Files
swift-mirror/lib/AST/SubstitutionMap.cpp
Jordan Rose 537954fb93 [AST] Rename several DeclContext methods to be clearer and shorter (#18798)
- getAsDeclOrDeclExtensionContext -> getAsDecl

This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.

- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)

These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point.  The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.

- getAsProtocolExtensionContext -> getExtendedProtocolDecl

Like the above, this didn't return the ExtensionDecl; it returned its
extended type.

This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
2018-08-17 14:05:24 -07:00

654 lines
22 KiB
C++

//===--- SubstitutionMap.cpp - Type substitution map ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SubstitutionMap class. A SubstitutionMap packages
// together a set of replacement types and protocol conformances for
// specializing generic types.
//
// SubstitutionMaps either have type parameters or archetypes as keys,
// based on whether they were built from a GenericSignature or a
// GenericEnvironment.
//
// To specialize a type, call Type::subst() with the right SubstitutionMap.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SubstitutionMap.h"
#include "SubstitutionMapStorage.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "llvm/Support/Debug.h"
using namespace swift;
SubstitutionMap::Storage::Storage(
GenericSignature *genericSig,
ArrayRef<Type> replacementTypes,
ArrayRef<ProtocolConformanceRef> conformances)
: genericSig(genericSig),
numConformanceRequirements(genericSig->getNumConformanceRequirements())
{
assert(replacementTypes.size() == getNumReplacementTypes());
assert(conformances.size() == numConformanceRequirements);
std::copy(replacementTypes.begin(), replacementTypes.end(),
getReplacementTypes().data());
std::copy(conformances.begin(), conformances.end(),
getConformances().data());
populatedAllReplacements = false;
}
SubstitutionMap::SubstitutionMap(
GenericSignature *genericSig,
ArrayRef<Type> replacementTypes,
ArrayRef<ProtocolConformanceRef> conformances)
: storage(Storage::get(genericSig, replacementTypes, conformances)) { }
ArrayRef<Type> SubstitutionMap::getReplacementTypesBuffer() const {
return storage ? storage->getReplacementTypes() : ArrayRef<Type>();
}
MutableArrayRef<Type> SubstitutionMap::getReplacementTypesBuffer() {
return storage ? storage->getReplacementTypes() : MutableArrayRef<Type>();
}
MutableArrayRef<ProtocolConformanceRef>
SubstitutionMap::getConformancesBuffer() {
return storage ? storage->getConformances()
: MutableArrayRef<ProtocolConformanceRef>();
}
ArrayRef<ProtocolConformanceRef> SubstitutionMap::getConformances() const {
return storage ? storage->getConformances()
: ArrayRef<ProtocolConformanceRef>();
}
ArrayRef<Type> SubstitutionMap::getReplacementTypes() const {
if (empty()) return { };
// Make sure we've filled in all of the replacement types.
if (!storage->populatedAllReplacements) {
for (auto gp : getGenericSignature()->getGenericParams()) {
(void)lookupSubstitution(cast<SubstitutableType>(gp->getCanonicalType()));
}
storage->populatedAllReplacements = true;
}
return getReplacementTypesBuffer();
}
GenericSignature *SubstitutionMap::getGenericSignature() const {
return storage ? storage->getGenericSignature() : nullptr;
}
bool SubstitutionMap::empty() const {
return getGenericSignature() == nullptr;
}
bool SubstitutionMap::hasAnySubstitutableParams() const {
auto genericSig = getGenericSignature();
if (!genericSig) return false;
return !genericSig->areAllParamsConcrete();
}
bool SubstitutionMap::hasArchetypes() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasArchetype())
return true;
}
return false;
}
bool SubstitutionMap::hasOpenedExistential() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasOpenedExistential())
return true;
}
return false;
}
bool SubstitutionMap::hasDynamicSelf() const {
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && replacementTy->hasDynamicSelfType())
return true;
}
return false;
}
bool SubstitutionMap::isCanonical() const {
if (empty()) return true;
if (!getGenericSignature()->isCanonical()) return false;
for (Type replacementTy : getReplacementTypes()) {
if (replacementTy && !replacementTy->isCanonical())
return false;
}
for (auto conf : getConformances()) {
if (!conf.isCanonical())
return false;
}
return true;
}
SubstitutionMap SubstitutionMap::getCanonical() const {
if (empty()) return *this;
auto canonicalSig = getGenericSignature()->getCanonicalSignature();
SmallVector<Type, 4> replacementTypes;
for (Type replacementType : getReplacementTypes()) {
if (replacementType)
replacementTypes.push_back(replacementType->getCanonicalType());
else
replacementTypes.push_back(nullptr);
}
SmallVector<ProtocolConformanceRef, 4> conformances;
for (auto conf : getConformances()) {
conformances.push_back(conf.getCanonicalConformanceRef());
}
return SubstitutionMap::get(canonicalSig,
ArrayRef<Type>(replacementTypes),
ArrayRef<ProtocolConformanceRef>(conformances));
}
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
SubstitutionMap substitutions) {
if (!genericSig) {
assert(!substitutions.hasAnySubstitutableParams() &&
"Shouldn't have substitutions here");
return SubstitutionMap();
}
return SubstitutionMap::get(genericSig,
[&](SubstitutableType *type) -> Type {
return substitutions.lookupSubstitution(
CanSubstitutableType(type));
},
LookUpConformanceInSubstitutionMap(substitutions));
}
/// Build an interface type substitution map for the given generic signature
/// from a type substitution function and conformance lookup function.
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
TypeSubstitutionFn subs,
LookupConformanceFn lookupConformance) {
if (!genericSig) {
return SubstitutionMap();
}
// Form the replacement types.
SmallVector<Type, 4> replacementTypes;
replacementTypes.reserve(genericSig->getGenericParams().size());
for (auto gp : genericSig->getGenericParams()) {
// Don't eagerly form replacements for non-canonical generic parameters.
if (!genericSig->isCanonicalTypeInContext(gp->getCanonicalType())) {
replacementTypes.push_back(Type());
continue;
}
// Record the replacement.
Type replacement = Type(gp).subst(subs, lookupConformance,
SubstFlags::UseErrorType);
replacementTypes.push_back(replacement);
}
// Form the stored conformances.
SmallVector<ProtocolConformanceRef, 4> conformances;
for (const auto &req : genericSig->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance) continue;
CanType depTy = req.getFirstType()->getCanonicalType();
auto replacement = depTy.subst(subs, lookupConformance,
SubstFlags::UseErrorType);
auto protoType = req.getSecondType()->castTo<ProtocolType>();
auto proto = protoType->getDecl();
auto conformance = lookupConformance(depTy, replacement, proto)
.getValueOr(ProtocolConformanceRef::forInvalid());
conformances.push_back(conformance);
}
return SubstitutionMap(genericSig, replacementTypes, conformances);
}
Type SubstitutionMap::lookupSubstitution(CanSubstitutableType type) const {
if (empty())
return Type();
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
if (archetype->isOpenedExistential() ||
archetype->getParent() != nullptr)
return Type();
type = cast<GenericTypeParamType>(
archetype->getInterfaceType()->getCanonicalType());
}
// Find the index of the replacement type based on the generic parameter we
// have.
auto genericParam = cast<GenericTypeParamType>(type);
auto mutableThis = const_cast<SubstitutionMap *>(this);
auto replacementTypes = mutableThis->getReplacementTypesBuffer();
auto genericSig = getGenericSignature();
assert(genericSig);
auto genericParams = genericSig->getGenericParams();
auto replacementIndex =
GenericParamKey(genericParam).findIndexIn(genericParams);
// If this generic parameter isn't represented, we don't have a replacement
// type for it.
if (replacementIndex == genericParams.size())
return Type();
// If we already have a replacement type, return it.
Type &replacementType = replacementTypes[replacementIndex];
if (replacementType)
return replacementType;
// The generic parameter may have been made concrete by the generic signature,
// substitute into the concrete type.
if (auto concreteType = genericSig->getConcreteType(genericParam)){
// Set the replacement type to an error, to block infinite recursion.
replacementType = ErrorType::get(concreteType);
// Substitute into the replacement type.
replacementType = concreteType.subst(*this);
// If the generic signature is canonical, canonicalize the replacement type.
if (getGenericSignature()->isCanonical())
replacementType = replacementType->getCanonicalType();
return replacementType;
}
// The generic parameter may not be canonical. Retrieve the canonical
// type, which will be dependent.
CanType canonicalType = genericSig->getCanonicalTypeInContext(genericParam);
// If nothing changed, we don't have a replacement.
if (canonicalType == type) return Type();
// If we're left with a substitutable type, substitute into that.
// First, set the replacement type to an error, to block infinite recursion.
replacementType = ErrorType::get(type);
replacementType = lookupSubstitution(cast<SubstitutableType>(canonicalType));
// If the generic signature is canonical, canonicalize the replacement type.
if (getGenericSignature()->isCanonical())
replacementType = replacementType->getCanonicalType();
return replacementType;
}
Optional<ProtocolConformanceRef>
SubstitutionMap::lookupConformance(CanType type, ProtocolDecl *proto) const {
if (empty()) return None;
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
type = archetype->getInterfaceType()->getCanonicalType();
}
// Error path: if we don't have a type parameter, there is no conformance.
// FIXME: Query concrete conformances in the generic signature?
if (!type->isTypeParameter())
return None;
// Retrieve the starting conformance from the conformance map.
auto getInitialConformance =
[&](Type type, ProtocolDecl *proto) -> Optional<ProtocolConformanceRef> {
unsigned conformanceIndex = 0;
for (const auto &req : getGenericSignature()->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
// Is this the conformance we're looking for?
if (req.getFirstType()->isEqual(type) &&
req.getSecondType()->castTo<ProtocolType>()->getDecl() == proto) {
return getConformances()[conformanceIndex];
}
++conformanceIndex;
}
return None;
};
auto genericSig = getGenericSignature();
// If the type doesn't conform to this protocol, the result isn't formed
// from these requirements.
if (!genericSig->conformsToProtocol(type, proto)) {
// Check whether the superclass conforms.
if (auto superclass = genericSig->getSuperclassBound(type)) {
return LookUpConformanceInSignature(*getGenericSignature())(
type->getCanonicalType(),
superclass,
proto);
}
return None;
}
auto accessPath =
genericSig->getConformanceAccessPath(type, proto);
// Fall through because we cannot yet evaluate an access path.
Optional<ProtocolConformanceRef> conformance;
for (const auto &step : accessPath) {
// For the first step, grab the initial conformance.
if (!conformance) {
conformance = getInitialConformance(step.first, step.second);
if (!conformance)
return None;
continue;
}
if (conformance->isInvalid())
return conformance;
// If we've hit an abstract conformance, everything from here on out is
// abstract.
// FIXME: This may not always be true, but it holds for now.
if (conformance->isAbstract()) {
// FIXME: Rip this out once we can get a concrete conformance from
// an archetype.
auto *M = proto->getParentModule();
auto substType = type.subst(*this);
if (substType &&
(!substType->is<ArchetypeType>() ||
substType->castTo<ArchetypeType>()->getSuperclass()) &&
!substType->isTypeParameter() &&
!substType->isExistentialType()) {
return M->lookupConformance(substType, proto);
}
return ProtocolConformanceRef(proto);
}
// For the second step, we're looking into the requirement signature for
// this protocol.
auto concrete = conformance->getConcrete();
auto normal = concrete->getRootNormalConformance();
// If we haven't set the signature conformances yet, force the issue now.
if (normal->getSignatureConformances().empty()) {
// If we're in the process of checking the type witnesses, fail
// gracefully.
// FIXME: Seems like we should be able to get at the intermediate state
// to use that.
if (normal->getState() == ProtocolConformanceState::CheckingTypeWitnesses)
return None;
auto lazyResolver = type->getASTContext().getLazyResolver();
if (lazyResolver == nullptr)
return None;
lazyResolver->resolveTypeWitness(normal, nullptr);
// Error case: the conformance is broken, so we cannot handle this
// substitution.
if (normal->getSignatureConformances().empty())
return None;
}
// Get the associated conformance.
conformance = concrete->getAssociatedConformance(step.first, step.second);
}
return conformance;
}
SubstitutionMap SubstitutionMap::mapReplacementTypesOutOfContext() const {
return subst(MapTypeOutOfContext(), MakeAbstractConformanceForGenericType());
}
SubstitutionMap SubstitutionMap::subst(SubstitutionMap subMap) const {
return subst(QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
SubstitutionMap SubstitutionMap::subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
if (empty()) return SubstitutionMap();
return get(
getGenericSignature(),
[&](SubstitutableType *type) {
return Type(type).subst(*this, SubstFlags::UseErrorType)
.subst(subs, conformances, SubstFlags::UseErrorType);
},
[&](CanType dependentType, Type replacementType,
ProtocolDecl *proto) ->Optional<ProtocolConformanceRef> {
auto conformance =
lookupConformance(dependentType, proto)
.getValueOr(ProtocolConformanceRef::forInvalid());
auto substType = dependentType.subst(*this, SubstFlags::UseErrorType);
return conformance.subst(substType, subs, conformances);
});
}
SubstitutionMap
SubstitutionMap::getProtocolSubstitutions(ProtocolDecl *protocol,
Type selfType,
ProtocolConformanceRef conformance) {
auto protocolSelfType = protocol->getSelfInterfaceType();
return get(
protocol->getGenericSignature(),
[&](SubstitutableType *type) -> Type {
if (type->isEqual(protocolSelfType))
return selfType;
// This will need to change if we ever support protocols
// inside generic types.
return Type();
},
[&](CanType origType, Type replacementType, ProtocolDecl *protoType)
-> Optional<ProtocolConformanceRef> {
if (origType->isEqual(protocolSelfType) && protoType == protocol)
return conformance;
// This will need to change if we ever support protocols
// inside generic types.
return None;
});
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(const ValueDecl *baseDecl,
const ValueDecl *derivedDecl,
Optional<SubstitutionMap> derivedSubs) {
auto *baseClass = baseDecl->getDeclContext()->getSelfClassDecl();
auto *derivedClass = derivedDecl->getDeclContext()->getSelfClassDecl();
auto *baseSig = baseDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
auto *derivedSig = derivedDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
return getOverrideSubstitutions(baseClass, derivedClass,
baseSig, derivedSig,
derivedSubs);
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(const ClassDecl *baseClass,
const ClassDecl *derivedClass,
GenericSignature *baseSig,
GenericSignature *derivedSig,
Optional<SubstitutionMap> derivedSubs) {
if (baseSig == nullptr)
return SubstitutionMap();
auto *M = baseClass->getParentModule();
unsigned baseDepth = 0;
SubstitutionMap baseSubMap;
if (auto *baseClassSig = baseClass->getGenericSignature()) {
baseDepth = baseClassSig->getGenericParams().back()->getDepth() + 1;
auto derivedClassTy = derivedClass->getDeclaredInterfaceType();
if (derivedSubs)
derivedClassTy = derivedClassTy.subst(*derivedSubs);
auto baseClassTy = derivedClassTy->getSuperclassForDecl(baseClass);
baseSubMap = baseClassTy->getContextSubstitutionMap(M, baseClass);
}
unsigned origDepth = 0;
if (auto *derivedClassSig = derivedClass->getGenericSignature())
origDepth = derivedClassSig->getGenericParams().back()->getDepth() + 1;
SubstitutionMap origSubMap;
if (derivedSubs)
origSubMap = *derivedSubs;
else if (derivedSig) {
origSubMap = get(
derivedSig,
[](SubstitutableType *type) -> Type { return type; },
MakeAbstractConformanceForGenericType());
}
return combineSubstitutionMaps(baseSubMap, origSubMap,
CombineSubstitutionMaps::AtDepth,
baseDepth, origDepth,
baseSig);
}
SubstitutionMap
SubstitutionMap::combineSubstitutionMaps(SubstitutionMap firstSubMap,
SubstitutionMap secondSubMap,
CombineSubstitutionMaps how,
unsigned firstDepthOrIndex,
unsigned secondDepthOrIndex,
GenericSignature *genericSig) {
auto &ctx = genericSig->getASTContext();
auto replaceGenericParameter = [&](Type type) -> Type {
if (auto gp = type->getAs<GenericTypeParamType>()) {
if (how == CombineSubstitutionMaps::AtDepth) {
if (gp->getDepth() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth() + secondDepthOrIndex - firstDepthOrIndex,
gp->getIndex(),
ctx);
}
assert(how == CombineSubstitutionMaps::AtIndex);
if (gp->getIndex() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth(),
gp->getIndex() + secondDepthOrIndex - firstDepthOrIndex,
ctx);
}
return type;
};
return get(
genericSig,
[&](SubstitutableType *type) {
auto replacement = replaceGenericParameter(type);
if (replacement)
return Type(replacement).subst(secondSubMap);
return Type(type).subst(firstSubMap);
},
[&](CanType type, Type substType, ProtocolDecl *conformedProtocol) {
auto replacement = type.transform(replaceGenericParameter);
if (replacement)
return secondSubMap.lookupConformance(replacement->getCanonicalType(),
conformedProtocol);
return firstSubMap.lookupConformance(type, conformedProtocol);
});
}
void SubstitutionMap::verify() const {
#ifndef NDEBUG
if (empty())
return;
unsigned conformanceIndex = 0;
for (const auto &req : getGenericSignature()->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
auto substType = req.getFirstType().subst(*this, SubstFlags::UseErrorType);
if (substType->isTypeParameter() ||
substType->is<ArchetypeType>() ||
substType->isTypeVariableOrMember() ||
substType->is<UnresolvedType>() ||
substType->hasError())
continue;
auto conformance = getConformances()[conformanceIndex];
if (conformance.isInvalid())
continue;
// An existential type can have an abstract conformance to
// AnyObject or an @objc protocol.
if (conformance.isAbstract() &&
substType->isExistentialType()) {
auto *proto = conformance.getRequirement();
if (!proto->isObjC()) {
llvm::dbgs() << "Existential type conforms to something:\n";
substType->dump();
llvm::dbgs() << "SubstitutionMap:\n";
dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
assert(proto->isObjC() &&
"an existential type can conform only to an "
"@objc-protocol");
continue;
}
// All of the conformances should be concrete.
if (!conformance.isConcrete()) {
llvm::dbgs() << "Concrete substType type:\n";
substType->dump(llvm::dbgs());
llvm::dbgs() << "SubstitutionMap:\n";
dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
assert(conformance.isConcrete() && "Conformance should be concrete");
++conformanceIndex;
}
#endif
}
void SubstitutionMap::profile(llvm::FoldingSetNodeID &id) const {
id.AddPointer(storage);
}