Files
swift-mirror/stdlib/public/core/Integers.swift.gyb

2846 lines
95 KiB
Swift

//===--- Integers.swift.gyb -----------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
#
# Utility code for later in this template
#
from SwiftIntTypes import all_integer_types, int_max_bits, should_define_truncating_bit_pattern_init
from SwiftFloatingPointTypes import getFtoIBounds
from string import maketrans, capitalize
# Number of bits in the Builtin.Word type
word_bits = int(CMAKE_SIZEOF_VOID_P) * 8
# Number of bits in integer literals.
builtinIntLiteralBits = 2048
IntLiteral = 'Int%s' % builtinIntLiteralBits
class struct(object):
def __init__(self, **kw):
self.__dict__ = kw
def __repr__(self):
return 'struct(%r)' % self.__dict__
binaryArithmetic = {
'Arithmetic' : [
struct(operator='+', name='adding', firstArg='_', llvmName='add', kind='+'),
struct(operator='-', name='subtracting', firstArg='_', llvmName='sub', kind='-'),
struct(operator='*', name='multiplied', firstArg='by', llvmName='mul', kind='*'),
struct(operator='/', name='divided', firstArg='by', llvmName='div', kind='/'),
],
'BinaryInteger' : [
struct(operator='%', name='remainder', firstArg='dividingBy', llvmName='rem', kind='/'),
],
}
binaryBitwise = [
struct(operator='&', llvmName='and'),
struct(operator='|', llvmName='or'),
struct(operator='^', llvmName='xor'),
]
maskingShifts = [
struct(
operator='&>>', nonMaskingOperator='>>', description='right shift',
llvmName=lambda s:['lshr','ashr'][s]),
struct(
operator='&<<', nonMaskingOperator='<<', description='left shift',
llvmName=lambda _: 'shl'),
]
IntMax = 'Int%s' % int_max_bits
UIntMax = 'UInt%s' % int_max_bits
}%
// FIXME(integers): remove these two aliases
/// The largest native signed integer type.
public typealias IntMax = ${IntMax}
/// The largest native unsigned integer type.
public typealias UIntMax = ${UIntMax}
infix operator &<< : BitwiseShiftPrecedence
infix operator &<<= : AssignmentPrecedence
infix operator &>> : BitwiseShiftPrecedence
infix operator &>>= : AssignmentPrecedence
//===----------------------------------------------------------------------===//
//===--- Bits for the Stdlib ----------------------------------------------===//
//===----------------------------------------------------------------------===//
// FIXME(integers): This should go in the stdlib separately, probably.
extension ExpressibleByIntegerLiteral
where Self : _ExpressibleByBuiltinIntegerLiteral {
@_transparent
public init(integerLiteral value: Self) {
self = value
}
}
//===----------------------------------------------------------------------===//
//===--- Documentation Helpers --------------------------------------------===//
//===----------------------------------------------------------------------===//
%{
def operationComment(operator):
comments = {
'+': """\
/// Returns the sum of this value and the given value.
///
/// This method serves as the basis for the addition operator (`+`). For
/// example:
///
/// let x = 15
/// print(x.adding(7))
/// // Prints "22"
/// print(x + 7)
/// // Prints "22"
///
/// - Parameter rhs: The value to add to this value.
/// - Returns: The sum of this value and `rhs`.
///
/// - SeeAlso: `add(_:)`
""",
'-': """\
/// Returns the difference of this value and the given value.
///
/// This method serves as the basis for the subtraction operator (`-`). For
/// example:
///
/// let x = 15
/// print(x.subtracting(7))
/// // Prints "8"
/// print(x - 7)
/// // Prints "8"
///
/// - Parameter rhs: The value to subtract from this value.
/// - Returns: The difference of this value and `rhs`.
///
/// - SeeAlso: `subtract(_:)`
""",
'*': """\
/// Returns the product of this value and the given value.
///
/// This method serves as the basis for the multiplication operator (`*`).
/// For example:
///
/// let x = 15
/// print(x.multiplied(by: 7))
/// // Prints "105"
/// print(x * 7)
/// // Prints "105"
///
/// - Parameter rhs: The value to multiply by this value.
/// - Returns: The product of this value and `rhs`.
///
/// - SeeAlso: `multiply(by:)`
""",
'/': """\
/// Returns the quotient of dividing this value by the given value.
///
/// This method serves as the basis for the division operator (`/`). For
/// example:
///
/// let x = 15
/// print(x.divided(by: 7))
/// // Prints "2"
/// print(x / 7)
/// // Prints "2"
///
/// - Parameter rhs: The value to divide this value by. `rhs` must not be
/// zero.
/// - Returns: The quotient of dividing this value by `rhs`.
///
/// - SeeAlso: `divide(by:)`
""",
'%': """\
/// Returns the remainder of dividing this value by the given value.
///
/// This method serves as the basis for the remainder operator (`%`). For
/// example:
///
/// let x = 15
/// print(x.remainder(dividingBy: 7))
/// // Prints "1"
/// print(x % 7)
/// // Prints "1"
///
/// - Parameter rhs: The value to divide this value by. `rhs` must not be
/// zero.
/// - Returns: The remainder of dividing this value by `rhs`.
///
/// - SeeAlso: `formRemainder(dividingBy:)`
""",
'&': """\
/// Returns the result of performing a bitwise AND operation on this value
/// and the given value.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x.bitwiseAnd(y) // 0b00000100
///
/// This method serves as the basis for the bitwise AND operator (`&`).
///
/// - Parameter rhs: The value to perform the bitwise AND with this value.
/// - Returns: A new value with each bit set to `1` where this value and
/// `rhs` both have bits set to `1`.
""",
'|': """\
/// Returns the result of performing a bitwise OR operation on this value and
/// the given value.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x.bitwiseOr(y) // 0b00001111
///
/// This method serves as the basis for the bitwise OR operator (`|`).
///
/// - Parameter rhs: The value to perform the bitwise OR with this value.
/// - Returns: A new value with each bit set to `1` where this value, `rhs`,
/// or both have bits set to `1`.
""",
'^': """\
/// Returns the result of performing a bitwise XOR operation on this value
/// and the given value.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x.bitwiseXor(y) // 0b00001011
///
/// This method serves as the basis for the bitwise XOR operator (`^`).
///
/// - Parameter rhs: The value to perform the bitwise XOR with this value.
/// - Returns: A new value with each bit set to `1` where either this value
/// or `rhs`, but not both, have bits set to `1`.
""",
'&>>': """\
/// Returns the result of shifting this value's binary representation the
/// specified number of digits to the right.
///
/// In a *masking shift*, the bit pattern of the value passed as `rhs` is
/// masked to produce a value between zero and the bit width of `lhs`. The
/// shift is performed using this masked value. Masking shifts require more
/// care to use correctly than a traditional bit shift, but are likely to be
/// more efficient when used with shift amounts that are not compile-time
/// constants. On most architectures, a masking shift compiles down to a
/// single instruction.
///
/// For example, if you pass `2` to the `maskingShiftRight(_:)` method on an
/// 8-bit, unsigned integer, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x.maskingShiftRight(2)
/// // y == 7 // 0b00000111
///
/// However, if you pass `11` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `x`.
///
/// let z = x.maskingShiftRight(11)
/// // z == 3 // 0b00000011
///
/// This method serves as the basis for the masking right shift operator
/// (`&>>`).
///
/// let y3 = x &>> 11
/// // y3 == 3
///
/// Relationship to the Right Shift Operator
/// ----------------------------------------
///
/// The `maskingShiftRight(_:)` method handles attempted overshifts and
/// undershifts differently from the right shift operator (`>>`). When the
/// value passed as `rhs` in a masking shift is within the range
/// `0...<bitWidth`, the operation is equivalent to using the right shift
/// operator.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y1 = x.maskingShiftRight(2)
/// // y1 == 7 // 0b00000111
/// let y2 = x >> 2
/// // y2 == 7 // 0b00000111
///
/// The right shift operator does not mask its right-hand-side argument, so
/// passing `11` as `rhs` shifts all the bits of `x` to zero.
///
/// let z1 = x.maskingShiftRight(11)
/// // z1 == 240 // 0b00000011
/// let z2 = x >> 11
/// // z2 == 0 // 0b00000000
///
/// - Parameter rhs: The number of bits to shift this value to the right. If
/// `rhs` is outside the range `0..<bitWidth`, it is masked to produce a
/// value within that range.
/// - Returns: The result of shifting this value by the masked `rhs` to the
/// right.
///
/// - SeeAlso: `&>>`, `>>`, `maskingShiftLeft(_:)`
""",
'&<<': """\
/// Returns the result of shifting this value's binary representation the
/// specified number of digits to the left.
///
/// In a *masking shift*, the bit pattern of the value passed as `rhs` is
/// masked to produce a value between zero and the bit width of `lhs`. The
/// shift is performed using this masked value. Masking shifts require more
/// care to use correctly than a traditional bit shift, but are likely to be
/// more efficient when used with shift amounts that are not compile-time
/// constants. On most architectures, a masking shift compiles down to a
/// single instruction.
///
/// For example, if you pass `2` to the `maskingShiftLeft(_:)` method on an
/// 8-bit, unsigned integer, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x.maskingShiftLeft(2)
/// // y == 120 // 0b01111000
///
/// However, if you pass `11` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `x`.
///
/// let z = x.maskingShiftLeft(11)
/// // z == 240 // 0b11110000
///
/// This method serves as the basis for the masking left shift operator
/// (`&<<`).
///
/// let y3 = x &<< 11
/// // y3 == 240
///
/// Relationship to the Left Shift Operator
/// ---------------------------------------
///
/// The `maskingShiftLeft(_:)` method handles attempted overshifts and
/// undershifts differently from the left shift operator (`<<`). When the
/// value passed as `rhs` in a masking shift is within the range
/// `0...<bitWidth`, the operation is equivalent to using the left shift
/// operator.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y1 = x.maskingShiftLeft(2)
/// // y1 == 120 // 0b01111000
/// let y2 = x << 2
/// // y2 == 120 // 0b01111000
///
/// The left shift operator does not mask its right-hand-side argument, so
/// passing `11` as `rhs` shifts all the bits of `x` to zero.
///
/// let z1 = x.maskingShiftLeft(11)
/// // z1 == 240 // 0b11110000
/// let z2 = x << 11
/// // z2 == 0 // 0b00000000
///
/// - Parameter rhs: The number of bits to shift this value to the left. If
/// `rhs` is outside the range `0..<bitWidth`, it is masked to produce a
/// value within that range.
/// - Returns: The result of shifting this value by the masked `rhs` to the
/// left.
///
/// - SeeAlso: `&<<`, `<<`, `maskingShiftRight(_:)`
""",
}
return comments[operator]
def mutatingOperationComment(operator):
comments = {
'+': """\
/// Adds the given value to this value in place.
///
/// This method serves as the basis for the in-place addition operator
/// (`+=`). For example:
///
/// var (x, y) = (15, 15)
/// x.add(7)
/// // x == 22
/// y += 7
/// // y == 22
///
/// - Parameter rhs: The value to add to this value.
///
/// - SeeAlso: `adding(_:)`
""",
'-': """\
/// Subtracts the given value from this value in place.
///
/// This method serves as the basis for the in-place subtraction operator
/// (`-=`). For example:
///
/// var (x, y) = (15, 15)
/// x.subtract(7)
/// // x == 8
/// y -= 7
/// // y == 8
///
/// - Parameter rhs: The value to subtract from this value.
///
/// - SeeAlso: `subtracting(_:)`
""",
'*': """\
/// Multiples this value by the given value in place.
///
/// This method serves as the basis for the in-place multiplication operator
/// (`*=`). For example:
///
/// var (x, y) = (15, 15)
/// x.multiply(by: 7)
/// // x == 105
/// y *= 7
/// // y == 105
///
/// - Parameter rhs: The value to multiply by this value.
///
/// - SeeAlso: `multiplying(by:)`
""",
'/': """\
/// Divides this value by the given value in place.
///
/// This method serves as the basis for the in-place division operator
/// (`/=`). For example:
///
/// var (x, y) = (15, 15)
/// x.divide(by: 7)
/// // x == 2
/// y /= 7
/// // y == 2
///
/// - Parameter rhs: The value to divide this value by. `rhs` must not be
/// zero.
///
/// - SeeAlso: `dividing(by:)`
""",
'%': """\
/// Replaces this value with the remainder of itself divided by the given
/// value.
///
/// This method serves as the basis for the in-place remainder operator
/// (`%=`). For example:
///
/// var (x, y) = (15, 15)
/// x.formRemainder(dividingBy: 7)
/// // x == 1
/// y %= 7
/// // y == 1
///
/// - Parameter rhs: The value to divide this value by. `rhs` must not be
/// zero.
///
/// - SeeAlso: `remainder(dividingBy:)`
""",
}
return comments[operator]
def overflowOperationComment(operator):
comments = {
'+': """\
/// Returns the sum of this value and the given value along with a flag
/// indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to add to this value.
/// - Returns: A tuple containing the result of the addition along with a
/// flag indicating whether overflow occurred. If the `overflow` component
/// is `.none`, the `partialValue` component contains the entire sum. If
/// the `overflow` component is `.overflow`, an overflow occurred and the
/// `partialValue` component contains the truncated sum of this value and
/// `rhs`.
///
/// - SeeAlso: `adding(_:)`
""",
'-': """\
/// Returns the difference of this value and the given value along with a
/// flag indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to subtract from this value.
/// - Returns: A tuple containing the result of the subtraction along with a
/// flag indicating whether overflow occurred. If the `overflow` component
/// is `.none`, the `partialValue` component contains the entire
/// difference. If the `overflow` component is `.overflow`, an overflow
/// occurred and the `partialValue` component contains the truncated
/// result of `rhs` subtracted from this value.
///
/// - SeeAlso: `subtracting(_:)`
""",
'*': """\
/// Returns the product of this value and the given value along with a flag
/// indicating whether overflow occurred in the operation.
///
/// - Parameter rhs: The value to multiply by this value.
/// - Returns: A tuple containing the result of the multiplication along with
/// a flag indicating whether overflow occurred. If the `overflow`
/// component is `.none`, the `partialValue` component contains the entire
/// product. If the `overflow` component is `.overflow`, an overflow
/// occurred and the `partialValue` component contains the truncated
/// product of this value and `rhs`.
///
/// - SeeAlso: `multiplied(by:)`, `doubleWidthMultiply(_:_:)`
""",
'/': """\
/// Returns the quotient of dividing this value by the given value along with
/// a flag indicating whether overflow occurred in the operation.
///
/// For a value `x`, if zero is passed as `rhs`, the result is
/// `(x, .overflow)`.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the result of the division along with a
/// flag indicating whether overflow occurred. If the `overflow` component
/// is `.none`, the `partialValue` component contains the entire quotient.
/// If the `overflow` component is `.overflow`, an overflow occurred and
/// the `partialValue` component contains the truncated quotient.
///
/// - SeeAlso: `divided(by:)`, `doubleWidthDivide(_:_:)`
""",
}
return comments[operator]
def unsafeOperationComment(operator):
comments = {
'+': """\
/// Returns the sum of this value and the given value without checking for
/// arithmetic overflow.
///
/// If an arithmetic overflow occurs, the behavior is undefined. Use this
/// function only to avoid the cost of overflow checking when you are sure
/// that the operation won't overflow.
///
/// - Parameter rhs: The value to add to this value.
/// - Returns: The sum of this value and `rhs`.
""",
'-': """\
/// Returns the difference of this value and the given value without checking
/// for arithmetic overflow.
///
/// If an arithmetic overflow occurs, the behavior is undefined. Use this
/// function only to avoid the cost of overflow checking when you are sure
/// that the operation won't overflow.
///
/// - Parameter rhs: The value to subtract from this value.
/// - Returns: The difference of this value and `rhs`.
""",
'*': """\
/// Returns the product of this value and the given value without checking
/// for arithmetic overflow.
///
/// If an arithmetic overflow occurs, the behavior is undefined. Use this
/// function only to avoid the cost of overflow checking when you are sure
/// that the operation won't overflow.
///
/// - Parameter rhs: The value to multiply by this value.
/// - Returns: The difference of this value and `rhs`.
""",
'/': """\
/// Returns the quotient of dividing this value by the given value without
/// checking for arithmetic overflow.
///
/// If an arithmetic overflow occurs, the behavior is undefined. Use this
/// function only to avoid the cost of overflow checking when you are sure
/// that the operation won't overflow.
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: The quotient of dividing this value by `rhs`.
""",
}
return comments[operator]
def operatorComment(operator):
comments = {
'+': """\
/// Returns the sum of the two given values.
///
/// The sum of `lhs` and `rhs` must be representable in the same type. In the
/// following example, the result of `100 + 200` is greater than the maximum
/// representable `Int8` value:
///
/// let x: Int8 = 10 + 21
/// // x == 31
/// let y: Int8 = 100 + 121
/// // Overflow error
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
""",
'-': """\
/// Returns the difference of the two given values.
///
/// The difference of `lhs` and `rhs` must be representable in the same type.
/// In the following example, the result of `10 - 21` is less than zero, the
/// minimum representable `UInt` value:
///
/// let x: UInt = 21 - 10
/// // x == 11
/// let y: UInt = 10 - 21
/// // Overflow error
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
""",
'*': """\
/// Returns the product of the two given values.
///
/// The product of `lhs` and `rhs` must be representable in the same type. In
/// the following example, the result of `10 * 50` is greater than the
/// maximum representable `Int8` value.
///
/// let x: Int8 = 10 * 5
/// // x == 50
/// let y: Int8 = 10 * 50
/// // Overflow error
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
""",
'/': """\
/// Returns the quotient of dividing the first value by the second.
///
/// For integer types, any remainder of the division is discarded.
///
/// let x = 21 / 5
/// // x == 4
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
""",
'%': """\
/// Returns the remainder of dividing the first value by the second.
///
/// The result has the same sign as `lhs` and is less than `rhs.magnitude`.
///
/// let x = 22 % 5
/// // x == 2
/// let y = 22 % -5
/// // y == 2
/// let z = -22 % -5
/// // z == -2
///
/// - Parameters:
/// - lhs: The value to divide.
/// - rhs: The value to divide `lhs` by. `rhs` must not be zero.
""",
'&+': """\
/// Returns the sum of the two given values, discarding any overflow.
///
/// The masking addition operator (`&+`) silently discards any overflow that
/// occurs during the operation. In the following example, the sum of `100`
/// and `121` is greater than the maximum representable `Int8` value, so the
/// result is the overflowed value:
///
/// let x: Int8 = 10 &+ 21
/// // x == 31
/// let y: Int8 = 100 &+ 121
/// // y == -35 (after overflow)
///
/// - Parameters:
/// - lhs: The first value to add.
/// - rhs: The second value to add.
///
/// - SeeAlso: `+`
""",
'&-': """\
/// Returns the difference of the two given values, discarding any overflow.
///
/// In the following example, the difference of `10` and `21` is less than
/// zero, the minimum representable `UInt` value, so the result is the
/// overflowed value:
///
/// let x: UInt8 = 21 &- 10
/// // x == 11
/// let y: UInt8 = 10 &- 21
/// // y == 245 (after overflow)
///
/// - Parameters:
/// - lhs: A numeric value.
/// - rhs: The value to subtract from `lhs`.
///
/// - SeeAlso: `-`
""",
'&*': """\
/// Returns the product of the two given values, discarding any overflow.
///
/// In
/// the following example, the product of `10` and `50` is greater than the
/// maximum representable `Int8` value, so the result is the overflowed value:
///
/// let x: Int8 = 10 &* 5
/// // x == 50
/// let y: Int8 = 10 &* 50
/// // y == -12 (after overflow)
///
/// - Parameters:
/// - lhs: The first value to multiply.
/// - rhs: The second value to multiply.
""",
'&': """\
/// Returns the result of performing a bitwise AND operation on the two given
/// values.
///
/// A bitwise AND operation results in a value that has each bit set to `1`
/// where *both* of its arguments have that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x & y // 0b00000100
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
""",
'|': """\
/// Returns the result of performing a bitwise OR operation on the two given
/// values.
///
/// A bitwise OR operation results in a value that has each bit set to `1`
/// where *one or both* of its arguments have that bit set to `1`. For
/// example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x | y // 0b00001111
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
""",
'^': """\
/// Returns the result of performing a bitwise XOR operation on the two given
/// values.
///
/// A bitwise XOR operation, also known as an exclusive OR operation, results
/// in a value that has each bit set to `1` where *one or the other but not
/// both* of its arguments had that bit set to `1`. For example:
///
/// let x: UInt8 = 5 // 0b00000101
/// let y: UInt8 = 14 // 0b00001110
/// let z = x.bitwiseXor(y) // 0b00001011
///
/// - Parameters:
/// - lhs: An integer value.
/// - rhs: Another integer value.
""",
'&>>': """\
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right, masking the shift amount to the
/// type's bit width.
///
/// The `&>>` operator performs a *masking shift*, where the value passed as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &>> 2
/// // y == 7 // 0b00000111
///
/// However, if you use `11` as `rhs`, the operation first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `x`.
///
/// let z = x &>> 11
/// // z == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
///
/// - SeeAlso: `>>`, `&<<`
""",
'&<<': """\
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left, masking the shift amount to the
/// type's bit width.
///
/// The `&<<` operator performs a *masking shift*, where the value used as
/// `rhs` is masked to produce a value in the range `0..<lhs.bitWidth`. The
/// shift is performed using this masked value.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the shift amount requires no masking.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x &<< 2
/// // y == 120 // 0b01111000
///
/// However, if you pass `11` as `rhs`, the method first bitmasks `rhs` to
/// `3`, and then uses that masked value as the number of bits to shift `x`.
///
/// let z = x &<< 11
/// // z == 240 // 0b11110000
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left. If `rhs` is
/// outside the range `0..<lhs.bitWidth`, it is masked to produce a
/// value within that range.
///
/// - SeeAlso: `<<`, `&>>`
""",
'>>': """\
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the right.
///
/// The `>>` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a left shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*. An overshift results in `-1` for a
/// negative value of `lhs` or `0` for a nonnegative value.
/// - Using any other value for `rhs` performs a right shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted right by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x >> 2
/// // y == 7 // 0b00000111
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x >> 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a left shift
/// using `abs(rhs)`.
///
/// let a = x >> -3
/// // a == 240 // 0b11110000
/// let b = x << 3
/// // b == 240 // 0b11110000
///
/// Right shift operations on negative values "fill in" the high bits with
/// ones instead of zeros.
///
/// let q: Int8 = -30 // 0b11100010
/// let r = q >> 2
/// // r == -8 // 0b11111000
///
/// let s = q >> 11
/// // s == -1 // 0b11111111
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the right.
///
/// - SeeAlso: `<<`
""",
'<<': """\
/// Returns the result of shifting a value's binary representation the
/// specified number of digits to the left.
///
/// The `<<` operator performs a *smart shift*, which defines a result for a
/// shift of any value.
///
/// - Using a negative value for `rhs` performs a right shift using
/// `abs(rhs)`.
/// - Using a value for `rhs` that is greater than or equal to the bit width
/// of `lhs` is an *overshift*, resulting in zero.
/// - Using any other value for `rhs` performs a left shift on `lhs` by that
/// amount.
///
/// The following example defines `x` as an instance of `UInt8`, an 8-bit,
/// unsigned integer type. If you use `2` as the right-hand-side value in an
/// operation on `x`, the value is shifted left by two bits.
///
/// let x: UInt8 = 30 // 0b00011110
/// let y = x << 2
/// // y == 120 // 0b01111000
///
/// If you use `11` as `rhs`, `x` is overshifted such that all of its bits
/// are set to zero.
///
/// let z = x << 11
/// // z == 0 // 0b00000000
///
/// Using a negative value as `rhs` is the same as performing a right shift
/// with `abs(rhs)`.
///
/// let a = x << -3
/// // a == 3 // 0b00000011
/// let b = x >> 3
/// // b == 3 // 0b00000011
///
/// - Parameters:
/// - lhs: The value to shift.
/// - rhs: The number of bits to shift `lhs` to the left.
///
/// - SeeAlso: `>>`
""",
}
return comments[operator]
}%
//===----------------------------------------------------------------------===//
//===--- Arithmetic -------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// A type that supports binary arithmetic operators, such as `+`, `-`, and
/// `*`, and their mutating counterparts.
///
/// The `Arithmetic` protocol provides a suitable basis for arithmetic on
/// scalar values, such as integers and floating-point numbers. You can write
/// generic methods that operate on any numeric type in the standard library
/// by using the `Arithmetic` protocol as a generic constraint.
///
/// The following example declares a method that calculates the total of any
/// sequence with `Arithmetic` elements.
///
/// extension Sequence where Iterator.Element: Arithmetic {
/// func sum() -> Iterator.Element {
/// return reduce(0, +)
/// }
/// }
///
/// The `sum()` method is now available on any sequence or collection with
/// numeric values, whether it is an array of `Double` or a countable range of
/// `Int`.
///
/// let arraySum = [1.1, 2.2, 3.3, 4.4, 5.5].sum()
/// // arraySum == 16.5
///
/// let rangeSum = (1..<10).sum()
/// // rangeSum == 45
///
/// Conforming to the Arithmetic Protocol
/// =====================================
///
/// To add `Arithmetic` protocol conformance to your own custom type, implement
/// the required mutating methods. Extensions to `Arithmetic` provide default
/// implementations for the protocol's nonmutating methods based on the
/// mutating variants.
public protocol Arithmetic : Equatable, ExpressibleByIntegerLiteral {
/// Creates a new instance from the given integer, if it can be represented
/// exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `100`, while the attempt to initialize the
/// constant `y` from `1_000` fails because the `Int8` type can represent
/// `127` at maximum:
///
/// let x = Int8(exactly: 100)
/// // x == Optional(100)
/// let y = Int8(exactly: 1_000)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
init?<T : BinaryInteger>(exactly source: T)
// FIXME(ABI)#44 (Recursive Protocol Constraints): should be just Arithmetic
/// A type that can represent the absolute value of any possible value of the
/// conforming type.
associatedtype Magnitude : Equatable, ExpressibleByIntegerLiteral
/// The magnitude of this value.
///
/// For any numeric value `x`, `x.magnitude` is the absolute value of `x`.
/// You can use the `magnitude` property in operations that are simpler to
/// implement in terms of unsigned values, such as printing the value of an
/// integer, which is just printing a '-' character in front of an absolute
/// value.
///
/// let x = -200
/// // x.magnitude == 200
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
///
/// - SeeAlso: `abs(_:)`
var magnitude: Magnitude { get }
% for x in binaryArithmetic['Arithmetic']:
// defaulted using an in-place counterpart, but can be used as an
// optimization hook
${operatorComment(x.operator)}
// FIXME(integers): revisit the doc comment
static func ${x.operator}(_ lhs: Self, _ rhs: Self) -> Self
// implementation hook
${mutatingOperationComment(x.operator)}
// FIXME(integers): revisit the doc comment
static func ${x.operator}=(_ lhs: inout Self, rhs: Self)
% end
}
extension Arithmetic {
@_transparent
public init() {
self = 0
}
}
% for Protocol in ['Arithmetic', 'BinaryInteger', 'FloatingPoint']:
% # Explicitly providing these operations for BinaryInteger and FloatingPoint
% # protocols because Strideable conformance creates ambiguity if the
% # operationsare only defined for Arithmetic
extension ${Protocol} {
% if Protocol in ['Arithmetic', 'FloatingPoint']:
% ops = binaryArithmetic['Arithmetic']
% else:
% ops = binaryArithmetic['Arithmetic'] + binaryArithmetic['BinaryInteger']
% for x in ops:
% callLabel = x.firstArg + ': ' if not x.firstArg == '_' else ''
${operationComment(x.operator)}
// FIXME(integers): revisit the doc comment
@_transparent
public static func ${x.operator}(_ lhs: Self, _ rhs: Self) -> Self {
var lhs = lhs
lhs ${x.operator}= rhs
return lhs
}
% end
}
% end
/// A type that can represent both positive and negative values.
///
/// The `SignedArithmetic` protocol extends the operations defined by the
/// `Arithmetic` protocol to include a value's additive inverse.
///
/// Conforming to the SignedArithmetic Protocol
/// ===========================================
///
/// Because the `SignedArithmetic` protocol provides default implementations of
/// both of its required methods, you don't need to do anything beyond
/// declaring conformance to the protocol and ensuring that the values of your
/// type support negation. To customize your type's implementation, provide
/// your own mutating `negate()` method.
public protocol SignedArithmetic : Arithmetic {
// FIXME(integers): turn negate() into a static prefix func -(_:)
/// Returns the additive inverse of this value.
///
/// This method serves as the basis for the unary minus operator (prefixed
/// `-`). For example:
///
/// let x = 21
/// let y = x.negated()
/// // y == -21
///
/// - Returns: The additive inverse of this value.
///
/// - SeeAlso: `negate()`
func negated() -> Self
/// Replaces this value with its additive inverse.
///
/// The following example uses the `negate()` method to negate the value of
/// an integer `x`:
///
/// var x = 21
/// x.negate()
/// // x == -21
///
/// - SeeAlso: `negated()`
mutating func negate()
}
extension SignedArithmetic {
@_transparent
public func negated() -> Self {
var result = self
result.negate()
return result
}
@_transparent
public mutating func negate() {
self = Self() - self
}
}
/// Returns the absolute value of the given number.
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
@_transparent
public func abs<T : SignedArithmetic>(_ x: T) -> T
where T.Magnitude == T {
return x.magnitude
}
/*
/// Returns the absolute value of the given number.
///
/// The absolute value of `x` must be representable in the same type. In
/// particular, the absolute value of a signed, fixed-width integer type's
/// minimum cannot be represented.
///
/// let x = Int8.min
/// // x == -128
/// let y = abs(x)
/// // Overflow error
///
/// - Parameter x: A signed number.
/// - Returns: The absolute value of `x`.
public func abs<T : SignedArithmetic>(_ x: T) -> T {
return x < 0 ? x.negated() : x
}
*/
//===----------------------------------------------------------------------===//
//===--- Arithmetic operators ---------------------------------------------===//
//===----------------------------------------------------------------------===//
extension SignedArithmetic {
@_transparent
public static prefix func - (x: Self) -> Self {
return x.negated()
}
}
extension Arithmetic {
@_transparent
public static prefix func + (x: Self) -> Self {
return x
}
}
//===----------------------------------------------------------------------===//
//===--- BinaryInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type with a binary representation.
///
/// The `BinaryInteger` protocol is the basis for all the integer types
/// provided by the standard library. All of the standard library's integer
/// types, such as `Int` and `UInt32`, conform to `BinaryInteger`.
///
/// Converting Between Numeric Types
/// ================================
///
/// You can create new instances of a type that conforms to the `BinaryInteger`
/// protocol from a floating-point number or another binary integer of any
/// type. The `BinaryInteger` protocol provides initializers for four
/// different kinds of conversion.
///
/// Range-Checked Conversion
/// ------------------------
///
/// You use the default `init(_:)` initializer to create a new instance when
/// you're sure that the value passed is representable in the new type. For
/// example, an instance of `Int16` can represent the value `500`, so the
/// first conversion in the code sample below succeeds. That same value is too
/// large to represent as an `Int8` instance, so the second conversion fails,
/// triggering a runtime error.
///
/// let x: Int = 500
/// let y = Int16(x)
/// // y == 500
///
/// let z = Int8(x)
/// // Error: Not enough bits to represent...
///
/// When you create a binary integer from a floating-point value using the
/// default initializer, the value is rounded toward zero before the range is
/// checked. In the following example, the value `127.75` is rounded to `127`,
/// which is representable by the `Int8` type. `128.25` is rounded to `128`,
/// which is not representable as an `Int8` instance, triggering a runtime
/// error.
///
/// let e = Int8(127.75)
/// // e == 127
///
/// let f = Int8(128.25)
/// // Error: Double value cannot be converted...
///
///
/// Exact Conversion
/// ----------------
///
/// Use the `init?(exactly:)` initializer to create a new instance after
/// checking whether the passed value is representable. Instead of trapping on
/// out-of-range values, using the failable `exact` initializer results in
/// `nil`.
///
/// let x = Int16(exactly: 500)
/// // x == Optional(500)
///
/// let y = Int8(exactly: 500)
/// // y == nil
///
/// When converting floating-point values, the `init?(exact:)` initializer
/// checks both that the passed value has no fractional part and that the
/// value is representable in the resulting type.
///
/// let e = Int8(exactly: 23.0) // integral value, representable
/// // e == Optional(127)
///
/// let f = Int8(exactly: 23.75) // fractional value, representable
/// // f == nil
///
/// let g = Int8(exactly: 500.0) // integral value, nonrepresentable
/// // g == nil
///
/// Clamping Conversion
/// -------------------
///
/// Use the `init(clamping:)` initializer to create a new instance of a binary
/// integer type where out-of-range values are clamped to the representable
/// range of the type. For a type `T`, the resulting value is in the range
/// `T.min...T.max`.
///
/// let x = Int16(clamping: 500)
/// // x == 500
///
/// let y = Int8(clamping: 500)
/// // y == 127
///
/// let z = UInt8(clamping: -500)
/// // z == 0
///
/// Bit Pattern Conversion
/// ----------------------
///
/// Use the `init(extendingOrTruncating:)` initializer to create a new instance
/// with the same bit pattern as the passed value, extending or truncating the
/// value's representation as necessary. Note that the value may not be
/// preserved, particularly when converting between signed to unsigned integer
/// types or when the destination type has a smaller bit width than the source
/// type. The following example shows how extending and truncating work for
/// nonnegative integers:
///
/// let q: Int16 = 850
/// // q == 0b00000011_01010010
///
/// let r = Int8(extendingOrTruncating: q) // truncate 'q' to fit in 8 bits
/// // r == 82
/// // == 0b01010010
///
/// let s = Int16(extendingOrTruncating: s) // extend 'r' to fill 16 bits
/// // s == 82
/// // == 0b00000000_01010010
///
/// Any padding is performed by *sign-extending* the passed value. When
/// nonnegative integers are extended, the result is padded with zeroes. When
/// negative integers are extended, the result is padded with ones. This
/// example shows several extending conversions of a negative value---note
/// that negative values are sign-extended even when converting to an unsigned
/// type.
///
/// let t: Int8 = -100
/// // t == -100
/// // t's binary representation == 0b10011100
///
/// let u = UInt8(extendingOrTruncating: t)
/// // u == 156
/// // u's binary representation == 0b10011100
///
/// let v = Int16(extendingOrTruncating: t)
/// // v == -100
/// // v's binary representation == 0b11111111_10011100
///
/// let w = UInt16(extendingOrTruncating: t)
/// // w == 65436
/// // w's binary representation == 0b11111111_10011100
///
///
/// Comparing Across Integer Types
/// ==============================
///
/// You can use relational operators, such as the less-than and equal-to
/// operators (`<` and `==`), to compare instances of different binary integer
/// types. The following example compares instances of the `Int`, `UInt`, and
/// `UInt8` types:
///
/// let x: Int = -23
/// let y: UInt = 1_000
/// let z: UInt8 = 23
///
/// if x < y {
/// print("\(x) is less than \(y).")
/// }
/// // Prints "-23 is less than 1000."
///
/// if z > x {
/// print("\(z) is greater than \(x).")
/// }
/// // Prints "23 is greater than -23."
public protocol BinaryInteger :
Comparable, Hashable, Arithmetic, CustomStringConvertible, Strideable {
/// A Boolean value indicating whether this type is a signed integer type.
///
/// *Signed* integer types can represent both positive and negative values.
/// *Unsigned* integer types can represent only nonnegative values.
static var isSigned: Bool { get }
/// Creates an integer from the given floating-point value, if it can be
/// represented exactly.
///
/// If the value passed as `source` is not representable exactly, the result
/// is `nil`. In the following example, the constant `x` is successfully
/// created from a value of `21.0`, while the attempt to initialize the
/// constant `y` from `21.5` fails:
///
/// let x = Int(exactly: 21.0)
/// // x == Optional(21)
/// let y = Int(exactly: 21.5)
/// // y == nil
///
/// - Parameter source: A floating-point value to convert to an integer.
init?<T : FloatingPoint>(exactly source: T)
/// Creates an integer from the given floating-point value, truncating any
/// fractional part.
///
/// Truncating the fractional part of `source` is equivalent to rounding
/// toward zero.
///
/// let x = Int(21.5)
/// // x == 21
/// let y = Int(-21.5)
/// // y == -21
///
/// If `source` is outside the bounds of this type after truncation, a
/// runtime error may occur.
///
/// let z = UInt(-21.5)
/// // Error: ...the result would be less than UInt.min
///
/// - Parameter source: A floating-point value to convert to an integer.
/// `source` must be representable in this type after truncation.
init<T : FloatingPoint>(_ source: T)
/// Creates an new instance from the given integer.
///
/// If the value passed as `source` is not representable in this type, a
/// runtime error may occur.
///
/// let x = -500 as Int
/// let y = Int32(x)
/// // y == -500
///
/// // -500 is not representable as a 'UInt32' instance
/// let z = UInt32(x)
/// // Error
///
/// - Parameter source: An integer to convert. `source` must be representable
/// in this type.
init<T : BinaryInteger>(_ source: T)
/// Creates a new instance from the bit pattern of the given instance by
/// sign-extending or truncating to fit this type.
///
/// When the bit width of `T` (the type of `source`) is equal to or greater
/// than this type's bit width, the result is the truncated
/// least-significant bits of `source`. For example, when converting a
/// 16-bit value to an 8-bit type, only the lower 8 bits of `source` are
/// used.
///
/// let p: Int16 = -500
/// // 'p' has a binary representation of 11111110_00001100
/// let q = Int8(extendingOrTruncating: p)
/// // q == 12
/// // 'q' has a binary representation of 00001100
///
/// When the bit width of `T` is less than this type's bit width, the result
/// is *sign-extended* to fill the remaining bits. That is, if `source` is
/// negative, the result is padded with ones; otherwise, the result is
/// padded with zeros.
///
/// let u: Int8 = 21
/// // 'u' has a binary representation of 00010101
/// let v = Int16(extendingOrTruncating: u)
/// // v == 21
/// // 'v' has a binary representation of 00000000_00010101
///
/// let w: Int8 = -21
/// // 'w' has a binary representation of 11101011
/// let x = Int16(extendingOrTruncating: w)
/// // x == -21
/// // 'x' has a binary representation of 11111111_11101011
/// let y = UInt16(extendingOrTruncating: w)
/// // y == 65515
/// // 'y' has a binary representation of 11111111_11101011
///
/// - Parameter source: An integer to convert to this type.
init<T : BinaryInteger>(extendingOrTruncating source: T)
/// Creates a new instance with the representable value that's closest to the
/// given integer.
///
/// If the value passed as `source` is greater than the maximum representable
/// value in this type, the result is the type's `max` value. If `source` is
/// less than the smallest representable value in this type, the result is
/// the type's `min` value.
///
/// In this example, `x` is initialized as an `Int8` instance by clamping
/// `500` to the range `-128...127`, and `y` is initialized as a `UInt`
/// instance by clamping `-500` to the range `0...UInt.max`.
///
/// let x = Int8(clamping: 500)
/// // x == 127
/// // x == Int8.max
///
/// let y = UInt(clamping: -500)
/// // y == 0
///
/// - Parameter source: An integer to convert to this type.
init<T : BinaryInteger>(clamping source: T)
/// Returns the n-th word, counting from the least significant to most
/// significant, of this value's binary representation.
///
/// The `word(at:)` method returns negative values in two's complement
/// representation, regardless of a type's underlying implementation. If `n`
/// is greater than the number of words in this value's current
/// representation, the result is `0` for positive numbers and `~0` for
/// negative numbers.
///
/// - Parameter n: The word to return, counting from the least significant to
/// most significant. `n` must be greater than or equal to zero.
/// - Returns: An word-sized, unsigned integer with the bit pattern of the
/// n-th word of this value.
func word(at n: Int) -> UInt
/// The number of bits in the current binary representation of this value.
///
/// This property is a constant for instances of fixed-width integer
/// types.
var bitWidth : Int { get }
/// The number of bits required to represent this value in a signed type
/// using two's complement representation.
///
/// The value of this property is always at least 1.
var minimumSignedRepresentationBitWidth: Int { get }
% for x in binaryArithmetic['BinaryInteger']:
// defaulted using an in-place counterpart, but can be used as an
// optimization hook
${operatorComment(x.operator)}
// FIXME(integers): revisit the doc comment
static func ${x.operator}(_ lhs: Self, _ rhs: Self) -> Self
// implementation hook
${mutatingOperationComment(x.operator)}
// FIXME(integers): revisit the doc commenl
static func ${x.operator}=(_ lhs: inout Self, _ rhs: Self)
% end
/// Returns the quotient and remainder of this value divided by the given
/// value.
///
/// Use this method to calculate the quotient and remainder of a division at
/// the same time.
///
/// let x = 1_000_000
/// let (q, r) = x.quotientAndRemainder(dividingBy: 933)
/// // q == 1071
/// // r == 757
///
/// - Parameter rhs: The value to divide this value by.
/// - Returns: A tuple containing the quotient and remainder of this value
/// divided by `rhs`.
func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self)
/// Returns `-1` if this value is negative and `1` if it's positive;
/// otherwise, `0`.
///
/// - Returns: The sign of this number, expressed as an integer of the same
/// type.
func signum() -> Self
}
extension BinaryInteger {
public init?<T : FloatingPoint>(exactly source: T) {
// FIXME(integers): implement
fatalError()
return nil
}
@_transparent
public func signum() -> Self {
if self < 0 { return -1 }
if self > 0 { return 1 }
return 0
}
/// The number of words used for the current binary representation of this
/// value.
///
/// This property is a constant for instances of fixed-width integer types.
@_transparent
public var countRepresentedWords: Int {
return (self.bitWidth + ${word_bits} - 1) / ${word_bits}
}
public func quotientAndRemainder(dividingBy rhs: Self)
-> (quotient: Self, remainder: Self) {
return (self / rhs, self % rhs)
}
}
// Strideable conformance
extension BinaryInteger {
// FIXME(ABI): using Int as the return type is wrong.
@_transparent
public func distance(to other: Self) -> Int {
let distance = other - self
if let result = Int(exactly: distance) {
return result
}
_preconditionFailure("Distance is not representable in Int")
}
// FIXME(ABI): using Int as the parameter type is wrong.
@_transparent
public func advanced(by n: Int) -> Self {
var advanced: Int = Int(self)
advanced += n
if let result = Self(exactly: advanced) {
return result
}
_preconditionFailure("The result of advanced(by:) is not representable")
}
}
//===----------------------------------------------------------------------===//
//===--- Homogeneous comparison -------------------------------------------===//
//===----------------------------------------------------------------------===//
// FIXME(integers): without this overload enums don't compile with the
// following error: "error: no overload of '==' for Int"
// <rdar://problem/29029561>
/// Returns a Boolean value indicating whether the two given values are equal.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public func == (lhs: Int, rhs: Int) -> Bool {
return lhs.isEqual(to: rhs)
}
//===----------------------------------------------------------------------===//
//===--- Heterogeneous comparison -----------------------------------------===//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
/// Returns a Boolean value indicating whether the two given values are
/// equal.
///
/// You can check the equality of instances of any `BinaryInteger` types
/// using the equal-to operator (`==`). For example, you can test whether
/// the first `UInt8` value in a string's UTF-8 encoding is equal to the
/// first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are equal: \(firstUTF8 == firstScalar)")
/// }
/// // Prints "First code values are equal: true"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func == <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
return (lhs > 0) == (rhs > 0)
&& Self(extendingOrTruncating: rhs) == lhs
&& Other(extendingOrTruncating: lhs) == rhs
}
/// Returns a Boolean value indicating whether the two given values are not
/// equal.
///
/// You can check the inequality of instances of any `BinaryInteger` types
/// using the not-equal-to operator (`!=`). For example, you can test
/// whether the first `UInt8` value in a string's UTF-8 encoding is not
/// equal to the first `UInt32` value in its Unicode scalar view:
///
/// let gameName = "Red Light, Green Light"
/// if let firstUTF8 = gameName.utf8.first,
/// let firstScalar = gameName.unicodeScalars.first?.value {
/// print("First code values are different: \(firstUTF8 != firstScalar)")
/// }
/// // Prints "First code values are different: false"
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func != <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Bool {
return !(lhs == rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than operator (`<`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
public static func < <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
let lhsSign = lhs < (0 as Self) ? -1 : lhs > (0 as Self) ? 1 : 0
let rhsSign = rhs < (0 as Other) ? -1 : rhs > (0 as Other) ? 1 : 0
if lhsSign != rhsSign { return lhsSign < rhsSign }
// if we get here, lhs and rhs have the same sign. If they're
// negative, then T and U are both signed types, and one of them can
// represent values of the other type. Otherwise, lhs and rhs are
// positive, and one of T, U may be signed and the other unsigned.
// In this case, we can conceptually subtract 1 from the bitWidth of
// any signed type, and either the resulting bitWidths are the same
// or one can represent every value of the other.
let rT = Self(extendingOrTruncating: rhs)
// Can we round-trip rhs through T?
if Other(extendingOrTruncating: rT) == rhs {
return lhs < rT
}
return Other(extendingOrTruncating: lhs) < rhs
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is less than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// less-than-or-equal-to operator (`<=`), even if the two instances are of
/// different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
//@inine(__always)
public static func <= <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(rhs < lhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than or equal to that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than-or-equal-to operator (`>=`), even if the two instances are
/// of different types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
//@inline(__always)
public static func >= <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return !(lhs < rhs)
}
/// Returns a Boolean value indicating whether the value of the first
/// argument is greater than that of the second argument.
///
/// You can compare instances of any `BinaryInteger` types using the
/// greater-than operator (`>`), even if the two instances are of different
/// types.
///
/// - Parameters:
/// - lhs: An integer to compare.
/// - rhs: Another integer to compare.
@_transparent
//@inline(__always)
public static func > <Other : BinaryInteger>(lhs: Self, rhs: Other) -> Bool {
return rhs < lhs
}
}
//===----------------------------------------------------------------------===//
//===--- Ambiguity breakers -----------------------------------------------===//
// These two versions of the operators are not ordered with respect to one
// another, but the compiler choses the second one, and that results in infinte
// recursion.
//
// <T : Comparable>(T, T) -> Bool
// <T : BinaryInteger, U : BinaryInteger>(T, U) -> Bool
//
// so we define:
//
// <T : BinaryInteger>(T, T) -> Bool
//
//===----------------------------------------------------------------------===//
extension BinaryInteger {
@_transparent
public static func != (lhs: Self, rhs: Self) -> Bool {
return !(lhs == rhs)
}
@inline(__always)
public static func <= (lhs: Self, rhs: Self) -> Bool {
return !(rhs < lhs)
}
@inline(__always)
public static func >= (lhs: Self, rhs: Self) -> Bool {
return !(lhs < rhs)
}
@inline(__always)
public static func > (lhs: Self, rhs: Self) -> Bool {
return rhs < lhs
}
}
//===----------------------------------------------------------------------===//
//===--- FixedWidthInteger ------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An indicator of whether an arithmetic operation overflowed.
///
/// Some arithmetic operations on fixed-width integers return an
/// `ArithmeticOverflow` instance to indicate whether an overflow has
/// occurred. For example, adding `UInt8.max` to itself results in a value that
/// can't be represented by an `UInt8` instance without overflowing.
///
/// let x = UInt8.max
/// // x == 255
/// let (y, overflow) = x.addingWithOverflow(x)
/// // y == 254
/// // overflow == ArithmeticOverflow.overflow
public enum ArithmeticOverflow {
@_transparent
public init(_ overflow: Bool) { self = overflow ? .overflow : .none }
/// An indication that no overflow occured in the operation.
case none
/// An indication that an overflow did occur in the operation.
case overflow
}
/// An integer type that uses a fixed size for every instance.
///
/// The `FixedWidthInteger` protocol adds binary bitwise operations, bit
/// shifts, and overflow handling to the operations supported by the
/// `BinaryInteger` protocol.
///
/// Use the `FixedWidthInteger` protocol as a constraint or extension point
/// when writing operations that depend on bit shifting, performing bitwise
/// operations, catching overflows, or having access to the maximum or minimum
/// representable value of a type. For example, the following code provides a
/// `binaryString` property on every fixed-width integer that represents the
/// number's binary representation, split into 8-bit chunks.
///
/// extension FixedWidthInteger {
/// var binaryString: String {
/// var result: [String] = []
/// for i in Swift.stride(from: 0, to: Self.bitWidth, by: 8) {
/// let wordValue = UInt8(extendingOrTruncating: self >> i)
/// let word = String(wordValue, radix: 2)
/// let padding = String(repeating: "0",
/// count: 8 - word.characters.count)
/// result.append(padding + word)
/// }
/// return "0b" + result.reversed().joined(separator: "_")
/// }
/// }
///
/// print(Int16.max.binaryString)
/// // Prints "0b01111111_11111111"
/// print((101 as UInt8).binaryString)
/// // Prints "0b11001001"
///
/// The `binaryString` implementation uses the static `bitWidth` property and
/// the right shift operator (`<<`), both of which are available to any type
/// that conforms to the `FixedWidthInteger` protocol.
///
/// The next example declares the generic `squared` function, which accepts an
/// instance `x` of any fixed-width integer type. The function uses the
/// `multipliedWithOverflow(by:)` method to multiply `x` by itself and check
/// whether the result is too large to represent in the same type.
///
/// func squared<T: FixedWidthInteger>(_ x: T) -> T? {
/// let (result, overflow) = x.multipliedWithOverflow(by: x)
/// guard overflow == .none else {
/// return nil
/// }
/// return result
/// }
///
/// let (x, y): (Int8, Int8) = (10, 100)
/// print(squared(x))
/// // Prints "Optional(100)"
/// print(squared(y))
/// // Prints "nil"
///
/// Conforming to the FixedWidthInteger Protocol
/// ============================================
///
/// To make your own custom type conform to the `FixedWidthInteger` protocol,
/// declare the required initializers, properties, and methods. The required
/// methods that are suffixed with `WithOverflow` serve as the customization
/// points for arithmetic operations. When you provide just those methods, the
/// standard library provides default implementations for all other arithmetic
/// methods and operators.
public protocol FixedWidthInteger : BinaryInteger
// FIXME(integers): remove this along with the BitwiseOperations protocol
, BitwiseOperations
{
/// The number of bits used for the underlying binary representation of
/// values of this type.
///
/// An unsigned, fixed-width integer type can represent values from 0 through
/// `(2 ** bitWidth) - 1`, where `**` is exponentiation. A signed,
/// fixed-width integer type can represent values from
/// `-(2 ** bitWidth - 1)` through `(2 ** bitWidth - 1) - 1`. For example,
/// the `Int8` type has a `bitWidth` value of 8 and can store any integer in
/// the range `-128...127`.
static var bitWidth : Int { get }
/// The maximum representable integer in this type.
///
/// For unsigned integer types, this value is `(2 ** bitWidth) - 1`, where
/// `**` is exponentiation. For signed integer types, this value is
/// `(2 ** bitWidth - 1) - 1`.
static var max: Self { get }
/// The minimum representable value.
///
/// For unsigned integer types, this value is always `0`. For signed integer
/// types, this value is `-(2 ** bitWidth - 1)`, where `**` is
/// exponentiation.
static var min: Self { get }
% for x in binaryArithmetic['Arithmetic']:
${overflowOperationComment(x.operator)}
func ${x.name}WithOverflow(
${x.firstArg} rhs: Self
) -> (partialValue: Self, overflow: ArithmeticOverflow)
% end
% for x in binaryBitwise + maskingShifts:
${operationComment(x.operator)}
// FIXME(integers): revisit the doc comment
static func ${x.operator}(_ lhs: Self, _ rhs: Self) -> Self
% end
/// Returns a tuple containing the high and low parts of the result of
/// multiplying its arguments.
///
/// Use this method to calculate the full result of a product that would
/// otherwise overflow. Unlike traditional truncating multiplication, the
/// `doubleWidthMultiply(_:_:)` method returns both the `high` and `low`
/// parts of the product of `lhs` and `rhs`. The following example uses this
/// method to multiply two `UInt8` values that normally overflow when
/// multiplied:
///
/// let x: UInt8 = 100
/// let y: UInt8 = 20
/// let result = UInt8.doubleWidthMultiply(100, 20)
/// // result.high == 0b00000111
/// // result.low == 0b11010000
///
/// The product of `x` and `y` is 2000, which is too large to represent in a
/// `UInt8` instance. The `high` and `low` components of the `result` tuple
/// represent 2000 when concatenated to form a double-width integer; that
/// is, using `result.high` as the high byte and `result.low` as the low byte
/// of a `UInt16` instance.
///
/// let z = UInt16(result.high) << 8 | UInt16(result.low)
/// // z == 2000
///
/// - Parameters:
/// - lhs: A value to multiply.
/// - rhs: Another value to multiply.
/// - Returns: A tuple containing the high and low parts of the result of
/// multiplying `lhs` and `rhs`.
///
/// - SeeAlso: `multipliedWithOverflow(by:)`
static func doubleWidthMultiply(_ lhs: Self, _ rhs: Self)
-> (high: Self, low: Magnitude)
/// Returns a tuple containing the quotient and remainder of dividing the
/// first argument by the second.
///
/// The resulting quotient must be representable within the bounds of the
/// type. If the quotient of dividing `lhs` by `rhs` is too large to
/// represent in the type, a runtime error may occur.
///
/// - Parameters:
/// - lhs: A tuple containing the high and low parts of a double-width
/// integer. The `high` component of the tuple carries the sign, if the
/// type is signed.
/// - rhs: The integer to divide into `lhs`.
/// - Returns: A tuple containing the quotient and remainder of `lhs` divided
/// by `rhs`.
static func doubleWidthDivide(
_ lhs: (high: Self, low: Magnitude), _ rhs: Self)
-> (quotient: Self, remainder: Self)
init(_truncatingBits bits: UInt)
/// The number of bits equal to 1 in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number 31 has five bits equal to 1.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.popcount == 5
var popcount: Int { get }
/// The number of leading zeros in this value's binary representation.
///
/// For example, in a fixed-width integer type with a `bitWidth` value of 8,
/// the number 31 has three leading zeros.
///
/// let x: Int8 = 0b0001_1111
/// // x == 31
/// // x.leadingZeros == 3
var leadingZeros: Int { get }
}
// FIXME(integers): this conformance should be removed along with the
// BitwiseOperations protocol
extension FixedWidthInteger {
/// An instance where every bit is set to zero.
public static var allZeros: Self { return 0 }
}
//===----------------------------------------------------------------------===//
//===--- Operators on FixedWidthInteger -----------------------------------===//
//===----------------------------------------------------------------------===//
extension FixedWidthInteger {
@inline(__always)
public static prefix func ~ (x: Self) -> Self {
return 0 &- x &- 1
}
% for x in maskingShifts:
@_transparent
public static func ${x.operator}= (lhs: inout Self, rhs: Self) {
lhs = lhs ${x.operator} rhs
}
${operatorComment(x.operator)}
public static func ${x.operator} <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
return lhs ${x.operator} Self(extendingOrTruncating: rhs)
}
@_transparent
public static func ${x.operator}= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs ${x.operator} rhs
}
${operatorComment(x.nonMaskingOperator)}
@_transparent
public static func ${x.nonMaskingOperator} <
Other : BinaryInteger
>(lhs: Self, rhs: Other) -> Self {
let shift = rhs < -Self.bitWidth ? -Self.bitWidth
: rhs > Self.bitWidth ? Self.bitWidth
: Int(rhs)
return lhs ${x.nonMaskingOperator} shift
}
//===----------------------------------------------------------------------===//
//=== "Smart ${x.description}", supporting overshifts and negative shifts -===//
//===----------------------------------------------------------------------===//
${operatorComment(x.nonMaskingOperator)}
@_transparent
public static func ${x.nonMaskingOperator} (lhs: Self, rhs: Int) -> Self {
let overshiftR = Self.isSigned ? lhs &>> (Self.bitWidth - 1) : 0
let overshiftL: Self = 0
if _fastPath(rhs >= 0) {
if _fastPath(rhs < Self.bitWidth) {
return lhs ${x.operator} Self(extendingOrTruncating: rhs)
}
return overshift${'LR'['R' in x.nonMaskingOperator]}
}
if _slowPath(rhs <= -Self.bitWidth) {
return overshift${'RL'['R' in x.nonMaskingOperator]}
}
return lhs ${x.operator.translate(maketrans('<>', '><'))} -rhs
}
@_transparent
public static func ${x.nonMaskingOperator}= (lhs: inout Self, rhs: Self) {
lhs = lhs ${x.nonMaskingOperator} rhs
}
@_transparent
public static func ${x.nonMaskingOperator}= <
Other : BinaryInteger
>(lhs: inout Self, rhs: Other) {
lhs = lhs ${x.nonMaskingOperator} rhs
}
% end # maskingShifts
}
extension FixedWidthInteger {
public init<Other: BinaryInteger>(clamping source: Other) {
if _slowPath(source < Self.min) {
self = Self.min
}
else if _slowPath(source > Self.max) {
self = Self.max
}
else { self = Self(extendingOrTruncating: source) }
}
% for x in binaryArithmetic['Arithmetic']:
% callLabel = x.firstArg + ': ' if not x.firstArg == '_' else ''
// FIXME(integers): penging optimizer work on handling the case where the
// boolean value is wrapped into a two-case enum and then immediately
// unwrapped. <rdar://problem/29004429>
// Uncomment this block and remove the corresponding one from the concrete
// types once the optimizer is ready.
#if false
@_transparent
public static func ${x.operator}=(_ lhs: inout Self, _ rhs: Self) {
let (result, overflow) = lhs.${x.name}WithOverflow(${callLabel}rhs)
_precondition(overflow == .none, "Overflow in ${x.operator}=")
lhs = result
}
#endif
// end of FIXME(integers)
${unsafeOperationComment(x.operator)}
@_transparent
public func unsafe${capitalize(x.name)}(${x.firstArg} other: Self) -> Self {
let (result, overflow) = self.${x.name}WithOverflow(${callLabel}other)
if (overflow != .none) {
if (_isDebugAssertConfiguration()) {
_preconditionFailure("overflow in unsafe${capitalize(x.name)}")
}
else {
Builtin.conditionallyUnreachable()
}
}
return result
}
% end
@_transparent
public init<T : BinaryInteger>(extendingOrTruncating source: T) {
if Self.bitWidth <= ${word_bits} {
self = Self.init(_truncatingBits: source.word(at: 0))
}
else {
var result: Self = source < (0 as T) ? ~0 : 0
// start with the most significant word
var n = source.countRepresentedWords
while n >= 0 {
// masking is OK here because this we have already ensured
// that Self.bitWidth > ${word_bits}. Not masking results in
// infinite recursion.
result &<<= ${word_bits}
result |= Self(_truncatingBits: source.word(at: n))
n -= 1
}
self = result
}
}
@_transparent
public // transparent
static var _highBitIndex: Self {
return Self.init(_truncatingBits: UInt(Self.bitWidth._value) &- 1)
}
public static func doubleWidthDivide(
_ lhs: (high: Self, low: Magnitude), _ rhs: Self)
-> (quotient: Self, remainder: Self) {
fatalError()
}
% for x in [op for ops in binaryArithmetic.values() for op in ops]:
% callLabel = x.firstArg + ': ' if not x.firstArg == '_' else ''
% if x.kind != '/':
${operatorComment('&' + x.operator)}
public static func &${x.operator} (lhs: Self, rhs: Self) -> Self {
return lhs.${x.name}WithOverflow(${callLabel}rhs).partialValue
}
% end
% end
}
//===----------------------------------------------------------------------===//
//===--- UnsignedInteger --------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that can represent only nonnegative values.
public protocol UnsignedInteger : BinaryInteger {
associatedtype Magnitude : BinaryInteger
}
extension UnsignedInteger {
/// The magnitude of this value.
///
/// Every unsigned integer is its own magnitude, so for any value `x`,
/// `x == x.magnitude`.
///
/// The global `abs(_:)` function provides more familiar syntax when you need
/// to find an absolute value. In addition, because `abs(_:)` always returns
/// a value of the same type, even in a generic context, using the function
/// instead of the `magnitude` property is encouraged.
///
/// - SeeAlso: `abs(_:)`
@_transparent
public var magnitude: Self { return self }
@_transparent
public static var isSigned: Bool { return false }
public var description: String {
if self == 0 {
return "0"
}
let ascii0 = 48
var buf: [UnicodeScalar] = []
var x = self
repeat {
let r = x % 10
x /= 10
buf.append(
UnicodeScalar(
ascii0 + Int(UInt(extendingOrTruncating: r)._value))!)
}
while x != 0
return String(buf.reversed().lazy.map { Character($0) })
}
}
extension UnsignedInteger where Self : FixedWidthInteger {
@_transparent
public init<T : BinaryInteger>(_ source: T) {
_precondition(source >= 0,
"negative value is not representable")
// FIXME(integers): uncomment the check when the ctlz instruction gets the
// necessary optimizations. <rdar://problem/29004328>
/*let requiredBits = source.minimumSignedRepresentationBitWidth - 1*/
/*_precondition(requiredBits <= Self.bitWidth,*/
/*"Not enough bits to represent an unsigned value")*/
self.init(extendingOrTruncating: source)
}
@_transparent
public init?<T : BinaryInteger>(exactly source: T) {
_precondition(source >= 0,
"Negative value is not representable")
let requiredBits = source.minimumSignedRepresentationBitWidth - 1
if requiredBits > Self.bitWidth {
return nil
}
self.init(extendingOrTruncating: source)
}
@_transparent
public static var max: Self {
return ~0
}
@_transparent
public static var min: Self {
return 0
}
}
//===----------------------------------------------------------------------===//
//===--- SignedInteger ----------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// An integer type that can represent both positive and negative values.
public protocol SignedInteger : BinaryInteger, SignedArithmetic {
associatedtype Magnitude : BinaryInteger
}
extension SignedInteger {
public var description: String {
let base = String(describing: magnitude)
return self < 0 ? "-" + base : base
}
@_transparent
public static var isSigned: Bool { return true }
}
extension SignedInteger where Self : FixedWidthInteger {
@_transparent
public init<T : BinaryInteger>(_ source: T) {
// FIXME(integers): uncomment the check when the ctlz instruction gets the
// necessary optimizations. <rdar://problem/29004328>
/*let requiredBits = source.minimumSignedRepresentationBitWidth*/
/*_precondition(*/
/*requiredBits <= Self.bitWidth,*/
/*"Not enough bits to represent a signed value")*/
self.init(extendingOrTruncating: source)
}
@_transparent
public init?<T : BinaryInteger>(exactly source: T) {
let requiredBits = source.minimumSignedRepresentationBitWidth
if requiredBits > Self.bitWidth {
return nil
}
self.init(extendingOrTruncating: source)
}
@_transparent
public static var max: Self {
return ~min
}
@_transparent
public static var min: Self {
return -1 &<< Self._highBitIndex
}
}
//===----------------------------------------------------------------------===//
//===--- Concrete FixedWidthIntegers --------------------------------------===//
//===----------------------------------------------------------------------===//
% for self_type in all_integer_types(word_bits):
% bits = self_type.bits
% signed = self_type.is_signed
% BuiltinName = self_type.builtin_name
% Self = self_type.stdlib_name
% OtherSelf = self_type.get_opposite_signedness().stdlib_name
% Unsigned = 'Signed' if signed else 'Unsigned'
% u = 's' if signed else 'u'
% U = 'U' if signed else ''
% z = 's' if signed else 'z'
@_fixed_layout
public struct ${Self}
: FixedWidthInteger, ${Unsigned}Integer,
_ExpressibleByBuiltinIntegerLiteral {
@_transparent
public init(_builtinIntegerLiteral x: _MaxBuiltinIntegerType) {
_value = Builtin.truncOrBitCast_${IntLiteral}_Int${bits}(x)
Builtin.condfail(
Builtin.cmp_ne_${IntLiteral}(
Builtin.${z}extOrBitCast_Int${bits}_${IntLiteral}(
_value), x))
}
/// Creates a new instance with the same memory representation as the given
/// value.
///
/// This initializer does not perform any range or overflow checking. The the
/// resulting instance may not have the same numeric value as
/// `bitPattern`---it is only guaranteed to use the same pattern of bits in
/// its binary representation.
///
/// - Parameter x: A value to use as the source of the new instance's binary
/// representation.
@_transparent
public init(bitPattern x: ${OtherSelf}) {
_value = x._value
}
% for (FloatType, FloatBits) in [
% ('Float', 32), ('Double', 64), ('Float80', 80)]:
% (lower, upper) = getFtoIBounds(floatBits=FloatBits, intBits=int(bits), signed=signed)
% if FloatType == 'Float80':
#if !os(Windows) && (arch(i386) || arch(x86_64))
% end
public init(_ source: ${FloatType}) {
_precondition(source.isFinite, "") // FIXME(integers): message
_precondition(source > ${str(lower)}.0, "") // FIXME(integers): message
_precondition(source < ${str(upper)}.0, "") // FIXME(integers): message
self._value = Builtin.fpto${u}i_FPIEEE${FloatBits}_${BuiltinName}(source._value)
}
% if FloatType == 'Float80':
#endif
% end
% end
// FIXME(integers): workaround for a problem where enums don't compile without
// `== (Int, Int)`
// <rdar://problem/29029561>
% if Self in ['Int']:
@_transparent
public func isEqual(to other: ${Self}) -> Bool {
return Bool(Builtin.cmp_eq_Int${bits}(_value, other._value))
}
% else:
@_transparent
public static func == (lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.cmp_eq_Int${bits}(lhs._value, rhs._value))
}
% end
@_transparent
public static func < (lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.cmp_${u}lt_Int${bits}(lhs._value, rhs._value))
}
// FIXME(integers): penging optimizer work on handling the case where the
// boolean value is wrapped into a two-case enum and then immediately
// unwrapped. <rdar://problem/29004429>
// See corresponding definitions in the FixedWidthInteger extension.
% for x in binaryArithmetic['Arithmetic']:
@_transparent
public static func ${x.operator}=(_ lhs: inout ${Self}, _ rhs: ${Self}) {
let (result, overflow) =
% if x.kind == '/':
(Builtin.${u}${x.llvmName}_Int${bits}(lhs._value, rhs._value),
false._value)
% else:
// !!! This implementation is incorrect for division and modulo, as it does
// not catch division by zero.
Builtin.${u}${x.llvmName}_with_overflow_Int${bits}(
lhs._value, rhs._value, true._value)
% end
Builtin.condfail(overflow)
lhs = ${Self}(result)
}
% end
// end of FIXME(integers)
% for x in [op for ops in binaryArithmetic.values() for op in ops]:
@_transparent
public func ${x.name}WithOverflow(
${x.firstArg} other: ${Self}
) -> (partialValue: ${Self}, overflow: ArithmeticOverflow) {
% if x.kind == '/':
// No LLVM primitives for checking overflow of division
// operations, so we check manually.
if _slowPath(
other == 0
${'|| self == %s.min && other == -1' % Self if signed else ''}
) {
return (partialValue: self, overflow: .overflow)
}
let (newStorage, overflow) = (
Builtin.${u}${x.llvmName}_Int${bits}(self._value, other._value),
false._value)
% else:
let (newStorage, overflow)
= Builtin.${u}${x.llvmName}_with_overflow_Int${bits}(
self._value, other._value, false._value)
% end
return (
partialValue: ${Self}(newStorage),
overflow: ArithmeticOverflow(Bool(overflow)))
}
% end
@_transparent
public static func %=(_ lhs: inout ${Self}, _ rhs: ${Self}) {
if _slowPath(rhs == 0) {
preconditionFailure("Remainder of division by zero")
}
let (newStorage, _) = (
Builtin.${u}rem_Int${bits}(lhs._value, rhs._value),
false._value)
lhs = ${Self}(newStorage)
}
@_transparent
public init(_ _value: Builtin.Int${bits}) {
self._value = _value
}
// FIXME(integers): in order to remove this, the simd.swift.gyb should be
// updated
@_transparent
public init(_bits: Builtin.Int${bits}) {
self._value = _bits
}
% for x in binaryBitwise:
@_transparent
public static func ${x.operator}(_ lhs: ${Self}, _ rhs: ${Self}) -> ${Self} {
return ${Self}(
Builtin.${x.llvmName}_Int${bits}(lhs._value, rhs._value))
}
@_transparent
public static func ${x.operator}=(_ lhs: inout ${Self}, _ rhs: ${Self}) {
lhs = lhs ${x.operator} rhs
}
% end
% for x in maskingShifts:
@_transparent
public static func ${x.operator}(_ lhs: ${Self}, _ rhs: ${Self}) -> ${Self} {
let rhs_ = rhs & ${Self}._highBitIndex
return ${Self}(
Builtin.${x.llvmName(signed)}_Int${bits}(lhs._value, rhs_._value))
}
% end
@_transparent
public static var bitWidth : Int { return ${bits} }
public var bitWidth: Int { return ${bits} }
@_transparent
public var minimumSignedRepresentationBitWidth: Int {
% if signed:
let x = self < 0 ? ~self : self
return (x == 0) ? 1 : (${Self}.bitWidth - x.leadingZeros + 1)
% else:
return (self == 0) ? 1 : (${Self}.bitWidth - self.leadingZeros + 1)
% end
}
@_transparent
public var leadingZeros: Int {
return Int(
${Self}(
Builtin.int_ctlz_Int${bits}(self._value, false._value)
)._lowUWord._value)
}
@_transparent
public var popcount: Int {
return Int(
${Self}(
Builtin.int_ctpop_Int${bits}(self._value)
)._lowUWord._value)
}
@_transparent
public func word(at n: Int) -> UInt {
_precondition(n >= 0, "Negative word index")
if _fastPath(n < countRepresentedWords) {
let shift = UInt(n._value) &* ${word_bits}
let bitWidth = UInt(self.bitWidth._value)
_sanityCheck(shift < bitWidth)
return (self &>> ${Self}(_truncatingBits: shift))._lowUWord
}
% if signed:
return self < 0 ? ~0 : 0
% else:
return 0
% end
}
@_transparent
public // transparent
var _lowUWord: UInt {
% truncOrExt = z + 'ext' if bits <= word_bits else 'trunc'
return UInt(
Builtin.${truncOrExt}OrBitCast_Int${bits}_Int${word_bits}(_value)
)
}
@_transparent
public // transparent
init(_truncatingBits bits: UInt) {
% truncOrExt = 'zext' if bits > word_bits else 'trunc'
self.init(
Builtin.${truncOrExt}OrBitCast_Int${word_bits}_Int${bits}(bits._value))
}
% if signed:
public typealias Magnitude = U${Self}
@_transparent
public var magnitude: U${Self} {
let base = U${Self}(_value)
return self < 0 ? ~base + 1 : base
}
% end
% dbits = bits*2
public static func doubleWidthMultiply(_ self_: ${Self}, _ other: ${Self})
-> (high: ${Self}, low: ${Self}.Magnitude) {
let lhs = Builtin.${z}ext_Int${bits}_Int${dbits}(self_._value)
let rhs = Builtin.${z}ext_Int${bits}_Int${dbits}(other._value)
let res = Builtin.mul_Int${dbits}(lhs, rhs)
let low = ${Self}.Magnitude(Builtin.truncOrBitCast_Int${dbits}_Int${bits}(res))
let shift: UInt8 = ${bits}
let shifted = Builtin.ashr_Int${dbits}(res,
Builtin.zextOrBitCast_Int8_Int${dbits}(shift._value))
let high = ${Self}(Builtin.truncOrBitCast_Int${dbits}_Int${bits}(shifted))
return (high: high, low: low)
}
% if bits > 8:
/// Creates an integer from its big-endian representation, changing the
/// byte order if necessary.
@_transparent
public init(bigEndian value: ${Self}) {
#if _endian(big)
self = value
#else
self = ${Self}(Builtin.int_bswap_${BuiltinName}(value._value) )
#endif
}
/// Creates an integer from its little-endian representation, changing the
/// byte order if necessary.
@_transparent
public init(littleEndian value: ${Self}) {
#if _endian(little)
self = value
#else
self = ${Self}(Builtin.int_bswap_${BuiltinName}(value._value) )
#endif
}
/// The big-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a big-endian platform, for any
/// integer `x`, `x == x.bigEndian`.
///
/// - SeeAlso: `littleEndian`
public var bigEndian: ${Self} {
#if _endian(big)
return self
#else
return ${Self}(Builtin.int_bswap_${BuiltinName}(_value))
#endif
}
/// The little-endian representation of this integer.
///
/// If necessary, the byte order of this value is reversed from the typical
/// byte order of this integer type. On a little-endian platform, for any
/// integer `x`, `x == x.littleEndian`.
///
/// - SeeAlso: `bigEndian`
public var littleEndian: ${Self} {
#if _endian(little)
return self
#else
return ${Self}(Builtin.int_bswap_${BuiltinName}(_value))
#endif
}
/// A representation of this integer with the byte order swapped.
public var byteSwapped: ${Self} {
return ${Self}(Builtin.int_bswap_${BuiltinName}(_value))
}
% end
// Implementation details
public var _value: Builtin.Int${bits}
% if self_type.is_word:
@_transparent
public // @testable
init(_ _v: Builtin.Word) {
% if BuiltinName == 'Int32':
self._value = Builtin.truncOrBitCast_Word_Int32(_v)
% elif BuiltinName == 'Int64':
self._value = Builtin.zextOrBitCast_Word_Int64(_v)
% end
}
@_transparent
public // @testable
var _builtinWordValue: Builtin.Word {
% if BuiltinName == 'Int32':
return Builtin.zextOrBitCast_Int32_Word(_value)
% elif BuiltinName == 'Int64':
return Builtin.truncOrBitCast_Int64_Word(_value)
% end
}
% end
@available(*, unavailable, message: "Use initializers instead")
public func to${U}IntMax() -> ${U}IntMax {
fatalError("Unavailable function")
}
}
%# end of concrete type: ${Self}
extension ${Self} {
// FIXME(integers): implement me in a less terrible way
public init<T : FloatingPoint>(_ source: T) {
% for (FloatType, FloatBits) in [
% ('Float', 32), ('Double', 64), ('Float80', 80)]:
% if FloatType == 'Float80':
#if !os(Windows) && (arch(i386) || arch(x86_64))
% end
if source is ${FloatType} {
self.init(source as! ${FloatType})
return
}
% if FloatType == 'Float80':
#endif
% end
% end
_preconditionFailure("Conversion is not supported")
}
}
extension ${Self} : Hashable {
/// The integer's hash value.
///
/// The hash value is not guaranteed to be stable across different
/// invocations of the same program. Do not persist the hash value across
/// program runs.
public var hashValue: Int {
@inline(__always)
get {
% if bits <= word_bits and signed:
// Sign extend the value.
return Int(self)
% elif bits <= word_bits and not signed:
// Sign extend the value.
return Int(${OtherSelf}(bitPattern: self))
% elif bits == word_bits * 2:
// We have twice as many bits as we need to return.
return
Int(extendingOrTruncating: self) ^
Int(extendingOrTruncating: self &>> 32)
% else:
_Unimplemented()
% end
}
}
}
// Create an ambiguity when indexing or slicing
// Range[OfStrideable]<${Self}> outside a generic context. See
// Range.swift for details.
extension ${Self} {
public typealias _DisabledRangeIndex = ${Self}
}
% for src_type in all_integer_types(word_bits):
% srcBits = src_type.bits
% srcSigned = src_type.is_signed
% Src = src_type.stdlib_name
% if should_define_truncating_bit_pattern_init(src_ty=src_type, dst_ty=self_type):
extension ${Self} {
/// Creates a new instance with the same bitwise representation as the least
/// significant bits of the given value.
///
/// This initializer performs no range or overflow checking. The resulting
/// instance may have a different numeric value from `source`.
///
/// - Parameter source: An integer to use as the source of the new value's
/// bit pattern.
@available(swift, obsoleted: 4.0, renamed: "init(extendingOrTruncating:)")
@_transparent
public init(truncatingBitPattern source: ${Src}) {
let src = source._value
% if self_type.bits == src_type.bits:
let dstNotWord = src
% else:
let dstNotWord = Builtin.trunc_Int${srcBits}_Int${bits}(src)
% end
self._value = dstNotWord
}
}
% end
% end
% if signed:
// TODO: Consider removing the underscore.
/// Returns the argument and specifies that the value is not negative.
/// It has only an effect if the argument is a load or call.
@_transparent
public func _assumeNonNegative(_ x: ${Self}) -> ${Self} {
_sanityCheck(x >= 0)
return ${Self}(Builtin.assumeNonNegative_${BuiltinName}(x._value))
}
% end
#if false
// FIXME(integers): resolving the ambiguity. Should be gone along with the
// BitwiseOperations protocol
% for x in binaryBitwise:
@_transparent
public func ${x.operator}= <
T : BitwiseOperations
>(lhs: inout T, rhs: T) where T : FixedWidthInteger {
lhs = lhs ${x.operator} rhs
}
% end
#endif
//===--- end of FIXME(integers) -------------------------------------------===//
//===----------------------------------------------------------------------===//
// FIXME(integers): short term solution until the overload resolution is fast
// with the generic arithmetic operators.
#if false
extension ${Self} {
// Operations with potentially-static overflow checking
//
// FIXME: must use condfail in these operators, rather than
// overflowChecked, pending <rdar://problem/16271923> so that we don't
// foil static checking for numeric overflows.
% for op in ['+', '*', '-', '/', '%']:
@available(swift, obsoleted: 4.0)
@_transparent
public static func ${op} (lhs: ${Self}, rhs: ${Self}) -> ${Self} {
var lhs = lhs
lhs ${op}= rhs
return lhs
}
% end
}
#endif
//===--- end of FIXME(integers) -------------------------------------------===//
% end # end of concrete FixedWidthInteger section
// FIXME(integers): inline manually everywhere
/// Returns the given integer as the equivalent value in a different integer
/// type.
///
/// The `numericCast(_:)` function traps on overflow in `-O` and `-Onone`
/// builds.
///
/// You can use `numericCast(_:)` to convert a value when the destination type
/// can be inferred from the context. In the following example, the
/// `random(in:)` function uses `numericCast(_:)` twice to convert the
/// argument and return value of the `arc4random_uniform(_:)` function to the
/// appropriate type.
///
/// func random(in range: Range<Int>) -> Int {
/// return numericCast(arc4random_uniform(numericCast(range.count)))
/// + range.lowerBound
/// }
///
/// let number = random(in: -10...<10)
/// // number == -3, perhaps
///
/// - Parameter x: The integer to convert, and instance of type `T`.
/// - Returns: The value of `x` converted to type `U`.
public func numericCast<T : BinaryInteger, U : BinaryInteger>(_ x: T) -> U {
return U(x)
}
// FIXME(integers): switch to using `FixedWidthInteger.unsafeAdding`
internal func _unsafePlus(_ lhs: Int, _ rhs: Int) -> Int {
#if INTERNAL_CHECKS_ENABLED
return lhs + rhs
#else
return lhs &+ rhs
#endif
}
// FIXME(integers): switch to using `FixedWidthInteger.unsafeSubtracting`
internal func _unsafeMinus(_ lhs: Int, _ rhs: Int) -> Int {
#if INTERNAL_CHECKS_ENABLED
return lhs - rhs
#else
return lhs &- rhs
#endif
}
// FIXME(integers): switch to using `FixedWidthInteger.unsafeMultiplied(by:)`
internal func _unsafeMultiply(_ lhs: Int, _ rhs: Int) -> Int {
#if INTERNAL_CHECKS_ENABLED
return lhs * rhs
#else
return lhs &* rhs
#endif
}
// FIXME(integers): test more of these.
// FIXME: should maybe be BinaryInteger & Arithmetic, but <rdar://27619386> prevents it
@available(*, unavailable, renamed: "Arithmetic")
public typealias _IntegerArithmeticType = Arithmetic
@available(*, unavailable, renamed: "Arithmetic")
public typealias IntegerArithmeticType = Arithmetic
@available(*, unavailable, renamed: "SignedArithmetic")
public typealias SignedNumberType = SignedArithmetic
@available(*, unavailable, renamed: "SignedInteger")
public typealias SignedIntegerType = SignedInteger
@available(*, unavailable, renamed: "UnsignedInteger")
public typealias UnsignedIntegerType = SignedArithmetic
@available(*, unavailable, renamed: "SignedArithmetic")
public typealias AbsoluteValuable = SignedArithmetic
@available(*, unavailable, renamed: "FixedWidthInteger")
public typealias _IntegerType = FixedWidthInteger
@available(*, unavailable, renamed: "FixedWidthInteger")
public typealias IntegerType = FixedWidthInteger
@available(*, unavailable, renamed: "SignedInteger")
public typealias _SignedIntegerType = SignedInteger