Files
swift-mirror/lib/Frontend/ModuleInterfaceSupport.cpp
John McCall 54c38cbb71 Fix and generalize the printing of suppressible features,
and make `@_unsafeInheritExecutor` a suppressible feature.

Some language features are required in order to parse a
declaration correctly, but some can safely be ignored.
For the latter, we'd like the module interface to simply
contain the declaration twice, once with the feature and
once without.  Some basic support for that was already
added for the SpecializeAttributeWithAvailability feature,
but it didn't interact correctly with required features
that might be checked in the same `#if` clause (it simply
introduced an `#else`), and it wasn't really set up to
allow multiple features to be handled this way.  There
were also a few other places that weren't updated to
handle this, presumably because they never coincided
with a `@_specialize` attribute.

Introduce the concept of a suppressible feature, which
is anything that the ASTPrinter can modify the current
PrintOptions in order to suppress.  Restructure the
printing of compatibility checks so that we can print
the body multiple times with different settings.
Print required feature checks in an outer `#if...#endif`,
then perform a separate `#if...#else...#endif` within
if we have suppressible features.  If there are multiple
suppressible features, check for the most recent first,
on the assumption that it will imply the rest; then
perform subsequent checks with an `#elsif` clause.

This should be a far more solid foundation on which to
build compatibility checks in the future.

`@_unsafeInheritExecutor` needs to be suppressible
because it's been added to some rather important
existing APIs.  Simply suppressing the entire decl will
effectively block old tools from using a new SDK to
build many existing projects (if they've adopted
`async`).  Dropping the attribute changes the semantics
of these functions, but only if the compiler features
the SE-0338 scheduling change; this is a very narrow
window of main-branch development builds of the tools,
none of which were officially released.
2022-02-16 16:58:56 -05:00

743 lines
28 KiB
C++

//===------- ModuleInterfaceSupport.cpp - swiftinterface files ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
using namespace swift;
// MARK: Module interface header comments
version::Version swift::InterfaceFormatVersion({1, 0});
/// Prints to \p out a comment containing a format version number, tool version
/// string as well as any relevant command-line flags in \p Opts used to
/// construct \p M.
static void printToolVersionAndFlagsComment(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M) {
auto &Ctx = M->getASTContext();
auto ToolsVersion =
getSwiftInterfaceCompilerVersionForCurrentCompiler(Ctx);
out << "// " SWIFT_INTERFACE_FORMAT_VERSION_KEY ": "
<< InterfaceFormatVersion << "\n";
out << "// " SWIFT_COMPILER_VERSION_KEY ": "
<< ToolsVersion << "\n";
out << "// " SWIFT_MODULE_FLAGS_KEY ": "
<< Opts.Flags << "\n";
if (!Opts.IgnorableFlags.empty()) {
out << "// " SWIFT_MODULE_FLAGS_IGNORABLE_KEY ": "
<< Opts.IgnorableFlags << "\n";
}
}
std::string
swift::getSwiftInterfaceCompilerVersionForCurrentCompiler(ASTContext &ctx) {
return swift::version::getSwiftFullVersion(
ctx.LangOpts.EffectiveLanguageVersion);
}
llvm::Regex swift::getSwiftInterfaceFormatVersionRegex() {
return llvm::Regex("^// " SWIFT_INTERFACE_FORMAT_VERSION_KEY
": ([0-9\\.]+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceCompilerVersionRegex() {
return llvm::Regex("^// " SWIFT_COMPILER_VERSION_KEY
": (.+)$", llvm::Regex::Newline);
}
// MARK: Module name shadowing warnings (SR-898)
//
// When swiftc emits a module interface, it qualifies most types with their
// module name. This usually makes the interface less ambiguous, but if a type
// exists with the same name as a module, then references to that module will
// incorrectly look inside the type instead. This breakage is not obvious until
// someone tries to load the module interface, and may sometimes only occur in
// clients' module interfaces.
//
// Truly fixing this will require a new module-qualification syntax which
// completely ignores shadowing. In lieu of that, we detect and warn about three
// common examples which are relatively actionable:
//
// 1. An `import` statement written into the module interface will
// (transitively) import a type with the module interface's name.
//
// 2. The module interface declares a type with the same name as the module the
// interface is for.
//
// 3. The module interface declares a type with the same name as a module it has
// (transitively) imported without `@_implementationOnly`.
//
// We do not check for shadowing between imported module names and imported
// declarations; this is both much rarer and much more difficult to solve.
// We silence these warnings if you use the temporary workaround flag,
// '-module-interface-preserve-types-as-written'.
/// Emit a warning explaining that \p shadowingDecl will interfere with
/// references to types in \p shadowedModule in the module interfaces of
/// \p brokenModule and its clients.
static void
diagnoseDeclShadowsModule(ModuleInterfaceOptions const &Opts,
TypeDecl *shadowingDecl, ModuleDecl *shadowedModule,
ModuleDecl *brokenModule) {
if (Opts.PreserveTypesAsWritten || shadowingDecl == shadowedModule)
return;
shadowingDecl->diagnose(
diag::warning_module_shadowing_may_break_module_interface,
shadowingDecl->getDescriptiveKind(),
FullyQualified<Type>(shadowingDecl->getDeclaredInterfaceType()),
shadowedModule, brokenModule);
}
/// Check whether importing \p importedModule will bring in any declarations
/// that will shadow \p importingModule, and diagnose them if so.
static void
diagnoseIfModuleImportsShadowingDecl(ModuleInterfaceOptions const &Opts,
ModuleDecl *importedModule,
ModuleDecl *importingModule) {
using namespace namelookup;
SmallVector<ValueDecl *, 4> decls;
lookupInModule(importedModule, importingModule->getName(), decls,
NLKind::UnqualifiedLookup, ResolutionKind::TypesOnly,
importedModule,
NL_UnqualifiedDefault | NL_IncludeUsableFromInline);
for (auto decl : decls)
diagnoseDeclShadowsModule(Opts, cast<TypeDecl>(decl), importingModule,
importingModule);
}
/// Check whether \p D will shadow any modules imported by \p M, and diagnose
/// them if so.
static void diagnoseIfDeclShadowsKnownModule(ModuleInterfaceOptions const &Opts,
Decl *D, ModuleDecl *M) {
ASTContext &ctx = M->getASTContext();
// We only care about types (and modules, which are a subclass of TypeDecl);
// when the grammar expects a type name, it ignores non-types during lookup.
TypeDecl *TD = dyn_cast<TypeDecl>(D);
if (!TD)
return;
ModuleDecl *shadowedModule = ctx.getLoadedModule(TD->getName());
if (!shadowedModule || M->isImportedImplementationOnly(shadowedModule))
return;
diagnoseDeclShadowsModule(Opts, TD, shadowedModule, M);
}
// MARK: Import statements
/// Diagnose any scoped imports in \p imports, i.e. those with a non-empty
/// access path. These are not yet supported by module interfaces, since the
/// information about the declaration kind is not preserved through the binary
/// serialization that happens as an intermediate step in non-whole-module
/// builds.
///
/// These come from declarations like `import class FooKit.MainFooController`.
static void diagnoseScopedImports(DiagnosticEngine &diags,
ArrayRef<ImportedModule> imports){
for (const ImportedModule &importPair : imports) {
if (importPair.accessPath.empty())
continue;
diags.diagnose(importPair.accessPath.front().Loc,
diag::module_interface_scoped_import_unsupported);
}
}
/// Prints the imported modules in \p M to \p out in the form of \c import
/// source declarations.
static void printImports(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M) {
// FIXME: This is very similar to what's in Serializer::writeInputBlock, but
// it's not obvious what higher-level optimization would be factored out here.
ModuleDecl::ImportFilter allImportFilter = {
ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::SPIAccessControl};
// With -experimental-spi-imports:
// When printing the private swiftinterface file, print implementation-only
// imports only if they are also SPI. First, list all implementation-only
// imports and filter them later.
llvm::SmallSet<ImportedModule, 4, ImportedModule::Order> ioiImportSet;
if (Opts.PrintSPIs && Opts.ExperimentalSPIImports) {
allImportFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
SmallVector<ImportedModule, 4> ioiImport;
M->getImportedModules(ioiImport,
ModuleDecl::ImportFilterKind::ImplementationOnly);
ioiImportSet.insert(ioiImport.begin(), ioiImport.end());
}
SmallVector<ImportedModule, 8> allImports;
M->getImportedModules(allImports, allImportFilter);
ImportedModule::removeDuplicates(allImports);
diagnoseScopedImports(M->getASTContext().Diags, allImports);
// Collect the public imports as a subset so that we can mark them with
// '@_exported'.
SmallVector<ImportedModule, 8> publicImports;
M->getImportedModules(publicImports, ModuleDecl::ImportFilterKind::Exported);
llvm::SmallSet<ImportedModule, 8, ImportedModule::Order> publicImportSet;
publicImportSet.insert(publicImports.begin(), publicImports.end());
for (auto import : allImports) {
auto importedModule = import.importedModule;
if (importedModule->isOnoneSupportModule() ||
importedModule->isBuiltinModule()) {
continue;
}
llvm::SmallSetVector<Identifier, 4> spis;
M->lookupImportedSPIGroups(importedModule, spis);
// Only print implementation-only imports which have an SPI import.
if (ioiImportSet.count(import)) {
if (spis.empty())
continue;
out << "@_implementationOnly ";
}
if (publicImportSet.count(import))
out << "@_exported ";
// SPI attribute on imports
if (Opts.PrintSPIs) {
for (auto spiName : spis)
out << "@_spi(" << spiName << ") ";
}
out << "import ";
importedModule->getReverseFullModuleName().printForward(out);
// Write the access path we should be honoring but aren't.
// (See diagnoseScopedImports above.)
if (!import.accessPath.empty()) {
out << "/*";
for (const auto &accessPathElem : import.accessPath)
out << "." << accessPathElem.Item;
out << "*/";
}
out << "\n";
diagnoseIfModuleImportsShadowingDecl(Opts, importedModule, M);
}
}
// MARK: Dummy protocol conformances
// FIXME: Copied from ASTPrinter.cpp...
static bool isPublicOrUsableFromInline(const ValueDecl *VD) {
AccessScope scope =
VD->getFormalAccessScope(/*useDC*/nullptr,
/*treatUsableFromInlineAsPublic*/true);
return scope.isPublic();
}
static bool isPublicOrUsableFromInline(Type ty) {
// Note the double negative here: we're looking for any referenced decls that
// are *not* public-or-usableFromInline.
return !ty.findIf([](Type typePart) -> bool {
// FIXME: If we have an internal typealias for a non-internal type, we ought
// to be able to print it by desugaring.
if (auto *aliasTy = dyn_cast<TypeAliasType>(typePart.getPointer()))
return !isPublicOrUsableFromInline(aliasTy->getDecl());
if (auto *nominal = typePart->getAnyNominal())
return !isPublicOrUsableFromInline(nominal);
return false;
});
}
namespace {
/// Collects protocols that are conformed to by a particular nominal. Since
/// ASTPrinter will only print the public ones, the non-public ones get left by
/// the wayside. This is a problem when a non-public protocol inherits from a
/// public protocol; the generated module interface still needs to make that
/// dependency public.
///
/// The solution implemented here is to generate synthetic extensions that
/// declare the extra conformances. This isn't perfect (it loses the sugared
/// spelling of the protocol type, as well as the locality in the file), but it
/// does work.
class InheritedProtocolCollector {
static const StringLiteral DummyProtocolName;
using AvailableAttrList = TinyPtrVector<const AvailableAttr *>;
using OtherAttrList = TinyPtrVector<const DeclAttribute*>;
using ProtocolAndAvailability =
std::tuple<ProtocolDecl *, AvailableAttrList, bool /*isUnchecked*/,
OtherAttrList>;
/// Protocols that will be included by the ASTPrinter without any extra work.
SmallVector<ProtocolDecl *, 8> IncludedProtocols;
/// Protocols that will not be printed by the ASTPrinter, along with the
/// availability they were declared with.
SmallVector<ProtocolAndAvailability, 8> ExtraProtocols;
/// Protocols that can be printed, but whose conformances are constrained with
/// something that \e can't be printed.
SmallVector<const ProtocolType *, 8> ConditionalConformanceProtocols;
/// Helper to extract the `@available` attributes on a decl.
static AvailableAttrList
getAvailabilityAttrs(const Decl *D, Optional<AvailableAttrList> &cache) {
if (cache.hasValue())
return cache.getValue();
cache.emplace();
while (D) {
for (auto *nextAttr : D->getAttrs().getAttributes<AvailableAttr>()) {
// FIXME: This is just approximating the effects of nested availability
// attributes for the same platform; formally they'd need to be merged.
bool alreadyHasMoreSpecificAttrForThisPlatform =
llvm::any_of(*cache, [nextAttr](const AvailableAttr *existingAttr) {
return existingAttr->Platform == nextAttr->Platform;
});
if (alreadyHasMoreSpecificAttrForThisPlatform)
continue;
cache->push_back(nextAttr);
}
D = D->getDeclContext()->getAsDecl();
}
return cache.getValue();
}
static OtherAttrList getOtherAttrList(const Decl *D) {
OtherAttrList results;
while (D) {
for (auto *result: D->getAttrs().getAttributes<OriginallyDefinedInAttr>()) {
results.push_back(result);
}
D = D->getDeclContext()->getAsDecl();
}
return results;
}
static bool canPrintProtocolTypeNormally(Type type, const Decl *D) {
return isPublicOrUsableFromInline(type);
}
static bool isUncheckedConformance(ProtocolConformance *conformance) {
if (auto normal = conformance->getRootNormalConformance())
return normal->isUnchecked();
return false;
}
/// For each type in \p directlyInherited, classify the protocols it refers to
/// as included for printing or not, and record them in the appropriate
/// vectors.
void recordProtocols(ArrayRef<InheritedEntry> directlyInherited,
const Decl *D, bool skipSynthesized = false) {
Optional<AvailableAttrList> availableAttrs;
for (InheritedEntry inherited : directlyInherited) {
Type inheritedTy = inherited.getType();
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
bool canPrintNormally = canPrintProtocolTypeNormally(inheritedTy, D);
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolType *protoTy : layout.getProtocols()) {
if (canPrintNormally)
IncludedProtocols.push_back(protoTy->getDecl());
else
ExtraProtocols.push_back(
ProtocolAndAvailability(protoTy->getDecl(),
getAvailabilityAttrs(D, availableAttrs),
inherited.isUnchecked,
getOtherAttrList(D)));
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
if (skipSynthesized)
return;
// Check for synthesized protocols, like Hashable on enums.
if (auto *nominal = dyn_cast<NominalTypeDecl>(D)) {
SmallVector<ProtocolConformance *, 4> localConformances =
nominal->getLocalConformances(ConformanceLookupKind::NonInherited);
for (auto *conf : localConformances) {
if (conf->getSourceKind() != ConformanceEntryKind::Synthesized)
continue;
ExtraProtocols.push_back(
ProtocolAndAvailability(conf->getProtocol(),
getAvailabilityAttrs(D, availableAttrs),
isUncheckedConformance(conf),
getOtherAttrList(D)));
}
}
}
/// For each type directly inherited by \p extension, record any protocols
/// that we would have printed in ConditionalConformanceProtocols.
void recordConditionalConformances(const ExtensionDecl *extension) {
for (TypeLoc inherited : extension->getInherited()) {
Type inheritedTy = inherited.getType();
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolType *protoTy : layout.getProtocols()) {
if (!isPublicOrUsableFromInline(protoTy))
continue;
ConditionalConformanceProtocols.push_back(protoTy);
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
}
public:
using PerTypeMap = llvm::MapVector<const NominalTypeDecl *,
InheritedProtocolCollector>;
/// Given that we're about to print \p D, record its protocols in \p map.
///
/// \sa recordProtocols
static void collectProtocols(PerTypeMap &map, const Decl *D) {
ArrayRef<InheritedEntry> directlyInherited;
const NominalTypeDecl *nominal;
const IterableDeclContext *memberContext;
auto shouldInclude = [](const ExtensionDecl *extension) {
if (extension->isConstrainedExtension()) {
// Conditional conformances never apply to inherited protocols, nor
// can they provide unconditional conformances that might be used in
// other extensions.
return false;
}
return true;
};
if ((nominal = dyn_cast<NominalTypeDecl>(D))) {
directlyInherited = nominal->getInherited();
memberContext = nominal;
} else if (auto *extension = dyn_cast<ExtensionDecl>(D)) {
if (!shouldInclude(extension)) {
return;
}
nominal = extension->getExtendedNominal();
directlyInherited = extension->getInherited();
memberContext = extension;
} else {
return;
}
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordProtocols(directlyInherited, D);
// Collect protocols inherited from super classes
if (auto *CD = dyn_cast<ClassDecl>(D)) {
for (auto *SD = CD->getSuperclassDecl(); SD;
SD = SD->getSuperclassDecl()) {
map[nominal].recordProtocols(
SD->getInherited(), SD, /*skipSynthesized=*/true);
for (auto *Ext: SD->getExtensions()) {
if (shouldInclude(Ext)) {
map[nominal].recordProtocols(Ext->getInherited(), Ext);
}
}
}
}
// Recurse to find any nested types.
for (const Decl *member : memberContext->getMembers())
collectProtocols(map, member);
}
/// If \p D is an extension providing conditional conformances, record those
/// in \p map.
///
/// \sa recordConditionalConformances
static void collectSkippedConditionalConformances(
PerTypeMap &map,
const Decl *D,
const PrintOptions &printOptions) {
auto *extension = dyn_cast<ExtensionDecl>(D);
if (!extension || !extension->isConstrainedExtension())
return;
// Skip SPI extensions in the public interface.
if (!printOptions.PrintSPIs && extension->isSPI())
return;
const NominalTypeDecl *nominal = extension->getExtendedNominal();
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordConditionalConformances(extension);
// No recursion here because extensions are never nested.
}
/// Returns true if the conformance of \p nominal to \p proto is declared in
/// module \p M.
static bool conformanceDeclaredInModule(ModuleDecl *M,
const NominalTypeDecl *nominal,
ProtocolDecl *proto) {
SmallVector<ProtocolConformance *, 4> conformances;
nominal->lookupConformance(proto, conformances);
return llvm::all_of(conformances,
[M](const ProtocolConformance *conformance) -> bool {
return M == conformance->getDeclContext()->getParentModule();
});
}
/// If there were any public protocols that need to be printed (i.e. they
/// weren't conformed to explicitly or inherited by another printed protocol),
/// do so now by printing a dummy extension on \p nominal to \p out.
void
printSynthesizedExtensionIfNeeded(raw_ostream &out,
const PrintOptions &printOptions,
ModuleDecl *M,
const NominalTypeDecl *nominal) const {
if (ExtraProtocols.empty())
return;
if (!printOptions.shouldPrint(nominal))
return;
/// is this nominal specifically an 'actor'?
bool actorClass = false;
if (auto klass = dyn_cast<ClassDecl>(nominal))
actorClass = klass->isActor();
SmallPtrSet<ProtocolDecl *, 16> handledProtocols;
// First record all protocols that have already been handled.
for (ProtocolDecl *proto : IncludedProtocols) {
proto->walkInheritedProtocols(
[&handledProtocols](ProtocolDecl *inherited) -> TypeWalker::Action {
handledProtocols.insert(inherited);
return TypeWalker::Action::Continue;
});
}
// Then walk the remaining ones, and see what we need to print.
// Note: We could do this in one pass, but the logic is easier to
// understand if we build up the list and then print it, even if it takes
// a bit more memory.
// FIXME: This will pick the availability attributes from the first sight
// of a protocol rather than the maximally available case.
SmallVector<ProtocolAndAvailability, 16> protocolsToPrint;
for (const auto &protoAndAvailability : ExtraProtocols) {
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto isUnchecked = std::get<2>(protoAndAvailability);
auto otherAttrs = std::get<3>(protoAndAvailability);
proto->walkInheritedProtocols(
[&](ProtocolDecl *inherited) -> TypeWalker::Action {
if (!handledProtocols.insert(inherited).second)
return TypeWalker::Action::SkipChildren;
// If 'nominal' is an actor, we do not synthesize its conformance
// to the Actor protocol through a dummy extension.
// There is a special restriction on the Actor protocol in that
// it is only valid to conform to Actor on an 'actor' decl,
// not extensions of that 'actor'.
if (actorClass &&
inherited->isSpecificProtocol(KnownProtocolKind::Actor))
return TypeWalker::Action::SkipChildren;
if (inherited->isSPI() && !printOptions.PrintSPIs)
return TypeWalker::Action::Continue;
if (isPublicOrUsableFromInline(inherited) &&
conformanceDeclaredInModule(M, nominal, inherited) &&
!M->isImportedImplementationOnly(inherited->getParentModule())) {
protocolsToPrint.push_back(
ProtocolAndAvailability(inherited, availability, isUnchecked,
otherAttrs));
return TypeWalker::Action::SkipChildren;
}
return TypeWalker::Action::Continue;
});
}
if (protocolsToPrint.empty())
return;
for (const auto &protoAndAvailability : protocolsToPrint) {
StreamPrinter printer(out);
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto isUnchecked = std::get<2>(protoAndAvailability);
auto otherAttrs = std::get<3>(protoAndAvailability);
PrintOptions curPrintOptions = printOptions;
auto printBody = [&] {
// FIXME: Shouldn't this be an implicit conversion?
TinyPtrVector<const DeclAttribute *> attrs;
attrs.insert(attrs.end(), availability.begin(), availability.end());
auto spiAttributes = proto->getAttrs().getAttributes<SPIAccessControlAttr>();
attrs.insert(attrs.end(), spiAttributes.begin(), spiAttributes.end());
attrs.insert(attrs.end(), otherAttrs.begin(), otherAttrs.end());
DeclAttributes::print(printer, curPrintOptions, attrs);
printer << "extension ";
{
bool oldFullyQualifiedTypesIfAmbiguous =
curPrintOptions.FullyQualifiedTypesIfAmbiguous;
curPrintOptions.FullyQualifiedTypesIfAmbiguous =
curPrintOptions.FullyQualifiedExtendedTypesIfAmbiguous;
nominal->getDeclaredType().print(printer, curPrintOptions);
curPrintOptions.FullyQualifiedTypesIfAmbiguous =
oldFullyQualifiedTypesIfAmbiguous;
}
printer << " : ";
if (isUnchecked)
printer << "@unchecked ";
proto->getDeclaredInterfaceType()->print(printer, curPrintOptions);
printer << " {}";
};
bool printedNewline = false;
if (printOptions.PrintCompatibilityFeatureChecks) {
printedNewline =
printWithCompatibilityFeatureChecks(printer, curPrintOptions,
proto, printBody);
} else {
printBody();
printedNewline = false;
}
if (!printedNewline)
printer << "\n";
}
}
/// If there were any conditional conformances that couldn't be printed,
/// make a dummy extension that conforms to all of them, constrained by a
/// fake protocol.
bool printInaccessibleConformanceExtensionIfNeeded(
raw_ostream &out, const PrintOptions &printOptions,
const NominalTypeDecl *nominal) const {
if (ConditionalConformanceProtocols.empty())
return false;
assert(nominal->isGenericContext());
if (printOptions.PrintSPIs)
out << "@_spi(" << DummyProtocolName << ")\n";
out << "@available(*, unavailable)\nextension ";
nominal->getDeclaredType().print(out, printOptions);
out << " : ";
llvm::interleave(
ConditionalConformanceProtocols,
[&out, &printOptions](const ProtocolType *protoTy) {
protoTy->print(out, printOptions);
},
[&out] { out << ", "; });
out << " where "
<< nominal->getGenericSignature().getGenericParams().front()->getName()
<< " : " << DummyProtocolName << " {}\n";
return true;
}
/// Print a fake protocol declaration for use by
/// #printInaccessibleConformanceExtensionIfNeeded.
static void printDummyProtocolDeclaration(raw_ostream &out) {
out << "\n@usableFromInline\ninternal protocol " << DummyProtocolName
<< " {}\n";
}
};
const StringLiteral InheritedProtocolCollector::DummyProtocolName =
"_ConstraintThatIsNotPartOfTheAPIOfThisLibrary";
} // end anonymous namespace
// MARK: Interface emission
bool swift::emitSwiftInterface(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M) {
assert(M);
printToolVersionAndFlagsComment(out, Opts, M);
printImports(out, Opts, M);
const PrintOptions printOptions = PrintOptions::printSwiftInterfaceFile(
M, Opts.PreserveTypesAsWritten, Opts.PrintFullConvention, Opts.PrintSPIs);
InheritedProtocolCollector::PerTypeMap inheritedProtocolMap;
SmallVector<Decl *, 16> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
InheritedProtocolCollector::collectProtocols(inheritedProtocolMap, D);
if (!D->shouldPrintInContext(printOptions) ||
!printOptions.shouldPrint(D)) {
InheritedProtocolCollector::collectSkippedConditionalConformances(
inheritedProtocolMap, D, printOptions);
continue;
}
D->print(out, printOptions);
out << "\n";
diagnoseIfDeclShadowsKnownModule(Opts, const_cast<Decl *>(D), M);
}
// Print dummy extensions for any protocols that were indirectly conformed to.
bool needDummyProtocolDeclaration = false;
for (const auto &nominalAndCollector : inheritedProtocolMap) {
const NominalTypeDecl *nominal = nominalAndCollector.first;
const InheritedProtocolCollector &collector = nominalAndCollector.second;
collector.printSynthesizedExtensionIfNeeded(out, printOptions, M, nominal);
needDummyProtocolDeclaration |=
collector.printInaccessibleConformanceExtensionIfNeeded(out,
printOptions,
nominal);
}
if (needDummyProtocolDeclaration)
InheritedProtocolCollector::printDummyProtocolDeclaration(out);
if (Opts.DebugPrintInvalidSyntax)
out << "#__debug_emit_invalid_swiftinterface_syntax__\n";
return false;
}