mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
There are several kinds of scopes at which it is required that an
address be initialized:
(1) the whole function -- for inout argument to the function
(2) the region a coroutine is active -- for an inout yielded by a
coroutine into the function
(3) the region of a memory access -- for a `begin_access [modify]`.
The move checker enforces that they are initialized at that point by
adding instructions at which the field must be live to liveness.
Previously, all such scopes used the end of the function as the point at
which the memory had to have been reinitialized. Here, the relevant end
of scope markers are used instead.
More importantly, here the diagnostic is made to vary--the diagnostic,
that is, that is issued in the face an address not being initialized at
the end of these different kind of scopes.
3689 lines
142 KiB
C++
3689 lines
142 KiB
C++
//===--- MoveOnlyAddressCheckerUtils.cpp ----------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// Move Only Checking of Addresses
|
|
/// -------------------------------
|
|
///
|
|
/// In this file, we implement move checking of addresses. This allows for the
|
|
/// compiler to perform move checking of address only lets, vars, inout args,
|
|
/// and mutating self.
|
|
///
|
|
/// Move Address Checking in Swift
|
|
/// ------------------------------
|
|
///
|
|
/// In order to not have to rewrite all of SILGen to avoid copies, Swift has
|
|
/// taken an approach where SILGen marks moveonly addresses with a special
|
|
/// marker instruction and emits copies when it attempts to access move only
|
|
/// addresses. Then this algorithm fixed up SILGen's output by analyzing the
|
|
/// memory uses of a marked memory root location recursively using AccessPath
|
|
/// based analyses and then attempting to transform those uses based off of the
|
|
/// marked kind into one of a few variants of "simple move only address form"
|
|
/// (see below for more information). If the pass is unable to reason that it
|
|
/// can safely transform the uses into said form, we emit a diagnostic stating
|
|
/// the error to the user. If we emit said diagnostic, we then bail early. If we
|
|
/// do not emit a diagnostic, we then transform the IR so that the move only
|
|
/// address uses are in said form. This then guarantees that despite SILGen
|
|
/// emitting move only types with copies, in the end, our move only types are
|
|
/// never copied. As an additional check, once the pass has run we emit an extra
|
|
/// diagnostic if we find any copies of move only types so that the user can be
|
|
/// sure that any accepted program does not copy move only types.
|
|
///
|
|
/// Simple Move Only Address Form
|
|
/// -----------------------------
|
|
///
|
|
/// We define a memory location to be in "simple move only address" form (SMOA
|
|
/// form for ease of typing) to mean that along any path from an init of the
|
|
/// address to a consume of the address, all uses are guaranteed to be semantic
|
|
/// "borrow uses" instead of semantic "copy uses". Additionally, SMOA does not
|
|
/// consider destroy_addr to be a true consuming use since it will rewrite
|
|
/// destroy_addr as necessary so the consuming uses are defined by consuming
|
|
/// uses modulo destroy_addr.
|
|
///
|
|
/// An example of a memory location in "simple move only address form" is the
|
|
/// following:
|
|
///
|
|
/// ```
|
|
/// // Memory is defined
|
|
/// %0 = alloc_stack $Type
|
|
///
|
|
/// // Initial initialization.
|
|
/// store %input to [init] %0 : $Type
|
|
///
|
|
/// // Sequence of borrow uses.
|
|
/// %1 = load_borrow %0 : $Type
|
|
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
|
|
/// end_borrow %1
|
|
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
|
|
///
|
|
/// // Assign is ok since we are just consuming the value.
|
|
/// store %input2 to [assign] %0 : $*Type
|
|
///
|
|
/// // More borrow uses.
|
|
/// %3 = load_borrow %0 : $*Type
|
|
/// apply %f(%3) : $@convention(thin) (@guaranteed Type) -> ()
|
|
/// end_borrow %1
|
|
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
|
|
///
|
|
/// // Final destroy
|
|
/// destroy_addr %0 : $Type
|
|
/// ```
|
|
///
|
|
/// An example of an instruction not in SMOA form is:
|
|
///
|
|
/// ```
|
|
/// // Memory is defined
|
|
/// %0 = alloc_stack $Type
|
|
///
|
|
/// // Initial initialization.
|
|
/// store %input to [init] %0 : $*Type
|
|
///
|
|
/// // Perform a load + copy of %0 to pass as an argument to %f.
|
|
/// %1 = load [copy] %0 : $*Type
|
|
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
|
|
/// destroy_value %1 : $Type
|
|
///
|
|
/// // Initialize other variable.
|
|
/// %otherVar = alloc_stack $Type
|
|
/// copy_addr %0 to [initialization] %otherVar : $*Type
|
|
/// ...
|
|
///
|
|
/// // Final destroy that is not part of the use set.
|
|
/// destroy_addr %0 : $*Type
|
|
/// ```
|
|
///
|
|
/// The variants of SMOA form can be classified by the specific
|
|
/// mark_unresolved_non_copyable_value kind put on the the checker mark
|
|
/// instruction and are as follows:
|
|
///
|
|
/// 1. no_consume_or_assign. This means that the address can only be consumed by
|
|
/// destroy_addr and otherwise is only read from. This simulates guaranteed
|
|
/// semantics.
|
|
///
|
|
/// 2. consumable_and_assignable. This means that the address can be consumed
|
|
/// (e.x.: take/pass to a +1 function) or assigned to. Additionally, the value
|
|
/// is supposed to have its lifetime end along all program paths locally in the
|
|
/// function. This simulates a local var's semantics.
|
|
///
|
|
/// 3. assignable_but_not_consumable. This means that the address can be
|
|
/// assigned over, but cannot be taken from. It additionally must have a valid
|
|
/// value in it and the end of its lifetime. This simulates accesses to class
|
|
/// fields, globals, and escaping mutable captures where we want the user to be
|
|
/// able to update the value, but allowing for escapes of the value would break
|
|
/// memory safety. In all cases where this is used, the
|
|
/// mark_unresolved_non_copyable_value is used as the initial def of the value
|
|
/// lifetime. Example:
|
|
///
|
|
/// 4. initable_but_not_consumable. This means that the address can only be
|
|
/// initialized once but cannot be taken from or assigned over. It is assumed
|
|
/// that the initial def will always be the mark_unresolved_non_copyable_value
|
|
/// and that the value will be uninitialized at that point. Example:
|
|
///
|
|
/// Algorithm Stages In Detail
|
|
/// --------------------------
|
|
///
|
|
/// To implement this, our algorithm works in 4 stages: a use classification
|
|
/// stage, a dataflow stage, and then depending on success/failure one of two
|
|
/// transform stages.
|
|
///
|
|
/// Use Classification Stage
|
|
/// ~~~~~~~~~~~~~~~~~~~~~~~~
|
|
///
|
|
/// Here we use an AccessPath based analysis to transitively visit all uses of
|
|
/// our marked address and classify a use as one of the following kinds of uses:
|
|
///
|
|
/// * init - store [init], copy_addr [init] %dest.
|
|
/// * destroy - destroy_addr.
|
|
/// * pureTake - load [take], copy_addr [take] %src.
|
|
/// * copyTransformableToTake - certain load [copy], certain copy_addr ![take]
|
|
/// %src of a temporary %dest.
|
|
/// * reinit - store [assign], copy_addr ![init] %dest
|
|
/// * borrow - load_borrow, a load [copy] without consuming uses.
|
|
/// * livenessOnly - a read only use of the address.
|
|
///
|
|
/// We classify these by adding them to several disjoint SetVectors which track
|
|
/// membership.
|
|
///
|
|
/// When we classify an instruction as copyTransformableToTake, we perform some
|
|
/// extra preprocessing to determine if we can actually transform this copy to a
|
|
/// take. This means that we:
|
|
///
|
|
/// 1. For loads, we perform object move only checking. If we find a need for
|
|
/// multiple copies, we emit an error. If we find no extra copies needed, we
|
|
/// classify the load [copy] as a take if it has any last consuming uses and a
|
|
/// borrow if it only has destroy_addr consuming uses.
|
|
///
|
|
/// 2. For copy_addr, we pattern match if a copy_addr is initializing a "simple
|
|
/// temporary" (an alloc_stack with only one use that initializes it, a
|
|
/// copy_addr [init] in the same block). In this case, if the copy_addr only has
|
|
/// destroy_addr consuming uses, we treat it as a borrow... otherwise, we treat
|
|
/// it as a take. If we find any extra initializations, we fail the visitor so
|
|
/// we emit a "I don't understand this error" so that users report this case and
|
|
/// we can extend it as appropriate.
|
|
///
|
|
/// If we fail in either case, if we emit an error, we bail early with success
|
|
/// so we can assume invariants later in the dataflow stages that make the
|
|
/// dataflow easier.
|
|
///
|
|
/// Dataflow Stage
|
|
/// ~~~~~~~~~~~~~~
|
|
///
|
|
/// To perform our dataflow, we take our classified uses and initialize field
|
|
/// sensitive pruned liveness with the data. We then use field sensitive pruned
|
|
/// liveness and our check kinds to determine if all of our copy uses that could
|
|
/// not be changed into borrows are on the liveness boundary of the memory. If
|
|
/// they are within the liveness boundary, then we know a copy is needed and we
|
|
/// emit an error to the user. Otherwise, we know that we can change them
|
|
/// semantically into a take.
|
|
///
|
|
/// Success Transformation
|
|
/// ~~~~~~~~~~~~~~~~~~~~~~
|
|
///
|
|
/// Now that we know that we can change our address into "simple move only
|
|
/// address form", we transform the IR in the following way:
|
|
///
|
|
/// 1. Any load [copy] that are classified as borrows are changed to
|
|
/// load_borrow.
|
|
/// 2. Any load [copy] that are classified as takes are changed to load [take].
|
|
/// 3. Any copy_addr [init] temporary allocation are eliminated with their
|
|
/// destroy_addr. All uses are placed on the source address.
|
|
/// 4. Any destroy_addr that is paired with a copyTransformableToTake is
|
|
/// eliminated.
|
|
///
|
|
/// Fail Transformation
|
|
/// ~~~~~~~~~~~~~~~~~~~
|
|
///
|
|
/// If we emit any diagnostics, we loop through the function one last time after
|
|
/// we are done processing and convert all load [copy]/copy_addr of move only
|
|
/// types into their explicit forms. We take a little more compile time, but we
|
|
/// are going to fail anyways at this point, so it is ok to do so since we will
|
|
/// fail before attempting to codegen into LLVM IR.
|
|
///
|
|
/// Final Black Box Checks on Success
|
|
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
///
|
|
/// Finally since we want to be able to guarantee to users 100% that the
|
|
/// compiler will reject programs even if the checker gives a false success for
|
|
/// some reason due to human compiler writer error, we do a last pass over the
|
|
/// IR and emit an error diagnostic on any copies of move only types that we
|
|
/// see. The error states to the user that this is a compiler bug and to file a
|
|
/// bug report. Since it is a completely separate, simple implementation, this
|
|
/// gives the user of our implementation the confidence to know that the
|
|
/// compiler even in the face of complexity in the checker will emit correct
|
|
/// code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-move-only-checker"
|
|
|
|
#include "swift/AST/AccessScope.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/AST/SemanticAttrs.h"
|
|
#include "swift/Basic/Debug.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/FrozenMultiMap.h"
|
|
#include "swift/Basic/SmallBitVector.h"
|
|
#include "swift/SIL/ApplySite.h"
|
|
#include "swift/SIL/BasicBlockBits.h"
|
|
#include "swift/SIL/BasicBlockData.h"
|
|
#include "swift/SIL/BasicBlockDatastructures.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/Consumption.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/FieldSensitivePrunedLiveness.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/PrunedLiveness.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILArgumentConvention.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
|
|
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/NonLocalAccessBlockAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
|
|
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
#include "MoveOnlyAddressCheckerUtils.h"
|
|
#include "MoveOnlyBorrowToDestructureUtils.h"
|
|
#include "MoveOnlyDiagnostics.h"
|
|
#include "MoveOnlyObjectCheckerUtils.h"
|
|
#include "MoveOnlyTypeUtils.h"
|
|
#include "MoveOnlyUtils.h"
|
|
|
|
#include <utility>
|
|
|
|
using namespace swift;
|
|
using namespace swift::siloptimizer;
|
|
|
|
llvm::cl::opt<bool> DisableMoveOnlyAddressCheckerLifetimeExtension(
|
|
"move-only-address-checker-disable-lifetime-extension",
|
|
llvm::cl::init(false),
|
|
llvm::cl::desc("Disable the lifetime extension of non-consumed fields of "
|
|
"move-only values."));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct RAIILLVMDebug {
|
|
StringRef str;
|
|
|
|
RAIILLVMDebug(StringRef str) : str(str) {
|
|
LLVM_DEBUG(llvm::dbgs() << "===>>> Starting " << str << '\n');
|
|
}
|
|
|
|
RAIILLVMDebug(StringRef str, SILInstruction *u) : str(str) {
|
|
LLVM_DEBUG(llvm::dbgs() << "===>>> Starting " << str << ":" << *u);
|
|
}
|
|
|
|
~RAIILLVMDebug() {
|
|
LLVM_DEBUG(llvm::dbgs() << "===<<< Completed " << str << '\n');
|
|
}
|
|
};
|
|
|
|
static void insertDebugValueBefore(SILInstruction *insertPt,
|
|
DebugVarCarryingInst debugVar,
|
|
llvm::function_ref<SILValue ()> operand) {
|
|
if (!debugVar) {
|
|
return;
|
|
}
|
|
auto varInfo = debugVar.getVarInfo();
|
|
if (!varInfo) {
|
|
return;
|
|
}
|
|
SILBuilderWithScope debugInfoBuilder(insertPt);
|
|
debugInfoBuilder.setCurrentDebugScope(debugVar->getDebugScope());
|
|
debugInfoBuilder.createDebugValue(debugVar->getLoc(), operand(),
|
|
*varInfo, false, true);
|
|
}
|
|
|
|
static void convertMemoryReinitToInitForm(SILInstruction *memInst,
|
|
DebugVarCarryingInst debugVar) {
|
|
SILValue dest;
|
|
switch (memInst->getKind()) {
|
|
default:
|
|
llvm_unreachable("unsupported?!");
|
|
|
|
case SILInstructionKind::CopyAddrInst: {
|
|
auto *cai = cast<CopyAddrInst>(memInst);
|
|
cai->setIsInitializationOfDest(IsInitialization_t::IsInitialization);
|
|
dest = cai->getDest();
|
|
break;
|
|
}
|
|
case SILInstructionKind::StoreInst: {
|
|
auto *si = cast<StoreInst>(memInst);
|
|
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
|
|
dest = si->getDest();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Insert a new debug_value instruction after the reinitialization, so that
|
|
// the debugger knows that the variable is in a usable form again.
|
|
insertDebugValueBefore(memInst->getNextInstruction(), debugVar,
|
|
[&]{ return debugVar.getOperandForDebugValueClone(); });
|
|
}
|
|
|
|
/// Is this a reinit instruction that we know how to convert into its init form.
|
|
static bool isReinitToInitConvertibleInst(SILInstruction *memInst) {
|
|
switch (memInst->getKind()) {
|
|
default:
|
|
return false;
|
|
|
|
case SILInstructionKind::CopyAddrInst: {
|
|
auto *cai = cast<CopyAddrInst>(memInst);
|
|
return !cai->isInitializationOfDest();
|
|
}
|
|
case SILInstructionKind::StoreInst: {
|
|
auto *si = cast<StoreInst>(memInst);
|
|
return si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign;
|
|
}
|
|
}
|
|
}
|
|
|
|
using ScopeRequiringFinalInit = DiagnosticEmitter::ScopeRequiringFinalInit;
|
|
|
|
/// If \p markedAddr's operand must be initialized at the end of the scope it
|
|
/// introduces, visit those scope ending ends.
|
|
///
|
|
/// Examples:
|
|
/// (1) inout function argument. Must be initialized at function exit.
|
|
///
|
|
/// sil [ossa] @f : $(inout MOV) -> ()
|
|
/// entry(%addr : $*MOV):
|
|
/// ...
|
|
/// return %t : $() // %addr must be initialized here
|
|
///
|
|
/// (2) coroutine. Must be initialized at end_apply/abort_apply.
|
|
///
|
|
/// (%addr, %token) = begin_apply ... -> @yields @inout MOV
|
|
/// bbN:
|
|
/// end_apply %token // %addr must be initialized here
|
|
/// bbM:
|
|
/// abort_apply %token // %addr must be initialized here
|
|
///
|
|
/// (3) modify access. Must be initialized at end_access.
|
|
///
|
|
/// %addr = begin_access [modify] %location
|
|
///
|
|
/// end_access %addr // %addr must be initialized here
|
|
///
|
|
/// To enforce this requirement, function exiting instructions are treated as
|
|
/// liveness uses of such addresses, ensuring that the address is initialized at
|
|
/// that point.
|
|
static bool visitScopeEndsRequiringInit(
|
|
MarkUnresolvedNonCopyableValueInst *markedAddr,
|
|
llvm::function_ref<void(SILInstruction *, ScopeRequiringFinalInit)> visit) {
|
|
SILValue operand = markedAddr->getOperand();
|
|
|
|
// TODO: This should really be a property of the marker instruction.
|
|
if (markedAddr->getCheckKind() !=
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable) {
|
|
return false;
|
|
}
|
|
|
|
// Check for inout types of arguments that are marked with consumable and
|
|
// assignable.
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(operand)) {
|
|
switch (fArg->getArgumentConvention()) {
|
|
case SILArgumentConvention::Indirect_In:
|
|
case SILArgumentConvention::Indirect_Out:
|
|
case SILArgumentConvention::Indirect_In_Guaranteed:
|
|
case SILArgumentConvention::Direct_Guaranteed:
|
|
case SILArgumentConvention::Direct_Owned:
|
|
case SILArgumentConvention::Direct_Unowned:
|
|
case SILArgumentConvention::Pack_Guaranteed:
|
|
case SILArgumentConvention::Pack_Owned:
|
|
case SILArgumentConvention::Pack_Out:
|
|
return false;
|
|
case SILArgumentConvention::Indirect_Inout:
|
|
case SILArgumentConvention::Indirect_InoutAliasable:
|
|
case SILArgumentConvention::Pack_Inout:
|
|
LLVM_DEBUG(llvm::dbgs() << "Found inout arg: " << *fArg);
|
|
SmallVector<SILBasicBlock *, 8> exitBlocks;
|
|
markedAddr->getFunction()->findExitingBlocks(exitBlocks);
|
|
for (auto *block : exitBlocks) {
|
|
visit(block->getTerminator(), ScopeRequiringFinalInit::InoutArgument);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
// Check for yields from a modify coroutine.
|
|
if (auto bai =
|
|
dyn_cast_or_null<BeginApplyInst>(operand->getDefiningInstruction())) {
|
|
for (auto *inst : bai->getTokenResult()->getUsers()) {
|
|
assert(isa<EndApplyInst>(inst) || isa<AbortApplyInst>(inst));
|
|
visit(inst, ScopeRequiringFinalInit::Coroutine);
|
|
}
|
|
return true;
|
|
}
|
|
// Check for modify accesses.
|
|
if (auto access = dyn_cast<BeginAccessInst>(operand)) {
|
|
if (access->getAccessKind() != SILAccessKind::Modify) {
|
|
return false;
|
|
}
|
|
for (auto *inst : access->getEndAccesses()) {
|
|
visit(inst, ScopeRequiringFinalInit::ModifyMemoryAccess);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isCopyableValue(SILValue value) {
|
|
if (value->getType().isMoveOnly())
|
|
return false;
|
|
if (auto *m = dyn_cast<MoveOnlyWrapperToCopyableAddrInst>(value))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Find Candidate Mark Must Checks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void swift::siloptimizer::
|
|
searchForCandidateAddressMarkUnresolvedNonCopyableValueInsts(
|
|
SILFunction *fn,
|
|
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
|
|
&moveIntroducersToProcess,
|
|
DiagnosticEmitter &diagnosticEmitter) {
|
|
for (auto &block : *fn) {
|
|
for (auto ii = block.begin(), ie = block.end(); ii != ie;) {
|
|
auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(&*ii);
|
|
++ii;
|
|
|
|
if (!mmci || !mmci->hasMoveCheckerKind() || !mmci->getType().isAddress())
|
|
continue;
|
|
|
|
moveIntroducersToProcess.insert(mmci);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Use State
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct UseState {
|
|
MarkUnresolvedNonCopyableValueInst *address;
|
|
|
|
using InstToBitMap =
|
|
llvm::SmallMapVector<SILInstruction *, SmallBitVector, 4>;
|
|
|
|
llvm::Optional<unsigned> cachedNumSubelements;
|
|
|
|
/// The blocks that consume fields of the value.
|
|
///
|
|
/// A map from blocks to a bit vector recording which fields were destroyed
|
|
/// in each.
|
|
llvm::SmallMapVector<SILBasicBlock *, SmallBitVector, 8> consumingBlocks;
|
|
|
|
/// A map from destroy_addr to the part of the type that it destroys.
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> destroys;
|
|
|
|
/// A map from a liveness requiring use to the part of the type that it
|
|
/// requires liveness for.
|
|
InstToBitMap livenessUses;
|
|
|
|
/// A map from a load [copy] or load [take] that we determined must be
|
|
/// converted to a load_borrow to the part of the type tree that it needs to
|
|
/// borrow.
|
|
///
|
|
/// NOTE: This does not include actual load_borrow which are treated
|
|
/// just as liveness uses.
|
|
///
|
|
/// NOTE: load_borrow that we actually copy, we canonicalize early to a load
|
|
/// [copy] + begin_borrow so that we do not need to convert load_borrow to a
|
|
/// normal load when rewriting.
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> borrows;
|
|
|
|
/// A copy_addr, load [copy], or load [take] that we determine is semantically
|
|
/// truly a take mapped to the part of the type tree that it needs to use.
|
|
///
|
|
/// DISCUSSION: A copy_addr [init] or load [copy] are considered actually
|
|
/// takes if they are not destroyed with a destroy_addr/destroy_value. We
|
|
/// consider them to be takes since after the transform they must be a take.
|
|
///
|
|
/// Importantly, these we know are never copied and are only consumed once.
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> takeInsts;
|
|
|
|
/// A map from a copy_addr, load [copy], or load [take] that we determine
|
|
/// semantically are true copies to the part of the type tree they must copy.
|
|
///
|
|
/// DISCUSSION: One of these instructions being a true copy means that their
|
|
/// result or destination is used in a way that some sort of extra copy is
|
|
/// needed. Example:
|
|
///
|
|
/// %0 = load [take] %addr
|
|
/// %1 = copy_value %0
|
|
/// consume(%0)
|
|
/// consume(%1)
|
|
///
|
|
/// Notice how the load [take] above semantically requires a copy since it was
|
|
/// consumed twice even though SILGen emitted it as a load [take].
|
|
///
|
|
/// We represent these separately from \p takeInsts since:
|
|
///
|
|
/// 1.
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> copyInsts;
|
|
|
|
/// A map from an instruction that initializes memory to the description of
|
|
/// the part of the type tree that it initializes.
|
|
InstToBitMap initInsts;
|
|
|
|
SmallFrozenMultiMap<SILInstruction *, SILValue, 8> initToValueMultiMap;
|
|
|
|
/// memInstMustReinitialize insts. Contains both insts like copy_addr/store
|
|
/// [assign] that are reinits that we will convert to inits and true reinits.
|
|
InstToBitMap reinitInsts;
|
|
|
|
SmallFrozenMultiMap<SILInstruction *, SILValue, 8> reinitToValueMultiMap;
|
|
|
|
/// The set of drop_deinits of this mark_unresolved_non_copyable_value
|
|
llvm::SmallSetVector<SILInstruction *, 2> dropDeinitInsts;
|
|
|
|
/// Instructions indicating the end of a scope at which addr must be
|
|
/// initialized.
|
|
///
|
|
/// Adding such instructions to liveness forces the value to be initialized at
|
|
/// them as required.
|
|
///
|
|
/// See visitScopeEndsRequiringInit.
|
|
llvm::MapVector<SILInstruction *, ScopeRequiringFinalInit>
|
|
scopeEndsRequiringInit;
|
|
|
|
/// We add debug_values to liveness late after we diagnose, but before we
|
|
/// hoist destroys to ensure that we do not hoist destroys out of access
|
|
/// scopes.
|
|
DebugValueInst *debugValue = nullptr;
|
|
|
|
SILFunction *getFunction() const { return address->getFunction(); }
|
|
|
|
/// The number of fields in the exploded type.
|
|
unsigned getNumSubelements() {
|
|
if (!cachedNumSubelements) {
|
|
cachedNumSubelements = TypeSubElementCount(address);
|
|
}
|
|
return *cachedNumSubelements;
|
|
}
|
|
|
|
SmallBitVector &getOrCreateAffectedBits(SILInstruction *inst,
|
|
InstToBitMap &map) {
|
|
auto iter = map.find(inst);
|
|
if (iter == map.end()) {
|
|
iter = map.insert({inst, SmallBitVector(getNumSubelements())}).first;
|
|
}
|
|
return iter->second;
|
|
}
|
|
|
|
void setAffectedBits(SILInstruction *inst, SmallBitVector const &bits,
|
|
InstToBitMap &map) {
|
|
getOrCreateAffectedBits(inst, map) |= bits;
|
|
}
|
|
|
|
void setAffectedBits(SILInstruction *inst, TypeTreeLeafTypeRange range,
|
|
InstToBitMap &map) {
|
|
range.setBits(getOrCreateAffectedBits(inst, map));
|
|
}
|
|
|
|
void recordLivenessUse(SILInstruction *inst, SmallBitVector const &bits) {
|
|
setAffectedBits(inst, bits, livenessUses);
|
|
}
|
|
|
|
void recordLivenessUse(SILInstruction *inst, TypeTreeLeafTypeRange range) {
|
|
setAffectedBits(inst, range, livenessUses);
|
|
}
|
|
|
|
void recordReinitUse(SILInstruction *inst, SILValue value,
|
|
TypeTreeLeafTypeRange range) {
|
|
reinitToValueMultiMap.insert(inst, value);
|
|
setAffectedBits(inst, range, reinitInsts);
|
|
}
|
|
|
|
void recordInitUse(SILInstruction *inst, SILValue value,
|
|
TypeTreeLeafTypeRange range) {
|
|
initToValueMultiMap.insert(inst, value);
|
|
setAffectedBits(inst, range, initInsts);
|
|
}
|
|
|
|
/// Returns true if this is an instruction that is used by the pass to ensure
|
|
/// that we reinit said argument if we consumed it in a region of code.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// 1. In the case of an inout argument, this will contain the terminator
|
|
/// instruction.
|
|
/// 2. In the case of a ref_element_addr or a global, this will contain the
|
|
/// end_access.
|
|
llvm::Optional<ScopeRequiringFinalInit>
|
|
isImplicitEndOfLifetimeLivenessUses(SILInstruction *inst) const {
|
|
auto iter = scopeEndsRequiringInit.find(inst);
|
|
if (iter == scopeEndsRequiringInit.end()) {
|
|
return llvm::None;
|
|
}
|
|
return {iter->second};
|
|
}
|
|
|
|
/// Returns true if the given instruction is within the same block as a reinit
|
|
/// and precedes a reinit instruction in that block.
|
|
bool precedesReinitInSameBlock(SILInstruction *inst) const {
|
|
SILBasicBlock *block = inst->getParent();
|
|
llvm::SmallSetVector<SILInstruction *, 8> sameBlockReinits;
|
|
|
|
// First, search for all reinits that are within the same block.
|
|
for (auto &reinit : reinitInsts) {
|
|
if (reinit.first->getParent() != block)
|
|
continue;
|
|
sameBlockReinits.insert(reinit.first);
|
|
}
|
|
|
|
if (sameBlockReinits.empty())
|
|
return false;
|
|
|
|
// Walk down from the given instruction to see if we encounter a reinit.
|
|
for (auto ii = std::next(inst->getIterator()); ii != block->end(); ++ii) {
|
|
if (sameBlockReinits.contains(&*ii))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void clear() {
|
|
address = nullptr;
|
|
cachedNumSubelements = llvm::None;
|
|
consumingBlocks.clear();
|
|
destroys.clear();
|
|
livenessUses.clear();
|
|
borrows.clear();
|
|
copyInsts.clear();
|
|
takeInsts.clear();
|
|
initInsts.clear();
|
|
initToValueMultiMap.reset();
|
|
reinitInsts.clear();
|
|
reinitToValueMultiMap.reset();
|
|
dropDeinitInsts.clear();
|
|
scopeEndsRequiringInit.clear();
|
|
debugValue = nullptr;
|
|
}
|
|
|
|
void dump() {
|
|
llvm::dbgs() << "AddressUseState!\n";
|
|
llvm::dbgs() << "Destroys:\n";
|
|
for (auto pair : destroys) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "LivenessUses:\n";
|
|
for (auto pair : livenessUses) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "Borrows:\n";
|
|
for (auto pair : borrows) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "Takes:\n";
|
|
for (auto pair : takeInsts) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "Copies:\n";
|
|
for (auto pair : copyInsts) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "Inits:\n";
|
|
for (auto pair : initInsts) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "Reinits:\n";
|
|
for (auto pair : reinitInsts) {
|
|
llvm::dbgs() << *pair.first;
|
|
}
|
|
llvm::dbgs() << "DropDeinits:\n";
|
|
for (auto *inst : dropDeinitInsts) {
|
|
llvm::dbgs() << *inst;
|
|
}
|
|
llvm::dbgs() << "Implicit End Of Lifetime Liveness Users:\n";
|
|
for (auto pair : scopeEndsRequiringInit) {
|
|
llvm::dbgs() << pair.first;
|
|
}
|
|
llvm::dbgs() << "Debug Value User:\n";
|
|
if (debugValue) {
|
|
llvm::dbgs() << *debugValue;
|
|
}
|
|
}
|
|
|
|
void freezeMultiMaps() {
|
|
initToValueMultiMap.setFrozen();
|
|
reinitToValueMultiMap.setFrozen();
|
|
}
|
|
|
|
SmallBitVector &getOrCreateConsumingBlock(SILBasicBlock *block) {
|
|
auto iter = consumingBlocks.find(block);
|
|
if (iter == consumingBlocks.end()) {
|
|
iter =
|
|
consumingBlocks.insert({block, SmallBitVector(getNumSubelements())})
|
|
.first;
|
|
}
|
|
return iter->second;
|
|
}
|
|
|
|
void recordConsumingBlock(SILBasicBlock *block, TypeTreeLeafTypeRange range) {
|
|
auto &consumingBits = getOrCreateConsumingBlock(block);
|
|
range.setBits(consumingBits);
|
|
}
|
|
|
|
void recordConsumingBlock(SILBasicBlock *block, SmallBitVector &bits) {
|
|
auto &consumingBits = getOrCreateConsumingBlock(block);
|
|
consumingBits |= bits;
|
|
}
|
|
|
|
void
|
|
initializeLiveness(FieldSensitiveMultiDefPrunedLiveRange &prunedLiveness);
|
|
|
|
void initializeImplicitEndOfLifetimeLivenessUses() {
|
|
visitScopeEndsRequiringInit(address, [&](auto *inst, auto kind) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Adding scope end as liveness user: " << *inst);
|
|
scopeEndsRequiringInit[inst] = kind;
|
|
});
|
|
if (address->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
|
|
CheckKind::AssignableButNotConsumable) {
|
|
if (auto *bai = dyn_cast<BeginAccessInst>(address->getOperand())) {
|
|
for (auto *eai : bai->getEndAccesses()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Adding end_access as implicit end of "
|
|
"lifetime liveness user: "
|
|
<< *eai);
|
|
scopeEndsRequiringInit[eai] =
|
|
ScopeRequiringFinalInit::ModifyMemoryAccess;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isConsume(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
|
|
{
|
|
auto iter = takeInsts.find(inst);
|
|
if (iter != takeInsts.end()) {
|
|
if (span.setIntersection(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
{
|
|
auto iter = copyInsts.find(inst);
|
|
if (iter != copyInsts.end()) {
|
|
if (span.setIntersection(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isCopy(SILInstruction *inst, const SmallBitVector &bv) const {
|
|
auto iter = copyInsts.find(inst);
|
|
if (iter != copyInsts.end()) {
|
|
for (unsigned index : iter->second.getRange()) {
|
|
if (bv[index])
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isLivenessUse(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
|
|
{
|
|
auto iter = livenessUses.find(inst);
|
|
if (iter != livenessUses.end()) {
|
|
if (span.intersects(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
{
|
|
auto iter = borrows.find(inst);
|
|
if (iter != borrows.end()) {
|
|
if (span.setIntersection(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!isReinitToInitConvertibleInst(inst)) {
|
|
auto iter = reinitInsts.find(inst);
|
|
if (iter != reinitInsts.end()) {
|
|
if (span.intersects(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// An "inout terminator use" is an implicit liveness use of the entire
|
|
// value. This is because we need to ensure that our inout value is
|
|
// reinitialized along exit paths.
|
|
if (scopeEndsRequiringInit.count(inst))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool isInitUse(SILInstruction *inst, TypeTreeLeafTypeRange span) const {
|
|
{
|
|
auto iter = initInsts.find(inst);
|
|
if (iter != initInsts.end()) {
|
|
if (span.intersects(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
if (isReinitToInitConvertibleInst(inst)) {
|
|
auto iter = reinitInsts.find(inst);
|
|
if (iter != reinitInsts.end()) {
|
|
if (span.intersects(iter->second))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool isInitUse(SILInstruction *inst, const SmallBitVector &requiredBits,
|
|
SmallBitVector &foundInitBits) const {
|
|
{
|
|
auto iter = initInsts.find(inst);
|
|
if (iter != initInsts.end()) {
|
|
foundInitBits = iter->second & requiredBits;
|
|
if (foundInitBits.any())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (isReinitToInitConvertibleInst(inst)) {
|
|
auto iter = reinitInsts.find(inst);
|
|
if (iter != reinitInsts.end()) {
|
|
foundInitBits = iter->second & requiredBits;
|
|
if (foundInitBits.any())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Partial Apply Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool findNonEscapingPartialApplyUses(PartialApplyInst *pai,
|
|
TypeTreeLeafTypeRange leafRange,
|
|
UseState &useState) {
|
|
StackList<Operand *> worklist(pai->getFunction());
|
|
for (auto *use : pai->getUses())
|
|
worklist.push_back(use);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Searching for partial apply uses!\n");
|
|
while (!worklist.empty()) {
|
|
auto *use = worklist.pop_back_val();
|
|
|
|
if (use->isTypeDependent())
|
|
continue;
|
|
|
|
auto *user = use->getUser();
|
|
|
|
// These instructions do not cause us to escape.
|
|
if (isIncidentalUse(user) || isa<DestroyValueInst>(user))
|
|
continue;
|
|
|
|
// Look through these instructions.
|
|
if (isa<BeginBorrowInst>(user) || isa<CopyValueInst>(user) ||
|
|
isa<MoveValueInst>(user) ||
|
|
// If we capture this partial_apply in another partial_apply, then we
|
|
// know that said partial_apply must not have escaped the value since
|
|
// otherwise we could not have an inout_aliasable argument or be
|
|
// on_stack. Process it recursively so that we treat uses of that
|
|
// partial_apply and applies of that partial_apply as uses of our
|
|
// partial_apply.
|
|
//
|
|
// We have this separately from the other look through sections so that
|
|
// we can make it clearer what we are doing here.
|
|
isa<PartialApplyInst>(user) ||
|
|
// Likewise with convert_function. Any valid function conversion that
|
|
// doesn't prevent stack promotion of the closure must retain the
|
|
// invariants on its transitive uses.
|
|
isa<ConvertFunctionInst>(user)) {
|
|
for (auto *use : cast<SingleValueInstruction>(user)->getUses())
|
|
worklist.push_back(use);
|
|
continue;
|
|
}
|
|
|
|
// If we have a mark_dependence and are the value, look through the
|
|
// mark_dependence.
|
|
if (auto *mdi = dyn_cast<MarkDependenceInst>(user)) {
|
|
if (mdi->getValue() == use->get()) {
|
|
for (auto *use : mdi->getUses())
|
|
worklist.push_back(use);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (auto apply = FullApplySite::isa(user)) {
|
|
// If we apply the function or pass the function off to an apply, then we
|
|
// need to treat the function application as a liveness use of the
|
|
// variable since if the partial_apply is invoked within the function
|
|
// application, we may access the captured variable.
|
|
useState.recordLivenessUse(user, leafRange);
|
|
if (apply.beginsCoroutineEvaluation()) {
|
|
// If we have a coroutine, we need to treat the abort_apply and
|
|
// end_apply as liveness uses since once we execute one of those
|
|
// instructions, we have returned control to the coroutine which means
|
|
// that we could then access the captured variable again.
|
|
auto *bai = cast<BeginApplyInst>(user);
|
|
SmallVector<EndApplyInst *, 4> endApplies;
|
|
SmallVector<AbortApplyInst *, 4> abortApplies;
|
|
bai->getCoroutineEndPoints(endApplies, abortApplies);
|
|
for (auto *eai : endApplies)
|
|
useState.recordLivenessUse(eai, leafRange);
|
|
for (auto *aai : abortApplies)
|
|
useState.recordLivenessUse(aai, leafRange);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Found instruction we did not understand... returning false!\n");
|
|
LLVM_DEBUG(llvm::dbgs() << "Instruction: " << *user);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void UseState::initializeLiveness(
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness) {
|
|
assert(liveness.getNumSubElements() == getNumSubelements());
|
|
// We begin by initializing all of our init uses.
|
|
for (auto initInstAndValue : initInsts) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *initInstAndValue.first);
|
|
|
|
liveness.initializeDef(initInstAndValue.first, initInstAndValue.second);
|
|
}
|
|
|
|
// If we have a reinitInstAndValue that we are going to be able to convert
|
|
// into a simple init, add it as an init. We are going to consider the rest of
|
|
// our reinit uses to be liveness uses.
|
|
for (auto reinitInstAndValue : reinitInsts) {
|
|
if (isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *reinitInstAndValue.first);
|
|
liveness.initializeDef(reinitInstAndValue.first,
|
|
reinitInstAndValue.second);
|
|
}
|
|
}
|
|
|
|
// FIXME: Whether the initial use is an initialization ought to be entirely
|
|
// derivable from the CheckKind of the mark instruction.
|
|
|
|
// Then check if our markedValue is from an argument that is in,
|
|
// in_guaranteed, inout, or inout_aliasable, consider the marked address to be
|
|
// the initialization point.
|
|
{
|
|
SILValue operand = address->getOperand();
|
|
if (auto *c = dyn_cast<CopyableToMoveOnlyWrapperAddrInst>(operand))
|
|
operand = c->getOperand();
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(operand)) {
|
|
switch (fArg->getArgumentConvention()) {
|
|
case swift::SILArgumentConvention::Indirect_In:
|
|
case swift::SILArgumentConvention::Indirect_In_Guaranteed:
|
|
case swift::SILArgumentConvention::Indirect_Inout:
|
|
case swift::SILArgumentConvention::Indirect_InoutAliasable:
|
|
// We need to add our address to the initInst array to make sure that
|
|
// later invariants that we assert upon remain true.
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Found in/in_guaranteed/inout/inout_aliasable argument as "
|
|
"an init... adding mark_unresolved_non_copyable_value as "
|
|
"init!\n");
|
|
// We cheat here slightly and use our address's operand.
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
break;
|
|
case swift::SILArgumentConvention::Indirect_Out:
|
|
llvm_unreachable("Should never have out addresses here");
|
|
case swift::SILArgumentConvention::Direct_Owned:
|
|
case swift::SILArgumentConvention::Direct_Unowned:
|
|
case swift::SILArgumentConvention::Direct_Guaranteed:
|
|
case swift::SILArgumentConvention::Pack_Inout:
|
|
case swift::SILArgumentConvention::Pack_Guaranteed:
|
|
case swift::SILArgumentConvention::Pack_Owned:
|
|
case swift::SILArgumentConvention::Pack_Out:
|
|
llvm_unreachable("Working with addresses");
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if our address is from a closure guaranteed box that we did not promote
|
|
// to an address. In such a case, just treat our
|
|
// mark_unresolved_non_copyable_value as the init of our value.
|
|
if (auto *projectBox = dyn_cast<ProjectBoxInst>(stripAccessMarkers(address->getOperand()))) {
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(projectBox->getOperand())) {
|
|
if (fArg->isClosureCapture()) {
|
|
assert(fArg->getArgumentConvention() ==
|
|
SILArgumentConvention::Direct_Guaranteed &&
|
|
"Just a paranoid assert check to make sure this code is thought "
|
|
"about if we change the convention in some way");
|
|
// We need to add our address to the initInst array to make sure that
|
|
// later invariants that we assert upon remain true.
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found move only arg closure box use... "
|
|
"adding mark_unresolved_non_copyable_value as init!\n");
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
} else if (auto *box = dyn_cast<AllocBoxInst>(
|
|
lookThroughOwnershipInsts(projectBox->getOperand()))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found move only var allocbox use... "
|
|
"adding mark_unresolved_non_copyable_value as init!\n");
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
}
|
|
|
|
// Check if our address is from a ref_element_addr. In such a case, we treat
|
|
// the mark_unresolved_non_copyable_value as the initialization.
|
|
if (auto *refEltAddr = dyn_cast<RefElementAddrInst>(
|
|
stripAccessMarkers(address->getOperand()))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found ref_element_addr use... "
|
|
"adding mark_unresolved_non_copyable_value as init!\n");
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
|
|
// Check if our address is from a global_addr. In such a case, we treat the
|
|
// mark_unresolved_non_copyable_value as the initialization.
|
|
if (auto *globalAddr =
|
|
dyn_cast<GlobalAddrInst>(stripAccessMarkers(address->getOperand()))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found global_addr use... "
|
|
"adding mark_unresolved_non_copyable_value as init!\n");
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
|
|
if (auto *ptai = dyn_cast<PointerToAddressInst>(
|
|
stripAccessMarkers(address->getOperand()))) {
|
|
assert(ptai->isStrict());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found pointer to address use... "
|
|
"adding mark_unresolved_non_copyable_value as init!\n");
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
|
|
if (auto *bai = dyn_cast_or_null<BeginApplyInst>(
|
|
stripAccessMarkers(address->getOperand())->getDefiningInstruction())) {
|
|
recordInitUse(address, address, liveness.getTopLevelSpan());
|
|
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
|
|
}
|
|
|
|
// Now that we have finished initialization of defs, change our multi-maps
|
|
// from their array form to their map form.
|
|
liveness.finishedInitializationOfDefs();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Liveness with just inits:\n";
|
|
liveness.print(llvm::dbgs()));
|
|
|
|
for (auto initInstAndValue : initInsts) {
|
|
// If our init inst is a store_borrow, treat the end_borrow as liveness
|
|
// uses.
|
|
//
|
|
// NOTE: We do not need to check for access scopes here since store_borrow
|
|
// can only apply to alloc_stack today.
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(initInstAndValue.first)) {
|
|
// We can only store_borrow if our mark_unresolved_non_copyable_value is a
|
|
// no_consume_or_assign.
|
|
assert(address->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
|
|
CheckKind::NoConsumeOrAssign &&
|
|
"store_borrow implies no_consume_or_assign since we cannot "
|
|
"consume a borrowed inited value");
|
|
for (auto *ebi : sbi->getEndBorrows()) {
|
|
liveness.updateForUse(ebi, initInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now at this point, we have defined all of our defs so we can start adding
|
|
// uses to the liveness.
|
|
for (auto reinitInstAndValue : reinitInsts) {
|
|
recordConsumingBlock(reinitInstAndValue.first->getParent(),
|
|
reinitInstAndValue.second);
|
|
if (!isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
|
|
liveness.updateForUse(reinitInstAndValue.first, reinitInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
LLVM_DEBUG(llvm::dbgs() << "Added liveness for reinit: "
|
|
<< *reinitInstAndValue.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
}
|
|
|
|
// Then add all of the takes that we saw propagated up to the top of our
|
|
// block. Since we have done this for all of our defs
|
|
for (auto takeInstAndValue : takeInsts) {
|
|
liveness.updateForUse(takeInstAndValue.first, takeInstAndValue.second,
|
|
true /*lifetime ending*/);
|
|
recordConsumingBlock(takeInstAndValue.first->getParent(),
|
|
takeInstAndValue.second);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Added liveness for take: " << *takeInstAndValue.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
for (auto copyInstAndValue : copyInsts) {
|
|
liveness.updateForUse(copyInstAndValue.first, copyInstAndValue.second,
|
|
true /*lifetime ending*/);
|
|
recordConsumingBlock(copyInstAndValue.first->getParent(),
|
|
copyInstAndValue.second);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Added liveness for copy: " << *copyInstAndValue.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
|
|
for (auto destroyInstAndValue : destroys) {
|
|
recordConsumingBlock(destroyInstAndValue.first->getParent(),
|
|
destroyInstAndValue.second);
|
|
}
|
|
|
|
// Do the same for our borrow and liveness insts.
|
|
for (auto livenessInstAndValue : borrows) {
|
|
liveness.updateForUse(livenessInstAndValue.first,
|
|
livenessInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
auto *li = cast<LoadInst>(livenessInstAndValue.first);
|
|
auto accessPathWithBase =
|
|
AccessPathWithBase::computeInScope(li->getOperand());
|
|
if (auto *beginAccess =
|
|
dyn_cast<BeginAccessInst>(accessPathWithBase.base)) {
|
|
for (auto *endAccess : beginAccess->getEndAccesses()) {
|
|
liveness.updateForUse(endAccess, livenessInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
}
|
|
}
|
|
// NOTE: We used to add the destroy_value of our loads here to liveness. We
|
|
// instead add them to the livenessUses array so that we can successfully
|
|
// find them later when performing a forward traversal to find them for
|
|
// error purposes.
|
|
LLVM_DEBUG(llvm::dbgs() << "Added liveness for borrow: "
|
|
<< *livenessInstAndValue.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
|
|
for (auto livenessInstAndValue : livenessUses) {
|
|
if (auto *lbi = dyn_cast<LoadBorrowInst>(livenessInstAndValue.first)) {
|
|
auto accessPathWithBase =
|
|
AccessPathWithBase::computeInScope(lbi->getOperand());
|
|
if (auto *beginAccess =
|
|
dyn_cast<BeginAccessInst>(accessPathWithBase.base)) {
|
|
for (auto *endAccess : beginAccess->getEndAccesses()) {
|
|
liveness.updateForUse(endAccess, livenessInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
}
|
|
} else {
|
|
for (auto *ebi : lbi->getEndBorrows()) {
|
|
liveness.updateForUse(ebi, livenessInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
}
|
|
}
|
|
} else {
|
|
liveness.updateForUse(livenessInstAndValue.first,
|
|
livenessInstAndValue.second,
|
|
false /*lifetime ending*/);
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Added liveness for livenessInst: "
|
|
<< *livenessInstAndValue.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
|
|
// Finally, if we have an inout argument or an access scope associated with a
|
|
// ref_element_addr or global_addr, add a liveness use of the entire value on
|
|
// the implicit end lifetime instruction. For inout this is terminators for
|
|
// ref_element_addr, global_addr it is the end_access instruction.
|
|
for (auto pair : scopeEndsRequiringInit) {
|
|
liveness.updateForUse(pair.first, TypeTreeLeafTypeRange(address),
|
|
false /*lifetime ending*/);
|
|
LLVM_DEBUG(llvm::dbgs() << "Added liveness for scope end: " << pair.first;
|
|
liveness.print(llvm::dbgs()));
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Final Liveness:\n"; liveness.print(llvm::dbgs()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Global Block State
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct BlockState {
|
|
using Map = llvm::DenseMap<SILBasicBlock *, BlockState>;
|
|
|
|
/// This is either the liveness up or take up inst that projects
|
|
/// up. We set this state according to the following rules:
|
|
///
|
|
/// 1. If we are tracking a takeUp, we always take it even if we have a
|
|
/// livenessUp.
|
|
///
|
|
/// 2. If we have a livenessUp and do not have a take up, we track that
|
|
/// instead.
|
|
///
|
|
/// The reason why we do this is that we want to catch use after frees when
|
|
/// non-consuming uses are later than a consuming use.
|
|
SILInstruction *userUp;
|
|
|
|
/// If we are init down, then we know that we can not transfer our take
|
|
/// through this block and should stop traversing.
|
|
bool isInitDown;
|
|
|
|
BlockState() : userUp(nullptr) {}
|
|
|
|
BlockState(SILInstruction *userUp, bool isInitDown)
|
|
: userUp(userUp), isInitDown(isInitDown) {}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Forward Declaration of Main Checker
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct ConsumeInfo {
|
|
/// Map blocks on the lifetime boundary to the last consuming instruction.
|
|
llvm::MapVector<SILBasicBlock *,
|
|
SmallVector<std::pair<SILInstruction *, SmallBitVector>, 1>>
|
|
finalBlockConsumes;
|
|
|
|
bool isFrozen = false;
|
|
|
|
public:
|
|
void print(llvm::raw_ostream &os) const {
|
|
for (auto &blockInstRangePairVector : finalBlockConsumes) {
|
|
os << "Dumping state for block bb"
|
|
<< blockInstRangePairVector.first->getDebugID() << '\n';
|
|
for (auto &instRangePairVector : blockInstRangePairVector.second) {
|
|
auto *inst = instRangePairVector.first;
|
|
if (!inst)
|
|
continue;
|
|
os << "Inst: " << *inst;
|
|
os << "Range: " << instRangePairVector.second;
|
|
os << '\n';
|
|
}
|
|
}
|
|
}
|
|
|
|
void clear() {
|
|
finalBlockConsumes.clear();
|
|
isFrozen = false;
|
|
}
|
|
|
|
/// This is expensive! Only use it in debug mode!
|
|
bool hasUnclaimedConsumes() const {
|
|
assert(isFrozen);
|
|
bool foundAny = false;
|
|
for (auto range : finalBlockConsumes) {
|
|
for (auto elt : range.second) {
|
|
foundAny |= bool(elt.first);
|
|
}
|
|
}
|
|
return foundAny;
|
|
}
|
|
|
|
void recordFinalConsume(SILInstruction *inst, SmallBitVector const &bits) {
|
|
assert(!isFrozen);
|
|
auto *block = inst->getParent();
|
|
auto iter = finalBlockConsumes.find(block);
|
|
if (iter == finalBlockConsumes.end()) {
|
|
iter = finalBlockConsumes.insert({block, {}}).first;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Recorded Final Consume: " << *inst);
|
|
iter->second.emplace_back(inst, bits);
|
|
}
|
|
|
|
void finishRecordingFinalConsumes() {
|
|
assert(!isFrozen);
|
|
for (auto &pair : finalBlockConsumes) {
|
|
llvm::stable_sort(
|
|
pair.second,
|
|
[](const std::pair<SILInstruction *, SmallBitVector> &lhs,
|
|
const std::pair<SILInstruction *, SmallBitVector> &rhs) {
|
|
return lhs.first < rhs.first;
|
|
});
|
|
}
|
|
isFrozen = true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Final recorded consumes!\n";
|
|
print(llvm::dbgs()));
|
|
}
|
|
|
|
// Return true if this instruction is marked as a final consume point of the
|
|
// current def's live range. A consuming instruction can only be claimed once
|
|
// because instructions like `tuple` can consume the same value via multiple
|
|
// operands.
|
|
//
|
|
// Can only be used once frozen.
|
|
bool claimConsume(SILInstruction *inst, SmallBitVector const &bits) {
|
|
assert(isFrozen);
|
|
|
|
bool claimedConsume = false;
|
|
|
|
auto &iter = finalBlockConsumes[inst->getParent()];
|
|
for (unsigned i : indices(iter)) {
|
|
auto &instRangePair = iter[i];
|
|
if (instRangePair.first == inst && instRangePair.second == bits) {
|
|
instRangePair.first = nullptr;
|
|
claimedConsume = true;
|
|
LLVM_DEBUG(llvm::dbgs() << "Claimed consume: " << *inst);
|
|
}
|
|
}
|
|
|
|
return claimedConsume;
|
|
}
|
|
|
|
ConsumeInfo() {}
|
|
ConsumeInfo(CanonicalOSSAConsumeInfo const &) = delete;
|
|
ConsumeInfo &operator=(ConsumeInfo const &) = delete;
|
|
};
|
|
|
|
struct MoveOnlyAddressCheckerPImpl {
|
|
bool changed = false;
|
|
|
|
SILFunction *fn;
|
|
|
|
DominanceInfo *domTree;
|
|
|
|
/// A set of mark_unresolved_non_copyable_value that we are actually going to
|
|
/// process.
|
|
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
|
|
moveIntroducersToProcess;
|
|
|
|
/// The instruction deleter used by \p canonicalizer.
|
|
InstructionDeleter deleter;
|
|
|
|
/// State to run CanonicalizeOSSALifetime.
|
|
OSSACanonicalizer canonicalizer;
|
|
|
|
/// Per mark must check address use state.
|
|
UseState addressUseState;
|
|
|
|
/// Diagnostic emission routines wrapped around a consuming use cache. This
|
|
/// ensures that we only emit a single error per use per marked value.
|
|
DiagnosticEmitter &diagnosticEmitter;
|
|
|
|
/// Information about destroys that we use when inserting destroys.
|
|
ConsumeInfo consumes;
|
|
|
|
/// PostOrderAnalysis used by the BorrowToDestructureTransform.
|
|
PostOrderAnalysis *poa;
|
|
|
|
/// Allocator used by the BorrowToDestructureTransform.
|
|
borrowtodestructure::IntervalMapAllocator &allocator;
|
|
|
|
MoveOnlyAddressCheckerPImpl(
|
|
SILFunction *fn, DiagnosticEmitter &diagnosticEmitter,
|
|
DominanceInfo *domTree, PostOrderAnalysis *poa,
|
|
borrowtodestructure::IntervalMapAllocator &allocator)
|
|
: fn(fn), domTree(domTree), deleter(),
|
|
canonicalizer(fn, domTree, deleter),
|
|
diagnosticEmitter(diagnosticEmitter), poa(poa), allocator(allocator) {
|
|
deleter.setCallbacks(std::move(
|
|
InstModCallbacks().onDelete([&](SILInstruction *instToDelete) {
|
|
if (auto *mvi =
|
|
dyn_cast<MarkUnresolvedNonCopyableValueInst>(instToDelete))
|
|
moveIntroducersToProcess.remove(mvi);
|
|
instToDelete->eraseFromParent();
|
|
})));
|
|
diagnosticEmitter.initCanonicalizer(&canonicalizer);
|
|
}
|
|
|
|
/// Search through the current function for candidate
|
|
/// mark_unresolved_non_copyable_value [noimplicitcopy]. If we find one that
|
|
/// does not fit a pattern that we understand, emit an error diagnostic
|
|
/// telling the programmer that the move checker did not know how to recognize
|
|
/// this code pattern.
|
|
///
|
|
/// Returns true if we emitted a diagnostic. Returns false otherwise.
|
|
bool searchForCandidateMarkUnresolvedNonCopyableValueInsts();
|
|
|
|
/// Emits an error diagnostic for \p markedValue.
|
|
void performObjectCheck(MarkUnresolvedNonCopyableValueInst *markedValue);
|
|
|
|
bool performSingleCheck(MarkUnresolvedNonCopyableValueInst *markedValue);
|
|
|
|
void insertDestroysOnBoundary(MarkUnresolvedNonCopyableValueInst *markedValue,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness,
|
|
FieldSensitivePrunedLivenessBoundary &boundary);
|
|
|
|
void rewriteUses(MarkUnresolvedNonCopyableValueInst *markedValue,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness,
|
|
const FieldSensitivePrunedLivenessBoundary &boundary);
|
|
|
|
/// Identifies and diagnoses reinitializations that are reachable from a
|
|
/// discard statement.
|
|
void checkForReinitAfterDiscard();
|
|
|
|
void handleSingleBlockDestroy(SILInstruction *destroy, bool isReinit);
|
|
};
|
|
|
|
class ExtendUnconsumedLiveness {
|
|
UseState addressUseState;
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness;
|
|
FieldSensitivePrunedLivenessBoundary &boundary;
|
|
|
|
enum class DestroyKind {
|
|
Destroy,
|
|
Take,
|
|
Reinit,
|
|
};
|
|
using DestroysCollection =
|
|
llvm::SmallMapVector<SILInstruction *, DestroyKind, 8>;
|
|
using ConsumingBlocksCollection = SmallPtrSetVector<SILBasicBlock *, 8>;
|
|
|
|
public:
|
|
ExtendUnconsumedLiveness(UseState addressUseState,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness,
|
|
FieldSensitivePrunedLivenessBoundary &boundary)
|
|
: addressUseState(addressUseState), liveness(liveness),
|
|
boundary(boundary) {}
|
|
|
|
void run();
|
|
|
|
void runOnField(unsigned element, DestroysCollection &destroys,
|
|
ConsumingBlocksCollection &consumingBlocks);
|
|
|
|
private:
|
|
bool hasDefAfter(SILInstruction *inst, unsigned element);
|
|
bool isLiveAtBegin(SILBasicBlock *block, unsigned element, bool isLiveAtEnd,
|
|
DestroysCollection const &destroys);
|
|
|
|
bool
|
|
shouldAddDestroyToLiveness(SILInstruction *destroy, unsigned element,
|
|
BasicBlockSet const &consumedAtExitBlocks,
|
|
BasicBlockSetVector const &consumedAtEntryBlocks);
|
|
|
|
void addPreviousInstructionToLiveness(SILInstruction *inst, unsigned element);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: CopiedLoadBorrowElimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct CopiedLoadBorrowEliminationState {
|
|
SILFunction *fn;
|
|
StackList<LoadBorrowInst *> targets;
|
|
|
|
CopiedLoadBorrowEliminationState(SILFunction *fn) : fn(fn), targets(fn) {}
|
|
|
|
void process() {
|
|
if (targets.empty())
|
|
return;
|
|
|
|
while (!targets.empty()) {
|
|
auto *lbi = targets.pop_back_val();
|
|
SILBuilderWithScope builder(lbi);
|
|
SILValue li = builder.emitLoadValueOperation(
|
|
lbi->getLoc(), lbi->getOperand(), LoadOwnershipQualifier::Copy);
|
|
SILValue borrow = builder.createBeginBorrow(lbi->getLoc(), li);
|
|
|
|
for (auto *ebi : lbi->getEndBorrows()) {
|
|
auto *next = ebi->getNextInstruction();
|
|
SILBuilderWithScope builder(next);
|
|
auto loc = RegularLocation::getAutoGeneratedLocation();
|
|
builder.emitDestroyValueOperation(loc, li);
|
|
}
|
|
|
|
lbi->replaceAllUsesWith(borrow);
|
|
lbi->eraseFromParent();
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump Start! ";
|
|
fn->print(llvm::dbgs()));
|
|
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump End!\n");
|
|
}
|
|
};
|
|
|
|
/// An early transform that we run to convert any load_borrow that are copied
|
|
/// directly or that have any subelement that is copied to a load [copy]. This
|
|
/// lets the rest of the optimization handle these as appropriate.
|
|
struct CopiedLoadBorrowEliminationVisitor
|
|
: public TransitiveAddressWalker<CopiedLoadBorrowEliminationVisitor> {
|
|
CopiedLoadBorrowEliminationState &state;
|
|
|
|
CopiedLoadBorrowEliminationVisitor(CopiedLoadBorrowEliminationState &state)
|
|
: state(state) {}
|
|
|
|
bool visitUse(Operand *op) {
|
|
LLVM_DEBUG(llvm::dbgs() << "CopiedLBElim visiting ";
|
|
llvm::dbgs() << " User: " << *op->getUser());
|
|
auto *lbi = dyn_cast<LoadBorrowInst>(op->getUser());
|
|
if (!lbi)
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Found load_borrow: " << *lbi);
|
|
|
|
StackList<Operand *> useWorklist(lbi->getFunction());
|
|
for (auto *use : lbi->getUses())
|
|
useWorklist.push_back(use);
|
|
|
|
bool shouldConvertToLoadCopy = false;
|
|
while (!useWorklist.empty()) {
|
|
auto *nextUse = useWorklist.pop_back_val();
|
|
switch (nextUse->getOperandOwnership()) {
|
|
case OperandOwnership::NonUse:
|
|
case OperandOwnership::ForwardingUnowned:
|
|
case OperandOwnership::PointerEscape:
|
|
continue;
|
|
|
|
// These might be uses that we need to perform a destructure or insert
|
|
// struct_extracts for.
|
|
case OperandOwnership::TrivialUse:
|
|
case OperandOwnership::InstantaneousUse:
|
|
case OperandOwnership::UnownedInstantaneousUse:
|
|
case OperandOwnership::InteriorPointer:
|
|
case OperandOwnership::BitwiseEscape: {
|
|
// Look through copy_value of a move only value. We treat copy_value of
|
|
// copyable values as normal uses.
|
|
if (auto *cvi = dyn_cast<CopyValueInst>(nextUse->getUser())) {
|
|
if (!isCopyableValue(cvi->getOperand())) {
|
|
shouldConvertToLoadCopy = true;
|
|
break;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case OperandOwnership::ForwardingConsume:
|
|
case OperandOwnership::DestroyingConsume:
|
|
// We can only hit this if our load_borrow was copied.
|
|
llvm_unreachable("We should never hit this");
|
|
|
|
case OperandOwnership::GuaranteedForwarding: {
|
|
SmallVector<SILValue, 8> forwardedValues;
|
|
auto *fn = nextUse->getUser()->getFunction();
|
|
ForwardingOperand(nextUse).visitForwardedValues([&](SILValue value) {
|
|
if (value->getType().isTrivial(fn))
|
|
return true;
|
|
forwardedValues.push_back(value);
|
|
return true;
|
|
});
|
|
|
|
// If we do not have any forwarded values, just continue.
|
|
if (forwardedValues.empty())
|
|
continue;
|
|
|
|
while (!forwardedValues.empty()) {
|
|
for (auto *use : forwardedValues.pop_back_val()->getUses())
|
|
useWorklist.push_back(use);
|
|
}
|
|
|
|
// If we have a switch_enum, we always need to convert it to a load
|
|
// [copy] since we need to destructure through it.
|
|
shouldConvertToLoadCopy |= isa<SwitchEnumInst>(nextUse->getUser());
|
|
continue;
|
|
}
|
|
case OperandOwnership::Borrow:
|
|
LLVM_DEBUG(llvm::dbgs() << " Found recursive borrow!\n");
|
|
// Look through borrows.
|
|
for (auto value : nextUse->getUser()->getResults()) {
|
|
for (auto *use : value->getUses()) {
|
|
useWorklist.push_back(use);
|
|
}
|
|
}
|
|
continue;
|
|
case OperandOwnership::EndBorrow:
|
|
LLVM_DEBUG(llvm::dbgs() << " Found end borrow!\n");
|
|
continue;
|
|
case OperandOwnership::Reborrow:
|
|
llvm_unreachable("Unsupported for now?!");
|
|
}
|
|
|
|
if (shouldConvertToLoadCopy)
|
|
break;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Load Borrow was copied: "
|
|
<< (shouldConvertToLoadCopy ? "true" : "false") << '\n');
|
|
if (!shouldConvertToLoadCopy)
|
|
return true;
|
|
|
|
state.targets.push_back(lbi);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Partial Consume/Reinit Checking
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Whether an error should be emitted in response to a partial consumption.
|
|
static llvm::Optional<PartialMutationError>
|
|
shouldEmitPartialMutationError(UseState &useState, SILInstruction *user,
|
|
SILType useType,
|
|
TypeTreeLeafTypeRange usedBits) {
|
|
SILFunction *fn = useState.getFunction();
|
|
|
|
// We walk down from our ancestor to our projection, emitting an error if
|
|
// any of our types have a deinit.
|
|
auto iterType = useState.address->getType();
|
|
if (iterType.isMoveOnlyWrapped())
|
|
return {};
|
|
|
|
TypeOffsetSizePair pair(usedBits);
|
|
auto targetType = useType;
|
|
TypeOffsetSizePair iterPair(iterType, fn);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Iter Type: " << iterType << '\n'
|
|
<< " Target Type: " << targetType << '\n');
|
|
|
|
if (!fn->getModule().getASTContext().LangOpts.hasFeature(
|
|
Feature::MoveOnlyPartialConsumption)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " MoveOnlyPartialConsumption disabled!\n");
|
|
// If the types equal, just bail early.
|
|
if (iterType == targetType) {
|
|
LLVM_DEBUG(llvm::dbgs() << " IterType is TargetType! Exiting early "
|
|
"without emitting error!\n");
|
|
return {};
|
|
}
|
|
|
|
// Emit the error.
|
|
return {PartialMutationError::featureDisabled(iterType)};
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " MoveOnlyPartialConsumption enabled!\n");
|
|
|
|
// Otherwise, walk the type looking for the deinit.
|
|
while (iterType != targetType) {
|
|
// If we have a nominal type as our parent type, see if it has a
|
|
// deinit. We know that it must be non-copyable since copyable types
|
|
// cannot contain non-copyable types and that our parent root type must be
|
|
// an enum, tuple, or struct.
|
|
if (auto *nom = iterType.getNominalOrBoundGenericNominal()) {
|
|
if (nom->getValueTypeDestructor()) {
|
|
// If we find one, emit an error since we are going to have to extract
|
|
// through the deinit. Emit a nice error saying what it is. Since we
|
|
// are emitting an error, we do a bit more work and construct the
|
|
// actual projection string.
|
|
return {PartialMutationError::hasDeinit(iterType, *nom)};
|
|
}
|
|
}
|
|
|
|
// Otherwise, walk one level towards our child type. We unconditionally
|
|
// unwrap since we should never fail here due to earlier checking.
|
|
std::tie(iterPair, iterType) =
|
|
*pair.walkOneLevelTowardsChild(iterPair, iterType, fn);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
static bool checkForPartialMutation(UseState &useState,
|
|
DiagnosticEmitter &diagnosticEmitter,
|
|
SILInstruction *user, SILType useType,
|
|
TypeTreeLeafTypeRange usedBits,
|
|
PartialMutation partialMutateKind) {
|
|
// We walk down from our ancestor to our projection, emitting an error if
|
|
// any of our types have a deinit.
|
|
auto error =
|
|
shouldEmitPartialMutationError(useState, user, useType, usedBits);
|
|
if (!error)
|
|
return false;
|
|
|
|
diagnosticEmitter.emitCannotPartiallyMutateError(
|
|
useState.address, error.value(), user, usedBits, partialMutateKind);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct PartialReinitChecker {
|
|
UseState &useState;
|
|
DiagnosticEmitter &diagnosticEmitter;
|
|
|
|
PartialReinitChecker(UseState &useState, DiagnosticEmitter &diagnosticEmitter)
|
|
: useState(useState), diagnosticEmitter(diagnosticEmitter) {}
|
|
|
|
void
|
|
performPartialReinitChecking(FieldSensitiveMultiDefPrunedLiveRange &liveness);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void PartialReinitChecker::performPartialReinitChecking(
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness) {
|
|
// Perform checks that rely on liveness information.
|
|
for (auto initToValues : useState.initToValueMultiMap.getRange()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Checking init: " << *initToValues.first);
|
|
bool emittedError = false;
|
|
for (SILValue value : initToValues.second) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking operand value: " << value);
|
|
// By computing the bits here directly, we do not need to worry about
|
|
// having to split contiguous ranges into separate representable SILTypes.
|
|
SmallBitVector neededElements(useState.getNumSubelements());
|
|
auto range = *TypeTreeLeafTypeRange::get(value, useState.address);
|
|
for (unsigned index : range.getRange()) {
|
|
emittedError = !liveness.findEarlierConsumingUse(
|
|
initToValues.first, index,
|
|
[&](SILInstruction *consumingInst) -> bool {
|
|
return !checkForPartialMutation(
|
|
useState, diagnosticEmitter, initToValues.first,
|
|
value->getType(), TypeTreeLeafTypeRange(index, index + 1),
|
|
PartialMutation::reinit(*consumingInst));
|
|
});
|
|
|
|
// If we emitted an error for this index break. We only want to emit one
|
|
// error per value.
|
|
if (emittedError)
|
|
break;
|
|
}
|
|
|
|
// If we emitted an error for this value break. We only want to emit one
|
|
// error per instruction.
|
|
if (emittedError)
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (auto reinitToValues : useState.reinitToValueMultiMap.getRange()) {
|
|
if (!isReinitToInitConvertibleInst(reinitToValues.first))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Checking reinit: " << *reinitToValues.first);
|
|
bool emittedError = false;
|
|
for (SILValue value : reinitToValues.second) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking operand value: " << value);
|
|
// By computing the bits here directly, we do not need to worry about
|
|
// having to split contiguous ranges into separate representable SILTypes.
|
|
SmallBitVector neededElements(useState.getNumSubelements());
|
|
auto range = *TypeTreeLeafTypeRange::get(value, useState.address);
|
|
for (unsigned index : range.getRange()) {
|
|
emittedError = !liveness.findEarlierConsumingUse(
|
|
reinitToValues.first, index,
|
|
[&](SILInstruction *consumingInst) -> bool {
|
|
return !checkForPartialMutation(
|
|
useState, diagnosticEmitter, reinitToValues.first,
|
|
value->getType(), TypeTreeLeafTypeRange(index, index + 1),
|
|
PartialMutation::reinit(*consumingInst));
|
|
});
|
|
if (emittedError)
|
|
break;
|
|
}
|
|
if (emittedError)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: GatherLexicalLifetimeUseVisitor
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Visit all of the uses of value in preparation for running our algorithm.
|
|
struct GatherUsesVisitor : public TransitiveAddressWalker<GatherUsesVisitor> {
|
|
MoveOnlyAddressCheckerPImpl &moveChecker;
|
|
UseState &useState;
|
|
MarkUnresolvedNonCopyableValueInst *markedValue;
|
|
DiagnosticEmitter &diagnosticEmitter;
|
|
|
|
// Pruned liveness used to validate that load [take]/load [copy] can be
|
|
// converted to load_borrow without violating exclusivity.
|
|
BitfieldRef<SSAPrunedLiveness> liveness;
|
|
|
|
GatherUsesVisitor(MoveOnlyAddressCheckerPImpl &moveChecker,
|
|
UseState &useState,
|
|
MarkUnresolvedNonCopyableValueInst *markedValue,
|
|
DiagnosticEmitter &diagnosticEmitter)
|
|
: moveChecker(moveChecker), useState(useState), markedValue(markedValue),
|
|
diagnosticEmitter(diagnosticEmitter) {}
|
|
|
|
bool visitUse(Operand *op);
|
|
void reset(MarkUnresolvedNonCopyableValueInst *address) {
|
|
useState.address = address;
|
|
}
|
|
void clear() { useState.clear(); }
|
|
|
|
/// For now always markedValue. If we start using this for move address
|
|
/// checking, we need to check against the operand of the markedValue. This is
|
|
/// because for move checking, our marker is placed along the variables
|
|
/// initialization so we are always going to have all later uses from the
|
|
/// marked value. For the move operator though we will want this to be the
|
|
/// base address that we are checking which should be the operand of the mark
|
|
/// must check value.
|
|
SILValue getRootAddress() const { return markedValue; }
|
|
|
|
/// Returns true if we emitted an error.
|
|
bool checkForExclusivityHazards(LoadInst *li) {
|
|
BitfieldRef<SSAPrunedLiveness>::StackState state(liveness,
|
|
li->getFunction());
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Checking for exclusivity hazards for: " << *li);
|
|
|
|
// Grab our access path with in scope. We want to find the inner most access
|
|
// scope.
|
|
auto accessPathWithBase =
|
|
AccessPathWithBase::computeInScope(li->getOperand());
|
|
auto accessPath = accessPathWithBase.accessPath;
|
|
// TODO: Make this a we don't understand error.
|
|
assert(accessPath.isValid() && "Invalid access path?!");
|
|
|
|
auto *bai = dyn_cast<BeginAccessInst>(accessPathWithBase.base);
|
|
|
|
if (!bai) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " No begin access... so no exclusivity violation!\n");
|
|
return false;
|
|
}
|
|
|
|
bool emittedError = false;
|
|
liveness->initializeDef(bai);
|
|
liveness->computeSimple();
|
|
for (auto *consumingUse : li->getConsumingUses()) {
|
|
if (!liveness->isWithinBoundary(consumingUse->getUser())) {
|
|
diagnosticEmitter.emitAddressExclusivityHazardDiagnostic(
|
|
markedValue, consumingUse->getUser());
|
|
emittedError = true;
|
|
}
|
|
}
|
|
return emittedError;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Filter out recognized uses that do not write to memory.
|
|
//
|
|
// TODO: Ensure that all of the conditional-write logic below is encapsulated in
|
|
// mayWriteToMemory and just call that instead. Possibly add additional
|
|
// verification that visitAccessPathUses recognizes all instructions that may
|
|
// propagate pointers (even though they don't write).
|
|
bool GatherUsesVisitor::visitUse(Operand *op) {
|
|
// If this operand is for a dependent type, then it does not actually access
|
|
// the operand's address value. It only uses the metatype defined by the
|
|
// operation (e.g. open_existential).
|
|
if (op->isTypeDependent()) {
|
|
return true;
|
|
}
|
|
|
|
// For convenience, grab the user of op.
|
|
auto *user = op->getUser();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Visiting user: " << *user;);
|
|
|
|
// First check if we have init/reinit. These are quick/simple.
|
|
if (noncopyable::memInstMustInitialize(op)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found init: " << *user);
|
|
|
|
// TODO: What about copy_addr of itself. We really should just pre-process
|
|
// those maybe.
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
useState.recordInitUse(user, op->get(), *leafRange);
|
|
return true;
|
|
}
|
|
|
|
if (noncopyable::memInstMustReinitialize(op)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found reinit: " << *user);
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
useState.recordReinitUse(user, op->get(), *leafRange);
|
|
return true;
|
|
}
|
|
|
|
// Then handle destroy_addr specially. We want to as part of our dataflow to
|
|
// ignore destroy_addr, so we need to track it separately from other uses.
|
|
if (auto *dvi = dyn_cast<DestroyAddrInst>(user)) {
|
|
// If we see a destroy_addr not on our base address, bail! Just error and
|
|
// say that we do not understand the code.
|
|
if (dvi->getOperand() != useState.address) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "!!! Error! Found destroy_addr no on base address: "
|
|
<< *useState.address << "destroy: " << *dvi);
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Found destroy_addr: " << *dvi);
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
useState.destroys.insert({dvi, *leafRange});
|
|
return true;
|
|
}
|
|
|
|
// Ignore dealloc_stack.
|
|
if (isa<DeallocStackInst>(user))
|
|
return true;
|
|
|
|
// Ignore end_access.
|
|
if (isa<EndAccessInst>(user))
|
|
return true;
|
|
|
|
// This visitor looks through store_borrow instructions but does visit the
|
|
// end_borrow of the store_borrow. If we see such an end_borrow, register the
|
|
// store_borrow instead. Since we use sets, if we visit multiple end_borrows,
|
|
// we will only record the store_borrow once.
|
|
if (auto *ebi = dyn_cast<EndBorrowInst>(user)) {
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found store_borrow: " << *sbi);
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
useState.recordInitUse(user, op->get(), *leafRange);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *di = dyn_cast<DebugValueInst>(user)) {
|
|
// Save the debug_value if it is attached directly to this
|
|
// mark_unresolved_non_copyable_value. If the underlying storage we're
|
|
// checking is immutable, then the access being checked is not confined to
|
|
// an explicit access, but every other use of the storage must also be
|
|
// immutable, so it is fine if we see debug_values or other uses that aren't
|
|
// directly related to the current marked use; they will have to behave
|
|
// compatibly anyway.
|
|
if (di->getOperand() == getRootAddress()) {
|
|
useState.debugValue = di;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// At this point, we have handled all of the non-loadTakeOrCopy/consuming
|
|
// uses.
|
|
if (auto *copyAddr = dyn_cast<CopyAddrInst>(user)) {
|
|
assert(op->getOperandNumber() == CopyAddrInst::Src &&
|
|
"Should have dest above in memInstMust{Rei,I}nitialize");
|
|
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
// If we have a non-move only type, just treat this as a liveness use.
|
|
if (isCopyableValue(copyAddr->getSrc())) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found copy of copyable type. Treating as liveness use! "
|
|
<< *user);
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
|
|
if (markedValue->getCheckKind() ==
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign) {
|
|
if (isa<ProjectBoxInst>(stripAccessMarkers(markedValue->getOperand()))) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found mark must check [nocopy] use of escaping box: " << *user);
|
|
diagnosticEmitter.emitAddressEscapingClosureCaptureLoadedAndConsumed(
|
|
markedValue);
|
|
return true;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found mark must check [nocopy] error: " << *user);
|
|
diagnosticEmitter.emitAddressDiagnosticNoCopy(markedValue, copyAddr);
|
|
return true;
|
|
}
|
|
|
|
// TODO: Add borrow checking here like below.
|
|
|
|
// If we have a copy_addr, we are either going to have a take or a
|
|
// copy... in either case, this copy_addr /is/ going to be a consuming
|
|
// operation. Make sure to check if we semantically destructure.
|
|
checkForPartialMutation(useState, diagnosticEmitter, op->getUser(),
|
|
op->get()->getType(), *leafRange,
|
|
PartialMutation::consume());
|
|
|
|
if (copyAddr->isTakeOfSrc()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found take: " << *user);
|
|
useState.takeInsts.insert({user, *leafRange});
|
|
} else {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found copy: " << *user);
|
|
useState.copyInsts.insert({user, *leafRange});
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Then find load [copy], load [take] that are really takes since we need
|
|
// copies for the loaded value. If we find that we need copies at that level
|
|
// (due to e.x.: multiple consuming uses), we emit an error and bail. This
|
|
// ensures that later on, we can assume that all of our load [take], load
|
|
// [copy] actually follow move semantics at the object level and thus are
|
|
// viewed as a consume requiring a copy. This is important since SILGen often
|
|
// emits code of this form and we need to recognize it as a copy of the
|
|
// underlying var.
|
|
if (auto *li = dyn_cast<LoadInst>(user)) {
|
|
// Before we do anything, see if this load is of a copyable field or is a
|
|
// trivial load. If it is, then we just treat this as a liveness requiring
|
|
// use.
|
|
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Trivial ||
|
|
isCopyableValue(li)) {
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
|
|
// We must have a load [take] or load [copy] here since we are in OSSA.
|
|
OSSACanonicalizer::LivenessState livenessState(moveChecker.canonicalizer,
|
|
li);
|
|
|
|
// Before we do anything, run the borrow to destructure transform in case
|
|
// we have a switch_enum user.
|
|
unsigned numDiagnostics =
|
|
moveChecker.diagnosticEmitter.getDiagnosticCount();
|
|
BorrowToDestructureTransform borrowToDestructure(
|
|
moveChecker.allocator, markedValue, li, moveChecker.diagnosticEmitter,
|
|
moveChecker.poa);
|
|
if (!borrowToDestructure.transform()) {
|
|
assert(moveChecker.diagnosticEmitter
|
|
.didEmitCheckerDoesntUnderstandDiagnostic());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Failed to perform borrow to destructure transform!\n");
|
|
return false;
|
|
}
|
|
|
|
// If we emitted an error diagnostic, do not transform further and instead
|
|
// mark that we emitted an early diagnostic and return true.
|
|
if (numDiagnostics != moveChecker.diagnosticEmitter.getDiagnosticCount()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Emitting borrow to destructure error!\n");
|
|
return true;
|
|
}
|
|
|
|
// Now, validate that what we will transform into a take isn't a take that
|
|
// would invalidate a field that has a deinit.
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Failed to compute leaf range for: " << *op->get());
|
|
return false;
|
|
}
|
|
|
|
// Canonicalize the lifetime of the load [take], load [copy].
|
|
LLVM_DEBUG(llvm::dbgs() << "Running copy propagation!\n");
|
|
moveChecker.changed |= moveChecker.canonicalizer.canonicalize();
|
|
|
|
// Export the drop_deinit's discovered by the ObjectChecker into the
|
|
// AddressChecker to preserve it for later use. We need to do this since
|
|
// the ObjectChecker's state gets cleared after running on this LoadInst.
|
|
for (auto *dropDeinit : moveChecker.canonicalizer.getDropDeinitUses())
|
|
moveChecker.addressUseState.dropDeinitInsts.insert(dropDeinit);
|
|
|
|
// If we are asked to perform no_consume_or_assign checking or
|
|
// assignable_but_not_consumable checking, if we found any consumes of our
|
|
// load, then we need to emit an error.
|
|
auto checkKind = markedValue->getCheckKind();
|
|
if (checkKind != MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
ConsumableAndAssignable) {
|
|
if (moveChecker.canonicalizer.foundAnyConsumingUses()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found mark must check [nocopy] error: " << *user);
|
|
auto operand = stripAccessMarkers(markedValue->getOperand());
|
|
auto *fArg = dyn_cast<SILFunctionArgument>(operand);
|
|
auto *ptrToAddr = dyn_cast<PointerToAddressInst>(operand);
|
|
|
|
// If we have a closure captured that we specialized, we should have a
|
|
// no consume or assign and should emit a normal guaranteed diagnostic.
|
|
if (fArg && fArg->isClosureCapture() &&
|
|
fArg->getArgumentConvention().isInoutConvention()) {
|
|
assert(
|
|
checkKind ==
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
|
|
moveChecker.diagnosticEmitter.emitObjectGuaranteedDiagnostic(
|
|
markedValue);
|
|
return true;
|
|
}
|
|
|
|
// If we have a function argument that is no_consume_or_assign and we do
|
|
// not have any partial apply uses, then we know that we have a use of
|
|
// an address only borrowed parameter that we need to
|
|
if ((fArg || ptrToAddr) &&
|
|
checkKind == MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
NoConsumeOrAssign &&
|
|
!moveChecker.canonicalizer.hasPartialApplyConsumingUse()) {
|
|
moveChecker.diagnosticEmitter.emitObjectGuaranteedDiagnostic(
|
|
markedValue);
|
|
return true;
|
|
}
|
|
|
|
// Finally try to emit either a global or class field error...
|
|
if (!moveChecker.diagnosticEmitter
|
|
.emitGlobalOrClassFieldLoadedAndConsumed(markedValue)) {
|
|
// And otherwise if we failed emit an escaping closure error.
|
|
moveChecker.diagnosticEmitter
|
|
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// If set, this will tell the checker that we can change this load into
|
|
// a load_borrow.
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow: " << *user);
|
|
|
|
if (checkForExclusivityHazards(li)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
|
|
return true;
|
|
}
|
|
|
|
useState.borrows.insert({user, *leafRange});
|
|
|
|
// If we had a load [copy], borrow then we know that all of its destroys
|
|
// must have been destroy_value. So we can just gather up those
|
|
// destroy_value and use then to create liveness to ensure that our
|
|
// value is alive over the entire borrow scope we are going to create.
|
|
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
|
|
"since they will become end_borrows.\n");
|
|
for (auto *consumeUse : li->getConsumingUses()) {
|
|
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
|
|
useState.recordLivenessUse(dvi, *leafRange);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// First check if we had any consuming uses that actually needed a
|
|
// copy. This will always be an error and we allow the user to recompile
|
|
// and eliminate the error. This just allows us to rely on invariants
|
|
// later.
|
|
if (moveChecker.canonicalizer.foundConsumingUseRequiringCopy()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found that load at object level requires copies!\n");
|
|
// If we failed to understand how to perform the check or did not find
|
|
// any targets... continue. In the former case we want to fail with a
|
|
// checker did not understand diagnostic later and in the former, we
|
|
// succeeded.
|
|
// Otherwise, emit the diagnostic.
|
|
moveChecker.diagnosticEmitter.emitObjectOwnedDiagnostic(markedValue);
|
|
LLVM_DEBUG(llvm::dbgs() << "Emitted early object level diagnostic.\n");
|
|
return true;
|
|
}
|
|
|
|
if (!moveChecker.canonicalizer.foundFinalConsumingUses()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow inst: " << *user);
|
|
if (checkForExclusivityHazards(li)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
|
|
return true;
|
|
}
|
|
|
|
useState.borrows.insert({user, *leafRange});
|
|
// If we had a load [copy], borrow then we know that all of its destroys
|
|
// must have been destroy_value. So we can just gather up those
|
|
// destroy_value and use then to create liveness to ensure that our
|
|
// value is alive over the entire borrow scope we are going to create.
|
|
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
|
|
"since they will become end_borrows.\n");
|
|
for (auto *consumeUse : li->getConsumingUses()) {
|
|
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
|
|
useState.recordLivenessUse(dvi, *leafRange);
|
|
}
|
|
} else {
|
|
// Now that we know that we are going to perform a take, perform a
|
|
// checkForDestructure.
|
|
checkForPartialMutation(useState, diagnosticEmitter, op->getUser(),
|
|
op->get()->getType(), *leafRange,
|
|
PartialMutation::consume());
|
|
|
|
// If we emitted an error diagnostic, do not transform further and instead
|
|
// mark that we emitted an early diagnostic and return true.
|
|
if (numDiagnostics !=
|
|
moveChecker.diagnosticEmitter.getDiagnosticCount()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Emitting destructure through deinit error!\n");
|
|
return true;
|
|
}
|
|
|
|
// If we had a load [copy], store this into the copy list. These are the
|
|
// things that we must merge into destroy_addr or reinits after we are
|
|
// done checking. The load [take] are already complete and good to go.
|
|
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found take inst: " << *user);
|
|
useState.takeInsts.insert({user, *leafRange});
|
|
} else {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found copy inst: " << *user);
|
|
useState.copyInsts.insert({user, *leafRange});
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Now that we have handled or loadTakeOrCopy, we need to now track our
|
|
// additional pure takes.
|
|
if (noncopyable::memInstMustConsume(op)) {
|
|
// If we don't have a consumeable and assignable check kind, then we can't
|
|
// consume. Emit an error.
|
|
//
|
|
// NOTE: Since SILGen eagerly loads loadable types from memory, this
|
|
// generally will only handle address only types.
|
|
if (markedValue->getCheckKind() != MarkUnresolvedNonCopyableValueInst::
|
|
CheckKind::ConsumableAndAssignable) {
|
|
auto *fArg = dyn_cast<SILFunctionArgument>(
|
|
stripAccessMarkers(markedValue->getOperand()));
|
|
if (fArg && fArg->isClosureCapture() && fArg->getType().isAddress()) {
|
|
moveChecker.diagnosticEmitter.emitPromotedBoxArgumentError(markedValue,
|
|
fArg);
|
|
} else {
|
|
moveChecker.diagnosticEmitter
|
|
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
// Now check if we have a destructure through deinit. If we do, emit an
|
|
// error.
|
|
unsigned numDiagnostics =
|
|
moveChecker.diagnosticEmitter.getDiagnosticCount();
|
|
checkForPartialMutation(useState, diagnosticEmitter, op->getUser(),
|
|
op->get()->getType(), *leafRange,
|
|
PartialMutation::consume());
|
|
if (numDiagnostics != moveChecker.diagnosticEmitter.getDiagnosticCount()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Emitting destructure through deinit error!\n");
|
|
return true;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Pure consuming use: " << *user);
|
|
useState.takeInsts.insert({user, *leafRange});
|
|
return true;
|
|
}
|
|
|
|
if (auto fas = FullApplySite::isa(user)) {
|
|
switch (fas.getArgumentConvention(*op)) {
|
|
case SILArgumentConvention::Indirect_In_Guaranteed: {
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
|
|
case SILArgumentConvention::Indirect_Inout:
|
|
case SILArgumentConvention::Indirect_InoutAliasable:
|
|
case SILArgumentConvention::Indirect_In:
|
|
case SILArgumentConvention::Indirect_Out:
|
|
case SILArgumentConvention::Direct_Unowned:
|
|
case SILArgumentConvention::Direct_Owned:
|
|
case SILArgumentConvention::Direct_Guaranteed:
|
|
case SILArgumentConvention::Pack_Inout:
|
|
case SILArgumentConvention::Pack_Owned:
|
|
case SILArgumentConvention::Pack_Guaranteed:
|
|
case SILArgumentConvention::Pack_Out:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (auto *yi = dyn_cast<YieldInst>(user)) {
|
|
if (yi->getYieldInfoForOperand(*op).isGuaranteed()) {
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *pas = dyn_cast<PartialApplyInst>(user)) {
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(
|
|
stripAccessMarkers(markedValue->getOperand()))) {
|
|
// If we are processing an inout convention and we emitted an error on the
|
|
// partial_apply, we shouldn't process this
|
|
// mark_unresolved_non_copyable_value, but squelch the compiler doesn't
|
|
// understand error.
|
|
if (fArg->getArgumentConvention().isInoutConvention() &&
|
|
pas->getCalleeFunction()->hasSemanticsAttr(
|
|
semantics::NO_MOVEONLY_DIAGNOSTICS)) {
|
|
diagnosticEmitter.emitEarlierPassEmittedDiagnostic(markedValue);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If our partial apply takes this parameter as an inout parameter and it
|
|
// has the no move only diagnostics marker on it, do not emit an error
|
|
// either.
|
|
if (auto *f = pas->getCalleeFunction()) {
|
|
if (f->hasSemanticsAttr(semantics::NO_MOVEONLY_DIAGNOSTICS)) {
|
|
if (ApplySite(pas).getCaptureConvention(*op).isInoutConvention()) {
|
|
diagnosticEmitter.emitEarlierPassEmittedDiagnostic(markedValue);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pas->isOnStack() ||
|
|
ApplySite(pas).getArgumentConvention(*op).isInoutConvention()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Found on stack partial apply or inout usage!\n");
|
|
// On-stack partial applications and their final consumes are always a
|
|
// liveness use of their captures.
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
|
|
return false;
|
|
}
|
|
|
|
// Attempt to find calls of the non-escaping partial apply and places
|
|
// where the partial apply is passed to a function. We treat those as
|
|
// liveness uses. If we find a use we don't understand, we return false
|
|
// here.
|
|
if (!findNonEscapingPartialApplyUses(pas, *leafRange, useState)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Failed to understand use of a non-escaping partial apply?!\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *explicitCopy = dyn_cast<ExplicitCopyAddrInst>(op->getUser())) {
|
|
assert(op->getOperandNumber() == ExplicitCopyAddrInst::Src &&
|
|
"Dest should have been handled earlier");
|
|
assert(!explicitCopy->isTakeOfSrc() &&
|
|
"If we had a take of src, this should have already been identified "
|
|
"as a must consume");
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
|
|
return false;
|
|
}
|
|
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
|
|
if (auto *fixLifetime = dyn_cast<FixLifetimeInst>(op->getUser())) {
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
|
|
return false;
|
|
}
|
|
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
return true;
|
|
}
|
|
|
|
// If we don't fit into any of those categories, just track as a liveness
|
|
// use. We assume all such uses must only be reads to the memory. So we assert
|
|
// to be careful.
|
|
auto leafRange = TypeTreeLeafTypeRange::get(op->get(), getRootAddress());
|
|
if (!leafRange)
|
|
return false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Found liveness use: " << *user);
|
|
#ifndef NDEBUG
|
|
if (user->mayWriteToMemory()) {
|
|
llvm::errs() << "Found a write classified as a liveness use?!\n";
|
|
llvm::errs() << "Use: " << *user;
|
|
llvm_unreachable("standard failure");
|
|
}
|
|
#endif
|
|
useState.recordLivenessUse(user, *leafRange);
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Global Dataflow
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using InstLeafTypePair = std::pair<SILInstruction *, TypeTreeLeafTypeRange>;
|
|
using InstOptionalLeafTypePair =
|
|
std::pair<SILInstruction *, llvm::Optional<TypeTreeLeafTypeRange>>;
|
|
|
|
/// Post process the found liveness and emit errors if needed. TODO: Better
|
|
/// name.
|
|
struct GlobalLivenessChecker {
|
|
UseState &addressUseState;
|
|
DiagnosticEmitter &diagnosticEmitter;
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness;
|
|
SmallBitVector livenessVector;
|
|
bool hadAnyErrorUsers = false;
|
|
|
|
GlobalLivenessChecker(UseState &addressUseState,
|
|
DiagnosticEmitter &diagnosticEmitter,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness)
|
|
: addressUseState(addressUseState), diagnosticEmitter(diagnosticEmitter),
|
|
liveness(liveness) {}
|
|
|
|
/// Returns true if we emitted any errors.
|
|
bool compute();
|
|
|
|
bool testInstVectorLiveness(
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4>
|
|
&instsToTest);
|
|
|
|
void clear() {
|
|
livenessVector.clear();
|
|
hadAnyErrorUsers = false;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
bool GlobalLivenessChecker::testInstVectorLiveness(
|
|
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4>
|
|
&instsToTest) {
|
|
bool emittedDiagnostic = false;
|
|
|
|
for (auto takeInstAndValue : instsToTest) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking: " << *takeInstAndValue.first);
|
|
|
|
// Check if we are in the boundary...
|
|
|
|
// If the bit vector does not contain any set bits, then we know that we did
|
|
// not have any boundary violations for any leaf node of our root value.
|
|
if (!liveness.isWithinBoundary(takeInstAndValue.first,
|
|
takeInstAndValue.second)) {
|
|
// TODO: Today, we don't tell the user the actual field itself where the
|
|
// violation occurred and just instead just shows the two instructions. We
|
|
// could be more specific though...
|
|
LLVM_DEBUG(llvm::dbgs() << " Not within the boundary.\n");
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Within the boundary! Emitting an error\n");
|
|
|
|
// Ok, we have an error and via the bit vector know which specific leaf
|
|
// elements of our root type were within the per field boundary. We need to
|
|
// go find the next reachable use that overlap with its sub-element. We only
|
|
// emit a single error per use even if we get multiple sub elements that
|
|
// match it. That helps reduce the amount of errors.
|
|
//
|
|
// DISCUSSION: It is important to note that this follows from the separation
|
|
// of concerns behind this pass: we have simplified how we handle liveness
|
|
// by losing this information. That being said, since we are erroring it is
|
|
// ok that we are taking a little more time since we are not going to
|
|
// codegen this code.
|
|
//
|
|
// That being said, set the flag that we saw at least one error, so we can
|
|
// exit early after this loop.
|
|
hadAnyErrorUsers = true;
|
|
|
|
// B/c of the separation of concerns with our liveness, we now need to walk
|
|
// blocks to go find the specific later takes that are reachable from this
|
|
// take. It is ok that we are doing a bit more work here since we are going
|
|
// to exit and not codegen.
|
|
auto *errorUser = takeInstAndValue.first;
|
|
auto errorSpan = takeInstAndValue.second;
|
|
|
|
// First walk from errorUser to the end of the block, looking for a take or
|
|
// a liveness use. If we find a single block error, emit the error and
|
|
// continue.
|
|
if (errorUser != errorUser->getParent()->getTerminator()) {
|
|
bool foundSingleBlockError = false;
|
|
for (auto ii = std::next(errorUser->getIterator()),
|
|
ie = errorUser->getParent()->end();
|
|
ii != ie; ++ii) {
|
|
if (addressUseState.isConsume(&*ii, errorSpan)) {
|
|
diagnosticEmitter.emitAddressDiagnostic(
|
|
addressUseState.address, &*ii, errorUser, true /*is consuming*/);
|
|
foundSingleBlockError = true;
|
|
emittedDiagnostic = true;
|
|
break;
|
|
}
|
|
|
|
if (addressUseState.isLivenessUse(&*ii, errorSpan)) {
|
|
diagnosticEmitter.emitAddressDiagnostic(
|
|
addressUseState.address, &*ii, errorUser, false /*is consuming*/,
|
|
addressUseState.isImplicitEndOfLifetimeLivenessUses(&*ii));
|
|
foundSingleBlockError = true;
|
|
emittedDiagnostic = true;
|
|
break;
|
|
}
|
|
|
|
// Check if we have a non-consuming liveness use.
|
|
//
|
|
// DISCUSSION: In certain cases, we only represent uses like end_borrow
|
|
// in liveness and not in address use state. This ensures that we
|
|
// properly emit a diagnostic in these cases.
|
|
//
|
|
// TODO: We should include liveness uses of the load_borrow itself in an
|
|
// array and emit an error on those instead since it would be a better
|
|
// error than using end_borrow here.
|
|
{
|
|
if (liveness.isInterestingUserOfKind(
|
|
&*ii, FieldSensitivePrunedLiveness::NonLifetimeEndingUse,
|
|
errorSpan)) {
|
|
diagnosticEmitter.emitAddressDiagnostic(
|
|
addressUseState.address, &*ii, errorUser,
|
|
false /*is consuming*/,
|
|
addressUseState.isImplicitEndOfLifetimeLivenessUses(&*ii));
|
|
foundSingleBlockError = true;
|
|
emittedDiagnostic = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (addressUseState.isInitUse(&*ii, errorSpan)) {
|
|
llvm::errs() << "Should not have errored if we see an init?! Init: "
|
|
<< *ii;
|
|
llvm_unreachable("Standard compiler error");
|
|
}
|
|
}
|
|
if (foundSingleBlockError)
|
|
continue;
|
|
}
|
|
|
|
// If we didn't find a single block error, then we need to go search for our
|
|
// liveness error in successor blocks. We know that this means that our
|
|
// current block must be live out. Do a quick check just to be careful.
|
|
using IsLive = FieldSensitivePrunedLiveBlocks::IsLive;
|
|
SmallVector<IsLive, 8> isLiveArray;
|
|
#ifndef NDEBUG
|
|
liveness.getBlockLiveness(errorUser->getParent(), errorSpan, isLiveArray);
|
|
assert(llvm::all_of(
|
|
isLiveArray,
|
|
[](IsLive liveness) { return liveness = IsLive::LiveOut; }) &&
|
|
"Should be live out?!");
|
|
isLiveArray.clear();
|
|
#endif
|
|
|
|
BasicBlockWorklist worklist(errorUser->getFunction());
|
|
for (auto *succBlock : errorUser->getParent()->getSuccessorBlocks())
|
|
worklist.pushIfNotVisited(succBlock);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Performing forward traversal from errorUse "
|
|
"looking for the cause of liveness!\n");
|
|
|
|
llvm::SmallSetVector<SILInstruction *, 1> violatingInst;
|
|
bool foundSingleBlockError = false;
|
|
while (auto *block = worklist.pop()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Visiting block: bb" << block->getDebugID() << "\n");
|
|
|
|
SWIFT_DEFER { isLiveArray.clear(); };
|
|
liveness.getBlockLiveness(block, takeInstAndValue.second, isLiveArray);
|
|
|
|
// If we hit an init or dead along all bits in the block, we do not need
|
|
// to process further successors.
|
|
bool shouldVisitSuccessors = false;
|
|
|
|
// Now search forward for uses.
|
|
for (auto isLive : isLiveArray) {
|
|
switch (isLive) {
|
|
case IsLive::Dead:
|
|
LLVM_DEBUG(llvm::dbgs() << " Dead block!\n");
|
|
// Ignore a dead block. Our error use could not be in such a block.
|
|
//
|
|
// This can happen for instance along an exit block of a loop where
|
|
// the error use is within the loop.
|
|
continue;
|
|
case IsLive::LiveOut: {
|
|
LLVM_DEBUG(llvm::dbgs() << " Live out block!\n");
|
|
// If we see a live out block that is also a def block, we need to fa
|
|
#ifndef NDEBUG
|
|
SmallBitVector defBits(addressUseState.getNumSubelements());
|
|
liveness.isDefBlock(block, errorSpan, defBits);
|
|
SmallBitVector errorSpanBits(addressUseState.getNumSubelements());
|
|
errorSpan.setBits(errorSpanBits);
|
|
assert((defBits & errorSpanBits).none() &&
|
|
"If in def block... we are in liveness block");
|
|
#endif
|
|
[[clang::fallthrough]];
|
|
}
|
|
case IsLive::LiveWithin:
|
|
if (isLive == IsLive::LiveWithin)
|
|
LLVM_DEBUG(llvm::dbgs() << " Live within block!\n");
|
|
|
|
bool foundInit = false;
|
|
for (auto &blockInst : *block) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Inst: " << blockInst);
|
|
|
|
if (addressUseState.isConsume(&blockInst, errorSpan)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Is consume!\n");
|
|
diagnosticEmitter.emitAddressDiagnostic(addressUseState.address,
|
|
&blockInst, errorUser,
|
|
true /*is consuming*/);
|
|
foundSingleBlockError = true;
|
|
emittedDiagnostic = true;
|
|
break;
|
|
}
|
|
|
|
if (addressUseState.isLivenessUse(&blockInst, errorSpan)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Is liveness use!\n");
|
|
diagnosticEmitter.emitAddressDiagnostic(
|
|
addressUseState.address, &blockInst, errorUser,
|
|
false /*is consuming*/,
|
|
addressUseState.isImplicitEndOfLifetimeLivenessUses(
|
|
&blockInst));
|
|
foundSingleBlockError = true;
|
|
emittedDiagnostic = true;
|
|
break;
|
|
}
|
|
|
|
// If we find an init use for this bit... just break.
|
|
if (addressUseState.isInitUse(&blockInst, errorSpan)) {
|
|
foundInit = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we did not find an init and visited the entire block... we need
|
|
// to visit successors for at least one bit.
|
|
if (!foundInit)
|
|
shouldVisitSuccessors = true;
|
|
|
|
assert((isLive == IsLive::LiveOut || foundSingleBlockError ||
|
|
foundInit) &&
|
|
"Should either have a pure live out, found an init, or we "
|
|
"should have found "
|
|
"an error.");
|
|
}
|
|
|
|
// If we found an error, break out of the loop. We don't have further
|
|
// work to do.
|
|
if (foundSingleBlockError) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we found an error, just bail without processing additional blocks.
|
|
if (foundSingleBlockError)
|
|
break;
|
|
|
|
// If we saw only dead blocks or found inits for all bits... then we do
|
|
// not need to process further
|
|
if (!shouldVisitSuccessors)
|
|
continue;
|
|
|
|
// If we didn't find a single block error, add successors to the worklist
|
|
// and visit them.
|
|
for (auto *succBlock : block->getSuccessorBlocks())
|
|
worklist.pushIfNotVisited(succBlock);
|
|
}
|
|
}
|
|
|
|
return emittedDiagnostic;
|
|
}
|
|
|
|
bool GlobalLivenessChecker::compute() {
|
|
// Then revisit our takes, this time checking if we are within the boundary
|
|
// and if we are, emit an error.
|
|
LLVM_DEBUG(llvm::dbgs() << "Checking takes for errors!\n");
|
|
bool emittedDiagnostic = false;
|
|
|
|
emittedDiagnostic |= testInstVectorLiveness(addressUseState.takeInsts);
|
|
emittedDiagnostic |= testInstVectorLiveness(addressUseState.copyInsts);
|
|
|
|
// If we emitted an error user, we should always emit at least one
|
|
// diagnostic. If we didn't there is a bug in the implementation.
|
|
assert(hadAnyErrorUsers == emittedDiagnostic);
|
|
return hadAnyErrorUsers;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Main Pass Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new destroy_value instruction before the specified instruction and
|
|
/// record it as a final consume.
|
|
static void insertDestroyBeforeInstruction(UseState &addressUseState,
|
|
SILInstruction *nextInstruction,
|
|
SILValue baseAddress,
|
|
SmallBitVector &bv,
|
|
ConsumeInfo &consumes) {
|
|
// If we need all bits...
|
|
if (bv.all()) {
|
|
// And our next instruction is a destroy_addr on the base address, just
|
|
// claim that destroy instead of inserting another destroy_addr.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(nextInstruction)) {
|
|
if (dai->getOperand() == baseAddress) {
|
|
consumes.recordFinalConsume(dai, bv);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Otherwise, create a new destroy addr on the entire address.
|
|
SILBuilderWithScope builder(nextInstruction);
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
|
|
auto *dai = builder.createDestroyAddr(loc, baseAddress);
|
|
consumes.recordFinalConsume(dai, bv);
|
|
addressUseState.destroys.insert({dai, TypeTreeLeafTypeRange(0, bv.size())});
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have a partially destroyed type. Create new destroy addr for
|
|
// each contiguous range of elts. This should only happen for structs/tuples.
|
|
SILBuilderWithScope builder(nextInstruction);
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
|
|
SmallVector<std::pair<SILValue, TypeTreeLeafTypeRange>> valuesToDestroy;
|
|
TypeTreeLeafTypeRange::constructProjectionsForNeededElements(
|
|
baseAddress, nextInstruction, bv, valuesToDestroy);
|
|
while (!valuesToDestroy.empty()) {
|
|
auto pair = valuesToDestroy.pop_back_val();
|
|
if (pair.first->getType().isTrivial(*nextInstruction->getFunction()))
|
|
continue;
|
|
auto *dai = builder.createDestroyAddr(loc, pair.first);
|
|
SmallBitVector consumedBits(bv.size());
|
|
pair.second.setBits(consumedBits);
|
|
consumes.recordFinalConsume(dai, consumedBits);
|
|
addressUseState.destroys.insert({dai, pair.second});
|
|
}
|
|
}
|
|
|
|
void MoveOnlyAddressCheckerPImpl::insertDestroysOnBoundary(
|
|
MarkUnresolvedNonCopyableValueInst *markedValue,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness,
|
|
FieldSensitivePrunedLivenessBoundary &boundary) {
|
|
using IsInterestingUser = FieldSensitivePrunedLiveness::IsInterestingUser;
|
|
LLVM_DEBUG(llvm::dbgs() << "Inserting destroys on boundary!\n");
|
|
|
|
// If we're in no_consume_or_assign mode, we don't insert destroys, as we've
|
|
// already checked that there are no consumes. There can only be borrow uses,
|
|
// which means no destruction is needed at all.
|
|
//
|
|
// NOTE: This also implies that we do not need to insert invalidating
|
|
// debug_value undef since our value will not be invalidated.
|
|
if (markedValue->getCheckKind() ==
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping destroy insertion b/c no_consume_or_assign\n");
|
|
consumes.finishRecordingFinalConsumes();
|
|
return;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Visiting users!\n");
|
|
|
|
auto debugVar = DebugVarCarryingInst::getFromValue(
|
|
stripAccessMarkers(markedValue->getOperand()));
|
|
|
|
// Local helper that insert a debug_value undef to invalidate a noncopyable
|
|
// value that has been moved. Importantly, for LLVM to recognize that we are
|
|
// referring to the same debug variable as the original definition, we have to
|
|
// use the same debug scope and location as the original debug var.
|
|
auto insertUndefDebugValue = [&debugVar](SILInstruction *insertPt) {
|
|
insertDebugValueBefore(insertPt, debugVar, [&]{
|
|
return SILUndef::get(debugVar.getOperandForDebugValueClone()->getType(),
|
|
insertPt->getModule());
|
|
});
|
|
};
|
|
|
|
// Control flow merge blocks used as insertion points.
|
|
llvm::DenseMap<SILBasicBlock *, SmallBitVector> mergeBlocks;
|
|
|
|
for (auto &pair : boundary.getLastUsers()) {
|
|
auto *inst = pair.first;
|
|
auto &bv = pair.second;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " User: " << *inst);
|
|
|
|
auto interestingUser = liveness.getInterestingUser(inst);
|
|
SmallVector<std::pair<TypeTreeLeafTypeRange, IsInterestingUser>, 4> ranges;
|
|
if (interestingUser) {
|
|
interestingUser->getContiguousRanges(ranges, bv);
|
|
}
|
|
|
|
for (auto rangePair : ranges) {
|
|
SmallBitVector bits(bv.size());
|
|
rangePair.first.setBits(bits);
|
|
switch (rangePair.second) {
|
|
case IsInterestingUser::LifetimeEndingUse: {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " Lifetime ending use! Recording final consume!\n");
|
|
// If we have a consuming use, when we stop at the consuming use we want
|
|
// the value to still be around. We only want the value to be
|
|
// invalidated once the consume operation has occured. Thus we always
|
|
// place the debug_value undef strictly after the consuming operation.
|
|
if (auto *ti = dyn_cast<TermInst>(inst)) {
|
|
for (auto *succBlock : ti->getSuccessorBlocks()) {
|
|
insertUndefDebugValue(&succBlock->front());
|
|
}
|
|
} else {
|
|
insertUndefDebugValue(inst->getNextInstruction());
|
|
}
|
|
consumes.recordFinalConsume(inst, bits);
|
|
continue;
|
|
}
|
|
case IsInterestingUser::NonUser:
|
|
break;
|
|
case IsInterestingUser::NonLifetimeEndingUse:
|
|
LLVM_DEBUG(llvm::dbgs() << " NonLifetimeEndingUse! "
|
|
"inserting destroy before instruction!\n");
|
|
// If we are dealing with an inout parameter, we will have modeled our
|
|
// last use by treating a return inst as a last use. Since it doesn't
|
|
// have any successors, this results in us not inserting any
|
|
// destroy_addr.
|
|
if (isa<TermInst>(inst)) {
|
|
auto *block = inst->getParent();
|
|
for (auto *succBlock : block->getSuccessorBlocks()) {
|
|
auto iter = mergeBlocks.find(succBlock);
|
|
if (iter == mergeBlocks.end()) {
|
|
iter = mergeBlocks.insert({succBlock, bits}).first;
|
|
} else {
|
|
// NOTE: We use |= here so that different regions of the same
|
|
// terminator get updated appropriately.
|
|
SmallBitVector &alreadySetBits = iter->second;
|
|
bool hadCommon = alreadySetBits.anyCommon(bits);
|
|
alreadySetBits |= bits;
|
|
if (hadCommon)
|
|
continue;
|
|
}
|
|
|
|
auto *insertPt = &*succBlock->begin();
|
|
insertDestroyBeforeInstruction(addressUseState, insertPt,
|
|
liveness.getRootValue(), bits,
|
|
consumes);
|
|
// We insert the debug_value undef /after/ the last use since we
|
|
// want the value to be around when we stop at the last use
|
|
// instruction.
|
|
insertUndefDebugValue(insertPt);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// If we have an implicit end of lifetime use, we do not insert a
|
|
// destroy_addr. Instead, we insert an undef debug value after the
|
|
// use. This occurs if we have an end_access associated with a
|
|
// global_addr or a ref_element_addr field access.
|
|
if (addressUseState.isImplicitEndOfLifetimeLivenessUses(inst)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< " Use was an implicit end of lifetime liveness use!\n");
|
|
insertUndefDebugValue(inst->getNextInstruction());
|
|
continue;
|
|
}
|
|
|
|
auto *insertPt = inst->getNextInstruction();
|
|
insertDestroyBeforeInstruction(addressUseState, insertPt,
|
|
liveness.getRootValue(), bits, consumes);
|
|
// We insert the debug_value undef /after/ the last use since we want
|
|
// the value to be around when we stop at the last use instruction.
|
|
insertUndefDebugValue(insertPt);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto pair : boundary.getBoundaryEdges()) {
|
|
auto *insertPt = &*pair.first->begin();
|
|
insertDestroyBeforeInstruction(addressUseState, insertPt,
|
|
liveness.getRootValue(), pair.second,
|
|
consumes);
|
|
insertUndefDebugValue(insertPt);
|
|
LLVM_DEBUG(llvm::dbgs() << " Inserting destroy on edge bb"
|
|
<< pair.first->getDebugID() << "\n");
|
|
}
|
|
|
|
for (auto defPair : boundary.getDeadDefs()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Inserting destroy on dead def" << *defPair.first);
|
|
|
|
if (auto *arg = dyn_cast<SILArgument>(defPair.first)) {
|
|
auto *insertPt = &*arg->getParent()->begin();
|
|
insertDestroyBeforeInstruction(addressUseState, insertPt,
|
|
liveness.getRootValue(), defPair.second,
|
|
consumes);
|
|
insertUndefDebugValue(insertPt);
|
|
} else {
|
|
auto *inst = cast<SILInstruction>(defPair.first);
|
|
|
|
// If we have a dead def that is our mark must check and that mark must
|
|
// check was an init but not consumable, then do not destroy that
|
|
// def. This is b/c we are in some sort of class initialization and we are
|
|
// looking at the initial part of the live range before the initialization
|
|
// has occured. This is our way of makinmg this fit the model that the
|
|
// checker expects (which is that values are always initialized at the def
|
|
// point).
|
|
if (markedValue && markedValue->getCheckKind() ==
|
|
MarkUnresolvedNonCopyableValueInst::CheckKind::
|
|
InitableButNotConsumable)
|
|
continue;
|
|
|
|
SILInstruction *insertPt;
|
|
if (auto tryApply = dyn_cast<TryApplyInst>(inst)) {
|
|
// The dead def is only valid on the success return path.
|
|
insertPt = &tryApply->getNormalBB()->front();
|
|
} else {
|
|
insertPt = inst->getNextInstruction();
|
|
assert(insertPt && "instruction is a terminator that wasn't handled?");
|
|
}
|
|
insertDestroyBeforeInstruction(addressUseState, insertPt,
|
|
liveness.getRootValue(), defPair.second,
|
|
consumes);
|
|
insertUndefDebugValue(insertPt);
|
|
}
|
|
}
|
|
|
|
consumes.finishRecordingFinalConsumes();
|
|
}
|
|
|
|
void MoveOnlyAddressCheckerPImpl::rewriteUses(
|
|
MarkUnresolvedNonCopyableValueInst *markedValue,
|
|
FieldSensitiveMultiDefPrunedLiveRange &liveness,
|
|
const FieldSensitivePrunedLivenessBoundary &boundary) {
|
|
LLVM_DEBUG(llvm::dbgs() << "MoveOnlyAddressChecker Rewrite Uses!\n");
|
|
|
|
/// Whether the marked value appeared in a discard statement.
|
|
const bool isDiscardingContext = !addressUseState.dropDeinitInsts.empty();
|
|
|
|
// Process destroys
|
|
for (auto destroyPair : addressUseState.destroys) {
|
|
/// Is this destroy instruction a final consuming use?
|
|
SmallBitVector bits(liveness.getNumSubElements());
|
|
destroyPair.second.setBits(bits);
|
|
bool isFinalConsume = consumes.claimConsume(destroyPair.first, bits);
|
|
|
|
// Remove destroys that are not the final consuming use.
|
|
if (!isFinalConsume) {
|
|
destroyPair.first->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, if we're in a discarding context, flag this final destroy_addr
|
|
// as a point where we're missing an explicit `consume self`. The reasoning
|
|
// here is that if a destroy of self is the final consuming use,
|
|
// then these are the points where we implicitly destroy self to clean-up
|
|
// that self var before exiting the scope. An explicit 'consume self'
|
|
// that is thrown away is a consume of this
|
|
// mark_unresolved_non_copyable_value'd var and not a destroy of it,
|
|
// according to the use classifier.
|
|
if (isDiscardingContext) {
|
|
|
|
// Since the boundary computations treat a newly-added destroy prior to
|
|
// a reinit within that same block as a "final consuming use", exclude
|
|
// such destroys-before-reinit. We are only interested in the final
|
|
// destroy of a var, not intermediate destroys of the var.
|
|
if (addressUseState.precedesReinitInSameBlock(destroyPair.first))
|
|
continue;
|
|
|
|
auto *dropDeinit = addressUseState.dropDeinitInsts.front();
|
|
diagnosticEmitter.emitMissingConsumeInDiscardingContext(destroyPair.first,
|
|
dropDeinit);
|
|
}
|
|
}
|
|
|
|
auto debugVar = DebugVarCarryingInst::getFromValue(
|
|
stripAccessMarkers(markedValue->getOperand()));
|
|
|
|
// Then convert all claimed reinits to inits.
|
|
for (auto reinitPair : addressUseState.reinitInsts) {
|
|
if (!isReinitToInitConvertibleInst(reinitPair.first))
|
|
continue;
|
|
if (!consumes.claimConsume(reinitPair.first, reinitPair.second))
|
|
convertMemoryReinitToInitForm(reinitPair.first, debugVar);
|
|
}
|
|
|
|
// Check all takes.
|
|
for (auto takeInst : addressUseState.takeInsts) {
|
|
SmallBitVector bits(liveness.getNumSubElements());
|
|
takeInst.second.setBits(bits);
|
|
bool claimedConsume = consumes.claimConsume(takeInst.first, bits);
|
|
(void)claimedConsume;
|
|
if (!claimedConsume) {
|
|
llvm::errs()
|
|
<< "Found consume that was not recorded as a 'claimed consume'!\n";
|
|
llvm::errs() << "Unrecorded consume: " << *takeInst.first;
|
|
llvm_unreachable("Standard compiler abort?!");
|
|
}
|
|
}
|
|
|
|
// Then rewrite all copy insts to be takes and claim them.
|
|
for (auto copyInst : addressUseState.copyInsts) {
|
|
SmallBitVector bits(liveness.getNumSubElements());
|
|
copyInst.second.setBits(bits);
|
|
bool claimedConsume = consumes.claimConsume(copyInst.first, bits);
|
|
if (!claimedConsume) {
|
|
llvm::errs()
|
|
<< "Found consume that was not recorded as a 'claimed consume'!\n";
|
|
llvm::errs() << "Unrecorded consume: " << *copyInst.first;
|
|
llvm_unreachable("Standard compiler abort?!");
|
|
}
|
|
if (auto *li = dyn_cast<LoadInst>(copyInst.first)) {
|
|
// Convert this to its take form.
|
|
auto accessPath = AccessPathWithBase::computeInScope(li->getOperand());
|
|
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
|
|
access->setAccessKind(SILAccessKind::Modify);
|
|
li->setOwnershipQualifier(LoadOwnershipQualifier::Take);
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
if (auto *copy = dyn_cast<CopyAddrInst>(copyInst.first)) {
|
|
// Convert this to its take form.
|
|
auto accessPath = AccessPathWithBase::computeInScope(copy->getSrc());
|
|
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
|
|
access->setAccessKind(SILAccessKind::Modify);
|
|
copy->setIsTakeOfSrc(IsTake);
|
|
continue;
|
|
}
|
|
|
|
llvm::dbgs() << "Unhandled copy user: " << *copyInst.first;
|
|
llvm_unreachable("Unhandled case?!");
|
|
}
|
|
|
|
// Finally now that we have placed all of our destroys in the appropriate
|
|
// places, convert any copies that we know are borrows into begin_borrow. We
|
|
// do not need to worry about expanding scopes since if we needed to expand a
|
|
// scope, we would have emitted the scope expansion error during diagnostics.
|
|
for (auto pair : addressUseState.borrows) {
|
|
if (auto *li = dyn_cast<LoadInst>(pair.first)) {
|
|
// If we had a load -> load_borrow then we know that all of its destroys
|
|
// must have been destroy_value. So we can just gather up those
|
|
// destroy_value and use then to create a new load_borrow scope.
|
|
SILBuilderWithScope builder(li);
|
|
auto *lbi = builder.createLoadBorrow(li->getLoc(), li->getOperand());
|
|
// We use this auxillary list to avoid iterator invalidation of
|
|
// li->getConsumingUse();
|
|
StackList<DestroyValueInst *> toDelete(lbi->getFunction());
|
|
for (auto *consumeUse : li->getConsumingUses()) {
|
|
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
|
|
SILBuilderWithScope destroyBuilder(dvi);
|
|
destroyBuilder.createEndBorrow(dvi->getLoc(), lbi);
|
|
toDelete.push_back(dvi);
|
|
changed = true;
|
|
}
|
|
while (!toDelete.empty())
|
|
toDelete.pop_back_val()->eraseFromParent();
|
|
|
|
li->replaceAllUsesWith(lbi);
|
|
li->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
llvm::dbgs() << "Borrow: " << *pair.first;
|
|
llvm_unreachable("Unhandled case?!");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (consumes.hasUnclaimedConsumes()) {
|
|
llvm::errs() << "Found unclaimed consumes?!\n";
|
|
consumes.print(llvm::errs());
|
|
llvm_unreachable("Standard error?!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void MoveOnlyAddressCheckerPImpl::checkForReinitAfterDiscard() {
|
|
auto const &dropDeinits = addressUseState.dropDeinitInsts;
|
|
auto const &reinits = addressUseState.reinitInsts;
|
|
|
|
if (dropDeinits.empty() || reinits.empty())
|
|
return;
|
|
|
|
using BasicBlockMap = llvm::DenseMap<SILBasicBlock *,
|
|
llvm::SmallPtrSet<SILInstruction *, 2>>;
|
|
BasicBlockMap blocksWithReinit;
|
|
for (auto const &info : reinits) {
|
|
auto *reinit = info.first;
|
|
blocksWithReinit[reinit->getParent()].insert(reinit);
|
|
}
|
|
|
|
// Starting from each drop_deinit instruction, can we reach a reinit of self?
|
|
for (auto *dropInst : dropDeinits) {
|
|
auto *dropBB = dropInst->getParent();
|
|
|
|
// First, if the block containing this drop_deinit also contains a reinit,
|
|
// check if that reinit happens after this drop_deinit.
|
|
auto result = blocksWithReinit.find(dropBB);
|
|
if (result != blocksWithReinit.end()) {
|
|
auto &blockReinits = result->second;
|
|
for (auto ii = std::next(dropInst->getIterator()); ii != dropBB->end();
|
|
++ii) {
|
|
SILInstruction *current = &*ii;
|
|
if (blockReinits.contains(current)) {
|
|
// Then the drop_deinit can reach a reinit immediately after it in the
|
|
// same block.
|
|
diagnosticEmitter.emitReinitAfterDiscardError(current, dropInst);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
BasicBlockWorklist worklist(fn);
|
|
|
|
// Seed the search with the successors of the drop_init block, so that if we
|
|
// visit the drop_deinit block again, we'll know the reinits _before_ the
|
|
// drop_deinit are reachable via some back-edge / cycle.
|
|
for (auto *succ : dropBB->getSuccessorBlocks())
|
|
worklist.pushIfNotVisited(succ);
|
|
|
|
// Determine reachability across blocks.
|
|
while (auto *bb = worklist.pop()) {
|
|
// Set-up next iteration.
|
|
for (auto *succ : bb->getSuccessorBlocks())
|
|
worklist.pushIfNotVisited(succ);
|
|
|
|
auto result = blocksWithReinit.find(bb);
|
|
if (result == blocksWithReinit.end())
|
|
continue;
|
|
|
|
// We found a reachable reinit! Identify the earliest reinit in this block
|
|
// for diagnosis.
|
|
auto &blockReinits = result->second;
|
|
SILInstruction *firstBadReinit = nullptr;
|
|
for (auto &inst : *bb) {
|
|
if (blockReinits.contains(&inst)) {
|
|
firstBadReinit = &inst;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!firstBadReinit)
|
|
llvm_unreachable("bug");
|
|
|
|
diagnosticEmitter.emitReinitAfterDiscardError(firstBadReinit, dropInst);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExtendUnconsumedLiveness::run() {
|
|
ConsumingBlocksCollection consumingBlocks;
|
|
DestroysCollection destroys;
|
|
for (unsigned element = 0, count = liveness.getNumSubElements();
|
|
element < count; ++element) {
|
|
|
|
for (auto pair : addressUseState.consumingBlocks) {
|
|
if (pair.second.test(element)) {
|
|
consumingBlocks.insert(pair.first);
|
|
}
|
|
}
|
|
|
|
for (auto pair : addressUseState.destroys) {
|
|
if (pair.second.contains(element)) {
|
|
destroys[pair.first] = DestroyKind::Destroy;
|
|
}
|
|
}
|
|
for (auto pair : addressUseState.takeInsts) {
|
|
if (pair.second.contains(element)) {
|
|
destroys[pair.first] = DestroyKind::Take;
|
|
}
|
|
}
|
|
for (auto pair : addressUseState.reinitInsts) {
|
|
if (pair.second.test(element)) {
|
|
destroys[pair.first] = DestroyKind::Reinit;
|
|
}
|
|
}
|
|
|
|
runOnField(element, destroys, consumingBlocks);
|
|
|
|
consumingBlocks.clear();
|
|
destroys.clear();
|
|
}
|
|
}
|
|
|
|
/// Extend liveness of each field as far as possible within the original live
|
|
/// range as far as possible without incurring any copies.
|
|
///
|
|
/// The strategy has two parts.
|
|
///
|
|
/// (1) The global analysis:
|
|
/// - Collect the blocks in which the field was live before canonicalization.
|
|
/// These are the "original" live blocks (originalLiveBlocks).
|
|
/// [Color these blocks green.]
|
|
/// - From within that collection, collect the blocks which contain a _final_
|
|
/// consuming, non-destroy use, and their iterative successors.
|
|
/// These are the "consumed" blocks (consumedAtExitBlocks).
|
|
/// [Color these blocks red.]
|
|
/// - Extend liveness down to the boundary between originalLiveBlocks and
|
|
/// consumedAtExitBlocks blocks.
|
|
/// [Extend liveness down to the boundary between green blocks and red.]
|
|
/// - In particular, in regions of originalLiveBlocks which have no boundary
|
|
/// with consumedAtExitBlocks, liveness should be extended to its original
|
|
/// extent.
|
|
/// [Extend liveness down to the boundary between green blocks and uncolored.]
|
|
///
|
|
/// (2) The local analysis:
|
|
/// - For in-block lifetimes, extend liveness forward from non-consuming uses
|
|
/// and dead defs to the original destroy.
|
|
void ExtendUnconsumedLiveness::runOnField(
|
|
unsigned element, DestroysCollection &destroys,
|
|
ConsumingBlocksCollection &consumingBlocks) {
|
|
SILValue currentDef = addressUseState.address;
|
|
|
|
// First, collect the blocks that were _originally_ live. We can't use
|
|
// liveness here because it doesn't include blocks that occur before a
|
|
// destroy_addr.
|
|
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
|
|
{
|
|
// Some of the work here was already done by initializeLiveness.
|
|
// Specifically, it already discovered all blocks containing (transitive)
|
|
// uses and blocks that appear between them and the def.
|
|
//
|
|
// Seed the set with what it already discovered.
|
|
for (auto *discoveredBlock : liveness.getDiscoveredBlocks())
|
|
originalLiveBlocks.insert(discoveredBlock);
|
|
|
|
// Start the walk from the consuming blocks (which includes destroys as well
|
|
// as the other consuming uses).
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto *consumingBlock : consumingBlocks) {
|
|
if (!originalLiveBlocks.insert(consumingBlock)
|
|
// Don't walk into the predecessors of blocks which kill liveness.
|
|
&& !isLiveAtBegin(consumingBlock, element, /*isLiveAtEnd=*/true, destroys)) {
|
|
continue;
|
|
}
|
|
for (auto *predecessor : consumingBlock->getPredecessorBlocks()) {
|
|
worklist.pushIfNotVisited(predecessor);
|
|
}
|
|
}
|
|
|
|
// Walk backwards from consuming blocks.
|
|
while (auto *block = worklist.pop()) {
|
|
if (!originalLiveBlocks.insert(block)) {
|
|
continue;
|
|
}
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
worklist.pushIfNotVisited(predecessor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second, collect the blocks which occur after a consuming use.
|
|
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
|
|
BasicBlockSetVector consumedAtEntryBlocks(currentDef->getFunction());
|
|
{
|
|
// Start the forward walk from blocks which contain non-destroy consumes not
|
|
// followed by defs.
|
|
//
|
|
// Because they contain a consume not followed by a def, these are
|
|
// consumed-at-exit.
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto iterator : boundary.getLastUsers()) {
|
|
if (!iterator.second.test(element))
|
|
continue;
|
|
auto *instruction = iterator.first;
|
|
// Skip over destroys on the boundary.
|
|
auto iter = destroys.find(instruction);
|
|
if (iter != destroys.end() && iter->second != DestroyKind::Take) {
|
|
continue;
|
|
}
|
|
// Skip over non-consuming users.
|
|
auto interestingUser = liveness.isInterestingUser(instruction, element);
|
|
assert(interestingUser !=
|
|
FieldSensitivePrunedLiveness::IsInterestingUser::NonUser);
|
|
if (interestingUser !=
|
|
FieldSensitivePrunedLiveness::IsInterestingUser::LifetimeEndingUse) {
|
|
continue;
|
|
}
|
|
// A consume with a subsequent def doesn't cause the block to be
|
|
// consumed-at-exit.
|
|
if (hasDefAfter(instruction, element))
|
|
continue;
|
|
worklist.push(instruction->getParent());
|
|
}
|
|
while (auto *block = worklist.pop()) {
|
|
consumedAtExitBlocks.insert(block);
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
if (!originalLiveBlocks.contains(successor))
|
|
continue;
|
|
worklist.pushIfNotVisited(successor);
|
|
consumedAtEntryBlocks.insert(successor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Third, find the blocks on the boundary between the originally-live blocks
|
|
// and the originally-live-but-consumed blocks. Extend liveness "to the end"
|
|
// of these blocks.
|
|
for (auto *block : consumedAtEntryBlocks) {
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
if (consumedAtExitBlocks.contains(predecessor))
|
|
continue;
|
|
// Add "the instruction(s) before the terminator" of the predecessor to
|
|
// liveness.
|
|
addPreviousInstructionToLiveness(predecessor->getTerminator(), element);
|
|
}
|
|
}
|
|
|
|
// Finally, preserve the destroys which weren't in the consumed region in
|
|
// place: hoisting such destroys would not avoid copies.
|
|
for (auto pair : destroys) {
|
|
auto *destroy = pair.first;
|
|
if (!shouldAddDestroyToLiveness(destroy, element, consumedAtExitBlocks,
|
|
consumedAtEntryBlocks))
|
|
continue;
|
|
addPreviousInstructionToLiveness(destroy, element);
|
|
}
|
|
}
|
|
|
|
bool ExtendUnconsumedLiveness::shouldAddDestroyToLiveness(
|
|
SILInstruction *destroy, unsigned element,
|
|
BasicBlockSet const &consumedAtExitBlocks,
|
|
BasicBlockSetVector const &consumedAtEntryBlocks) {
|
|
auto *block = destroy->getParent();
|
|
bool followedByDef = hasDefAfter(destroy, element);
|
|
if (!followedByDef) {
|
|
// This destroy is the last write to the field in the block.
|
|
//
|
|
// If the block is consumed-at-exit, then there is some other consuming use
|
|
// before this destroy. Liveness can't be extended.
|
|
return !consumedAtExitBlocks.contains(block);
|
|
}
|
|
for (auto *inst = destroy->getPreviousInstruction(); inst;
|
|
inst = inst->getPreviousInstruction()) {
|
|
if (liveness.isDef(inst, element)) {
|
|
// Found the corresponding def with no intervening users. Liveness
|
|
// can be extended to the destroy.
|
|
return true;
|
|
}
|
|
auto interestingUser = liveness.isInterestingUser(inst, element);
|
|
switch (interestingUser) {
|
|
case FieldSensitivePrunedLiveness::IsInterestingUser::NonUser:
|
|
break;
|
|
case FieldSensitivePrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
|
|
// The first use seen is non-consuming. Liveness can be extended to the
|
|
// destroy.
|
|
return true;
|
|
break;
|
|
case FieldSensitivePrunedLiveness::IsInterestingUser::LifetimeEndingUse:
|
|
// Found a consuming use. Liveness can't be extended to the destroy
|
|
// (without creating a copy and triggering a diagnostic).
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
// Found no uses or defs between the destroy and the top of the block. If the
|
|
// block was not consumed at entry, liveness can be extended to the destroy.
|
|
return !consumedAtEntryBlocks.contains(block);
|
|
}
|
|
|
|
/// Compute the block's effect on liveness and apply it to \p isLiveAtEnd.
|
|
bool ExtendUnconsumedLiveness::isLiveAtBegin(SILBasicBlock *block,
|
|
unsigned element, bool isLiveAtEnd,
|
|
DestroysCollection const &destroys) {
|
|
enum class Effect {
|
|
None, // 0
|
|
Kill, // 1
|
|
Gen, // 2
|
|
};
|
|
auto effect = Effect::None;
|
|
for (auto &instruction : llvm::reverse(*block)) {
|
|
// An instruction can be both a destroy and a def. If it is, its
|
|
// behavior is first to destroy and then to init. So when walking
|
|
// backwards, its last action is to destroy, so its effect is that of any
|
|
// destroy.
|
|
if (destroys.find(&instruction) != destroys.end()) {
|
|
effect = Effect::Gen;
|
|
} else if (liveness.isDef(&instruction, element)) {
|
|
effect = Effect::Kill;
|
|
}
|
|
}
|
|
switch (effect) {
|
|
case Effect::None:
|
|
return isLiveAtEnd;
|
|
case Effect::Kill:
|
|
return false;
|
|
case Effect::Gen:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool ExtendUnconsumedLiveness::hasDefAfter(SILInstruction *start,
|
|
unsigned element) {
|
|
// NOTE: Start iteration at \p start, not its sequel, because
|
|
// it might be both a consuming use and a def.
|
|
for (auto *inst = start; inst; inst = inst->getNextInstruction()) {
|
|
if (liveness.isDef(inst, element))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void ExtendUnconsumedLiveness::addPreviousInstructionToLiveness(
|
|
SILInstruction *inst, unsigned element) {
|
|
auto range = TypeTreeLeafTypeRange(element, element + 1);
|
|
inst->visitPriorInstructions([&](auto *prior) {
|
|
liveness.extendToNonUse(prior, range);
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool MoveOnlyAddressCheckerPImpl::performSingleCheck(
|
|
MarkUnresolvedNonCopyableValueInst *markedAddress) {
|
|
SWIFT_DEFER { diagnosticEmitter.clearUsesWithDiagnostic(); };
|
|
unsigned diagCount = diagnosticEmitter.getDiagnosticCount();
|
|
|
|
// Before we do anything, canonicalize load_borrow + copy_value into load
|
|
// [copy] + begin_borrow for further processing. This just eliminates a case
|
|
// that the checker doesn't need to know about.
|
|
{
|
|
RAIILLVMDebug l("CopiedLoadBorrowEliminationVisitor");
|
|
|
|
CopiedLoadBorrowEliminationState state(markedAddress->getFunction());
|
|
CopiedLoadBorrowEliminationVisitor copiedLoadBorrowEliminator(state);
|
|
if (AddressUseKind::Unknown ==
|
|
std::move(copiedLoadBorrowEliminator).walk(markedAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed copied load borrow eliminator visit: "
|
|
<< *markedAddress);
|
|
return false;
|
|
}
|
|
state.process();
|
|
}
|
|
|
|
// Then if we have a let allocation, see if we have any copy_addr on our
|
|
// markedAddress that form temporary allocation chains. This occurs when we
|
|
// emit SIL for code like:
|
|
//
|
|
// let x: AddressOnlyType = ...
|
|
// let _ = x.y.z
|
|
//
|
|
// SILGen will treat y as a separate rvalue from x and will create a temporary
|
|
// allocation. In contrast if we have a var, we treat x like an lvalue and
|
|
// just create GEPs appropriately.
|
|
{
|
|
RAIILLVMDebug l("temporary allocations from rvalue accesses");
|
|
|
|
if (eliminateTemporaryAllocationsFromLet(markedAddress)) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Succeeded in eliminating temporary allocations! Fn after:\n";
|
|
markedAddress->getFunction()->dump());
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
// Then gather all uses of our address by walking from def->uses. We use this
|
|
// to categorize the uses of this address into their ownership behavior (e.g.:
|
|
// init, reinit, take, destroy, etc.).
|
|
GatherUsesVisitor visitor(*this, addressUseState, markedAddress,
|
|
diagnosticEmitter);
|
|
SWIFT_DEFER { visitor.clear(); };
|
|
|
|
{
|
|
RAIILLVMDebug l("main use gathering visitor");
|
|
|
|
visitor.reset(markedAddress);
|
|
if (AddressUseKind::Unknown == std::move(visitor).walk(markedAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Failed access path visit: " << *markedAddress);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If we found a load [copy] or copy_addr that requires multiple copies or an
|
|
// exclusivity error, then we emitted an early error. Bail now and allow the
|
|
// user to fix those errors and recompile to get further errors.
|
|
//
|
|
// DISCUSSION: The reason why we do this is in the dataflow below we want to
|
|
// be able to assume that the load [copy] or copy_addr/copy_addr [init] are
|
|
// actual last uses, but the frontend that emitted the code for simplicity
|
|
// emitted a copy from the base address + a destroy_addr of the use. By
|
|
// bailing here, we can make that assumption since we would have errored
|
|
// earlier otherwise.
|
|
if (diagCount != diagnosticEmitter.getDiagnosticCount())
|
|
return true;
|
|
|
|
// Now that we know that we have run our visitor and did not emit any errors
|
|
// and successfully visited everything, see if have any
|
|
// assignable_but_not_consumable of address only types that are consumed.
|
|
//
|
|
// DISCUSSION: For non address only types, this is not an issue since we
|
|
// eagerly load
|
|
|
|
addressUseState.initializeImplicitEndOfLifetimeLivenessUses();
|
|
|
|
//===---
|
|
// Liveness Checking
|
|
//
|
|
|
|
SmallVector<SILBasicBlock *, 32> discoveredBlocks;
|
|
FieldSensitiveMultiDefPrunedLiveRange liveness(fn, markedAddress,
|
|
&discoveredBlocks);
|
|
|
|
{
|
|
RAIILLVMDebug logger("liveness initialization");
|
|
|
|
addressUseState.initializeLiveness(liveness);
|
|
}
|
|
|
|
// Now freeze our multimaps.
|
|
addressUseState.freezeMultiMaps();
|
|
|
|
{
|
|
RAIILLVMDebug l("checking for partial reinits");
|
|
PartialReinitChecker checker(addressUseState, diagnosticEmitter);
|
|
unsigned count = diagnosticEmitter.getDiagnosticCount();
|
|
checker.performPartialReinitChecking(liveness);
|
|
if (count != diagnosticEmitter.getDiagnosticCount()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found a partial reinit error! Ending early!\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
{
|
|
RAIILLVMDebug l("performing global liveness checks");
|
|
// Then compute the takes that are within the cumulative boundary of
|
|
// liveness that we have computed. If we find any, they are the errors
|
|
// ones.
|
|
GlobalLivenessChecker emitter(addressUseState, diagnosticEmitter, liveness);
|
|
|
|
// If we had any errors, we do not want to modify the SIL... just bail.
|
|
if (emitter.compute()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// First add any debug_values that we saw as liveness uses. This is important
|
|
// since the debugger wants to see live values when we define a debug_value,
|
|
// but we do not want to use them earlier when emitting diagnostic errors.
|
|
if (auto *di = addressUseState.debugValue) {
|
|
// Move the debug_value to right after the markedAddress to ensure that we
|
|
// do not actually change our liveness computation.
|
|
//
|
|
// NOTE: The author is not sure if this can ever happen with SILGen output,
|
|
// but this is being put just to be safe.
|
|
di->moveAfter(markedAddress);
|
|
liveness.updateForUse(di, TypeTreeLeafTypeRange(markedAddress),
|
|
false /*lifetime ending*/);
|
|
}
|
|
|
|
// Compute our initial boundary.
|
|
FieldSensitivePrunedLivenessBoundary boundary(liveness.getNumSubElements());
|
|
liveness.computeBoundary(boundary);
|
|
LLVM_DEBUG(llvm::dbgs() << "Initial use based boundary:\n"; boundary.dump());
|
|
|
|
if (!DisableMoveOnlyAddressCheckerLifetimeExtension) {
|
|
ExtendUnconsumedLiveness extension(addressUseState, liveness, boundary);
|
|
extension.run();
|
|
}
|
|
boundary.clear();
|
|
liveness.computeBoundary(boundary);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Final maximized boundary:\n"; boundary.dump());
|
|
|
|
//===
|
|
// Final Transformation
|
|
//
|
|
|
|
// Ok, we now know that we fit our model since we did not emit errors and thus
|
|
// can begin the transformation.
|
|
SWIFT_DEFER { consumes.clear(); };
|
|
|
|
insertDestroysOnBoundary(markedAddress, liveness, boundary);
|
|
checkForReinitAfterDiscard();
|
|
rewriteUses(markedAddress, liveness, boundary);
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
static llvm::cl::opt<uint64_t> NumTopLevelToProcess(
|
|
"sil-move-only-address-checker-num-top-level-to-process",
|
|
llvm::cl::desc("Allows for bisecting on move introducer that causes an "
|
|
"error. Only meant for debugging!"),
|
|
llvm::cl::init(UINT64_MAX));
|
|
#endif
|
|
|
|
static llvm::cl::opt<bool>
|
|
DumpSILBeforeRemovingMarkUnresolvedNonCopyableValueInst(
|
|
"sil-move-only-address-checker-dump-before-removing-mark-must-check",
|
|
llvm::cl::desc(
|
|
"When bisecting it is useful to dump the SIL before the "
|
|
"rest of the checker removes "
|
|
"mark_unresolved_non_copyable_value. This lets one "
|
|
"grab the SIL of a bad variable after all of the rest have "
|
|
"been processed to work with further in sil-opt."),
|
|
llvm::cl::init(false));
|
|
|
|
bool MoveOnlyAddressChecker::check(
|
|
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
|
|
&moveIntroducersToProcess) {
|
|
assert(moveIntroducersToProcess.size() &&
|
|
"Must have checks to process to call this function");
|
|
MoveOnlyAddressCheckerPImpl pimpl(fn, diagnosticEmitter, domTree, poa,
|
|
allocator);
|
|
|
|
#ifndef NDEBUG
|
|
static uint64_t numProcessed = 0;
|
|
#endif
|
|
for (auto *markedValue : moveIntroducersToProcess) {
|
|
#ifndef NDEBUG
|
|
++numProcessed;
|
|
if (NumTopLevelToProcess <= numProcessed)
|
|
break;
|
|
#endif
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "======>>> Visiting top level: " << *markedValue);
|
|
|
|
// Perform our address check.
|
|
unsigned diagnosticEmittedByEarlierPassCount =
|
|
diagnosticEmitter.getDiagnosticEmittedByEarlierPassCount();
|
|
if (!pimpl.performSingleCheck(markedValue)) {
|
|
if (diagnosticEmittedByEarlierPassCount !=
|
|
diagnosticEmitter.getDiagnosticEmittedByEarlierPassCount()) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "Failed to perform single check but found earlier emitted "
|
|
"error. Not emitting checker doesn't understand diagnostic!\n");
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to perform single check! Emitting "
|
|
"compiler doesn't understand diagnostic!\n");
|
|
// If we fail the address check in some way, set the diagnose!
|
|
diagnosticEmitter.emitCheckerDoesntUnderstandDiagnostic(markedValue);
|
|
}
|
|
}
|
|
|
|
if (DumpSILBeforeRemovingMarkUnresolvedNonCopyableValueInst) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Dumping SIL before removing mark must checks!\n";
|
|
fn->dump());
|
|
}
|
|
return pimpl.changed;
|
|
}
|