}
}
return isa<IntegerLiteralInst>(inst) || isa<FloatLiteralInst>(inst)
|| isa<StringLiteralInst>(inst);
}
};
/// Check if the value of v is computed by means of a simple initialization.
/// Populate `forwardInstructions` with references to all the instructions
/// that participate in the use-def graph required to compute `V`. The
/// instructions will be in def-use topological order.
bool swift::analyzeStaticInitializer(
SILValue v, SmallVectorImpl<SILInstruction *> &forwardInstructions) {
return StaticInitializerAnalysis(forwardInstructions).analyze(v);
}
/// FIXME: This must be kept in sync with replaceLoadSequence()
/// below. What a horrible design.
bool swift::canReplaceLoadSequence(SILInstruction *inst) {
if (auto *cai = dyn_cast<CopyAddrInst>(inst))
return true;
if (auto *li = dyn_cast<LoadInst>(inst))
return true;
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
for (auto seaiUse : seai->getUses()) {
if (!canReplaceLoadSequence(seaiUse->getUser()))
return false;
}
return true;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
for (auto teaiUse : teai->getUses()) {
if (!canReplaceLoadSequence(teaiUse->getUser()))
return false;
}
return true;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
if (!canReplaceLoadSequence(use->getUser()))
return false;
}
return true;
}
// Incidental uses of an address are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return true;
return false;
}
/// Replace load sequence which may contain
/// a chain of struct_element_addr followed by a load.
/// The sequence is traversed inside out, i.e.
/// starting with the innermost struct_element_addr
/// Move into utils.
///
/// FIXME: this utility does not make sense as an API. How can the caller
/// guarantee that the only uses of `I` are struct_element_addr and
/// tuple_element_addr?
void swift::replaceLoadSequence(SILInstruction *inst, SILValue value) {
if (auto *cai = dyn_cast<CopyAddrInst>(inst)) {
SILBuilder builder(cai);
builder.createStore(cai->getLoc(), value, cai->getDest(),
StoreOwnershipQualifier::Unqualified);
return;
}
if (auto *li = dyn_cast<LoadInst>(inst)) {
li->replaceAllUsesWith(value);
return;
}
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
SILBuilder builder(seai);
auto *sei =
builder.createStructExtract(seai->getLoc(), value, seai->getField());
for (auto seaiUse : seai->getUses()) {
replaceLoadSequence(seaiUse->getUser(), sei);
}
return;
}
if (auto *teai = dyn_cast<TupleElementAddrInst>(inst)) {
SILBuilder builder(teai);
auto *tei =
builder.createTupleExtract(teai->getLoc(), value, teai->getFieldIndex());
for (auto teaiUse : teai->getUses()) {
replaceLoadSequence(teaiUse->getUser(), tei);
}
return;
}
if (auto *ba = dyn_cast<BeginAccessInst>(inst)) {
for (auto use : ba->getUses()) {
replaceLoadSequence(use->getUser(), value);
}
return;
}
// Incidental uses of an addres are meaningless with regard to the loaded
// value.
if (isIncidentalUse(inst) || isa<BeginUnpairedAccessInst>(inst))
return;
llvm_unreachable("Unknown instruction sequence for reading from a global");
}
/// Are the callees that could be called through Decl statically
/// knowable based on the Decl and the compilation mode?
bool swift::calleesAreStaticallyKnowable(SILModule &module, SILDeclRef decl) {
if (decl.isForeign)
return false;
return calleesAreStaticallyKnowable(module, decl.getDecl());
}
/// Are the callees that could be called through Decl statically
/// knowable based on the Decl and the compilation mode?
bool swift::calleesAreStaticallyKnowable(SILModule &module, ValueDecl *vd) {
assert(isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd));
// Only handle members defined within the SILModule's associated context.
if (!cast<DeclContext>(vd)->isChildContextOf(module.getAssociatedContext()))
return false;
if (vd->isDynamic()) {
return false;
}
if (!vd->hasAccess())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (vd->getEffectiveAccess()) {
case AccessLevel::Open:
return false;
case AccessLevel::Public:
if (isa<ConstructorDecl>(vd)) {
// Constructors are special: a derived class in another module can
// "override" a constructor if its class is "open", although the
// constructor itself is not open.
auto *nd = vd->getDeclContext()->getSelfNominalTypeDecl();
if (nd->getEffectiveAccess() == AccessLevel::Open)
return false;
}
LLVM_FALLTHROUGH;
case AccessLevel::Internal:
return module.isWholeModule();
case AccessLevel::FilePrivate:
case AccessLevel::Private:
return true;
}
llvm_unreachable("Unhandled access level in switch.");
}
Optional<FindLocalApplySitesResult>
swift::findLocalApplySites(FunctionRefBaseInst *fri) {
SmallVector<Operand *, 32> worklist(fri->use_begin(), fri->use_end());
Optional<FindLocalApplySitesResult> f;
f.emplace();
// Optimistically state that we have no escapes before our def-use dataflow.
f->escapes = false;
while (!worklist.empty()) {
auto *op = worklist.pop_back_val();
auto *user = op->getUser();
// If we have a full apply site as our user.
if (auto apply = FullApplySite::isa(user)) {
if (apply.getCallee() == op->get()) {
f->fullApplySites.push_back(apply);
continue;
}
}
// If we have a partial apply as a user, start tracking it, but also look at
// its users.
if (auto *pai = dyn_cast<PartialApplyInst>(user)) {
if (pai->getCallee() == op->get()) {
// Track the partial apply that we saw so we can potentially eliminate
// dead closure arguments.
f->partialApplySites.push_back(pai);
// Look to see if we can find a full application of this partial apply
// as well.
llvm::copy(pai->getUses(), std::back_inserter(worklist));
continue;
}
}
// Otherwise, see if we have any function casts to look through...
switch (user->getKind()) {
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// A partial_apply [stack] marks its captured arguments with
// mark_dependence.
case SILInstructionKind::MarkDependenceInst:
llvm::copy(cast<SingleValueInstruction>(user)->getUses(),
std::back_inserter(worklist));
continue;
// Look through any reference count instructions since these are not
// escapes:
case SILInstructionKind::CopyValueInst:
llvm::copy(cast<CopyValueInst>(user)->getUses(),
std::back_inserter(worklist));
continue;
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DestroyValueInst:
// A partial_apply [stack] is deallocated with a dealloc_stack.
case SILInstructionKind::DeallocStackInst:
continue;
default:
break;
}
// But everything else is considered an escape.
f->escapes = true;
}
// If we did escape and didn't find any apply sites, then we have no
// information for our users that is interesting.
if (f->escapes && f->partialApplySites.empty() && f->fullApplySites.empty())
return None;
return f;
}
/// Insert destroys of captured arguments of partial_apply [stack].
void swift::insertDestroyOfCapturedArguments(
PartialApplyInst *pai, SILBuilder &builder,
llvm::function_ref<bool(SILValue)> shouldInsertDestroy) {
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto &arg : pai->getArgumentOperands()) {
if (!shouldInsertDestroy(arg.get()))
continue;
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
releasePartialApplyCapturedArg(builder, loc, arg.get(), paramInfo);
}
}
void swift::insertDeallocOfCapturedArguments(
PartialApplyInst *pai, SILBuilder &builder) {
assert(pai->isOnStack());
ApplySite site(pai);
SILFunctionConventions calleeConv(site.getSubstCalleeType(),
pai->getModule());
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto &arg : pai->getArgumentOperands()) {
unsigned calleeArgumentIndex = site.getCalleeArgIndex(arg);
assert(calleeArgumentIndex >= calleeConv.getSILArgIndexOfFirstParam());
auto paramInfo = calleeConv.getParamInfoForSILArg(calleeArgumentIndex);
deallocPartialApplyCapturedArg(builder, loc, arg.get(), paramInfo);
}
}
AbstractFunctionDecl *swift::getBaseMethod(AbstractFunctionDecl *FD) {
while (FD->getOverriddenDecl()) {
FD = FD->getOverriddenDecl();
}
return FD;
}
FullApplySite
swift::cloneFullApplySiteReplacingCallee(FullApplySite applySite,
SILValue newCallee,
SILBuilderContext &builderCtx) {
SmallVector<SILValue, 16> arguments;
llvm::copy(applySite.getArguments(), std::back_inserter(arguments));
SILBuilderWithScope builder(applySite.getInstruction(), builderCtx);
switch (applySite.getKind()) {
case FullApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(applySite.getInstruction());
return builder.createTryApply(tai->getLoc(), newCallee,
tai->getSubstitutionMap(), arguments,
tai->getNormalBB(), tai->getErrorBB(),
tai->getApplyOptions());
}
case FullApplySiteKind::ApplyInst: {
auto *ai = cast<ApplyInst>(applySite);
auto fTy = newCallee->getType().getAs<SILFunctionType>();
auto options = ai->getApplyOptions();
// The optimizer can generate a thin_to_thick_function from a throwing thin
// to a non-throwing thick function (in case it can prove that the function
// is not throwing).
// Therefore we have to check if the new callee (= the argument of the
// thin_to_thick_function) is a throwing function and set the not-throwing
// flag in this case.
if (fTy->hasErrorResult())
options |= ApplyFlags::DoesNotThrow;
return builder.createApply(applySite.getLoc(), newCallee,
applySite.getSubstitutionMap(), arguments,
options);
}
case FullApplySiteKind::BeginApplyInst: {
llvm_unreachable("begin_apply support not implemented?!");
}
}
llvm_unreachable("Unhandled case?!");
}
// FIXME: For any situation where this may be called on an unbounded number of
// uses, it should perform a single callback invocation to notify the client
// that newValue has new uses rather than a callback for every new use.
//
// FIXME: This should almost certainly replace end_lifetime uses rather than
// deleting them.
SILBasicBlock::iterator swift::replaceAllUses(SILValue oldValue,
SILValue newValue,
SILBasicBlock::iterator nextii,
InstModCallbacks &callbacks) {
assert(oldValue != newValue && "Cannot RAUW a value with itself");
while (!oldValue->use_empty()) {
Operand *use = *oldValue->use_begin();
SILInstruction *user = use->getUser();
// Erase the end of scope marker.
if (isEndOfScopeMarker(user)) {
if (&*nextii == user)
++nextii;
callbacks.deleteInst(user);
continue;
}
callbacks.setUseValue(use, newValue);
}
return nextii;
}
SILBasicBlock::iterator
swift::replaceAllUsesAndErase(SingleValueInstruction *svi, SILValue newValue,
InstModCallbacks &callbacks) {
SILBasicBlock::iterator nextii = replaceAllUses(
svi, newValue, std::next(svi->getIterator()), callbacks);
callbacks.deleteInst(svi);
return nextii;
}
SILBasicBlock::iterator
swift::replaceAllUsesAndErase(SILValue oldValue, SILValue newValue,
InstModCallbacks &callbacks) {
auto *blockArg = dyn_cast<SILPhiArgument>(oldValue);
if (!blockArg) {
// SingleValueInstruction SSA replacement.
return replaceAllUsesAndErase(cast<SingleValueInstruction>(oldValue),
newValue, callbacks);
}
llvm_unreachable("Untested");
#if 0 // FIXME: to be enabled in a following commit
TermInst *oldTerm = blockArg->getTerminatorForResult();
assert(oldTerm && "can only replace and erase terminators, not phis");
// Before:
// oldTerm bb1, bb2
// bb1(%oldValue):
// use %oldValue
// bb2:
//
// After:
// br bb1
// bb1:
// use %newValue
// bb2:
auto nextii = replaceAllUses(blockArg, newValue,
oldTerm->getParent()->end(), callbacks);
// Now that oldValue is replaced, the terminator should have no uses
// left. The caller should have removed uses from other results.
for (auto *succBB : oldTerm->getSuccessorBlocks()) {
assert(succBB->getNumArguments() == 1 && "expected terminator result");
succBB->eraseArgument(0);
}
auto *newBr = SILBuilderWithScope(oldTerm).createBranch(
oldTerm->getLoc(), blockArg->getParent());
callbacks.createdNewInst(newBr);
callbacks.deleteInst(oldTerm);
return nextii;
#endif
}
/// Given that we are going to replace use's underlying value, if the use is a
/// lifetime ending use, insert an end scope scope use for the underlying value
/// before we RAUW.
static void cleanupUseOldValueBeforeRAUW(Operand *use, SILBuilder &builder,
SILLocation loc,
InstModCallbacks &callbacks) {
if (!use->isLifetimeEnding()) {
return;
}
switch (use->get().getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Invalid ownership for value");
case OwnershipKind::Owned: {
auto *dvi = builder.createDestroyValue(loc, use->get());
callbacks.createdNewInst(dvi);
return;
}
case OwnershipKind::Guaranteed: {
// Should only happen once we model destructures as true reborrows.
auto *ebi = builder.createEndBorrow(loc, use->get());
callbacks.createdNewInst(ebi);
return;
}
case OwnershipKind::None:
return;
case OwnershipKind::Unowned:
llvm_unreachable("Unowned object can never be consumed?!");
}
llvm_unreachable("Covered switch isn't covered");
}
SILBasicBlock::iterator swift::replaceSingleUse(Operand *use, SILValue newValue,
InstModCallbacks &callbacks) {
auto oldValue = use->get();
assert(oldValue != newValue && "Cannot RAUW a value with itself");
auto *user = use->getUser();
auto nextII = std::next(user->getIterator());
// If we have an end of scope marker, just return next. We are done.
if (isEndOfScopeMarker(user)) {
return nextII;
}
// Otherwise, first insert clean up our use's value if we need to and then set
// use to have a new value.
SILBuilderWithScope builder(user);
cleanupUseOldValueBeforeRAUW(use, builder, user->getLoc(), callbacks);
callbacks.setUseValue(use, newValue);
return nextII;
}
SILValue swift::makeCopiedValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (!value->getFunction()->hasOwnership())
return value;
if (value.getOwnershipKind() == OwnershipKind::None)
return value;
auto insertPt = getInsertAfterPoint(value).getValue();
SILBuilderWithScope builder(insertPt);
auto *copy = builder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
return makeValueAvailable(copy, inBlock);
}
SILValue swift::makeValueAvailable(SILValue value, SILBasicBlock *inBlock) {
if (!value->getFunction()->hasOwnership())
return value;
if (value.getOwnershipKind() == OwnershipKind::None)
return value;
assert(value.getOwnershipKind() == OwnershipKind::Owned);
SmallVector<SILBasicBlock *, 4> userBBs;
for (auto use : value->getUses()) {
userBBs.push_back(use->getParentBlock());
}
userBBs.push_back(inBlock);
// Use \p jointPostDomComputer to:
// 1. Create a control equivalent copy at \p inBlock if needed
// 2. Insert destroy_value at leaking blocks
SILValue controlEqCopy;
findJointPostDominatingSet(
value->getParentBlock(), userBBs,
[&](SILBasicBlock *loopBlock) {
assert(loopBlock == inBlock);
auto front = loopBlock->begin();
SILBuilderWithScope newBuilder(front);
controlEqCopy = newBuilder.createCopyValue(
RegularLocation::getAutoGeneratedLocation(), value);
},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
return controlEqCopy ? controlEqCopy : value;
}
bool swift::tryEliminateOnlyOwnershipUsedForwardingInst(
SingleValueInstruction *forwardingInst, InstModCallbacks &callbacks) {
if (!OwnershipForwardingMixin::isa(forwardingInst) ||
isa<AllArgOwnershipForwardingSingleValueInst>(forwardingInst))
return false;
SmallVector<Operand *, 32> worklist(getNonDebugUses(forwardingInst));
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *user = use->getUser();
if (isa<EndBorrowInst>(user) || isa<DestroyValueInst>(user) ||
isa<RefCountingInst>(user))
continue;
if (isa<CopyValueInst>(user) || isa<BeginBorrowInst>(user)) {
for (auto result : user->getResults())
for (auto *resultUse : getNonDebugUses(result))
worklist.push_back(resultUse);
continue;
}
return false;
}
// Now that we know we can perform our transform, set all uses of
// forwardingInst to be used of its operand and then delete \p forwardingInst.
auto newValue = forwardingInst->getOperand(0);
while (!forwardingInst->use_empty()) {
auto *use = *(forwardingInst->use_begin());
use->set(newValue);
}
callbacks.deleteInst(forwardingInst);
return true;
}
// The consuming use blocks are assumed either not to inside a loop relative to
// \p value or they must have their own copies.
void swift::endLifetimeAtLeakingBlocks(SILValue value,
ArrayRef<SILBasicBlock *> uses) {
if (!value->getFunction()->hasOwnership())
return;
if (value.getOwnershipKind() != OwnershipKind::Owned)
return;
findJointPostDominatingSet(
value->getParentBlock(), uses, [&](SILBasicBlock *loopBlock) {},
[&](SILBasicBlock *postDomBlock) {
// Insert a destroy_value in the leaking block
auto front = postDomBlock->begin();
SILBuilderWithScope newBuilder(front);
newBuilder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
});
}
// TODO: this currently fails to notify the pass with notifyNewInstruction.
void swift::salvageDebugInfo(SILInstruction *I) {
if (!I)
return;
if (auto *SI = dyn_cast<StoreInst>(I)) {
if (SILValue DestVal = SI->getDest())
if (auto *ASI = dyn_cast_or_null<AllocStackInst>(
DestVal.getDefiningInstruction())) {
if (auto VarInfo = ASI->getVarInfo()) {
// Always propagate destination location for incoming arguments (as
// their location must be unique) as well as when store source
// location is compiler-generated.
bool UseDestLoc = VarInfo->ArgNo || SI->getLoc().isAutoGenerated();
SILBuilder(SI, ASI->getDebugScope())
.createDebugValue(UseDestLoc ? ASI->getLoc() : SI->getLoc(),
SI->getSrc(), *VarInfo);
}
}
}
// If a `struct` SIL instruction is "unwrapped" and removed,
// for instance, in favor of using its enclosed value directly,
// we need to make sure any of its related `debug_value` instruction
// is preserved.
if (auto *STI = dyn_cast<StructInst>(I)) {
auto STVal = STI->getResult(0);
llvm::ArrayRef<VarDecl *> FieldDecls =
STI->getStructDecl()->getStoredProperties();
for (Operand *U : getDebugUses(STVal)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
if (VarInfo->DIExpr.hasFragment())
// Since we can't merge two different op_fragment
// now, we're simply bailing out if there is an
// existing op_fragment in DIExpresison.
// TODO: Try to merge two op_fragment expressions here.
continue;
for (VarDecl *FD : FieldDecls) {
SILDebugVariable NewVarInfo = *VarInfo;
auto FieldVal = STI->getFieldValue(FD);
// Build the corresponding fragment DIExpression
auto FragDIExpr = SILDebugInfoExpression::createFragment(FD);
NewVarInfo.DIExpr.append(FragDIExpr);
if (!NewVarInfo.Type)
NewVarInfo.Type = STI->getType();
// Create a new debug_value
SILBuilder(DbgInst, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), FieldVal, NewVarInfo);
}
}
}
if (auto *IA = dyn_cast<IndexAddrInst>(I)) {
if (IA->getBase() && IA->getIndex())
// Only handle cases where offset is constant.
if (const auto *LiteralInst =
dyn_cast<IntegerLiteralInst>(IA->getIndex())) {
SILValue Base = IA->getBase();
SILValue ResultAddr = IA->getResult(0);
APInt OffsetVal = LiteralInst->getValue();
const SILDIExprElement ExprElements[3] = {
SILDIExprElement::createOperator(OffsetVal.isNegative() ?
SILDIExprOperator::ConstSInt : SILDIExprOperator::ConstUInt),
SILDIExprElement::createConstInt(OffsetVal.getLimitedValue()),
SILDIExprElement::createOperator(SILDIExprOperator::Plus)
};
for (Operand *U : getDebugUses(ResultAddr)) {
auto *DbgInst = cast<DebugValueInst>(U->getUser());
auto VarInfo = DbgInst->getVarInfo();
if (!VarInfo)
continue;
VarInfo->DIExpr.prependElements(ExprElements);
// Create a new debug_value
SILBuilder(DbgInst, DbgInst->getDebugScope())
.createDebugValue(DbgInst->getLoc(), Base, *VarInfo);
}
}
}
}
// TODO: this currently fails to notify the pass with notifyNewInstruction.
void swift::createDebugFragments(SILValue oldValue, Projection proj,
SILValue newValue) {
if (proj.getKind() != ProjectionKind::Struct)
return;
for (auto *use : getDebugUses(oldValue)) {
auto debugVal = dyn_cast<DebugValueInst>(use->getUser());
if (!debugVal)
continue;
// Can't create a fragment of a fragment.
auto varInfo = debugVal->getVarInfo();
if (!varInfo || varInfo->DIExpr.hasFragment())
continue;
SILType baseType = oldValue->getType();
// Copy VarInfo and add the corresponding fragment DIExpression.
SILDebugVariable newVarInfo = *varInfo;
newVarInfo.DIExpr.append(
SILDebugInfoExpression::createFragment(proj.getVarDecl(baseType)));
if (!newVarInfo.Type)
newVarInfo.Type = baseType;
// Create a new debug_value
SILBuilder(debugVal, debugVal->getDebugScope())
.createDebugValue(debugVal->getLoc(), newValue, newVarInfo);
}
}
IntegerLiteralInst *swift::optimizeBuiltinCanBeObjCClass(BuiltinInst *bi,
SILBuilder &builder) {
assert(bi->getBuiltinInfo().ID == BuiltinValueKind::CanBeObjCClass);
assert(bi->hasSubstitutions() && "Expected substitutions for canBeClass");
auto const &subs = bi->getSubstitutions();
assert((subs.getReplacementTypes().size() == 1) &&
"Expected one substitution in call to canBeClass");
auto ty = subs.getReplacementTypes()[0]->getCanonicalType();
switch (ty->canBeClass()) {
case TypeTraitResult::IsNot:
return builder.createIntegerLiteral(bi->getLoc(), bi->getType(),
APInt(8, 0));
case TypeTraitResult::Is:
return builder.createIntegerLiteral(bi->getLoc(), bi->getType(),
APInt(8, 1));
case TypeTraitResult::CanBe:
return nullptr;
}
llvm_unreachable("Unhandled TypeTraitResult in switch.");
}