Files
swift-mirror/stdlib/core/HeapBuffer.swift
Joe Pamer 94dac129d4 Remove the BooleanType conformance from optional types (rdar://problem/17110911)
To limit user confusion when using conditional expressions of type Bool?, we've decided to remove the BooleanType (aka "LogicValue") conformance from optional types. (If users would like to use an expression of type Bool? as a conditional, they'll need to check against nil.)

Note: This change effectively regresses the "case is" pattern over types, since it currently demands a BooleanType conformance. I've filed rdar://problem/17791533 to track reinstating it if necessary.

Swift SVN r20637
2014-07-28 19:20:39 +00:00

228 lines
7.1 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
typealias _HeapObject = SwiftShims.HeapObject
// Provides a common type off of which to hang swift_bufferAllocate.
// If you introduce a new most-derived subclass of this, you need
// to define __deallocate in it.
@objc public class HeapBufferStorageBase {}
@asmname("swift_bufferAllocate")
func _swift_bufferAllocate(
bufferType: HeapBufferStorageBase.Type, size: Int, alignMask: Int) -> AnyObject
@asmname("malloc_size")
func _malloc_size(heapMemory: UnsafeMutablePointer<Void>) -> Int
/// A class containing an ivar "value" of type Value, and
/// containing storage for an array of Element whose size is
/// determined at create time.
///
/// The analogous C++-ish class template would be::
///
/// template <class Value, class Element>
/// struct HeapBuffer {
/// Value value;
/// Element baseAddress[]; // length determined at creation time
///
/// HeapBuffer() = delete
/// static shared_ptr<HeapBuffer> create(Value init, int capacity);
/// }
///
/// Note that the Element array is RAW MEMORY. You are expected to
/// construct and---if necessary---destroy Elements there yourself,
/// either in a derived class, or it can be in some manager object
/// that owns the HeapBuffer.
@objc public class HeapBufferStorage<Value,Element> : HeapBufferStorageBase {
public typealias Buffer = HeapBuffer<Value, Element>
deinit {
Buffer(self)._value.destroy()
}
public func __getInstanceSizeAndAlignMask() -> (Int,Int) {
return Buffer(self)._allocatedSizeAndAlignMask()
}
}
@asmname("_swift_isUniquelyReferenced")
func _swift_isUniquelyReferenced(_: UnsafeMutablePointer<HeapObject>) -> Bool
// Return true if x is the only (strong) reference to the given RawBuffer
//
// This is an inout function for two reasons:
//
// 1. You should only call it when about to mutate the object.
// Doing so otherwise implies a race condition if the buffer is
// shared across threads.
//
// 2. When it is not an inout function, self is passed by
// value... thus bumping the reference count and disturbing the
// result we are trying to observe, Dr. Heisenberg!
//
// NOTE: this is not as safe as it could be; class types that come
// from Cocoa don't have a reference count stored inline where we're
// checking for it. However, we have no way to restrict T to being a
// native Swift class, and in fact we have no reasonable way of
// getting a class pointer out of some other types, such as an enum
// whose first case is a native Swift object and is statically known
// to be in that case, without affecting its reference count. Instead
// we accept everything; unsafeBitCast will at least catch
// inappropriately-sized things at runtime.
public func _isUniquelyReferenced<T>(inout x: T) -> Bool {
return _swift_isUniquelyReferenced(
unsafeBitCast(x, UnsafeMutablePointer<HeapObject>.self))
}
public struct HeapBuffer<Value, Element> : Equatable {
public typealias Storage = HeapBufferStorage<Value, Element>
let storage: Storage?
static func _valueOffset() -> Int {
return _roundUpToAlignment(sizeof(_HeapObject.self), alignof(Value.self))
}
static func _elementOffset() -> Int {
return _roundUpToAlignment(_valueOffset() + sizeof(Value.self),
alignof(Element.self))
}
static func _requiredAlignMask() -> Int {
// We can't use max here because it can allocate an array.
let heapAlign = alignof(_HeapObject.self) &- 1
let valueAlign = alignof(Value.self) &- 1
let elementAlign = alignof(Element.self) &- 1
return (heapAlign < valueAlign
? (valueAlign < elementAlign ? elementAlign : valueAlign)
: (heapAlign < elementAlign ? elementAlign : heapAlign))
}
var _address: UnsafeMutablePointer<Int8> {
return UnsafeMutablePointer(
Builtin.bridgeToRawPointer(self._nativeObject))
}
var _value: UnsafeMutablePointer<Value> {
return UnsafeMutablePointer(
HeapBuffer._valueOffset() + _address)
}
var baseAddress: UnsafeMutablePointer<Element> {
return UnsafeMutablePointer(HeapBuffer._elementOffset() + _address)
}
func _allocatedSize() -> Int {
return _malloc_size(UnsafeMutablePointer(_address))
}
func _allocatedAlignMask() -> Int {
return HeapBuffer._requiredAlignMask()
}
func _allocatedSizeAndAlignMask() -> (Int, Int) {
return (_allocatedSize(), _allocatedAlignMask())
}
/// Return the actual number of `Elements` we can possibly store.
func _capacity() -> Int {
return (_allocatedSize() - HeapBuffer._elementOffset())
/ strideof(Element.self)
}
init() {
self.storage = .None
}
init(_ storage: Storage) {
self.storage = storage
}
/// Create a `HeapBuffer` with `self.value = initializer` and
/// `self._capacity() >= capacity`.
public init(
_ storageClass: HeapBufferStorageBase.Type,
_ initializer: Value, _ capacity: Int
) {
_sanityCheck(capacity >= 0, "creating a HeapBuffer with negative capacity")
let totalSize = HeapBuffer._elementOffset() +
capacity * strideof(Element.self)
let alignMask = HeapBuffer._requiredAlignMask()
self.storage = unsafeBitCast(
_swift_bufferAllocate(storageClass, totalSize, alignMask), Storage.self)
self._value.initialize(initializer)
}
var value : Value {
get {
return _value.memory
}
nonmutating set(newValue) {
_value.memory = newValue
}
}
public var hasStorage: Bool {
return storage != nil
}
subscript(i: Int) -> Element {
get {
return baseAddress[i]
}
nonmutating set(newValue) {
baseAddress[i] = newValue
}
}
var _nativeObject: Builtin.NativeObject {
return unsafeBitCast(storage, Builtin.NativeObject.self)
}
static func fromNativeObject(x: Builtin.NativeObject) -> HeapBuffer {
return HeapBuffer(Builtin.castFromNativeObject(x) as Storage)
}
public mutating func isUniquelyReferenced() -> Bool {
if storage == nil {
return false
}
var workaroundForRadar16119895 = unsafeBitCast(storage, COpaquePointer.self)
return Swift._isUniquelyReferenced(&workaroundForRadar16119895)
}
}
// HeapBuffers are equal when they reference the same buffer
public func == <Value, Element> (
lhs: HeapBuffer<Value, Element>,
rhs: HeapBuffer<Value, Element>) -> Bool {
return lhs._nativeObject == rhs._nativeObject
}
// OnHeap<T>
//
// A way to store a value on the heap. These values are likely to be
// implicitly shared, so it's safest if they're immutable.
//
public struct OnHeap<T> {
typealias Buffer = HeapBuffer<T, Void>
init(_ value: T) {
_storage = HeapBuffer(Buffer.Storage.self, value, 0)
}
var _value: T { return _storage._value.memory }
var _storage: Buffer
}