Files
swift-mirror/lib/SILPasses/Utils/Local.cpp
Roman Levenstein 55ea9ec0e3 [sil-combine] Minor clean-up of casts optimizations. NFC.
Add more checks and logic into emitSuccessfulIndirectUnconditionalCast and emitSuccessfulScalarUnconditionalCast, so that its clients in sil-combine can be simplified by avoiding looking into special cases.

Swift SVN r26885
2015-04-02 19:57:35 +00:00

1247 lines
42 KiB
C++

//===--- Local.cpp - Functions that perform local SIL transformations. ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===---------------------------------------------------------------------===//
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILAnalysis/Analysis.h"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include <deque>
using namespace swift;
llvm::cl::opt<bool>
DebugValuesPropagateLiveness("debug-values-propagate-liveness",
llvm::cl::init(false));
bool swift::debugValuesPropagateLiveness() {
return DebugValuesPropagateLiveness;
}
/// \brief Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool
swift::isInstructionTriviallyDead(SILInstruction *I) {
if (!I->use_empty() || isa<TermInst>(I))
return false;
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
return !BI->mayHaveSideEffects();
}
// condfail instructions that obviously can't fail are dead.
if (auto *CFI = dyn_cast<CondFailInst>(I))
if (auto *ILI = dyn_cast<IntegerLiteralInst>(CFI->getOperand()))
if (!ILI->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(I))
return false;
if (debugValuesPropagateLiveness() &&
(isa<DebugValueInst>(I) || isa<DebugValueAddrInst>(I)))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(I))
return true;
if (!I->mayHaveSideEffects())
return true;
return false;
}
namespace {
using CallbackTy = std::function<void(SILInstruction *)>;
} // end anonymous namespace
bool swift::
recursivelyDeleteTriviallyDeadInstructions(ArrayRef<SILInstruction *> IA,
bool Force, CallbackTy Callback) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> DeadInsts;
for (auto I : IA) {
// If the instruction is not dead and force is false, do nothing.
if (Force || isInstructionTriviallyDead(I))
DeadInsts.insert(I);
}
llvm::SmallPtrSet<SILInstruction *, 8> NextInsts;
while (!DeadInsts.empty()) {
for (auto I : DeadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
Callback(I);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> Ops = I->getAllOperands();
for (Operand &Op : Ops) {
SILValue OpVal = Op.get();
if (!OpVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
Op.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (SILInstruction *OpValInst = dyn_cast<SILInstruction>(OpVal))
if (!DeadInsts.count(OpValInst) &&
isInstructionTriviallyDead(OpValInst))
NextInsts.insert(OpValInst);
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decement.
auto *FRI = dyn_cast<FunctionRefInst>(I);
if (FRI && FRI->getReferencedFunction())
FRI->dropReferencedFunction();
}
for (auto I : DeadInsts) {
// This will remove this instruction and all its uses.
I->eraseFromParent();
}
NextInsts.swap(DeadInsts);
NextInsts.clear();
}
return true;
}
/// \brief If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param I The instruction to be deleted.
/// \param Force If Force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
/// \return Returns true if any instructions were deleted.
bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I,
bool Force,
CallbackTy Callback) {
ArrayRef<SILInstruction *> AI = ArrayRef<SILInstruction *>(I);
return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback);
}
void swift::eraseUsesOfInstruction(SILInstruction *Inst) {
for (auto UI : Inst->getUses()) {
auto *User = UI->getUser();
// If the instruction itself has any uses, recursively zap them so that
// nothing uses this instruction.
eraseUsesOfInstruction(User);
// Walk through the operand list and delete any random instructions that
// will become trivially dead when this instruction is removed.
for (auto &Op : User->getAllOperands()) {
if (auto *OpI = dyn_cast<SILInstruction>(Op.get())) {
// Don't recursively delete the pointer we're getting in.
if (OpI != Inst) {
Op.drop();
recursivelyDeleteTriviallyDeadInstructions(OpI);
}
}
}
User->eraseFromParent();
}
}
void swift::replaceWithSpecializedFunction(ApplySite AI, SILFunction *NewF) {
SILLocation Loc = AI.getLoc();
ArrayRef<Substitution> Subst;
SmallVector<SILValue, 4> Arguments;
for (auto &Op : AI.getArgumentOperands()) {
Arguments.push_back(Op.get());
}
SILBuilderWithScope<2> Builder(AI.getInstruction());
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
if (auto TAI = dyn_cast<TryApplyInst>(AI)) {
Builder.createTryApply(Loc, FRI, TAI->getSubstCalleeSILType(),
{}, Arguments, TAI->getNormalBB(),
TAI->getErrorBB());
} else {
SILInstruction *NAI = nullptr;
if (isa<ApplyInst>(AI))
NAI = Builder.createApply(Loc, FRI, Arguments);
if (auto PAI = dyn_cast<PartialApplyInst>(AI))
NAI = Builder.createPartialApply(Loc, FRI,
PAI->getSubstCalleeSILType(),
{},
Arguments,
PAI->getType());
AI.getInstruction()->replaceAllUsesWith(NAI);
}
recursivelyDeleteTriviallyDeadInstructions(AI.getInstruction(), true);
}
bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) {
// Check whether any of the substitutions are dependent.
for (auto &entry : SubsMap)
if (entry.second->getCanonicalType()->hasArchetype())
return true;
return false;
}
bool swift::hasUnboundGenericTypes(ArrayRef<Substitution> Subs) {
// Check whether any of the substitutions are dependent.
for (auto &sub : Subs)
if (sub.getReplacement()->getCanonicalType()->hasArchetype())
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) {
FunctionRefInst *FuncRef = cast<FunctionRefInst>(AI->getCallee());
SILBasicBlock *DomBB =
DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent());
if (DomBB == AI->getParent() && DomBB != FuncRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
FuncRef->moveBefore(AI);
else
// Otherwise, conservatively stick it at the beginning of the block.
FuncRef->moveBefore(DomBB->begin());
}
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
TermInst *Branch) {
SILBuilderWithScope<2> Builder(Branch);
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
for (auto A : CBI->getTrueArgs())
TrueArgs.push_back(A);
for (auto A : CBI->getFalseArgs())
FalseArgs.push_back(A);
if (Dest == CBI->getTrueBB()) {
TrueArgs.push_back(Val);
assert(TrueArgs.size() == Dest->getNumBBArg());
} else {
FalseArgs.push_back(Val);
assert(FalseArgs.size() == Dest->getNumBBArg());
}
return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs);
}
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
for (auto A : BI->getArgs())
Args.push_back(A);
Args.push_back(Val);
assert(Args.size() == Dest->getNumBBArg());
return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILLinkage L) {
switch (L) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
case SILLinkage::PrivateExternal:
// Specializations of private symbols should remain so.
// TODO: maybe PrivateExternals should get SharedExternal (these are private
// functions from the stdlib which are specialized in another module).
return SILLinkage::Private;
}
}
/// Remove all instructions in the body of \p BB in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *BB) {
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!BB->empty()) {
// Grab the last instruction in the BB.
auto *Inst = &BB->getInstList().back();
// Replace any non-dead results with SILUndef values.
Inst->replaceAllUsesWithUndef();
// Pop the instruction off of the back of the basic block.
BB->getInstList().pop_back();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *BB) {
// Clear the body of BB.
clearBlockBody(BB);
// Now that the BB is empty, eliminate it.
BB->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// String Concatenation Optimizer
//===----------------------------------------------------------------------===//
namespace {
/// This is a helper class that performs optimization of string literals
/// concatenation.
class StringConcatenationOptimizer {
/// Apply instruction being optimized.
ApplyInst *AI;
/// Builder to be used for creation of new instructions.
SILBuilder &Builder;
/// Left string literal operand of a string concatenation.
StringLiteralInst *SLILeft = nullptr;
/// Right string literal operand of a string concatenation.
StringLiteralInst *SLIRight = nullptr;
/// Function used to construct the left string literal.
FunctionRefInst *FRILeft = nullptr;
/// Function used to construct the right string literal.
FunctionRefInst *FRIRight = nullptr;
/// Apply instructions used to construct left string literal.
ApplyInst *AILeft = nullptr;
/// Apply instructions used to construct right string literal.
ApplyInst *AIRight = nullptr;
/// String literal conversion function to be used.
FunctionRefInst *FRIConvertFromBuiltin = nullptr;
/// Result type of a function producing the concatenated string literal.
SILValue FuncResultType;
/// Internal helper methods
bool extractStringConcatOperands();
void adjustEncodings();
APInt getConcatenatedLength();
bool isAscii() const;
public:
StringConcatenationOptimizer(ApplyInst *AI, SILBuilder &Builder)
: AI(AI), Builder(Builder) {}
/// Tries to optimize a given apply instruction if it is a
/// concatenation of string literals.
///
/// Returns a new instruction if optimization was possible.
SILInstruction *optimize();
};
} // end anonymous namespace
/// Checks operands of a string concatenation operation to see if
/// optimization is applicable.
///
/// Returns false if optimization is not possible.
/// Returns true and initializes internal fields if optimization is possible.
bool StringConcatenationOptimizer::extractStringConcatOperands() {
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
auto *FRIFun = FRI->getReferencedFunction();
if (AI->getNumOperands() != 3 ||
!FRIFun->hasSemanticsString("string.concat"))
return false;
// Left and right operands of a string concatenation operation.
AILeft = dyn_cast<ApplyInst>(AI->getOperand(1));
AIRight = dyn_cast<ApplyInst>(AI->getOperand(2));
if (!AILeft || !AIRight)
return false;
FRILeft = dyn_cast<FunctionRefInst>(AILeft->getCallee());
FRIRight = dyn_cast<FunctionRefInst>(AIRight->getCallee());
if (!FRILeft || !FRIRight)
return false;
auto *FRILeftFun = FRILeft->getReferencedFunction();
auto *FRIRightFun = FRIRight->getReferencedFunction();
if (FRILeftFun->getEffectsKind() >= EffectsKind::ReadWrite ||
FRIRightFun->getEffectsKind() >= EffectsKind::ReadWrite)
return false;
if (!FRILeftFun->hasDefinedSemantics() ||
!FRIRightFun->hasDefinedSemantics())
return false;
auto SemanticsLeft = FRILeftFun->getSemanticsString();
auto SemanticsRight = FRIRightFun->getSemanticsString();
auto AILeftOperandsNum = AILeft->getNumOperands();
auto AIRightOperandsNum = AIRight->getNumOperands();
// makeUTF16 should have following parameters:
// (start: RawPointer, numberOfCodeUnits: Word)
// makeUTF8 should have following parameters:
// (start: RawPointer, byteSize: Word, isASCII: Int1)
if (!((SemanticsLeft == "string.makeUTF16" && AILeftOperandsNum == 4) ||
(SemanticsLeft == "string.makeUTF8" && AILeftOperandsNum == 5) ||
(SemanticsRight == "string.makeUTF16" && AIRightOperandsNum == 4) ||
(SemanticsRight == "string.makeUTF8" && AIRightOperandsNum == 5)))
return false;
SLILeft = dyn_cast<StringLiteralInst>(AILeft->getOperand(1));
SLIRight = dyn_cast<StringLiteralInst>(AIRight->getOperand(1));
if (!SLILeft || !SLIRight)
return false;
// Only UTF-8 and UTF-16 encoded string literals are supported by this
// optimization.
if (SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
if (SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
return true;
}
/// Ensures that both string literals to be concatenated use the same
/// UTF encoding. Converts UTF-8 into UTF-16 if required.
void StringConcatenationOptimizer::adjustEncodings() {
if (SLILeft->getEncoding() == SLIRight->getEncoding()) {
FRIConvertFromBuiltin = FRILeft;
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8) {
FuncResultType = AILeft->getOperand(4);
} else {
FuncResultType = AILeft->getOperand(3);
}
return;
}
// If one of the string literals is UTF8 and another one is UTF16,
// convert the UTF8-encoded string literal into UTF16-encoding first.
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AIRight->getOperand(3);
FRIConvertFromBuiltin = FRIRight;
// Convert UTF8 representation into UTF16.
SLILeft = Builder.createStringLiteral(AI->getLoc(), SLILeft->getValue(),
StringLiteralInst::Encoding::UTF16);
SLILeft->setDebugScope(AI->getDebugScope());
}
if (SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AILeft->getOperand(3);
FRIConvertFromBuiltin = FRILeft;
// Convert UTF8 representation into UTF16.
SLIRight = Builder.createStringLiteral(AI->getLoc(), SLIRight->getValue(),
StringLiteralInst::Encoding::UTF16);
SLIRight->setDebugScope(AI->getDebugScope());
}
// It should be impossible to have two operands with different
// encodings at this point.
assert(SLILeft->getEncoding() == SLIRight->getEncoding() &&
"Both operands of string concatenation should have the same encoding");
}
/// Computes the length of a concatenated string literal.
APInt StringConcatenationOptimizer::getConcatenatedLength() {
// Real length of string literals computed based on its contents.
// Length is in code units.
auto SLILenLeft = SLILeft->getCodeUnitCount();
(void) SLILenLeft;
auto SLILenRight = SLIRight->getCodeUnitCount();
(void) SLILenRight;
// Length of string literals as reported by string.make functions.
auto *LenLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(2));
auto *LenRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(2));
// Real and reported length should be the same.
assert(SLILenLeft == LenLeft->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
assert(SLILenRight == LenRight->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
// Compute length of the concatenated literal.
return LenLeft->getValue() + LenRight->getValue();
}
/// Computes the isAscii flag of a concatenated UTF8-encoded string literal.
bool StringConcatenationOptimizer::isAscii() const{
// Add the isASCII argument in case of UTF8.
// IsASCII is true only if IsASCII of both literals is true.
auto *AsciiLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(3));
auto *AsciiRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(3));
auto IsAsciiLeft = AsciiLeft->getValue() == 1;
auto IsAsciiRight = AsciiRight->getValue() == 1;
return IsAsciiLeft && IsAsciiRight;
}
SILInstruction *StringConcatenationOptimizer::optimize() {
// Bail out if string literals concatenation optimization is
// not possible.
if (!extractStringConcatOperands())
return nullptr;
// Perform string literal encodings adjustments if needed.
adjustEncodings();
// Arguments of the new StringLiteralInst to be created.
SmallVector<SILValue, 4> Arguments;
// Encoding to be used for the concatenated string literal.
auto Encoding = SLILeft->getEncoding();
// Create a concatenated string literal.
auto LV = SLILeft->getValue();
auto RV = SLIRight->getValue();
auto *NewSLI =
Builder.createStringLiteral(AI->getLoc(), LV + Twine(RV), Encoding);
NewSLI->setDebugScope(AI->getDebugScope());
Arguments.push_back(NewSLI);
// Length of the concatenated literal according to its encoding.
auto *Len = Builder.createIntegerLiteral(
AI->getLoc(), AILeft->getOperand(2).getType(), getConcatenatedLength());
Len->setDebugScope(AI->getDebugScope());
Arguments.push_back(Len);
// isAscii flag for UTF8-encoded string literals.
if (Encoding == StringLiteralInst::Encoding::UTF8) {
bool IsAscii = isAscii();
auto ILType = AILeft->getOperand(3).getType();
auto *Ascii =
Builder.createIntegerLiteral(AI->getLoc(), ILType, intmax_t(IsAscii));
Ascii->setDebugScope(AI->getDebugScope());
Arguments.push_back(Ascii);
}
// Type.
Arguments.push_back(FuncResultType);
auto FnTy = FRIConvertFromBuiltin->getType();
auto STResultType = FnTy.castTo<SILFunctionType>()->getResult().getSILType();
return ApplyInst::create(AI->getLoc(),
FRIConvertFromBuiltin,
FnTy,
STResultType,
ArrayRef<Substitution>(),
Arguments,
*FRIConvertFromBuiltin->getReferencedFunction());
}
/// Top level entry point
SILInstruction *swift::tryToConcatenateStrings(ApplyInst *AI, SILBuilder &B) {
return StringConcatenationOptimizer(AI, B).optimize();
}
//===----------------------------------------------------------------------===//
// Closure Deletion
//===----------------------------------------------------------------------===//
static bool isARCOperationRemovableIfObjectIsDead(const SILInstruction *I) {
switch (I->getKind()) {
case ValueKind::StrongRetainInst:
case ValueKind::StrongReleaseInst:
case ValueKind::RetainValueInst:
case ValueKind::ReleaseValueInst:
return true;
default:
return false;
}
}
/// TODO: Generalize this to general objects.
bool swift::tryDeleteDeadClosure(SILInstruction *Closure) {
// We currently only handle locally identified values that do not escape. We
// also assume that the partial apply does not capture any addresses.
if (!isa<PartialApplyInst>(Closure) && !isa<ThinToThickFunctionInst>(Closure))
return false;
// We only accept a user if it is an ARC object that can be removed if the
// object is dead. This should be expanded in the future. This also ensures
// that we are locally identified and non-escaping since we only allow for
// specific ARC users.
ReleaseTracker Tracker([](const SILInstruction *I) -> bool {
return isARCOperationRemovableIfObjectIsDead(I);
});
// Find the ARC Users and the final retain, release.
if (!getFinalReleasesForValue(SILValue(Closure), Tracker))
return false;
// If we have a partial_apply, release each captured argument at each one of
// the final release locations of the partial apply.
SILBuilder Builder(Closure);
SILModule &M = Closure->getModule();
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
for (auto *FinalRelease : Tracker.getFinalReleases()) {
Builder.setInsertionPoint(FinalRelease);
for (SILValue Arg : PAI->getArguments()) {
if (Arg.getType().isTrivial(M))
continue;
Builder.createReleaseValue(FinalRelease->getLoc(), Arg);
}
}
}
// Then delete all user instructions.
for (auto *User : Tracker.getTrackedUsers()) {
assert(User->getNumTypes() == 0 && "We expect only ARC operations without "
"results. This is true b/c of "
"isARCOperationRemovableIfObjectIsDead");
User->eraseFromParent();
}
// Finally delete the closure.
Closure->eraseFromParent();
return true;
}
// Is any successor of BB in the LiveIn set?
static bool successorHasLiveIn(SILBasicBlock *BB,
const llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn) {
for (auto &Succ : BB->getSuccessors())
if (LiveIn.count(Succ))
return true;
return false;
}
// Walk backwards in BB looking for last use of value V and adding the
// instruction using the value to LastUsers.
static void addLastUser(SILValue V, SILBasicBlock *BB,
llvm::SmallPtrSetImpl<SILInstruction *> &LastUsers) {
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
assert(V.getDef() != &*I && "Found def before finding use!");
for (auto &O : I->getAllOperands()) {
if (O.get() != V)
continue;
LastUsers.insert(&*I);
return;
}
}
llvm_unreachable("Expected to find use of value in block!");
}
// Propagate liveness backwards from an initial set of blocks in our
// LiveIn set.
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock*> &LiveIn,
SILBasicBlock *DefBB) {
// First populate a worklist of predecessors.
llvm::SmallVector<SILBasicBlock *, 64> Worklist;
for (auto *BB : LiveIn)
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
// Now propagate liveness backwards until we hit the block that
// defines the value.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (BB == DefBB || !LiveIn.insert(BB).second)
continue;
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
}
}
void LifetimeTracker::computeLifetime() {
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveIn;
llvm::SmallPtrSet<SILBasicBlock *, 16> UseBlocks;
auto *DefInst = cast<SILInstruction>(TheValue.getDef());
auto *DefBB = DefInst->getParent();
if (TheValue->hasOneUse()) {
Endpoints.insert(TheValue->use_begin().getUser());
return;
}
for (auto UI : TheValue.getUses()) {
auto *BB = UI->getUser()->getParent();
UseBlocks.insert(BB);
if (BB != DefBB)
LiveIn.insert(BB);
}
propagateLiveness(LiveIn, DefBB);
for (auto *BB : UseBlocks)
if (!successorHasLiveIn(BB, LiveIn))
addLastUser(TheValue, BB, Endpoints);
LifetimeComputed = true;
}
//===----------------------------------------------------------------------===//
// Casts Optimization and Simplification
//===----------------------------------------------------------------------===//
SILInstruction *
CastOptimizer::
simplifyCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
if (auto *I = optimizeCheckedCastAddrBranchInst(Inst))
Inst = dyn_cast<CheckedCastAddrBranchInst>(I);
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto SourceType = Inst->getSourceType();
auto TargetType = Inst->getTargetType();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto &Mod = Inst->getModule();
SILBuilderWithScope<1> Builder(Inst);
// Try to determine the outcome of the cast from a known type
// to a protocol type at compile-time.
bool isSourceTypeExact = isa<MetatypeInst>(Inst->getSrc());
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
Src.getType().getSwiftRValueType(),
Dest.getType().getSwiftRValueType(),
isSourceTypeExact,
Mod.isWholeModule());
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
if (Feasibility == DynamicCastFeasibility::WillFail) {
if (shouldDestroyOnFailure(Inst->getConsumptionKind())) {
auto &srcTL = Builder.getModule().getTypeLowering(Src.getType());
srcTL.emitDestroyAddress(Builder, Loc, Src);
}
auto NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
// Cast will succeed
// Replace by unconditional_addr_cast, followed by a branch.
// The unconditional_addr_cast can be skipped, if the result of a cast
// is not used afterwards.
bool ResultNotUsed = isa<AllocStackInst>(Dest.getDef());
for (auto Use : Dest.getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
ResultNotUsed = false;
break;
}
if (!ResultNotUsed) {
if (!emitSuccessfulIndirectUnconditionalCast(
Builder, Mod.getSwiftModule(), Loc, Inst->getConsumptionKind(), Src,
SourceType, Dest, TargetType, Inst))
// No optimization was possible.
return nullptr;
}
auto *NewI = Builder.createBranch(Loc, SuccessBB);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
}
SILInstruction *
CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact()) {
// Check if the exact dynamic type of the operand can be determined.
if (auto *ARI = dyn_cast<AllocRefInst>(Inst->getOperand().stripUpCasts())) {
SILBuilderWithScope<1> Builder(Inst);
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
if (ARI->getType() == Inst->getCastType()) {
// This exact cast will succeed.
SmallVector<SILValue, 1> Args;
Args.push_back(ARI);
auto *NewI = Builder.createBranch(Loc, SuccessBB, Args);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
} else {
// This exact cast will fail.
auto *NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
}
return nullptr;
}
if (auto *I = optimizeCheckedCastBranchInst(Inst))
Inst = dyn_cast<CheckedCastBranchInst>(I);
auto LoweredSourceType = Inst->getOperand().getType();
auto LoweredTargetType = Inst->getCastType();
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto Op = Inst->getOperand();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Op);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(),
isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
SILBuilderWithScope<1> Builder(Inst);
if (Feasibility == DynamicCastFeasibility::WillFail) {
auto *NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
// Casting will succeed.
// Replace by unconditional_cast, followed by a branch.
// The unconditional_cast can be skipped, if the result of a cast
// is not used afterwards.
SmallVector<SILValue, 1> Args;
bool ResultNotUsed = SuccessBB->getBBArg(0)->use_empty();
SILValue CastedValue;
if (Op.getType() != LoweredTargetType) {
if (!ResultNotUsed) {
CastedValue = emitSuccessfulScalarUnconditionalCast(
Builder, Mod.getSwiftModule(), Loc, Op, LoweredTargetType,
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(), Inst);
if (!CastedValue)
CastedValue =
Builder.createUnconditionalCheckedCast(Loc, Op, LoweredTargetType);
} else {
CastedValue = SILUndef::get(LoweredTargetType, Mod);
}
} else {
// No need to cast.
CastedValue = Op;
}
Args.push_back(CastedValue);
auto *NewI = Builder.createBranch(Loc, SuccessBB, Args);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
}
SILInstruction *
CastOptimizer::
optimizeCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto TargetType = Inst->getTargetType();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
// %1 = metatype $A.Type
// [%2 = init_existential_metatype %1 ...]
// %3 = alloc_stack
// store %1 to %3 or store %2 to %3
// checked_cast_addr_br %3 to ...
// ->
// %1 = metatype $A.Type
// checked_cast_addr_br %1 to ...
if (auto *ASI = dyn_cast<AllocStackInst>(Src.getDef())) {
// Check if the value of this alloc_stack is set only once by a store
// instruction, used only by CCABI and then deallocated.
bool isLegal = true;
StoreInst *Store = nullptr;
for (auto Use : ASI->getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
if (auto *SI = dyn_cast<StoreInst>(User)) {
if (!Store) {
Store = SI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && Store) {
// Check what was the value stored in the allocated stack slot.
auto Src = Store->getSrc();
MetatypeInst *MI = nullptr;
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Src)) {
MI = dyn_cast<MetatypeInst>(IEMI->getOperand());
}
if (!MI)
MI = dyn_cast<MetatypeInst>(Src);
if (MI) {
SILBuilderWithScope<1> B(Inst);
auto NewI = B.createCheckedCastAddrBranch(Loc,
Inst->getConsumptionKind(),
MI,
MI->getType().getSwiftRValueType(),
Dest,
TargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
}
return nullptr;
}
SILInstruction *
CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact())
return nullptr;
auto LoweredTargetType = Inst->getCastType();
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto Op = Inst->getOperand();
// Try to simplify checked_cond_br instructions using existential
// metatypes by propagating a concrete type whenever it can be
// determined statically.
// %0 = metatype $A.Type
// %1 = init_existential_metatype ..., %0: $A
// checked_cond_br %1, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Op)) {
if (auto *MI = dyn_cast<MetatypeInst>(IEMI->getOperand())) {
SILBuilderWithScope<1> B(Inst);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
if (auto *EMI = dyn_cast<ExistentialMetatypeInst>(Op)) {
// Operand of the existential_metatype instruction.
auto Op = EMI->getOperand();
auto EmiTy = EMI->getType();
// %0 = alloc_stack ..
// %1 = init_existential_addr %0: $A
// %2 = existential_metatype %0, ...
// checked_cond_br %2, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *ASI = dyn_cast<AllocStackInst>(Op)) {
// Should be in the same BB.
if (ASI->getParent() != EMI->getParent())
return nullptr;
// Check if this alloc_stac is is only initialized once by means of
// single init_existential_addr.
bool isLegal = true;
// init_existental instruction used to initialize this alloc_stack.
InitExistentialAddrInst *FoundIEI = nullptr;
for (auto Use: ASI->getUses()) {
auto *User = Use->getUser();
if (isa<ExistentialMetatypeInst>(User) ||
isa<DestroyAddrInst>(User) ||
isa<DeallocStackInst>(User))
continue;
if (auto *IEI = dyn_cast<InitExistentialAddrInst>(User)) {
if (!FoundIEI) {
FoundIEI = IEI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && FoundIEI) {
// Should be in the same BB.
if (FoundIEI->getParent() != EMI->getParent())
return nullptr;
// Get the type used to initialize the existential.
auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType();
if (LoweredConcreteTy.isAnyExistentialType())
return nullptr;
// Get the metatype of this type.
auto EMT = dyn_cast<AnyMetatypeType>(EmiTy.getSwiftRValueType());
auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getSwiftRValueType(),
EMT->getRepresentation());
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope<1> B(Inst);
auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
// %0 = alloc_ref $A
// %1 = init_existential_ref %0: $A, $...
// %2 = existential_metatype ..., %1 : ...
// checked_cond_br %2, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *FoundIERI = dyn_cast<InitExistentialRefInst>(Op)) {
auto *ASRI = dyn_cast<AllocRefInst>(FoundIERI->getOperand());
if (!ASRI)
return nullptr;
// Should be in the same BB.
if (ASRI->getParent() != EMI->getParent())
return nullptr;
// Check if this alloc_stac is is only initialized once by means of
// a single initt_existential_ref.
bool isLegal = true;
for (auto Use: ASRI->getUses()) {
auto *User = Use->getUser();
if (isa<ExistentialMetatypeInst>(User) || isa<StrongReleaseInst>(User))
continue;
if (auto *IERI = dyn_cast<InitExistentialRefInst>(User)) {
if (IERI == FoundIERI) {
continue;
}
}
isLegal = false;
break;
}
if (isLegal && FoundIERI) {
// Should be in the same BB.
if (FoundIERI->getParent() != EMI->getParent())
return nullptr;
// Get the type used to initialize the existential.
auto ConcreteTy = FoundIERI->getFormalConcreteType();
if (ConcreteTy.isAnyExistentialType())
return nullptr;
// Get the SIL metatype of this type.
auto EMT = dyn_cast<AnyMetatypeType>(EMI->getType().getSwiftRValueType());
auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation());
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope<1> B(Inst);
auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
}
return nullptr;
}
SILInstruction *
CastOptimizer::
optimizeUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst) {
auto LoweredSourceType = Inst->getOperand().getType();
auto LoweredTargetType = Inst->getType();
auto Loc = Inst->getLoc();
auto Op = Inst->getOperand();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Op);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(),
isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope<1> Builder(Inst);
auto *Trap = Builder.createBuiltinTrap(Loc);
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap)));
Builder.createUnreachable(ArtificialUnreachableLocation());
return Trap;
}
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
SILBuilderWithScope<1> Builder(Inst);
auto Result = emitSuccessfulScalarUnconditionalCast(Builder,
Mod.getSwiftModule(), Loc, Op,
LoweredTargetType,
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(),
Inst);
if (!Result) {
// No optimization was possible.
return nullptr;
}
ReplaceInstUsesAction(Inst, Result.getDef());
EraseInstAction(Inst);
return dyn_cast<SILInstruction>(Result.getDef());
}
return nullptr;
}
SILInstruction *
CastOptimizer::
optimizeUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto SourceType = Inst->getSourceType();
auto TargetType = Inst->getTargetType();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Src);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), SourceType,
TargetType, isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope<1> Builder(Inst);
SILInstruction *NewI = Builder.createBuiltinTrap(Loc);
// mem2reg's invariants get unhappy if we don't try to
// initialize a loadable result.
auto DestType = Dest.getType();
auto &resultTL = Builder.getModule().Types.getTypeLowering(DestType);
if (!resultTL.isAddressOnly()) {
auto undef = SILValue(SILUndef::get(DestType.getObjectType(),
Builder.getModule()));
NewI = Builder.createStore(Loc, undef, Dest);
}
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(NewI)));
Builder.createUnreachable(ArtificialUnreachableLocation());
WillFailAction();
}
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
if (!Src.getType().isExistentialType() &&
Dest.getType().isExistentialType())
return nullptr;
// Bridging casts cannot be further simplified.
auto TargetIsBridgeable = TargetType->isBridgeableObjectType();
auto SourceIsBridgeable = SourceType->isBridgeableObjectType();
if (TargetIsBridgeable != SourceIsBridgeable)
return nullptr;
SILBuilderWithScope<1> Builder(Inst);
if (!emitSuccessfulIndirectUnconditionalCast(Builder, Mod.getSwiftModule(),
Loc, Inst->getConsumptionKind(),
Src, SourceType,
Dest, TargetType, Inst)) {
// No optimization was possible.
return nullptr;
}
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
WillSucceedAction();
}
return nullptr;
}