Files
swift-mirror/lib/SIL/Utils/MemAccessUtils.cpp
Andrew Trick 5826e75b00 Generalize the MemAccessUtils API.
For use outside access enforcement passes.

Add isUniquelyIdentifiedAfterEnforcement.

Rename functions for clarity and generality.

Rename isUniquelyIdentifiedOrClass to isFormalAccessBase.

Rename findAccessedStorage to identifyFormalAccess.

Rename findAccessedStorageNonNested to findAccessedStorage.

Part of generalizing the utility for use outside the access
enforcement passes.
2020-07-17 10:13:20 -07:00

763 lines
25 KiB
C++

//===--- MemAccessUtils.cpp - Utilities for SIL memory access. ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-access-utils"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// MARK: General Helpers
//===----------------------------------------------------------------------===//
// TODO: When the optimizer stops stripping begin_access markers, then we should
// be able to assert that the result is a BeginAccessInst and the default case
// is unreachable.
SILValue swift::getAddressAccess(SILValue v) {
while (true) {
assert(v->getType().isAddress());
auto projection = AccessProjection(v);
if (!projection)
return v;
v = projection.baseAddress();
}
}
SILValue swift::getAccessedAddress(SILValue v) {
while (true) {
SILValue v2 = stripAccessMarkers(getAddressAccess(v));
if (v2 == v)
return v;
v = v2;
}
}
bool swift::isLetAddress(SILValue accessedAddress) {
assert(accessedAddress == getAccessedAddress(accessedAddress)
&& "caller must find the address root");
// Is this an address of a "let" class member?
if (auto *rea = dyn_cast<RefElementAddrInst>(accessedAddress))
return rea->getField()->isLet();
// Is this an address of a global "let"?
if (auto *gai = dyn_cast<GlobalAddrInst>(accessedAddress)) {
auto *globalDecl = gai->getReferencedGlobal()->getDecl();
return globalDecl && globalDecl->isLet();
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: AccessedStorage
//===----------------------------------------------------------------------===//
AccessedStorage::AccessedStorage(SILValue base, Kind kind) {
assert(base && "invalid storage base");
initKind(kind);
switch (kind) {
case Box:
assert(isa<AllocBoxInst>(base));
value = base;
break;
case Stack:
assert(isa<AllocStackInst>(base));
value = base;
break;
case Nested:
assert(isa<BeginAccessInst>(base));
value = base;
break;
case Yield:
assert(isa<BeginApplyResult>(base));
value = base;
break;
case Unidentified:
value = base;
break;
case Argument:
value = base;
setElementIndex(cast<SILFunctionArgument>(base)->getIndex());
break;
case Global:
if (auto *GAI = dyn_cast<GlobalAddrInst>(base))
global = GAI->getReferencedGlobal();
else {
FullApplySite apply(cast<ApplyInst>(base));
auto *funcRef = apply.getReferencedFunctionOrNull();
assert(funcRef);
global = getVariableOfGlobalInit(funcRef);
assert(global);
// Require a decl for all formally accessed globals defined in this
// module. (Access of globals defined elsewhere has Unidentified storage).
// AccessEnforcementWMO requires this.
assert(global->getDecl());
}
break;
case Class: {
// Do a best-effort to find the identity of the object being projected
// from. It is OK to be unsound here (i.e. miss when two ref_element_addrs
// actually refer the same address) because these addresses will be
// dynamically checked, and static analysis will be sufficiently
// conservative given that classes are not "uniquely identified".
auto *REA = cast<RefElementAddrInst>(base);
value = stripBorrow(REA->getOperand());
setElementIndex(REA->getFieldNo());
}
}
}
// Return true if the given access is on a 'let' lvalue.
bool AccessedStorage::isLetAccess(SILFunction *F) const {
if (auto *decl = dyn_cast_or_null<VarDecl>(getDecl()))
return decl->isLet();
// It's unclear whether a global will ever be missing it's varDecl, but
// technically we only preserve it for debug info. So if we don't have a decl,
// check the flag on SILGlobalVariable, which is guaranteed valid,
if (getKind() == AccessedStorage::Global)
return getGlobal()->isLet();
return false;
}
const ValueDecl *AccessedStorage::getDecl() const {
switch (getKind()) {
case Box:
return cast<AllocBoxInst>(value)->getLoc().getAsASTNode<VarDecl>();
case Stack:
return cast<AllocStackInst>(value)->getDecl();
case Global:
return global->getDecl();
case Class: {
auto *decl = getObject()->getType().getNominalOrBoundGenericNominal();
return decl->getStoredProperties()[getPropertyIndex()];
}
case Argument:
return getArgument()->getDecl();
case Yield:
return nullptr;
case Nested:
return nullptr;
case Unidentified:
return nullptr;
}
llvm_unreachable("unhandled kind");
}
const char *AccessedStorage::getKindName(AccessedStorage::Kind k) {
switch (k) {
case Box:
return "Box";
case Stack:
return "Stack";
case Nested:
return "Nested";
case Unidentified:
return "Unidentified";
case Argument:
return "Argument";
case Yield:
return "Yield";
case Global:
return "Global";
case Class:
return "Class";
}
llvm_unreachable("unhandled kind");
}
void AccessedStorage::print(raw_ostream &os) const {
os << getKindName(getKind()) << " ";
switch (getKind()) {
case Box:
case Stack:
case Nested:
case Yield:
case Unidentified:
os << value;
break;
case Argument:
os << value;
break;
case Global:
os << *global;
break;
case Class:
os << getObject();
os << " Field: ";
getDecl()->print(os);
os << " Index: " << getPropertyIndex() << "\n";
break;
}
}
void AccessedStorage::dump() const { print(llvm::dbgs()); }
namespace {
template <typename Impl>
struct FindAccessedStorageVisitorBase : public AccessUseDefChainVisitor<Impl> {
protected:
SmallVector<SILValue, 8> addressWorklist;
SmallPtrSet<SILPhiArgument *, 4> visitedPhis;
Optional<AccessedStorage> storage;
public:
FindAccessedStorageVisitorBase(SILValue firstSourceAddr)
: addressWorklist({firstSourceAddr}) {}
// Main entry point.
AccessedStorage findStorage() {
while (!addressWorklist.empty()) {
this->visit(addressWorklist.pop_back_val());
}
return storage.getValueOr(AccessedStorage());
}
void setStorage(AccessedStorage foundStorage) {
if (!storage) {
storage = foundStorage;
} else {
// `storage` may still be invalid. If both `storage` and `foundStorage`
// are invalid, this check passes, but we return an invalid storage
// below.
if (!storage->hasIdenticalBase(foundStorage)) {
storage = AccessedStorage();
addressWorklist.clear();
}
}
}
void visitBase(SILValue base, AccessedStorage::Kind kind) {
setStorage(AccessedStorage(base, kind));
}
void visitNonAccess(SILValue value) {
setStorage(AccessedStorage());
}
void visitPhi(SILPhiArgument *phiArg) {
if (visitedPhis.insert(phiArg).second) {
phiArg->getIncomingPhiValues(addressWorklist);
}
}
void visitIncomplete(SILValue projectedAddr, SILValue parentAddr) {
addressWorklist.push_back(parentAddr);
}
};
struct FindAccessedStorageVisitor
: public FindAccessedStorageVisitorBase<FindAccessedStorageVisitor> {
FindAccessedStorageVisitor(SILValue sourceAddr)
: FindAccessedStorageVisitorBase(sourceAddr) {}
void visitNestedAccess(BeginAccessInst *access) {
addressWorklist.push_back(access->getSource());
}
};
struct IdentifyAccessedStorageVisitor
: public FindAccessedStorageVisitorBase<IdentifyAccessedStorageVisitor> {
IdentifyAccessedStorageVisitor(SILValue sourceAddr)
: FindAccessedStorageVisitorBase(sourceAddr) {}
};
} // namespace
AccessedStorage swift::findAccessedStorage(SILValue sourceAddr) {
return FindAccessedStorageVisitor(sourceAddr).findStorage();
}
AccessedStorage swift::identifyAccessedStorageImpl(SILValue sourceAddr) {
return IdentifyAccessedStorageVisitor(sourceAddr).findStorage();
}
//===----------------------------------------------------------------------===//
// MARK: Helper API
//===----------------------------------------------------------------------===//
static bool isScratchBuffer(SILValue value) {
// Special case unsafe value buffer access.
return value->getType().is<BuiltinUnsafeValueBufferType>();
}
bool swift::memInstMustInitialize(Operand *memOper) {
SILValue address = memOper->get();
SILInstruction *memInst = memOper->getUser();
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *CAI = cast<CopyAddrInst>(memInst);
return CAI->getDest() == address && CAI->isInitializationOfDest();
}
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
return true;
case SILInstructionKind::StoreInst:
return cast<StoreInst>(memInst)->getOwnershipQualifier()
== StoreOwnershipQualifier::Init;
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst: \
return cast<Store##Name##Inst>(memInst)->isInitializationOfDest();
#include "swift/AST/ReferenceStorage.def"
}
}
bool swift::isSingleInitAllocStack(AllocStackInst *asi,
SmallVectorImpl<Operand *> &destroyingUses) {
// For now, we just look through projections and rely on memInstMustInitialize
// to classify all other uses as init or not.
SmallVector<Operand *, 32> worklist(asi->getUses());
bool foundInit = false;
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
auto *user = use->getUser();
if (Projection::isAddressProjection(user)
|| isa<OpenExistentialAddrInst>(user)) {
// Look through address projections.
for (SILValue r : user->getResults()) {
llvm::copy(r->getUses(), std::back_inserter(worklist));
}
continue;
}
if (auto *li = dyn_cast<LoadInst>(user)) {
// If we are not taking,
if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Take) {
continue;
}
// Treat load [take] as a write.
return false;
}
switch (user->getKind()) {
default:
break;
case SILInstructionKind::DestroyAddrInst:
destroyingUses.push_back(use);
continue;
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::LoadBorrowInst:
case SILInstructionKind::DebugValueAddrInst:
continue;
}
// See if we have an initializer and that such initializer is in the same
// block.
if (memInstMustInitialize(use)) {
if (user->getParent() != asi->getParent() || foundInit) {
return false;
}
foundInit = true;
continue;
}
// Otherwise, if we have found something not in our whitelist, return false.
return false;
}
// We did not find any users that we did not understand. So we can
// conservatively return true here.
return true;
}
/// Return true if the given address value is produced by a special address
/// producer that is only used for local initialization, not formal access.
bool swift::isAddressForLocalInitOnly(SILValue sourceAddr) {
switch (sourceAddr->getKind()) {
default:
return false;
// Value to address conversions: the operand is the non-address source
// value. These allow local mutation of the value but should never be used
// for formal access of an lvalue.
case ValueKind::OpenExistentialBoxInst:
case ValueKind::ProjectExistentialBoxInst:
return true;
// Self-evident local initialization.
case ValueKind::InitEnumDataAddrInst:
case ValueKind::InitExistentialAddrInst:
case ValueKind::AllocExistentialBoxInst:
case ValueKind::AllocValueBufferInst:
case ValueKind::ProjectValueBufferInst:
return true;
}
}
// Return true if the given apply invokes a global addressor defined in another
// module.
bool swift::isExternalGlobalAddressor(ApplyInst *AI) {
FullApplySite apply(AI);
auto *funcRef = apply.getReferencedFunctionOrNull();
if (!funcRef)
return false;
return funcRef->isGlobalInit() && funcRef->isExternalDeclaration();
}
// Return true if the given StructExtractInst extracts the RawPointer from
// Unsafe[Mutable]Pointer.
bool swift::isUnsafePointerExtraction(StructExtractInst *SEI) {
assert(isa<BuiltinRawPointerType>(SEI->getType().getASTType()));
auto &C = SEI->getModule().getASTContext();
auto *decl = SEI->getStructDecl();
return decl == C.getUnsafeMutablePointerDecl()
|| decl == C.getUnsafePointerDecl();
}
// Given a block argument address base, check if it is actually a box projected
// from a switch_enum. This is a valid pattern at any SIL stage resulting in a
// block-type phi. In later SIL stages, the optimizer may form address-type
// phis, causing this assert if called on those cases.
void swift::checkSwitchEnumBlockArg(SILPhiArgument *arg) {
assert(!arg->getType().isAddress());
SILBasicBlock *Pred = arg->getParent()->getSinglePredecessorBlock();
if (!Pred || !isa<SwitchEnumInst>(Pred->getTerminator())) {
arg->dump();
llvm_unreachable("unexpected box source.");
}
}
bool swift::isPossibleFormalAccessBase(const AccessedStorage &storage,
SILFunction *F) {
switch (storage.getKind()) {
case AccessedStorage::Box:
case AccessedStorage::Stack:
if (isScratchBuffer(storage.getValue()))
return false;
break;
case AccessedStorage::Global:
break;
case AccessedStorage::Class:
break;
case AccessedStorage::Yield:
// Yields are accessed by the caller.
return false;
case AccessedStorage::Argument:
// Function arguments are accessed by the caller.
return false;
case AccessedStorage::Nested: {
// A begin_access is considered a separate base for the purpose of conflict
// checking. However, for the purpose of inserting unenforced markers and
// performing verification, it needs to be ignored.
auto *BAI = cast<BeginAccessInst>(storage.getValue());
const AccessedStorage &nestedStorage = identifyFormalAccess(BAI);
if (!nestedStorage)
return false;
return isPossibleFormalAccessBase(nestedStorage, F);
}
case AccessedStorage::Unidentified:
if (isAddressForLocalInitOnly(storage.getValue()))
return false;
if (isa<SILPhiArgument>(storage.getValue())) {
checkSwitchEnumBlockArg(cast<SILPhiArgument>(storage.getValue()));
return false;
}
// Pointer-to-address exclusivity cannot be enforced. `baseAddress` may be
// pointing anywhere within an object.
if (isa<PointerToAddressInst>(storage.getValue()))
return false;
if (isa<SILUndef>(storage.getValue()))
return false;
if (isScratchBuffer(storage.getValue()))
return false;
}
// Additional checks that apply to anything that may fall through.
// Immutable values are only accessed for initialization.
if (storage.isLetAccess(F))
return false;
return true;
}
SILBasicBlock::iterator swift::removeBeginAccess(BeginAccessInst *beginAccess) {
while (!beginAccess->use_empty()) {
Operand *op = *beginAccess->use_begin();
// Delete any associated end_access instructions.
if (auto endAccess = dyn_cast<EndAccessInst>(op->getUser())) {
endAccess->eraseFromParent();
// Forward all other uses to the original address.
} else {
op->set(beginAccess->getSource());
}
}
return beginAccess->getParent()->erase(beginAccess);
}
//===----------------------------------------------------------------------===//
// Verification
//===----------------------------------------------------------------------===//
/// Helper for visitApplyAccesses that visits address-type call arguments,
/// including arguments to @noescape functions that are passed as closures to
/// the current call.
static void visitApplyAccesses(ApplySite apply,
llvm::function_ref<void(Operand *)> visitor) {
for (Operand &oper : apply.getArgumentOperands()) {
// Consider any address-type operand an access. Whether it is read or modify
// depends on the argument convention.
if (oper.get()->getType().isAddress()) {
visitor(&oper);
continue;
}
auto fnType = oper.get()->getType().getAs<SILFunctionType>();
if (!fnType || !fnType->isNoEscape())
continue;
// When @noescape function closures are passed as arguments, their
// arguments are considered accessed at the call site.
TinyPtrVector<PartialApplyInst *> partialApplies;
findClosuresForFunctionValue(oper.get(), partialApplies);
// Recursively visit @noescape function closure arguments.
for (auto *PAI : partialApplies)
visitApplyAccesses(PAI, visitor);
}
}
static void visitBuiltinAddress(BuiltinInst *builtin,
llvm::function_ref<void(Operand *)> visitor) {
if (auto kind = builtin->getBuiltinKind()) {
switch (kind.getValue()) {
default:
builtin->dump();
llvm_unreachable("unexpected builtin memory access.");
// WillThrow exists for the debugger, does nothing.
case BuiltinValueKind::WillThrow:
return;
// Buitins that affect memory but can't be formal accesses.
case BuiltinValueKind::UnexpectedError:
case BuiltinValueKind::ErrorInMain:
case BuiltinValueKind::IsOptionalType:
case BuiltinValueKind::AllocRaw:
case BuiltinValueKind::DeallocRaw:
case BuiltinValueKind::Fence:
case BuiltinValueKind::StaticReport:
case BuiltinValueKind::Once:
case BuiltinValueKind::OnceWithContext:
case BuiltinValueKind::Unreachable:
case BuiltinValueKind::CondUnreachable:
case BuiltinValueKind::DestroyArray:
case BuiltinValueKind::COWBufferForReading:
case BuiltinValueKind::UnsafeGuaranteed:
case BuiltinValueKind::UnsafeGuaranteedEnd:
case BuiltinValueKind::Swift3ImplicitObjCEntrypoint:
case BuiltinValueKind::TSanInoutAccess:
return;
// General memory access to a pointer in first operand position.
case BuiltinValueKind::CmpXChg:
case BuiltinValueKind::AtomicLoad:
case BuiltinValueKind::AtomicStore:
case BuiltinValueKind::AtomicRMW:
// Currently ignored because the access is on a RawPointer, not a
// SIL address.
// visitor(&builtin->getAllOperands()[0]);
return;
// Arrays: (T.Type, Builtin.RawPointer, Builtin.RawPointer,
// Builtin.Word)
case BuiltinValueKind::CopyArray:
case BuiltinValueKind::TakeArrayNoAlias:
case BuiltinValueKind::TakeArrayFrontToBack:
case BuiltinValueKind::TakeArrayBackToFront:
case BuiltinValueKind::AssignCopyArrayNoAlias:
case BuiltinValueKind::AssignCopyArrayFrontToBack:
case BuiltinValueKind::AssignCopyArrayBackToFront:
case BuiltinValueKind::AssignTakeArray:
// Currently ignored because the access is on a RawPointer.
// visitor(&builtin->getAllOperands()[1]);
// visitor(&builtin->getAllOperands()[2]);
return;
}
}
if (auto ID = builtin->getIntrinsicID()) {
switch (ID.getValue()) {
// Exhaustively verifying all LLVM instrinsics that access memory is
// impractical. Instead, we call out the few common cases and return in
// the default case.
default:
return;
case llvm::Intrinsic::memcpy:
case llvm::Intrinsic::memmove:
// Currently ignored because the access is on a RawPointer.
// visitor(&builtin->getAllOperands()[0]);
// visitor(&builtin->getAllOperands()[1]);
return;
case llvm::Intrinsic::memset:
// Currently ignored because the access is on a RawPointer.
// visitor(&builtin->getAllOperands()[0]);
return;
}
}
llvm_unreachable("Must be either a builtin or intrinsic.");
}
void swift::visitAccessedAddress(SILInstruction *I,
llvm::function_ref<void(Operand *)> visitor) {
assert(I->mayReadOrWriteMemory());
// Reference counting instructions do not access user visible memory.
if (isa<RefCountingInst>(I))
return;
if (isa<DeallocationInst>(I))
return;
if (auto apply = FullApplySite::isa(I)) {
visitApplyAccesses(apply, visitor);
return;
}
if (auto builtin = dyn_cast<BuiltinInst>(I)) {
visitBuiltinAddress(builtin, visitor);
return;
}
switch (I->getKind()) {
default:
I->dump();
llvm_unreachable("unexpected memory access.");
case SILInstructionKind::AssignInst:
case SILInstructionKind::AssignByWrapperInst:
visitor(&I->getAllOperands()[AssignInst::Dest]);
return;
case SILInstructionKind::CheckedCastAddrBranchInst:
visitor(&I->getAllOperands()[CheckedCastAddrBranchInst::Src]);
visitor(&I->getAllOperands()[CheckedCastAddrBranchInst::Dest]);
return;
case SILInstructionKind::CopyAddrInst:
visitor(&I->getAllOperands()[CopyAddrInst::Src]);
visitor(&I->getAllOperands()[CopyAddrInst::Dest]);
return;
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Store##Name##Inst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::StoreInst:
case SILInstructionKind::StoreBorrowInst:
visitor(&I->getAllOperands()[StoreInst::Dest]);
return;
case SILInstructionKind::SelectEnumAddrInst:
visitor(&I->getAllOperands()[0]);
return;
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Load##Name##Inst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::LoadBorrowInst:
case SILInstructionKind::OpenExistentialAddrInst:
case SILInstructionKind::SwitchEnumAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::UnconditionalCheckedCastInst: {
// Assuming all the above have only a single address operand.
assert(I->getNumOperands() - I->getNumTypeDependentOperands() == 1);
Operand *singleOperand = &I->getAllOperands()[0];
// Check the operand type because UnconditionalCheckedCastInst may operate
// on a non-address.
if (singleOperand->get()->getType().isAddress())
visitor(singleOperand);
return;
}
// Non-access cases: these are marked with memory side effects, but, by
// themselves, do not access formal memory.
#define UNCHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::StrongCopy##Name##ValueInst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::AllocExistentialBoxInst:
case SILInstructionKind::AllocGlobalInst:
case SILInstructionKind::BeginAccessInst:
case SILInstructionKind::BeginApplyInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BeginUnpairedAccessInst:
case SILInstructionKind::BindMemoryInst:
case SILInstructionKind::CheckedCastValueBranchInst:
case SILInstructionKind::CondFailInst:
case SILInstructionKind::CopyBlockInst:
case SILInstructionKind::CopyBlockWithoutEscapingInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::DeinitExistentialAddrInst:
case SILInstructionKind::DeinitExistentialValueInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::EndUnpairedAccessInst:
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::ExistentialMetatypeInst:
case SILInstructionKind::FixLifetimeInst:
case SILInstructionKind::InitExistentialValueInst:
case SILInstructionKind::IsUniqueInst:
case SILInstructionKind::IsEscapingClosureInst:
case SILInstructionKind::KeyPathInst:
case SILInstructionKind::OpenExistentialBoxInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::PartialApplyInst:
case SILInstructionKind::ProjectValueBufferInst:
case SILInstructionKind::YieldInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
case SILInstructionKind::UncheckedRefCastAddrInst:
case SILInstructionKind::UnconditionalCheckedCastAddrInst:
case SILInstructionKind::UnconditionalCheckedCastValueInst:
case SILInstructionKind::ValueMetatypeInst:
return;
}
}