Files
swift-mirror/lib/Sema/CSBindings.cpp
Pavel Yaskevich 50a76c895f [CSBindings] New binding formed by join operation should refer to constraint that triggered join
Using existing binding with updated type would result in incorrect
behavior in incremental mode since when "originating" (new) constraint
gets retracted it would leave a stale binding behind.
2021-02-01 16:55:05 -08:00

1617 lines
56 KiB
C++

//===--- CSBindings.cpp - Constraint Solver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements selection of bindings for type variables.
//
//===----------------------------------------------------------------------===//
#include "swift/Sema/CSBindings.h"
#include "TypeChecker.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
using namespace swift;
using namespace constraints;
using namespace inference;
bool PotentialBindings::canBeNil() const {
auto &ctx = CS.getASTContext();
return Literals.count(
ctx.getProtocol(KnownProtocolKind::ExpressibleByNilLiteral));
}
bool PotentialBindings::isDirectHole() const {
// Direct holes are only allowed in "diagnostic mode".
if (!CS.shouldAttemptFixes())
return false;
return Bindings.empty() && getNumViableLiteralBindings() == 0 &&
Defaults.empty() && TypeVar->getImpl().canBindToHole();
}
bool PotentialBindings::isGenericParameter() const {
auto *locator = TypeVar->getImpl().getLocator();
return locator && locator->isLastElement<LocatorPathElt::GenericParameter>();
}
bool PotentialBinding::isViableForJoin() const {
return Kind == AllowedBindingKind::Supertypes &&
!BindingType->hasLValueType() &&
!BindingType->hasUnresolvedType() &&
!BindingType->hasTypeVariable() &&
!BindingType->hasHole() &&
!BindingType->hasUnboundGenericType() &&
!hasDefaultedLiteralProtocol() &&
!isDefaultableBinding();
}
bool PotentialBindings::isDelayed() const {
if (!DelayedBy.empty())
return true;
if (isHole()) {
auto *locator = TypeVar->getImpl().getLocator();
assert(locator && "a hole without locator?");
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
}
return false;
}
bool PotentialBindings::involvesTypeVariables() const {
// This is effectively O(1) right now since bindings are re-computed
// on each step of the solver, but once bindings are computed
// incrementally it becomes more important to double-check that
// any adjacent type variables found previously are still unresolved.
return llvm::any_of(AdjacentVars, [](TypeVariableType *typeVar) {
return !typeVar->getImpl().getFixedType(/*record=*/nullptr);
});
}
bool PotentialBindings::isPotentiallyIncomplete() const {
// Generic parameters are always potentially incomplete.
if (isGenericParameter())
return true;
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything so let's delay considering it until everything
// else is resolved.
if (AssociatedCodeCompletionToken)
return true;
auto *locator = TypeVar->getImpl().getLocator();
if (!locator)
return false;
if (locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// If subtyping is allowed and this is a result of an implicit member chain,
// let's delay binding it to an optional until its object type resolved too or
// it has been determined that there is no possibility to resolve it. Otherwise
// we might end up missing solutions since it's allowed to implicitly unwrap
// base type of the chain but it can't be done early - type variable
// representing chain's result type has a different l-valueness comparing
// to generic parameter of the optional.
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind != AllowedBindingKind::Subtypes)
return false;
auto objectType = binding.BindingType->getOptionalObjectType();
return objectType && objectType->isTypeVariableOrMember();
}))
return true;
}
if (isHole()) {
// If the base of the unresolved member reference like `.foo`
// couldn't be resolved we'd want to bind it to a hole at the
// very last moment possible, just like generic parameters.
if (locator->isLastElement<LocatorPathElt::MemberRefBase>())
return true;
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
}
// If there is a `bind param` constraint associated with
// current type variable, result should be aware of that
// fact. Binding set might be incomplete until
// this constraint is resolved, because we currently don't
// look-through constraints expect to `subtype` to try and
// find related bindings.
// This only affects type variable that appears one the
// right-hand side of the `bind param` constraint and
// represents result type of the closure body, because
// left-hand side gets types from overload choices.
if (llvm::any_of(
EquivalentTo,
[&](const std::pair<TypeVariableType *, Constraint *> &equivalence) {
auto *constraint = equivalence.second;
return constraint->getKind() == ConstraintKind::BindParam &&
constraint->getSecondType()->isEqual(TypeVar);
}))
return true;
return false;
}
void PotentialBindings::inferTransitiveProtocolRequirements(
llvm::SmallDenseMap<TypeVariableType *, PotentialBindings>
&inferredBindings) {
if (TransitiveProtocols)
return;
llvm::SmallVector<std::pair<TypeVariableType *, TypeVariableType *>, 4>
workList;
llvm::SmallPtrSet<TypeVariableType *, 4> visitedRelations;
llvm::SmallDenseMap<TypeVariableType *, SmallPtrSet<Constraint *, 4>, 4>
protocols;
auto addToWorkList = [&](TypeVariableType *parent,
TypeVariableType *typeVar) {
if (visitedRelations.insert(typeVar).second)
workList.push_back({parent, typeVar});
};
auto propagateProtocolsTo =
[&protocols](TypeVariableType *dstVar,
const SmallVectorImpl<Constraint *> &direct,
const SmallPtrSetImpl<Constraint *> &transitive) {
auto &destination = protocols[dstVar];
for (auto *protocol : direct)
destination.insert(protocol);
for (auto *protocol : transitive)
destination.insert(protocol);
};
addToWorkList(nullptr, TypeVar);
do {
auto *currentVar = workList.back().second;
auto cachedBindings = inferredBindings.find(currentVar);
if (cachedBindings == inferredBindings.end()) {
workList.pop_back();
continue;
}
auto &bindings = cachedBindings->getSecond();
// If current variable already has transitive protocol
// conformances inferred, there is no need to look deeper
// into subtype/equivalence chain.
if (bindings.TransitiveProtocols) {
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
assert(parent);
propagateProtocolsTo(parent, bindings.Protocols,
*bindings.TransitiveProtocols);
continue;
}
for (const auto &entry : bindings.SubtypeOf)
addToWorkList(currentVar, entry.first);
// If current type variable is part of an equivalence
// class, make it a "representative" and let's it infer
// supertypes and direct protocol requirements from
// other members.
for (const auto &entry : bindings.EquivalentTo) {
auto eqBindings = inferredBindings.find(entry.first);
if (eqBindings != inferredBindings.end()) {
const auto &bindings = eqBindings->getSecond();
llvm::SmallPtrSet<Constraint *, 2> placeholder;
// Add any direct protocols from members of the
// equivalence class, so they could be propagated
// to all of the members.
propagateProtocolsTo(currentVar, bindings.Protocols, placeholder);
// Since type variables are equal, current type variable
// becomes a subtype to any supertype found in the current
// equivalence class.
for (const auto &eqEntry : bindings.SubtypeOf)
addToWorkList(currentVar, eqEntry.first);
}
}
// More subtype/equivalences relations have been added.
if (workList.back().second != currentVar)
continue;
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
// At all of the protocols associated with current type variable
// are transitive to its parent, propogate them down the subtype/equivalence
// chain.
if (parent) {
propagateProtocolsTo(parent, bindings.Protocols, protocols[currentVar]);
}
auto inferredProtocols = std::move(protocols[currentVar]);
llvm::SmallPtrSet<Constraint *, 4> protocolsForEquivalence;
// Equivalence class should contain both:
// - direct protocol requirements of the current type
// variable;
// - all of the transitive protocols inferred through
// the members of the equivalence class.
{
protocolsForEquivalence.insert(bindings.Protocols.begin(),
bindings.Protocols.end());
protocolsForEquivalence.insert(inferredProtocols.begin(),
inferredProtocols.end());
}
// Propogate inferred protocols to all of the members of the
// equivalence class.
for (const auto &equivalence : bindings.EquivalentTo) {
auto eqBindings = inferredBindings.find(equivalence.first);
if (eqBindings != inferredBindings.end()) {
auto &bindings = eqBindings->getSecond();
bindings.TransitiveProtocols.emplace(protocolsForEquivalence);
}
}
// Update the bindings associated with current type variable,
// to avoid repeating this inference process.
bindings.TransitiveProtocols.emplace(std::move(inferredProtocols));
} while (!workList.empty());
}
void PotentialBindings::inferTransitiveBindings(
const llvm::SmallDenseMap<TypeVariableType *, PotentialBindings>
&inferredBindings) {
using BindingKind = AllowedBindingKind;
for (const auto &entry : SupertypeOf) {
auto relatedBindings = inferredBindings.find(entry.first);
if (relatedBindings == inferredBindings.end())
continue;
auto &bindings = relatedBindings->getSecond();
// FIXME: This is a workaround necessary because solver doesn't filter
// bindings based on protocol requirements placed on a type variable.
//
// Forward propagate (subtype -> supertype) only literal conformance
// requirements since that helps solver to infer more types at
// parameter positions.
//
// \code
// func foo<T: ExpressibleByStringLiteral>(_: String, _: T) -> T {
// fatalError()
// }
//
// func bar(_: Any?) {}
//
// func test() {
// bar(foo("", ""))
// }
// \endcode
//
// If one of the literal arguments doesn't propagate its
// `ExpressibleByStringLiteral` conformance, we'd end up picking
// `T` with only one type `Any?` which is incorrect.
for (const auto &literal : bindings.Literals)
addLiteral(literal.second.getSource());
// Infer transitive defaults.
for (const auto &def : bindings.Defaults)
addDefault(def.second);
// TODO: We shouldn't need this in the future.
if (entry.second->getKind() != ConstraintKind::Subtype)
continue;
for (auto &binding : bindings.Bindings) {
// We need the binding kind for the potential binding to
// either be Exact or Supertypes in order for it to make sense
// to add Supertype bindings based on the relationship between
// our type variables.
if (binding.Kind != BindingKind::Exact &&
binding.Kind != BindingKind::Supertypes)
continue;
auto type = binding.BindingType;
if (type->isHole())
continue;
if (ConstraintSystem::typeVarOccursInType(TypeVar, type))
continue;
(void)addPotentialBinding(
binding.withSameSource(type, BindingKind::Supertypes));
}
}
}
void PotentialBindings::finalize(
llvm::SmallDenseMap<TypeVariableType *, PotentialBindings>
&inferredBindings) {
inferTransitiveProtocolRequirements(inferredBindings);
inferTransitiveBindings(inferredBindings);
}
PotentialBindings::BindingScore
PotentialBindings::formBindingScore(const PotentialBindings &b) {
// If there are no bindings available but this type
// variable represents a closure - let's consider it
// as having a single non-default binding - that would
// be a type inferred based on context.
// It's considered to be non-default for purposes of
// ranking because we'd like to prioritize resolving
// closures to gain more information from their bodies.
unsigned numBindings = b.Bindings.size() + b.getNumViableLiteralBindings();
auto numNonDefaultableBindings = numBindings > 0 ? numBindings
: b.TypeVar->getImpl().isClosureType() ? 1
: 0;
return std::make_tuple(b.isHole(), numNonDefaultableBindings == 0,
b.isDelayed(), b.isSubtypeOfExistentialType(),
b.involvesTypeVariables(),
static_cast<unsigned char>(b.getLiteralKind()),
-numNonDefaultableBindings);
}
Optional<PotentialBindings> ConstraintSystem::determineBestBindings() {
// Look for potential type variable bindings.
Optional<PotentialBindings> bestBindings;
llvm::SmallDenseMap<TypeVariableType *, PotentialBindings> cache;
// First, let's collect all of the possible bindings.
for (auto *typeVar : getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed())
cache.insert({typeVar, inferBindingsFor(typeVar, /*finalize=*/false)});
}
// Determine whether given type variable with its set of bindings is
// viable to be attempted on the next step of the solver. If type variable
// has no "direct" bindings of any kind e.g. direct bindings to concrete
// types, default types from "defaultable" constraints or literal
// conformances, such type variable is not viable to be evaluated to be
// attempted next.
auto isViableForRanking = [this](const PotentialBindings &bindings) -> bool {
auto *typeVar = bindings.TypeVar;
// If type variable is marked as a potential hole there is always going
// to be at least one binding available for it.
if (shouldAttemptFixes() && typeVar->getImpl().canBindToHole())
return true;
return bool(bindings);
};
// Now let's see if we could infer something for related type
// variables based on other bindings.
for (auto *typeVar : getTypeVariables()) {
auto cachedBindings = cache.find(typeVar);
if (cachedBindings == cache.end())
continue;
auto &bindings = cachedBindings->getSecond();
// Before attempting to infer transitive bindings let's check
// whether there are any viable "direct" bindings associated with
// current type variable, if there are none - it means that this type
// variable could only be used to transitively infer bindings for
// other type variables and can't participate in ranking.
//
// Viable bindings include - any types inferred from constraints
// associated with given type variable, any default constraints,
// or any conformance requirements to literal protocols with can
// produce a default type.
bool isViable = isViableForRanking(bindings);
bindings.finalize(cache);
if (!bindings || !isViable)
continue;
if (isDebugMode()) {
bindings.dump(typeVar, llvm::errs(), solverState->depth * 2);
}
// If these are the first bindings, or they are better than what
// we saw before, use them instead.
if (!bestBindings || bindings < *bestBindings)
bestBindings.emplace(bindings);
}
return bestBindings;
}
/// Find the set of type variables that are inferable from the given type.
///
/// \param type The type to search.
/// \param typeVars Collects the type variables that are inferable from the
/// given type. This set is not cleared, so that multiple types can be explored
/// and introduce their results into the same set.
static void
findInferableTypeVars(Type type,
SmallPtrSetImpl<TypeVariableType *> &typeVars) {
type = type->getCanonicalType();
if (!type->hasTypeVariable())
return;
class Walker : public TypeWalker {
SmallPtrSetImpl<TypeVariableType *> &typeVars;
public:
explicit Walker(SmallPtrSetImpl<TypeVariableType *> &typeVars)
: typeVars(typeVars) {}
Action walkToTypePre(Type ty) override {
if (ty->is<DependentMemberType>())
return Action::SkipChildren;
if (auto typeVar = ty->getAs<TypeVariableType>())
typeVars.insert(typeVar);
return Action::Continue;
}
};
type.walk(Walker(typeVars));
}
void PotentialBindings::addDefault(Constraint *constraint) {
auto defaultTy = constraint->getSecondType();
Defaults.insert({defaultTy->getCanonicalType(), constraint});
}
bool LiteralRequirement::isCoveredBy(Type type, DeclContext *useDC) const {
auto coversDefaultType = [](Type type, Type defaultType) -> bool {
if (!defaultType->hasUnboundGenericType())
return type->isEqual(defaultType);
// For generic literal types, check whether we already have a
// specialization of this generic within our list.
// FIXME: This assumes that, e.g., the default literal
// int/float/char/string types are never generic.
auto nominal = defaultType->getAnyNominal();
if (!nominal)
return false;
// FIXME: Check parents?
return nominal == type->getAnyNominal();
};
if (hasDefaultType() && coversDefaultType(type, getDefaultType()))
return true;
return bool(TypeChecker::conformsToProtocol(type, getProtocol(), useDC));
}
std::pair<bool, Type>
PotentialBindings::isLiteralCoveredBy(const LiteralRequirement &literal,
const PotentialBinding &binding,
bool canBeNil) const {
auto type = binding.BindingType;
switch (binding.Kind) {
case AllowedBindingKind::Exact:
type = binding.BindingType;
break;
case AllowedBindingKind::Subtypes:
case AllowedBindingKind::Supertypes:
type = binding.BindingType->getRValueType();
break;
}
if (type->isTypeVariableOrMember() || type->isHole())
return std::make_pair(false, Type());
bool requiresUnwrap = false;
do {
if (literal.isCoveredBy(type, CS.DC)) {
return std::make_pair(true, requiresUnwrap ? type : binding.BindingType);
}
// Can't unwrap optionals if there is `ExpressibleByNilLiteral`
// conformance requirement placed on the type variable.
if (canBeNil)
return std::make_pair(false, Type());
// If this literal protocol is not a direct requirement it
// would not be possible to change optionality while inferring
// bindings for a supertype, so this hack doesn't apply.
if (!literal.isDirectRequirement())
return std::make_pair(false, Type());
// If we're allowed to bind to subtypes, look through optionals.
// FIXME: This is really crappy special case of computing a reasonable
// result based on the given constraints.
if (binding.Kind == AllowedBindingKind::Subtypes) {
if (auto objTy = type->getOptionalObjectType()) {
requiresUnwrap = true;
type = objTy;
continue;
}
}
return std::make_pair(false, Type());
} while (true);
}
bool PotentialBindings::addPotentialBinding(PotentialBinding binding,
bool allowJoinMeet) {
assert(!binding.BindingType->is<ErrorType>());
if (Bindings.count(binding))
return false;
// If this is a non-defaulted supertype binding,
// check whether we can combine it with another
// supertype binding by computing the 'join' of the types.
if (binding.isViableForJoin() && allowJoinMeet) {
auto isAcceptableJoin = [](Type type) {
return !type->isAny() && (!type->getOptionalObjectType() ||
!type->getOptionalObjectType()->isAny());
};
SmallVector<PotentialBinding, 4> joined;
for (auto existingBinding = Bindings.begin();
existingBinding != Bindings.end();) {
if (existingBinding->isViableForJoin()) {
auto join =
Type::join(existingBinding->BindingType, binding.BindingType);
if (join && isAcceptableJoin(*join)) {
// Result of the join has to use new binding because it refers
// to the constraint that triggered the join that replaced the
// existing binding.
joined.push_back(binding.withType(*join));
// Remove existing binding from the set.
// It has to be re-introduced later, since its type has been changed.
existingBinding = Bindings.erase(existingBinding);
continue;
}
}
++existingBinding;
}
for (const auto &binding : joined)
(void)Bindings.insert(binding);
// If new binding has been joined with at least one of existing
// bindings, there is no reason to include it into the set.
if (!joined.empty())
return false;
}
// If the type variable can't bind to an lvalue, make sure the
// type we pick isn't an lvalue.
if (!TypeVar->getImpl().canBindToLValue() &&
binding.BindingType->hasLValueType()) {
binding = binding.withType(binding.BindingType->getRValueType());
}
if (!isViable(binding))
return false;
// Check whether the given binding covers any of the literal protocols
// associated with this type variable.
{
bool allowsNil = canBeNil();
for (auto &literal : Literals) {
auto *protocol = literal.first;
// Skip conformance to `nil` protocol since it doesn't
// have a default type and can't affect binding set.
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByNilLiteral))
continue;
auto &info = literal.second;
if (!info.viableAsBinding())
continue;
bool isCovered = false;
Type adjustedTy;
std::tie(isCovered, adjustedTy) =
isLiteralCoveredBy(info, binding, allowsNil);
if (!isCovered)
continue;
binding = binding.withType(adjustedTy);
info.setCoveredBy(binding.getSource());
}
}
return Bindings.insert(std::move(binding));
}
void PotentialBindings::addLiteral(Constraint *constraint) {
auto isDirectRequirement = [&](Constraint *constraint) -> bool {
if (auto *typeVar = constraint->getFirstType()->getAs<TypeVariableType>()) {
auto *repr = CS.getRepresentative(typeVar);
return repr == TypeVar;
}
return false;
};
auto *protocol = constraint->getProtocol();
// Let's try to coalesce integer and floating point literal protocols
// if they appear together because the only possible default type that
// could satisfy both requirements is `Double`.
{
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
auto *floatLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral);
if (Literals.count(floatLiteral))
return;
}
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
auto *intLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral);
Literals.erase(intLiteral);
}
}
if (Literals.count(protocol) > 0)
return;
bool isDirect = isDirectRequirement(constraint);
// Coverage is not applicable to `ExpressibleByNilLiteral` since it
// doesn't have a default type.
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByNilLiteral)) {
Literals.insert(
{protocol, LiteralRequirement(constraint,
/*DefaultType=*/Type(), isDirect)});
return;
}
// Check whether any of the existing bindings covers this literal
// protocol.
LiteralRequirement literal(
constraint, TypeChecker::getDefaultType(protocol, CS.DC), isDirect);
if (literal.viableAsBinding()) {
bool allowsNil = canBeNil();
for (auto binding = Bindings.begin(); binding != Bindings.end();
++binding) {
bool isCovered = false;
Type adjustedTy;
std::tie(isCovered, adjustedTy) =
isLiteralCoveredBy(literal, *binding, allowsNil);
// No luck here, let's try next literal requirement.
if (!isCovered)
continue;
// If the type has been adjusted, we need to re-insert
// the binding but skip all of the previous checks.
//
// It's okay to do this here since iteration stops after
// first covering binding has been found.
if (adjustedTy) {
Bindings.erase(binding);
Bindings.insert(binding->withType(adjustedTy));
}
literal.setCoveredBy(binding->getSource());
break;
}
}
Literals.insert({protocol, std::move(literal)});
}
bool PotentialBindings::isViable(PotentialBinding &binding) const {
// Prevent against checking against the same opened nominal type
// over and over again. Doing so means redundant work in the best
// case. In the worst case, we'll produce lots of duplicate solutions
// for this constraint system, which is problematic for overload
// resolution.
auto type = binding.BindingType;
if (type->hasTypeVariable()) {
auto *NTD = type->getAnyNominal();
if (!NTD)
return true;
for (auto &existing : Bindings) {
auto *existingNTD = existing.BindingType->getAnyNominal();
if (existingNTD && NTD == existingNTD)
return false;
}
}
return true;
}
bool PotentialBindings::favoredOverDisjunction(Constraint *disjunction) const {
if (isHole() || isDelayed())
return false;
// If this bindings are for a closure and there are no holes,
// it shouldn't matter whether it there are any type variables
// or not because e.g. parameter type can have type variables,
// but we still want to resolve closure body early (instead of
// attempting any disjunction) to gain additional contextual
// information.
if (TypeVar->getImpl().isClosureType()) {
auto boundType = disjunction->getNestedConstraints()[0]->getFirstType();
// If disjunction is attempting to bind a type variable, let's
// favor closure because it would add additional context, otherwise
// if it's something like a collection (where it has to pick
// between a conversion and bridging conversion) or concrete
// type let's prefer the disjunction.
//
// We are looking through optionals here because it could be
// a situation where disjunction is formed to match optionals
// either as deep equality or optional-to-optional conversion.
// Such type variables might be connected to closure as well
// e.g. when result type is optional, so it makes sense to
// open closure before attempting such disjunction.
return boundType->lookThroughAllOptionalTypes()->is<TypeVariableType>();
}
return !involvesTypeVariables();
}
PotentialBindings ConstraintSystem::inferBindingsFor(TypeVariableType *typeVar,
bool finalize) {
assert(typeVar->getImpl().getRepresentative(nullptr) == typeVar &&
"not a representative");
assert(!typeVar->getImpl().getFixedType(nullptr) && "has a fixed type");
PotentialBindings bindings(*this, typeVar);
// Gather the constraints associated with this type variable.
auto constraints = CG.gatherConstraints(
typeVar, ConstraintGraph::GatheringKind::EquivalenceClass);
for (auto *constraint : constraints)
bindings.infer(constraint);
if (finalize) {
llvm::SmallDenseMap<TypeVariableType *, PotentialBindings> inferred;
bindings.finalize(inferred);
}
return bindings;
}
/// Check whether the given type can be used as a binding for the given
/// type variable.
///
/// \returns the type to bind to, if the binding is okay.
static Optional<Type> checkTypeOfBinding(TypeVariableType *typeVar, Type type) {
// If the type references the type variable, don't permit the binding.
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
type->getTypeVariables(referencedTypeVars);
if (referencedTypeVars.count(typeVar))
return None;
// If type variable is not allowed to bind to `lvalue`,
// let's check if type of potential binding has any
// type variables, which are allowed to bind to `lvalue`,
// and postpone such type from consideration.
if (!typeVar->getImpl().canBindToLValue()) {
for (auto *typeVar : referencedTypeVars) {
if (typeVar->getImpl().canBindToLValue())
return None;
}
}
{
auto objType = type->getWithoutSpecifierType();
// If the type is a type variable itself, don't permit the binding.
if (objType->is<TypeVariableType>())
return None;
// Don't bind to a dependent member type, even if it's currently
// wrapped in any number of optionals, because binding producer
// might unwrap and try to attempt it directly later.
if (objType->lookThroughAllOptionalTypes()->is<DependentMemberType>())
return None;
}
// Okay, allow the binding (with the simplified type).
return type;
}
Optional<PotentialBinding>
PotentialBindings::inferFromRelational(Constraint *constraint) {
assert(constraint->getClassification() ==
ConstraintClassification::Relational &&
"only relational constraints handled here");
auto first = CS.simplifyType(constraint->getFirstType());
auto second = CS.simplifyType(constraint->getSecondType());
if (first->is<TypeVariableType>() && first->isEqual(second))
return None;
Type type;
AllowedBindingKind kind;
if (first->getAs<TypeVariableType>() == TypeVar) {
// Upper bound for this type variable.
type = second;
kind = AllowedBindingKind::Subtypes;
} else if (second->getAs<TypeVariableType>() == TypeVar) {
// Lower bound for this type variable.
type = first;
kind = AllowedBindingKind::Supertypes;
} else {
// If the left-hand side of a relational constraint is a
// type variable representing a closure type, let's delay
// attempting any bindings related to any type variables
// on the other side since it could only be either a closure
// parameter or a result type, and we can't get a full set
// of bindings for them until closure's body is opened.
if (auto *typeVar = first->getAs<TypeVariableType>()) {
if (typeVar->getImpl().isClosureType()) {
DelayedBy.push_back(constraint);
return None;
}
}
// Check whether both this type and another type variable are
// inferable.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(first, typeVars);
findInferableTypeVars(second, typeVars);
if (typeVars.erase(TypeVar)) {
AdjacentVars.insert(typeVars.begin(), typeVars.end());
}
return None;
}
// Do not attempt to bind to ErrorType.
if (type->hasError())
return None;
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isKeyPathType()) {
auto *BGT =
type->lookThroughAllOptionalTypes()->getAs<BoundGenericType>();
if (!BGT || !isKnownKeyPathDecl(CS.getASTContext(), BGT->getDecl()))
return None;
}
}
// If the source of the binding is 'OptionalObject' constraint
// and type variable is on the left-hand side, that means
// that it _has_ to be of optional type, since the right-hand
// side of the constraint is object type of the optional.
if (constraint->getKind() == ConstraintKind::OptionalObject &&
kind == AllowedBindingKind::Subtypes) {
type = OptionalType::get(type);
}
// If the type we'd be binding to is a dependent member, don't try to
// resolve this type variable yet.
if (type->getWithoutSpecifierType()
->lookThroughAllOptionalTypes()
->is<DependentMemberType>()) {
type->getTypeVariables(AdjacentVars);
bool containsSelf = AdjacentVars.erase(TypeVar);
// If inferred type doesn't contain the current type variable,
// let's mark bindings as delayed until dependent member type
// is resolved.
if (!containsSelf)
DelayedBy.push_back(constraint);
return None;
}
// If our binding choice is a function type and we're attempting
// to bind to a type variable that is the result of opening a
// generic parameter, strip the noescape bit so that we only allow
// bindings of escaping functions in this position. We do this
// because within the generic function we have no indication of
// whether the parameter is a function type and if so whether it
// should be allowed to escape. As a result we allow anything
// passed in to escape.
if (auto *fnTy = type->getAs<AnyFunctionType>())
if (isGenericParameter() && !CS.shouldAttemptFixes())
type = fnTy->withExtInfo(fnTy->getExtInfo().withNoEscape(false));
// Check whether we can perform this binding.
if (auto boundType = checkTypeOfBinding(TypeVar, type)) {
type = *boundType;
if (type->hasTypeVariable())
type->getTypeVariables(AdjacentVars);
} else {
auto *bindingTypeVar = type->getRValueType()->getAs<TypeVariableType>();
if (!bindingTypeVar)
return None;
AdjacentVars.insert(bindingTypeVar);
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything, so let's note that fact in the potential
// bindings and use it when forming a hole if there are no other bindings
// available.
if (auto *locator = bindingTypeVar->getImpl().getLocator()) {
if (locator->directlyAt<CodeCompletionExpr>())
AssociatedCodeCompletionToken = locator->getAnchor();
}
switch (constraint->getKind()) {
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion: {
if (kind == AllowedBindingKind::Subtypes) {
SubtypeOf.insert({bindingTypeVar, constraint});
} else {
assert(kind == AllowedBindingKind::Supertypes);
SupertypeOf.insert({bindingTypeVar, constraint});
}
break;
}
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::Equal: {
EquivalentTo.insert({bindingTypeVar, constraint});
break;
}
default:
break;
}
return None;
}
// Make sure we aren't trying to equate type variables with different
// lvalue-binding rules.
if (auto otherTypeVar = type->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() !=
otherTypeVar->getImpl().canBindToLValue())
return None;
}
if (type->is<InOutType>() && !TypeVar->getImpl().canBindToInOut())
type = LValueType::get(type->getInOutObjectType());
if (type->is<LValueType>() && !TypeVar->getImpl().canBindToLValue())
type = type->getRValueType();
// BindParam constraints are not reflexive and must be treated specially.
if (constraint->getKind() == ConstraintKind::BindParam) {
if (kind == AllowedBindingKind::Subtypes) {
if (auto *lvt = type->getAs<LValueType>()) {
type = InOutType::get(lvt->getObjectType());
}
} else if (kind == AllowedBindingKind::Supertypes) {
if (auto *iot = type->getAs<InOutType>()) {
type = LValueType::get(iot->getObjectType());
}
}
kind = AllowedBindingKind::Exact;
}
return PotentialBinding{type, kind, constraint};
}
/// Retrieve the set of potential type bindings for the given
/// representative type variable, along with flags indicating whether
/// those types should be opened.
void PotentialBindings::infer(Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::ArgumentConversion:
case ConstraintKind::OperatorArgumentConversion:
case ConstraintKind::OptionalObject: {
auto binding = inferFromRelational(constraint);
if (!binding)
break;
auto type = binding->BindingType;
if (addPotentialBinding(*binding)) {
// Determines whether this type variable represents an object
// of the optional type extracted by force unwrap.
if (auto *locator = TypeVar->getImpl().getLocator()) {
auto anchor = locator->getAnchor();
// Result of force unwrap is always connected to its base
// optional type via `OptionalObject` constraint which
// preserves l-valueness, so in case where object type got
// inferred before optional type (because it got the
// type from context e.g. parameter type of a function call),
// we need to test type with and without l-value after
// delaying bindings for as long as possible.
if (isExpr<ForceValueExpr>(anchor) &&
TypeVar->getImpl().canBindToLValue() && !type->is<LValueType>()) {
(void)addPotentialBinding(binding->withType(LValueType::get(type)));
DelayedBy.push_back(constraint);
}
// If this is a type variable representing closure result,
// which is on the right-side of some relational constraint
// let's have it try `Void` as well because there is an
// implicit conversion `() -> T` to `() -> Void` and this
// helps to avoid creating a thunk to support it.
auto voidType = CS.getASTContext().TheEmptyTupleType;
if (locator->isLastElement<LocatorPathElt::ClosureResult>() &&
binding->Kind == AllowedBindingKind::Supertypes) {
(void)addPotentialBinding({voidType, binding->Kind, constraint},
/*allowJoinMeet=*/false);
}
}
}
break;
}
case ConstraintKind::KeyPathApplication: {
// If this variable is in the application projected result type, delay
// binding until we've bound other type variables in the key-path
// application constraint. This ensures we try to bind the key path type
// first, which can allow us to discover additional bindings for the result
// type.
SmallPtrSet<TypeVariableType *, 4> typeVars;
findInferableTypeVars(CS.simplifyType(constraint->getThirdType()),
typeVars);
if (typeVars.count(TypeVar)) {
DelayedBy.push_back(constraint);
}
break;
}
case ConstraintKind::BridgingConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::EscapableFunctionOf:
case ConstraintKind::OpenedExistentialOf:
case ConstraintKind::KeyPath:
case ConstraintKind::FunctionInput:
case ConstraintKind::FunctionResult:
case ConstraintKind::OpaqueUnderlyingType:
// Constraints from which we can't do anything.
break;
case ConstraintKind::DynamicTypeOf: {
// Direct binding of the left-hand side could result
// in `DynamicTypeOf` failure if right-hand side is
// bound (because 'Bind' requires equal types to
// succeed), or left is bound to Any which is not an
// [existential] metatype.
auto dynamicType = constraint->getFirstType();
if (auto *tv = dynamicType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
// This is right-hand side, let's continue.
break;
}
case ConstraintKind::Defaultable:
case ConstraintKind::DefaultClosureType:
// Do these in a separate pass.
if (CS.getFixedTypeRecursive(constraint->getFirstType(), true)
->getAs<TypeVariableType>() == TypeVar) {
addDefault(constraint);
}
break;
case ConstraintKind::Disjunction:
// If there is additional context available via disjunction
// associated with closure literal (e.g. coercion to some other
// type) let's delay resolving the closure until the disjunction
// is attempted.
DelayedBy.push_back(constraint);
break;
case ConstraintKind::ConformsTo:
case ConstraintKind::SelfObjectOfProtocol: {
auto protocolTy = constraint->getSecondType();
if (protocolTy->is<ProtocolType>())
Protocols.push_back(constraint);
break;
}
case ConstraintKind::LiteralConformsTo: {
// Record constraint where protocol requirement originated
// this is useful to use for the binding later.
addLiteral(constraint);
break;
}
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction:
case ConstraintKind::BindOverload: {
// It's possible that type of member couldn't be determined,
// and if so it would be beneficial to bind member to a hole
// early to propagate that information down to arguments,
// result type of a call that references such a member.
if (CS.shouldAttemptFixes() && TypeVar->getImpl().canBindToHole()) {
if (ConstraintSystem::typeVarOccursInType(
TypeVar, CS.simplifyType(constraint->getSecondType())))
break;
}
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::ValueMember:
case ConstraintKind::UnresolvedValueMember:
case ConstraintKind::ValueWitness: {
// If current type variable represents a member type of some reference,
// it would be bound once member is resolved either to a actual member
// type or to a hole if member couldn't be found.
auto memberTy = constraint->getSecondType()->castTo<TypeVariableType>();
if (memberTy->getImpl().hasRepresentativeOrFixed()) {
if (auto type = memberTy->getImpl().getFixedType(/*record=*/nullptr)) {
// It's possible that member has been bound to some other type variable
// instead of merged with it because it's wrapped in an l-value type.
if (type->getWithoutSpecifierType()->isEqual(TypeVar)) {
DelayedBy.push_back(constraint);
break;
}
} else {
memberTy = memberTy->getImpl().getRepresentative(/*record=*/nullptr);
}
}
if (memberTy == TypeVar)
DelayedBy.push_back(constraint);
break;
}
case ConstraintKind::OneWayEqual:
case ConstraintKind::OneWayBindParam: {
// Don't produce any bindings if this type variable is on the left-hand
// side of a one-way binding.
auto firstType = constraint->getFirstType();
if (auto *tv = firstType->getAs<TypeVariableType>()) {
if (tv->getImpl().getRepresentative(nullptr) == TypeVar) {
DelayedBy.push_back(constraint);
break;
}
}
break;
}
}
}
LiteralBindingKind PotentialBindings::getLiteralKind() const {
LiteralBindingKind kind = LiteralBindingKind::None;
for (const auto &literal : Literals) {
auto *protocol = literal.first;
const auto &info = literal.second;
// Only uncovered defaultable literal protocols participate.
if (!info.viableAsBinding())
continue;
switch (*protocol->getKnownProtocolKind()) {
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
case KnownProtocolKind::ExpressibleByArrayLiteral:
case KnownProtocolKind::ExpressibleByStringInterpolation:
kind = LiteralBindingKind::Collection;
break;
case KnownProtocolKind::ExpressibleByFloatLiteral:
kind = LiteralBindingKind::Float;
break;
default:
if (kind != LiteralBindingKind::Collection)
kind = LiteralBindingKind::Atom;
break;
}
}
return kind;
}
unsigned PotentialBindings::getNumViableLiteralBindings() const {
return llvm::count_if(Literals, [&](const auto &literal) {
return literal.second.viableAsBinding();
});
}
void PotentialBindings::dump(TypeVariableType *typeVar, llvm::raw_ostream &out,
unsigned indent) const {
out.indent(indent);
out << "(";
if (typeVar)
out << "$T" << typeVar->getImpl().getID();
dump(out, 1);
out << ")\n";
}
void PotentialBindings::dump(llvm::raw_ostream &out, unsigned indent) const {
out.indent(indent);
if (isDirectHole())
out << "hole ";
if (isPotentiallyIncomplete())
out << "potentially_incomplete ";
if (isDelayed())
out << "delayed ";
if (isSubtypeOfExistentialType())
out << "subtype_of_existential ";
auto literalKind = getLiteralKind();
if (literalKind != LiteralBindingKind::None)
out << "literal=" << static_cast<int>(literalKind) << " ";
if (involvesTypeVariables())
out << "involves_type_vars ";
auto numDefaultable = getNumViableDefaultableBindings();
if (numDefaultable > 0)
out << "#defaultable_bindings=" << numDefaultable << " ";
PrintOptions PO;
PO.PrintTypesForDebugging = true;
auto printBinding = [&](const PotentialBinding &binding) {
auto type = binding.BindingType;
switch (binding.Kind) {
case AllowedBindingKind::Exact:
break;
case AllowedBindingKind::Subtypes:
out << "(subtypes of) ";
break;
case AllowedBindingKind::Supertypes:
out << "(supertypes of) ";
break;
}
if (auto *literal = binding.getDefaultedLiteralProtocol())
out << "(default from " << literal->getName() << ") ";
out << type.getString(PO);
};
out << "bindings={";
interleave(Bindings, printBinding, [&]() { out << "; "; });
out << "}";
if (!Defaults.empty()) {
out << " defaults={";
for (const auto &entry : Defaults) {
auto *constraint = entry.second;
PotentialBinding binding{constraint->getSecondType(),
AllowedBindingKind::Exact, constraint};
printBinding(binding);
}
out << "}";
}
}
// Given a possibly-Optional type, return the direct superclass of the
// (underlying) type wrapped in the same number of optional levels as
// type.
static Type getOptionalSuperclass(Type type) {
int optionalLevels = 0;
while (auto underlying = type->getOptionalObjectType()) {
++optionalLevels;
type = underlying;
}
if (!type->mayHaveSuperclass())
return Type();
auto superclass = type->getSuperclass();
if (!superclass)
return Type();
while (optionalLevels--)
superclass = OptionalType::get(superclass);
return superclass;
}
/// Enumerates all of the 'direct' supertypes of the given type.
///
/// The direct supertype S of a type T is a supertype of T (e.g., T < S)
/// such that there is no type U where T < U and U < S.
static SmallVector<Type, 4> enumerateDirectSupertypes(Type type) {
SmallVector<Type, 4> result;
if (type->is<InOutType>() || type->is<LValueType>()) {
type = type->getWithoutSpecifierType();
result.push_back(type);
}
if (auto superclass = getOptionalSuperclass(type)) {
// FIXME: Can also weaken to the set of protocol constraints, but only
// if there are any protocols that the type conforms to but the superclass
// does not.
result.push_back(superclass);
}
// FIXME: lots of other cases to consider!
return result;
}
bool TypeVarBindingProducer::computeNext() {
SmallVector<Binding, 4> newBindings;
auto addNewBinding = [&](Binding binding) {
auto type = binding.BindingType;
// If we've already tried this binding, move on.
if (!BoundTypes.insert(type.getPointer()).second)
return;
if (!ExploredTypes.insert(type->getCanonicalType()).second)
return;
newBindings.push_back(std::move(binding));
};
for (auto &binding : Bindings) {
const auto type = binding.BindingType;
assert(!type->hasError());
// After our first pass, note that we've explored these types.
if (NumTries == 0)
ExploredTypes.insert(type->getCanonicalType());
// If we have a protocol with a default type, look for alternative
// types to the default.
if (NumTries == 0 && binding.hasDefaultedLiteralProtocol()) {
auto knownKind =
*(binding.getDefaultedLiteralProtocol()->getKnownProtocolKind());
for (auto altType : CS.getAlternativeLiteralTypes(knownKind)) {
addNewBinding(binding.withSameSource(altType, BindingKind::Subtypes));
}
}
// Allow solving for T even for a binding kind where that's invalid
// if fixes are allowed, because that gives us the opportunity to
// match T? values to the T binding by adding an unwrap fix.
if (binding.Kind == BindingKind::Subtypes || CS.shouldAttemptFixes()) {
// If we were unsuccessful solving for T?, try solving for T.
if (auto objTy = type->getOptionalObjectType()) {
// If T is a type variable, only attempt this if both the
// type variable we are trying bindings for, and the type
// variable we will attempt to bind, both have the same
// polarity with respect to being able to bind lvalues.
if (auto otherTypeVar = objTy->getAs<TypeVariableType>()) {
if (TypeVar->getImpl().canBindToLValue() ==
otherTypeVar->getImpl().canBindToLValue()) {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
} else {
addNewBinding(binding.withSameSource(objTy, binding.Kind));
}
}
}
auto srcLocator = binding.getLocator();
if (srcLocator &&
(srcLocator->isLastElement<LocatorPathElt::ApplyArgToParam>() ||
srcLocator->isLastElement<LocatorPathElt::AutoclosureResult>()) &&
!type->hasTypeVariable() && type->isKnownStdlibCollectionType()) {
// If the type binding comes from the argument conversion, let's
// instead of binding collection types directly, try to bind
// using temporary type variables substituted for element
// types, that's going to ensure that subtype relationship is
// always preserved.
auto *BGT = type->castTo<BoundGenericType>();
auto dstLocator = TypeVar->getImpl().getLocator();
auto newType = CS.openUnboundGenericType(BGT->getDecl(), BGT->getParent(),
dstLocator)
->reconstituteSugar(/*recursive=*/false);
addNewBinding(binding.withType(newType));
}
if (binding.Kind == BindingKind::Supertypes) {
for (auto supertype : enumerateDirectSupertypes(type)) {
// If we're not allowed to try this binding, skip it.
if (auto simplifiedSuper = checkTypeOfBinding(TypeVar, supertype))
addNewBinding(binding.withType(*simplifiedSuper));
}
}
}
if (NumTries == 0) {
// Add defaultable constraints (if any).
for (auto *constraint : DelayedDefaults) {
if (constraint->getKind() == ConstraintKind::DefaultClosureType) {
// If there are no other possible bindings for this closure
// let's default it to the type inferred from its parameters/body,
// otherwise we should only attempt contextual types as a
// top-level closure type.
if (!ExploredTypes.empty())
continue;
}
addNewBinding(getDefaultBinding(constraint));
}
}
if (newBindings.empty())
return false;
Index = 0;
++NumTries;
Bindings = std::move(newBindings);
return true;
}
Optional<std::pair<ConstraintFix *, unsigned>>
TypeVariableBinding::fixForHole(ConstraintSystem &cs) const {
auto *dstLocator = TypeVar->getImpl().getLocator();
auto *srcLocator = Binding.getLocator();
// FIXME: This check could be turned into an assert once
// all code completion kinds are ported to use
// `TypeChecker::typeCheckForCodeCompletion` API.
if (cs.isForCodeCompletion()) {
// If the hole is originated from code completion expression
// let's not try to fix this, anything connected to a
// code completion is allowed to be a hole because presence
// of a code completion token makes constraint system
// under-constrained due to e.g. lack of expressions on the
// right-hand side of the token, which are required for a
// regular type-check.
if (dstLocator->directlyAt<CodeCompletionExpr>() ||
srcLocator->directlyAt<CodeCompletionExpr>())
return None;
}
unsigned defaultImpact = 1;
if (auto *GP = TypeVar->getImpl().getGenericParameter()) {
// If it is represetative for a key path root, let's emit a more
// specific diagnostic.
auto *keyPathRoot =
cs.isRepresentativeFor(TypeVar, ConstraintLocator::KeyPathRoot);
if (keyPathRoot) {
ConstraintFix *fix = SpecifyKeyPathRootType::create(
cs, keyPathRoot->getImpl().getLocator());
return std::make_pair(fix, defaultImpact);
} else {
auto path = dstLocator->getPath();
// Drop `generic parameter` locator element so that all missing
// generic parameters related to the same path can be coalesced later.
ConstraintFix *fix = DefaultGenericArgument::create(
cs, GP,
cs.getConstraintLocator(dstLocator->getAnchor(), path.drop_back()));
return std::make_pair(fix, defaultImpact);
}
}
if (TypeVar->getImpl().isClosureParameterType()) {
ConstraintFix *fix = SpecifyClosureParameterType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (TypeVar->getImpl().isClosureResultType()) {
auto *closure = castToExpr<ClosureExpr>(dstLocator->getAnchor());
// If the whole body is being ignored due to a pre-check failure,
// let's not record a fix about result type since there is
// just not enough context to infer it without a body.
if (cs.hasFixFor(cs.getConstraintLocator(closure),
FixKind::IgnoreInvalidResultBuilderBody))
return None;
ConstraintFix *fix = SpecifyClosureReturnType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->directlyAt<ObjectLiteralExpr>()) {
ConstraintFix *fix = SpecifyObjectLiteralTypeImport::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (srcLocator->isKeyPathRoot()) {
// If we recorded an invalid key path fix, let's skip this specify root
// type fix because it wouldn't produce a useful diagnostic.
auto *kpLocator = cs.getConstraintLocator(srcLocator->getAnchor());
if (cs.hasFixFor(kpLocator, FixKind::AllowKeyPathWithoutComponents))
return None;
ConstraintFix *fix = SpecifyKeyPathRootType::create(cs, dstLocator);
return std::make_pair(fix, defaultImpact);
}
if (dstLocator->directlyAt<NilLiteralExpr>()) {
// This is a dramatic event, it means that there is absolutely
// no contextual information to resolve type of `nil`.
ConstraintFix *fix = SpecifyContextualTypeForNil::create(cs, dstLocator);
return std::make_pair(fix, /*impact=*/(unsigned)10);
}
return None;
}
bool TypeVariableBinding::attempt(ConstraintSystem &cs) const {
auto type = Binding.BindingType;
auto *srcLocator = Binding.getLocator();
auto *dstLocator = TypeVar->getImpl().getLocator();
if (Binding.hasDefaultedLiteralProtocol()) {
type = cs.openUnboundGenericTypes(type, dstLocator);
type = type->reconstituteSugar(/*recursive=*/false);
}
cs.addConstraint(ConstraintKind::Bind, TypeVar, type, srcLocator);
// If this was from a defaultable binding note that.
if (Binding.isDefaultableBinding()) {
cs.DefaultedConstraints.push_back(srcLocator);
if (type->isHole()) {
// Reflect in the score that this type variable couldn't be
// resolved and had to be bound to a placeholder "hole" type.
cs.increaseScore(SK_Hole);
if (auto fix = fixForHole(cs)) {
if (cs.recordFix(/*fix=*/fix->first, /*impact=*/fix->second))
return true;
}
}
}
return !cs.failedConstraint && !cs.simplify();
}