mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1037 lines
40 KiB
C++
1037 lines
40 KiB
C++
//===--- SILGenMaterializeForSet.cpp - Open-coded materializeForSet -------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Emission of materializeForSet.
|
|
//
|
|
// There are two cases where materializeForSet is used for inout access:
|
|
//
|
|
// === Storage is virtually dispatched on a base class ===
|
|
//
|
|
// For example, suppose we have this setup, where a computed property in a
|
|
// base class is overridden with a computed property in the derived class:
|
|
//
|
|
// class Base<T> { var x: T }
|
|
// class Derived : Base<Int> { override var x: Int { ... } }
|
|
// func operate(b: Base<Int>) {
|
|
// b.x += 1
|
|
// }
|
|
//
|
|
// As far as caller is concerned, the callback is invoked with the following
|
|
// SIL type:
|
|
//
|
|
// @convention(method)
|
|
// <T> (RawPointer, @inout UnsafeValueBuffer, @inout Base<T>, @thick Base<T>.Type) -> ()
|
|
//
|
|
// The caller will pass the first four formal parameters, followed by the
|
|
// type metadata for 'T'.
|
|
//
|
|
// However if the dynamic type of the parameter 'b' is actually 'Derived',
|
|
// then the actual callback has this SIL type:
|
|
//
|
|
// @convention(method)
|
|
// (RawPointer, @inout UnsafeValueBuffer, @inout Derived, @thick Derived.Type) -> ()
|
|
//
|
|
// This is a fully concrete function type, with no additional generic metadata.
|
|
//
|
|
// These two callbacks are be ABI-compatible though, because IRGen makes three
|
|
// guarantees:
|
|
//
|
|
// 1) Passing extra arguments (in this case, the type metadata for 'T') is a
|
|
// no-op.
|
|
//
|
|
// 2) IRGen knows to recover the type metadata for 'T' from the
|
|
// '@thick Base<T>.Type' parameter, instead of passing it separately.
|
|
//
|
|
// 3) The metatype for 'Derived' must be layout-compatible with 'Base<T>';
|
|
// since the generic parameter 'T' is made concrete, we expect to find the
|
|
// type metadata for 'Int' at the same offset within 'Derived.Type' as the
|
|
// generic parameter 'T' in 'Base<T>.Type'.
|
|
//
|
|
// === Storage is virtually dispatched on a protocol ===
|
|
//
|
|
// For example,
|
|
//
|
|
// protocol BoxLike { associatedtype Element; var x: Element { get set } }
|
|
// func operate<B : BoxLike>(b: B) where B.Element == Int {
|
|
// b.x += 1
|
|
// }
|
|
//
|
|
// As far as the caller is concerned, the callback is invoked with following
|
|
// SIL type:
|
|
//
|
|
// <Self : BoxLike> (RawPointer, @inout UnsafeValueBuffer, @inout Self, @thick Self.Type) -> ()
|
|
//
|
|
// At the IRGen level, a call of a SIL function with the above type will pass
|
|
// the four formal parameters, followed by the type metadata for 'Self', and
|
|
// then followed by the protocol witness table for 'Self : BoxLike'.
|
|
//
|
|
// As in the class case, the callback won't have the same identical SIL type,
|
|
// because it might have a different representation of 'Self'.
|
|
//
|
|
// So we must consider two separate cases:
|
|
//
|
|
// 1) The witness is a method of the concrete conforming type, eg,
|
|
//
|
|
// struct Box<T> : BoxLike { var x: T }
|
|
//
|
|
// Here, the actual callback will have the following type:
|
|
//
|
|
// @convention(method)
|
|
// <T> (RawPointer, @inout UnsafeValueBuffer, @inout Box<T>, @thick Box<T>.Type) -> ()
|
|
//
|
|
// As with the class case, IRGen can already do the right thing -- the type
|
|
// metadata for 'T' is recovered from the '@thick Box<T>.Type' parameter,
|
|
// and the type metadata for 'Self' as well as the conformance
|
|
// 'Self : BoxLike' are ignored.
|
|
//
|
|
// 2) The witness is a protocol extension method, possibly of some other protocol, eg,
|
|
//
|
|
// protocol SomeOtherProtocol { }
|
|
// extension SomeOtherProtocol { var x: Element { ... } }
|
|
// struct FunnyBox<T> : BoxLike, SomeOtherProtocol { typealias Element = T }
|
|
//
|
|
// Here, the actual callback will have the following type:
|
|
//
|
|
// @convention(method)
|
|
// <Self : SomeOtherProtocol> (RawPointer, @inout UnsafeValueBuffer, @inout Self, @thick Self.Type) -> ()
|
|
//
|
|
// Here, the actual callback expects to receive the four formal parameters,
|
|
// followed by the type metadata for 'Self', followed by the witness table
|
|
// for the conformance 'Self : SomeOtherProtocol'. Note that the
|
|
// conformance cannot be recovered from the thick metatype.
|
|
//
|
|
// This is *not* ABI-compatible with the type used at the call site,
|
|
// because the caller is passing in the conformance of 'Self : BoxLike'
|
|
// (the requirement's signature) but the callee is expecting
|
|
// 'Self : SomeOtherProtocol' (the witness signature).
|
|
//
|
|
// For this reason the materializeForSet method in the protocol extension
|
|
// of 'SomeOtherProtocol' cannot witness the materializeForSet requirement
|
|
// of 'BoxLike'. So instead, the protocol witness thunk for
|
|
// materializeForSet cannot delegate to the materializeForSet witness at
|
|
// all; it's entirely open-coded, with its own callback that has the right
|
|
// calling convention.
|
|
//
|
|
// === Storage has its own generic parameters ===
|
|
//
|
|
// One final special case is where the storage has its own generic parameters;
|
|
// that is, a generic subscript.
|
|
//
|
|
// Suppose we have the following protocol:
|
|
//
|
|
// protocol GenericSubscript { subscript<T, U>(t: T) -> U { get set } }
|
|
//
|
|
// At the call site, the callback is invoked with the following signature:
|
|
//
|
|
// @convention(witness_method)
|
|
// <Self : GenericSubscript, T, U> (RawPointer, @inout UnsafeValueBuffer, @inout Self, @thick Self.Type) -> ()
|
|
//
|
|
// If the witness is a member of a concrete type 'AnyDictionary', the actual
|
|
// callback will have the following signature:
|
|
//
|
|
// @convention(method)
|
|
// <T, U> (RawPointer, @inout UnsafeValueBuffer, @inout AnyDictionary, @thick SelfAnyDictionary.Type) -> ()
|
|
//
|
|
// These are ABI-compatible; the key is that witness_method passes the Self
|
|
// metadata and conformance at the end, after the type metadata for innermost
|
|
// generic parameters, and so everything lines up.
|
|
//
|
|
// === Summary ===
|
|
//
|
|
// To recap, we assume the following types are ABI-compatible:
|
|
//
|
|
// @convention(method) <T, U, V> (..., Foo<T, U>.Type)
|
|
// @convention(witness_method) <T, U, V> (..., Foo<T, U>.Type)
|
|
// @convention(witness_method) <Self : P, V> (..., Self.Type)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "ArgumentSource.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "Scope.h"
|
|
#include "Initialization.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/ASTMangler.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/SubstitutionMap.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "ASTVisitor.h"
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
namespace {
|
|
|
|
static std::string
|
|
getMaterializeForSetCallbackName(ProtocolConformance *conformance,
|
|
FuncDecl *requirement) {
|
|
|
|
DeclContext *dc = requirement;
|
|
ClosureExpr closure(/*patterns*/ nullptr,
|
|
/*throws*/ SourceLoc(),
|
|
/*arrow*/ SourceLoc(),
|
|
/*in*/ SourceLoc(),
|
|
/*result*/ TypeLoc(),
|
|
/*discriminator*/ 0,
|
|
/*context*/ requirement);
|
|
closure.setType(TupleType::getEmpty(dc->getASTContext()));
|
|
closure.getCaptureInfo().setGenericParamCaptures(true);
|
|
|
|
Mangle::ASTMangler Mangler;
|
|
std::string New;
|
|
if (conformance) {
|
|
// Concrete witness thunk for a conformance:
|
|
//
|
|
// Mangle this as if it were a conformance thunk for a closure
|
|
// within the requirement.
|
|
return Mangler.mangleClosureWitnessThunk(conformance, &closure);
|
|
}
|
|
// Default witness thunk or concrete implementation:
|
|
//
|
|
// Mangle this as if it were a closure within the requirement.
|
|
return Mangler.mangleClosureEntity(&closure,
|
|
Mangle::ASTMangler::SymbolKind::Default);
|
|
}
|
|
|
|
/// A helper class for emitting materializeForSet.
|
|
///
|
|
/// The formal type of materializeForSet is:
|
|
///
|
|
/// (self: Self) -> (temporary: Builtin.RawPointer,
|
|
/// inout storage: Builtin.ValueBuffer,
|
|
/// indices...)
|
|
/// -> (address: Builtin.RawPointer,
|
|
/// callback: (@thin (address: Builtin.RawPointer,
|
|
/// inout storage: Builtin.ValueBuffer,
|
|
/// inout self: Self,
|
|
/// @thick selfType: Self.Type) -> ())?)
|
|
///
|
|
struct MaterializeForSetEmitter {
|
|
SILGenModule &SGM;
|
|
|
|
SILLinkage Linkage;
|
|
|
|
AbstractStorageDecl *RequirementStorage;
|
|
AbstractionPattern RequirementStoragePattern;
|
|
SILType RequirementStorageType;
|
|
|
|
FuncDecl *Witness;
|
|
AbstractStorageDecl *WitnessStorage;
|
|
AbstractionPattern WitnessStoragePattern;
|
|
SubstitutionList WitnessSubs;
|
|
|
|
CanGenericSignature GenericSig;
|
|
GenericEnvironment *GenericEnv;
|
|
|
|
// Assume that we don't need to reabstract 'self'. Right now,
|
|
// that's always true; if we ever reabstract Optional (or other
|
|
// nominal types) and allow "partial specialization" extensions,
|
|
// this will break, and we'll have to do inout-translation in
|
|
// the callback buffer.
|
|
CanType SelfInterfaceType;
|
|
CanType SubstSelfType;
|
|
CanType SubstStorageType;
|
|
|
|
AccessSemantics TheAccessSemantics;
|
|
bool IsSuper;
|
|
std::string CallbackName;
|
|
|
|
SILType WitnessStorageType;
|
|
|
|
SILFunctionTypeRepresentation CallbackRepresentation;
|
|
|
|
private:
|
|
|
|
MaterializeForSetEmitter(SILGenModule &SGM, SILLinkage linkage,
|
|
FuncDecl *witness, SubstitutionList subs,
|
|
GenericEnvironment *genericEnv,
|
|
Type selfInterfaceType, Type selfType,
|
|
SILFunctionTypeRepresentation callbackRepresentation)
|
|
: SGM(SGM),
|
|
Linkage(linkage),
|
|
RequirementStorage(nullptr),
|
|
RequirementStoragePattern(AbstractionPattern::getInvalid()),
|
|
Witness(witness),
|
|
WitnessStorage(witness->getAccessorStorageDecl()),
|
|
WitnessStoragePattern(AbstractionPattern::getInvalid()),
|
|
WitnessSubs(subs),
|
|
GenericEnv(genericEnv),
|
|
SelfInterfaceType(selfInterfaceType->getCanonicalType()),
|
|
SubstSelfType(selfType->getCanonicalType()),
|
|
TheAccessSemantics(AccessSemantics::Ordinary),
|
|
IsSuper(false),
|
|
CallbackRepresentation(callbackRepresentation) {
|
|
|
|
// Determine the formal type of the 'self' parameter.
|
|
if (WitnessStorage->isStatic()) {
|
|
SubstSelfType = CanMetatypeType::get(SubstSelfType);
|
|
SelfInterfaceType = CanMetatypeType::get(SelfInterfaceType);
|
|
}
|
|
|
|
// Determine the formal type of the storage.
|
|
CanType witnessIfaceType =
|
|
WitnessStorage->getInterfaceType()->getCanonicalType();
|
|
if (isa<SubscriptDecl>(WitnessStorage))
|
|
witnessIfaceType = cast<AnyFunctionType>(witnessIfaceType).getResult();
|
|
SubstStorageType = getSubstWitnessInterfaceType(
|
|
witnessIfaceType.getReferenceStorageReferent());
|
|
|
|
WitnessStoragePattern =
|
|
SGM.Types.getAbstractionPattern(WitnessStorage)
|
|
.getReferenceStorageReferentType();
|
|
WitnessStorageType =
|
|
SGM.Types.getLoweredType(WitnessStoragePattern, SubstStorageType)
|
|
.getObjectType();
|
|
|
|
if (genericEnv)
|
|
GenericSig = genericEnv->getGenericSignature()->getCanonicalSignature();
|
|
}
|
|
|
|
public:
|
|
|
|
static MaterializeForSetEmitter
|
|
forWitnessThunk(SILGenModule &SGM,
|
|
ProtocolConformance *conformance, SILLinkage linkage,
|
|
Type selfInterfaceType, Type selfType,
|
|
GenericEnvironment *genericEnv,
|
|
FuncDecl *requirement, FuncDecl *witness,
|
|
SubstitutionList witnessSubs) {
|
|
MaterializeForSetEmitter emitter(SGM, linkage, witness, witnessSubs,
|
|
genericEnv, selfInterfaceType, selfType,
|
|
SILFunctionTypeRepresentation::WitnessMethod);
|
|
emitter.RequirementStorage = requirement->getAccessorStorageDecl();
|
|
|
|
// Determine the desired abstraction pattern of the storage type
|
|
// in the requirement and the witness.
|
|
emitter.RequirementStoragePattern =
|
|
SGM.Types.getAbstractionPattern(emitter.RequirementStorage)
|
|
.getReferenceStorageReferentType();
|
|
emitter.RequirementStorageType =
|
|
SGM.Types.getLoweredType(emitter.RequirementStoragePattern,
|
|
emitter.SubstStorageType)
|
|
.getObjectType();
|
|
|
|
emitter.CallbackName = getMaterializeForSetCallbackName(
|
|
conformance, requirement);
|
|
return emitter;
|
|
}
|
|
|
|
static MaterializeForSetEmitter
|
|
forConcreteImplementation(SILGenModule &SGM,
|
|
FuncDecl *witness,
|
|
SubstitutionList witnessSubs) {
|
|
auto *dc = witness->getDeclContext();
|
|
Type selfInterfaceType = dc->getSelfInterfaceType();
|
|
Type selfType = witness->mapTypeIntoContext(selfInterfaceType);
|
|
|
|
SILDeclRef constant(witness);
|
|
MaterializeForSetEmitter emitter(SGM, constant.getLinkage(ForDefinition),
|
|
witness, witnessSubs,
|
|
witness->getGenericEnvironment(),
|
|
selfInterfaceType, selfType,
|
|
SILFunctionTypeRepresentation::Method);
|
|
|
|
emitter.RequirementStorage = emitter.WitnessStorage;
|
|
emitter.RequirementStoragePattern = emitter.WitnessStoragePattern;
|
|
emitter.RequirementStorageType = emitter.WitnessStorageType;
|
|
|
|
// When we're emitting a standard implementation, use direct semantics.
|
|
// If we used TheAccessSemantics::Ordinary here, the only downside would
|
|
// be unnecessary vtable dispatching for class materializeForSets.
|
|
if (!emitter.WitnessStorage->hasObservers() &&
|
|
(emitter.WitnessStorage->hasStorage() ||
|
|
emitter.WitnessStorage->hasAddressors()))
|
|
emitter.TheAccessSemantics = AccessSemantics::DirectToStorage;
|
|
else if (emitter.WitnessStorage->hasClangNode() ||
|
|
emitter.WitnessStorage->isDynamic())
|
|
emitter.TheAccessSemantics = AccessSemantics::Ordinary;
|
|
else
|
|
emitter.TheAccessSemantics = AccessSemantics::DirectToAccessor;
|
|
|
|
emitter.CallbackName = getMaterializeForSetCallbackName(
|
|
/*conformance=*/nullptr, witness);
|
|
return emitter;
|
|
}
|
|
|
|
bool shouldOpenCode() const {
|
|
// We need to open-code if there's an abstraction difference in the
|
|
// result address.
|
|
if (RequirementStorageType != WitnessStorageType)
|
|
return true;
|
|
|
|
// We also need to open-code if the witness is defined in a
|
|
// protocol context because IRGen won't know how to reconstruct
|
|
// the type parameters. (In principle, this can be done in the
|
|
// callback storage if we need to.)
|
|
if (Witness->getDeclContext()->getAsProtocolOrProtocolExtensionContext())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void emit(SILGenFunction &gen);
|
|
|
|
SILValue emitUsingStorage(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue self, RValue &&indices,
|
|
SILValue callbackBuffer, SILFunction *&callback);
|
|
SILFunction *createEndUnpairedAccessesCallback(SILFunction &F,
|
|
const SILGenFunction::UnpairedAccesses &accesses);
|
|
|
|
SILValue emitUsingAddressor(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue self, RValue &&indices,
|
|
SILValue callbackBuffer, SILFunction *&callback);
|
|
SILFunction *createAddressorCallback(SILFunction &F,
|
|
SILType ownerType,
|
|
AddressorKind addressorKind);
|
|
|
|
SILValue emitUsingGetterSetter(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue self, RValue &&indices,
|
|
SILValue resultBuffer,
|
|
SILValue callbackBuffer,
|
|
SILFunction *&callback);
|
|
SILFunction *createSetterCallback(SILFunction &F,
|
|
const TypeLowering *indicesTL,
|
|
CanType indicesFormalType);
|
|
|
|
using GeneratorFn = llvm::function_ref<void(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILValue valueBuffer,
|
|
SILValue callbackBuffer,
|
|
SILValue self)>;
|
|
|
|
SILFunction *createCallback(SILFunction &F, GeneratorFn generator);
|
|
|
|
RValue collectIndicesFromParameters(SILGenFunction &gen, SILLocation loc,
|
|
ArrayRef<ManagedValue> sourceIndices);
|
|
|
|
LValue buildSelfLValue(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue self) {
|
|
// All of the complexity here is tied up with class types. If the
|
|
// substituted type isn't a reference type, then we can't have a
|
|
// class-bounded protocol or inheritance, and the simple case just
|
|
// works.
|
|
AbstractionPattern selfPattern(SubstSelfType);
|
|
|
|
// Metatypes and bases of non-mutating setters on value types
|
|
// are always rvalues.
|
|
if (!SubstSelfType->getRValueInstanceType()->mayHaveSuperclass()) {
|
|
return LValue::forValue(self, SubstSelfType);
|
|
}
|
|
|
|
CanType witnessSelfType =
|
|
Witness->computeInterfaceSelfType()->getCanonicalType(
|
|
GenericSig, *SGM.M.getSwiftModule());
|
|
witnessSelfType = getSubstWitnessInterfaceType(witnessSelfType);
|
|
witnessSelfType = witnessSelfType->getInOutObjectType()
|
|
->getCanonicalType();
|
|
|
|
// Eagerly loading here could cause an unnecessary
|
|
// load+materialize in some cases, but it's not really important.
|
|
if (self.getType().isAddress()) {
|
|
self = gen.B.createLoadBorrow(loc, self);
|
|
}
|
|
|
|
// Do a derived-to-base conversion if necessary.
|
|
if (witnessSelfType != SubstSelfType) {
|
|
auto selfSILType = gen.getLoweredType(witnessSelfType);
|
|
self = gen.B.createUpcast(loc, self, selfSILType);
|
|
}
|
|
|
|
// Recreate as a borrowed value.
|
|
return LValue::forValue(self, witnessSelfType);
|
|
}
|
|
|
|
LValue buildLValue(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue self, RValue &&indices,
|
|
AccessKind accessKind) {
|
|
// Begin with the 'self' value.
|
|
LValue lv = buildSelfLValue(gen, loc, self);
|
|
|
|
auto strategy =
|
|
WitnessStorage->getAccessStrategy(TheAccessSemantics, accessKind);
|
|
|
|
// Drill down to the member storage.
|
|
lv.addMemberComponent(gen, loc, WitnessStorage, WitnessSubs, IsSuper,
|
|
accessKind, TheAccessSemantics, strategy,
|
|
SubstStorageType, std::move(indices));
|
|
|
|
SILType expectedTy = SGM.Types.getLoweredType(
|
|
lv.getOrigFormalType(),
|
|
lv.getSubstFormalType()).getObjectType();
|
|
SILType actualTy = lv.getTypeOfRValue().getObjectType();
|
|
assert(expectedTy == actualTy);
|
|
(void) expectedTy;
|
|
|
|
// Reabstract back to the requirement pattern.
|
|
if (actualTy != RequirementStorageType) {
|
|
SILType substTy = SGM.getLoweredType(SubstStorageType);
|
|
|
|
// FIXME: we can do transforms between two abstraction patterns now
|
|
|
|
// Translate to the fully-substituted formal type...
|
|
if (actualTy != substTy)
|
|
lv.addOrigToSubstComponent(substTy);
|
|
|
|
// ...then back to the requirement type using the abstraction pattern
|
|
// of the requirement..
|
|
if (substTy != RequirementStorageType)
|
|
lv.addSubstToOrigComponent(RequirementStoragePattern,
|
|
RequirementStorageType);
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
/// Given part of the witness's interface type, produce its
|
|
/// substitution according to the witness substitutions.
|
|
CanType getSubstWitnessInterfaceType(CanType type) {
|
|
if (auto *witnessSig = Witness->getGenericSignature()) {
|
|
auto subMap = witnessSig->getSubstitutionMap(WitnessSubs);
|
|
return type.subst(subMap, SubstFlags::UseErrorType)->getCanonicalType();
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void MaterializeForSetEmitter::emit(SILGenFunction &gen) {
|
|
SILLocation loc = Witness;
|
|
loc.markAutoGenerated();
|
|
|
|
gen.F.setBare(IsBare);
|
|
|
|
SmallVector<ManagedValue, 4> params;
|
|
gen.collectThunkParams(loc, params, /*allowPlusZero*/ true);
|
|
|
|
ManagedValue self = params.back();
|
|
SILValue resultBuffer = params[0].getUnmanagedValue();
|
|
SILValue callbackBuffer = params[1].getUnmanagedValue();
|
|
auto indices = ArrayRef<ManagedValue>(params).slice(2).drop_back();
|
|
|
|
// If there's an abstraction difference, we always need to use the
|
|
// get/set pattern.
|
|
AccessStrategy strategy;
|
|
if (WitnessStorage->getInterfaceType()->is<ReferenceStorageType>() ||
|
|
(RequirementStorageType != WitnessStorageType)) {
|
|
strategy = AccessStrategy::DispatchToAccessor;
|
|
} else {
|
|
strategy = WitnessStorage->getAccessStrategy(TheAccessSemantics,
|
|
AccessKind::ReadWrite);
|
|
}
|
|
|
|
// Handle the indices.
|
|
RValue indicesRV;
|
|
if (isa<SubscriptDecl>(WitnessStorage)) {
|
|
indicesRV = collectIndicesFromParameters(gen, loc, indices);
|
|
} else {
|
|
assert(indices.empty() && "indices for a non-subscript?");
|
|
}
|
|
|
|
// As above, assume that we don't need to reabstract 'self'.
|
|
|
|
// Choose the right implementation.
|
|
SILValue address;
|
|
SILFunction *callbackFn = nullptr;
|
|
switch (strategy) {
|
|
case AccessStrategy::BehaviorStorage:
|
|
llvm_unreachable("materializeForSet should never engage in behavior init");
|
|
|
|
case AccessStrategy::Storage:
|
|
address = emitUsingStorage(gen, loc, self, std::move(indicesRV),
|
|
callbackBuffer, callbackFn);
|
|
break;
|
|
|
|
case AccessStrategy::Addressor:
|
|
address = emitUsingAddressor(gen, loc, self, std::move(indicesRV),
|
|
callbackBuffer, callbackFn);
|
|
break;
|
|
|
|
case AccessStrategy::DirectToAccessor:
|
|
case AccessStrategy::DispatchToAccessor:
|
|
address = emitUsingGetterSetter(gen, loc, self, std::move(indicesRV),
|
|
resultBuffer, callbackBuffer, callbackFn);
|
|
break;
|
|
}
|
|
|
|
// Return the address as a Builtin.RawPointer.
|
|
SILType rawPointerTy = SILType::getRawPointerType(gen.getASTContext());
|
|
address = gen.B.createAddressToPointer(loc, address, rawPointerTy);
|
|
|
|
SILType resultTupleTy =
|
|
gen.F.mapTypeIntoContext(gen.F.getConventions().getSILResultType());
|
|
SILType optCallbackTy = resultTupleTy.getTupleElementType(1);
|
|
|
|
// Form the callback.
|
|
SILValue callback;
|
|
if (callbackFn) {
|
|
// Make a reference to the callback.
|
|
callback = gen.B.createFunctionRef(loc, callbackFn);
|
|
callback = gen.B.createThinFunctionToPointer(loc, callback, rawPointerTy);
|
|
callback = gen.B.createOptionalSome(loc, callback, optCallbackTy);
|
|
} else {
|
|
// There is no callback.
|
|
callback = gen.B.createOptionalNone(loc, optCallbackTy);
|
|
}
|
|
|
|
// Form the result and return.
|
|
auto result = gen.B.createTuple(loc, resultTupleTy, { address, callback });
|
|
gen.Cleanups.emitCleanupsForReturn(CleanupLocation::get(loc));
|
|
gen.B.createReturn(loc, result);
|
|
}
|
|
|
|
/// Recursively walk into the given formal index type, expanding tuples,
|
|
/// in order to form the arguments to a subscript accessor.
|
|
static void translateIndices(SILGenFunction &gen, SILLocation loc,
|
|
AbstractionPattern pattern, CanType formalType,
|
|
ArrayRef<ManagedValue> &sourceIndices,
|
|
RValue &result) {
|
|
// Expand if the pattern was a tuple.
|
|
if (pattern.isTuple()) {
|
|
auto formalTupleType = cast<TupleType>(formalType);
|
|
for (auto i : indices(formalTupleType.getElementTypes())) {
|
|
translateIndices(gen, loc, pattern.getTupleElementType(i),
|
|
formalTupleType.getElementType(i),
|
|
sourceIndices, result);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(!sourceIndices.empty() && "ran out of elements in index!");
|
|
ManagedValue value = sourceIndices.front();
|
|
sourceIndices = sourceIndices.slice(1);
|
|
|
|
// We're going to build an RValue here, so make sure we translate
|
|
// indirect arguments to be scalar if we have a loadable type.
|
|
if (value.getType().isAddress()) {
|
|
auto &valueTL = gen.getTypeLowering(value.getType());
|
|
if (!valueTL.isAddressOnly()) {
|
|
value = gen.emitLoad(loc, value.forward(gen), valueTL,
|
|
SGFContext(), IsTake);
|
|
}
|
|
}
|
|
|
|
// Reabstract the subscripts from the requirement pattern to the
|
|
// formal type.
|
|
value = gen.emitOrigToSubstValue(loc, value, pattern, formalType);
|
|
|
|
// Invoking the accessor will expect a value of the formal type, so
|
|
// don't reabstract to that here.
|
|
|
|
// Add that to the result, further expanding if necessary.
|
|
result.addElement(gen, value, formalType, loc);
|
|
}
|
|
|
|
RValue MaterializeForSetEmitter::
|
|
collectIndicesFromParameters(SILGenFunction &gen, SILLocation loc,
|
|
ArrayRef<ManagedValue> sourceIndices) {
|
|
auto witnessSubscript = cast<SubscriptDecl>(WitnessStorage);
|
|
CanType witnessIndicesType =
|
|
witnessSubscript->getIndicesInterfaceType()
|
|
->getCanonicalType(GenericSig,
|
|
*SGM.M.getSwiftModule());
|
|
CanType substIndicesType =
|
|
getSubstWitnessInterfaceType(witnessIndicesType);
|
|
|
|
auto reqSubscript = cast<SubscriptDecl>(RequirementStorage);
|
|
auto pattern = SGM.Types.getIndicesAbstractionPattern(reqSubscript);
|
|
|
|
RValue result(pattern, substIndicesType);
|
|
|
|
// Translate and reabstract the index values by recursively walking
|
|
// the abstracted index type.
|
|
translateIndices(gen, loc, pattern, substIndicesType,
|
|
sourceIndices, result);
|
|
assert(sourceIndices.empty() && "index value not claimed!");
|
|
|
|
return result;
|
|
}
|
|
|
|
SILFunction *MaterializeForSetEmitter::createCallback(SILFunction &F,
|
|
GeneratorFn generator) {
|
|
auto callbackType =
|
|
SGM.Types.getMaterializeForSetCallbackType(WitnessStorage,
|
|
GenericSig,
|
|
SelfInterfaceType,
|
|
CallbackRepresentation);
|
|
|
|
auto *genericEnv = GenericEnv;
|
|
if (GenericEnv && GenericEnv->getGenericSignature()->areAllParamsConcrete())
|
|
genericEnv = nullptr;
|
|
|
|
// The callback's symbol is irrelevant (it is just returned as a value from
|
|
// the actual materializeForSet function), and so we only need to make sure we
|
|
// don't break things in cases when there may be multiple definitions.
|
|
auto callbackLinkage =
|
|
hasSharedVisibility(Linkage) ? SILLinkage::Shared : SILLinkage::Private;
|
|
|
|
auto callback = SGM.M.createFunction(
|
|
callbackLinkage, CallbackName, callbackType, genericEnv,
|
|
SILLocation(Witness), IsBare, F.isTransparent(), F.isSerialized(),
|
|
IsNotThunk, SubclassScope::NotApplicable,
|
|
/*inlineStrategy=*/InlineDefault,
|
|
/*EK=*/EffectsKind::Unspecified,
|
|
/*InsertBefore=*/&F);
|
|
|
|
callback->setDebugScope(new (SGM.M) SILDebugScope(Witness, callback));
|
|
|
|
PrettyStackTraceSILFunction X("silgen materializeForSet callback", callback);
|
|
{
|
|
SILGenFunction gen(SGM, *callback);
|
|
|
|
auto makeParam = [&](unsigned index) -> SILArgument * {
|
|
SILType type = gen.F.mapTypeIntoContext(
|
|
gen.getSILType(callbackType->getParameters()[index]));
|
|
return gen.F.begin()->createFunctionArgument(type);
|
|
};
|
|
|
|
// Add arguments for all the parameters.
|
|
auto valueBuffer = makeParam(0);
|
|
auto storageBuffer = makeParam(1);
|
|
auto self = makeParam(2);
|
|
(void) makeParam(3);
|
|
|
|
SILLocation loc = Witness;
|
|
loc.markAutoGenerated();
|
|
|
|
// Call the generator function we were provided.
|
|
{
|
|
LexicalScope scope(gen, CleanupLocation::get(loc));
|
|
generator(gen, loc, valueBuffer, storageBuffer, self);
|
|
}
|
|
|
|
// Return void.
|
|
auto result = gen.emitEmptyTuple(loc);
|
|
gen.B.createReturn(loc, result);
|
|
}
|
|
|
|
callback->verify();
|
|
return callback;
|
|
}
|
|
|
|
/// Emit a materializeForSet operation that projects storage, assuming
|
|
/// that no cleanups or callbacks are required.
|
|
SILValue MaterializeForSetEmitter::emitUsingStorage(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue self,
|
|
RValue &&indices,
|
|
SILValue callbackBuffer,
|
|
SILFunction *&callback) {
|
|
LValue lvalue = buildLValue(gen, loc, self, std::move(indices),
|
|
AccessKind::ReadWrite);
|
|
|
|
SILGenFunction::UnpairedAccesses unpairedAccesses(callbackBuffer);
|
|
gen.UnpairedAccessesForMaterializeForSet = &unpairedAccesses;
|
|
|
|
ManagedValue address =
|
|
gen.emitAddressOfLValue(loc, std::move(lvalue), AccessKind::ReadWrite);
|
|
|
|
gen.UnpairedAccessesForMaterializeForSet = nullptr;
|
|
|
|
// Create a callback to end the unpaired accesses if any were pushed.
|
|
if (unpairedAccesses.NumAccesses) {
|
|
// If it ever proves necessary, we can make this work by allocating
|
|
// a (ValueBuffer x N) tuple in callbackBuffer and rewriting the existing
|
|
// uses. But it probably won't ever prove necessary.
|
|
assert(unpairedAccesses.NumAccesses == 1 &&
|
|
"multiple unpaired accesses not supported");
|
|
|
|
callback = createEndUnpairedAccessesCallback(gen.F, unpairedAccesses);
|
|
}
|
|
|
|
return address.getUnmanagedValue();
|
|
}
|
|
|
|
SILFunction *
|
|
MaterializeForSetEmitter::createEndUnpairedAccessesCallback(SILFunction &F,
|
|
const SILGenFunction::UnpairedAccesses &unpairedAccesses) {
|
|
return createCallback(F, [&](SILGenFunction &gen, SILLocation loc,
|
|
SILValue resultBuffer, SILValue callbackStorage,
|
|
SILValue self) {
|
|
assert(unpairedAccesses.NumAccesses == 1 &&
|
|
"multiple unpaired accesses not supported");
|
|
gen.B.createEndUnpairedAccess(loc, callbackStorage,
|
|
SILAccessEnforcement::Dynamic,
|
|
/*aborting*/ false);
|
|
});
|
|
}
|
|
|
|
|
|
|
|
/// Emit a materializeForSet operation that calls a mutable addressor.
|
|
///
|
|
/// If it's not an unsafe addressor, this uses a callback function to
|
|
/// write the l-value back.
|
|
SILValue MaterializeForSetEmitter::emitUsingAddressor(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue self,
|
|
RValue &&indices,
|
|
SILValue callbackBuffer,
|
|
SILFunction *&callback) {
|
|
bool isDirect = (TheAccessSemantics != AccessSemantics::Ordinary);
|
|
|
|
// Call the mutable addressor.
|
|
auto addressor = gen.getAddressorDeclRef(WitnessStorage,
|
|
AccessKind::ReadWrite,
|
|
isDirect);
|
|
std::pair<ManagedValue, ManagedValue> result;
|
|
{
|
|
FormalEvaluationScope Scope(gen);
|
|
|
|
SILType addressType = WitnessStorageType.getAddressType();
|
|
ArgumentSource baseRV =
|
|
gen.prepareAccessorBaseArg(loc, self, SubstSelfType, addressor);
|
|
result = gen.emitAddressorAccessor(loc, addressor, WitnessSubs,
|
|
std::move(baseRV), IsSuper, isDirect,
|
|
std::move(indices), addressType);
|
|
}
|
|
|
|
SILValue address = result.first.getUnmanagedValue();
|
|
|
|
AddressorKind addressorKind =
|
|
WitnessStorage->getMutableAddressor()->getAddressorKind();
|
|
ManagedValue owner = result.second;
|
|
if (!owner) {
|
|
assert(addressorKind == AddressorKind::Unsafe);
|
|
} else {
|
|
SILValue allocatedCallbackBuffer =
|
|
gen.B.createAllocValueBuffer(loc, owner.getType(), callbackBuffer);
|
|
gen.B.emitStoreValueOperation(loc, owner.forward(gen),
|
|
allocatedCallbackBuffer,
|
|
StoreOwnershipQualifier::Init);
|
|
|
|
callback = createAddressorCallback(gen.F, owner.getType(), addressorKind);
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
/// Emit a materializeForSet callback to clean up after an addressor
|
|
/// with an owner result.
|
|
SILFunction *
|
|
MaterializeForSetEmitter::createAddressorCallback(SILFunction &F,
|
|
SILType ownerType,
|
|
AddressorKind addressorKind) {
|
|
return createCallback(F, [&](SILGenFunction &gen, SILLocation loc,
|
|
SILValue resultBuffer, SILValue callbackStorage,
|
|
SILValue self) {
|
|
auto ownerAddress =
|
|
gen.B.createProjectValueBuffer(loc, ownerType, callbackStorage);
|
|
auto owner = gen.B.emitLoadValueOperation(loc, ownerAddress,
|
|
LoadOwnershipQualifier::Take);
|
|
|
|
switch (addressorKind) {
|
|
case AddressorKind::NotAddressor:
|
|
case AddressorKind::Unsafe:
|
|
llvm_unreachable("owner with unexpected addressor kind");
|
|
|
|
case AddressorKind::Owning:
|
|
case AddressorKind::NativeOwning:
|
|
gen.B.createDestroyValue(loc, owner);
|
|
break;
|
|
|
|
case AddressorKind::NativePinning:
|
|
gen.B.createStrongUnpin(loc, owner, gen.B.getDefaultAtomicity());
|
|
break;
|
|
}
|
|
|
|
gen.B.createDeallocValueBuffer(loc, ownerType, callbackStorage);
|
|
});
|
|
}
|
|
|
|
/// Emit a materializeForSet operation that simply loads the l-value
|
|
/// into the result buffer. This operation creates a callback to write
|
|
/// the l-value back.
|
|
SILValue
|
|
MaterializeForSetEmitter::emitUsingGetterSetter(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue self,
|
|
RValue &&indices,
|
|
SILValue resultBuffer,
|
|
SILValue callbackBuffer,
|
|
SILFunction *&callback) {
|
|
// Copy the indices into the callback storage.
|
|
const TypeLowering *indicesTL = nullptr;
|
|
CleanupHandle indicesCleanup = CleanupHandle::invalid();
|
|
CanType indicesFormalType;
|
|
if (isa<SubscriptDecl>(WitnessStorage)) {
|
|
indicesFormalType = indices.getType();
|
|
indicesTL = &gen.getTypeLowering(indicesFormalType);
|
|
SILValue allocatedCallbackBuffer =
|
|
gen.B.createAllocValueBuffer(loc, indicesTL->getLoweredType(),
|
|
callbackBuffer);
|
|
|
|
// Emit into the buffer.
|
|
auto init = gen.useBufferAsTemporary(allocatedCallbackBuffer, *indicesTL);
|
|
indicesCleanup = init->getInitializedCleanup();
|
|
|
|
indices.copyInto(gen, loc, init.get());
|
|
}
|
|
|
|
// Set up the result buffer.
|
|
resultBuffer =
|
|
gen.B.createPointerToAddress(loc, resultBuffer,
|
|
RequirementStorageType.getAddressType(),
|
|
/*isStrict*/ true,
|
|
/*isInvariant*/ false);
|
|
TemporaryInitialization init(resultBuffer, CleanupHandle::invalid());
|
|
|
|
// Evaluate the getter into the result buffer.
|
|
LValue lv = buildLValue(gen, loc, self, std::move(indices), AccessKind::Read);
|
|
RValue result = gen.emitLoadOfLValue(loc, std::move(lv),
|
|
SGFContext(&init));
|
|
if (!result.isInContext()) {
|
|
std::move(result).forwardInto(gen, loc, &init);
|
|
}
|
|
|
|
// Forward the cleanup on the saved indices.
|
|
if (indicesCleanup.isValid()) {
|
|
gen.Cleanups.setCleanupState(indicesCleanup, CleanupState::Dead);
|
|
}
|
|
|
|
callback = createSetterCallback(gen.F, indicesTL, indicesFormalType);
|
|
return resultBuffer;
|
|
}
|
|
|
|
namespace {
|
|
class DeallocateValueBuffer : public Cleanup {
|
|
SILValue Buffer;
|
|
SILType ValueType;
|
|
public:
|
|
DeallocateValueBuffer(SILType valueType, SILValue buffer)
|
|
: Buffer(buffer), ValueType(valueType) {}
|
|
void emit(SILGenFunction &gen, CleanupLocation loc) override {
|
|
gen.B.createDeallocValueBuffer(loc, ValueType, Buffer);
|
|
}
|
|
void dump(SILGenFunction &) const override {
|
|
#ifndef NDEBUG
|
|
llvm::errs() << "DeallocateValueBuffer\n"
|
|
<< "State: " << getState() << "Buffer: " << Buffer << "\n";
|
|
#endif
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit a materializeForSet callback that stores the value from the
|
|
/// result buffer back into the l-value.
|
|
SILFunction *
|
|
MaterializeForSetEmitter::createSetterCallback(SILFunction &F,
|
|
const TypeLowering *indicesTL,
|
|
CanType indicesFormalType) {
|
|
return createCallback(F, [&](SILGenFunction &gen, SILLocation loc,
|
|
SILValue value, SILValue callbackBuffer,
|
|
SILValue self) {
|
|
// If this is a subscript, we need to handle the indices in the
|
|
// callback storage.
|
|
RValue indices;
|
|
if (indicesTL) {
|
|
assert(isa<SubscriptDecl>(WitnessStorage));
|
|
SILType indicesTy = indicesTL->getLoweredType();
|
|
|
|
// Enter a cleanup to deallocate the callback storage.
|
|
gen.Cleanups.pushCleanup<DeallocateValueBuffer>(indicesTy,
|
|
callbackBuffer);
|
|
|
|
// Project the value out, loading if necessary, and take
|
|
// ownership of it.
|
|
SILValue indicesV =
|
|
gen.B.createProjectValueBuffer(loc, indicesTy, callbackBuffer);
|
|
if (indicesTL->isLoadable() || !gen.silConv.useLoweredAddresses())
|
|
indicesV = indicesTL->emitLoad(gen.B, loc, indicesV,
|
|
LoadOwnershipQualifier::Take);
|
|
ManagedValue mIndices =
|
|
gen.emitManagedRValueWithCleanup(indicesV, *indicesTL);
|
|
|
|
// Explode as an r-value.
|
|
indices = RValue(gen, loc, indicesFormalType, mIndices);
|
|
}
|
|
|
|
// The callback gets the address of 'self' at +0.
|
|
ManagedValue mSelf = ManagedValue::forLValue(self);
|
|
|
|
// That's enough to build the l-value.
|
|
LValue lvalue = buildLValue(gen, loc, mSelf, std::move(indices),
|
|
AccessKind::Write);
|
|
|
|
// The callback gets the value at +1.
|
|
auto &valueTL = gen.getTypeLowering(lvalue.getTypeOfRValue());
|
|
value = gen.B.createPointerToAddress(
|
|
loc, value, valueTL.getLoweredType().getAddressType(),
|
|
/*isStrict*/ true, /*isInvariant*/ false);
|
|
if (valueTL.isLoadable() || !gen.silConv.useLoweredAddresses())
|
|
value = valueTL.emitLoad(gen.B, loc, value, LoadOwnershipQualifier::Take);
|
|
ManagedValue mValue = gen.emitManagedRValueWithCleanup(value, valueTL);
|
|
RValue rvalue(gen, loc, lvalue.getSubstFormalType(), mValue);
|
|
|
|
// Finally, call the setter.
|
|
gen.emitAssignToLValue(loc, std::move(rvalue), std::move(lvalue));
|
|
});
|
|
}
|
|
|
|
/// Emit an open-coded protocol-witness thunk for materializeForSet if
|
|
/// delegating to the standard implementation isn't good enough.
|
|
///
|
|
/// materializeForSet sometimes needs to be open-coded because of the
|
|
/// thin callback function, which is dependent but cannot be reabstracted.
|
|
///
|
|
/// - In a protocol extension, the callback doesn't know how to capture
|
|
/// or reconstruct the generic conformance information.
|
|
///
|
|
/// - The abstraction pattern of the variable from the witness may
|
|
/// differ from the abstraction pattern of the protocol, likely forcing
|
|
/// a completely different access pattern (e.g. to write back a
|
|
/// reabstracted value instead of modifying it in-place).
|
|
///
|
|
/// \return true if special code was emitted
|
|
bool SILGenFunction::
|
|
maybeEmitMaterializeForSetThunk(ProtocolConformance *conformance,
|
|
SILLinkage linkage,
|
|
Type selfInterfaceType,
|
|
Type selfType,
|
|
GenericEnvironment *genericEnv,
|
|
FuncDecl *requirement,
|
|
FuncDecl *witness,
|
|
SubstitutionList witnessSubs) {
|
|
|
|
MaterializeForSetEmitter emitter
|
|
= MaterializeForSetEmitter::forWitnessThunk(
|
|
SGM, conformance, linkage, selfInterfaceType, selfType,
|
|
genericEnv, requirement, witness, witnessSubs);
|
|
|
|
if (!emitter.shouldOpenCode())
|
|
return false;
|
|
|
|
emitter.emit(*this);
|
|
return true;
|
|
}
|
|
|
|
/// Emit a concrete implementation of materializeForSet.
|
|
void SILGenFunction::emitMaterializeForSet(FuncDecl *decl) {
|
|
assert(decl->getAccessorKind() == AccessorKind::IsMaterializeForSet);
|
|
|
|
MagicFunctionName = SILGenModule::getMagicFunctionName(decl);
|
|
|
|
MaterializeForSetEmitter emitter
|
|
= MaterializeForSetEmitter::forConcreteImplementation(
|
|
SGM, decl, getForwardingSubstitutions());
|
|
emitter.emit(*this);
|
|
}
|