mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
920 lines
32 KiB
C++
920 lines
32 KiB
C++
//===--- HeapObject.cpp - Swift Language ABI Allocation Support -----------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Allocation ABI Shims While the Language is Bootstrapped
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/Lazy.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/Runtime/Heap.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Runtime/Once.h"
|
|
#include "swift/ABI/System.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "MetadataCache.h"
|
|
#include "Private.h"
|
|
#include "RuntimeInvocationsTracking.h"
|
|
#include "WeakReference.h"
|
|
#include "swift/Runtime/Debug.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <thread>
|
|
#include "../SwiftShims/GlobalObjects.h"
|
|
#include "../SwiftShims/RuntimeShims.h"
|
|
#if SWIFT_OBJC_INTEROP
|
|
# include <objc/NSObject.h>
|
|
# include <objc/runtime.h>
|
|
# include <objc/message.h>
|
|
# include <objc/objc.h>
|
|
#include "swift/Runtime/ObjCBridge.h"
|
|
#endif
|
|
#include "Leaks.h"
|
|
|
|
using namespace swift;
|
|
|
|
/// Returns true if the pointer passed to a native retain or release is valid.
|
|
/// If false, the operation should immediately return.
|
|
static inline bool isValidPointerForNativeRetain(const void *p) {
|
|
#if defined(__x86_64__) || defined(__arm64__)
|
|
// On these platforms, the upper half of address space is reserved for the
|
|
// kernel, so we can assume that pointer values in this range are invalid.
|
|
return (intptr_t)p > 0;
|
|
#else
|
|
return p != nullptr;
|
|
#endif
|
|
}
|
|
|
|
HeapObject *swift::swift_allocObject(HeapMetadata const *metadata,
|
|
size_t requiredSize,
|
|
size_t requiredAlignmentMask)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_allocObject)(metadata, requiredSize,
|
|
requiredAlignmentMask);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
HeapObject *
|
|
SWIFT_RT_ENTRY_IMPL(swift_allocObject)(HeapMetadata const *metadata,
|
|
size_t requiredSize,
|
|
size_t requiredAlignmentMask)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
assert(isAlignmentMask(requiredAlignmentMask));
|
|
auto object = reinterpret_cast<HeapObject *>(
|
|
SWIFT_RT_ENTRY_CALL(swift_slowAlloc)(requiredSize,
|
|
requiredAlignmentMask));
|
|
// FIXME: this should be a placement new but that adds a null check
|
|
object->metadata = metadata;
|
|
object->refCounts.init();
|
|
|
|
// If leak tracking is enabled, start tracking this object.
|
|
SWIFT_LEAKS_START_TRACKING_OBJECT(object);
|
|
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_allocObject);
|
|
|
|
return object;
|
|
}
|
|
|
|
HeapObject *
|
|
swift::swift_initStackObject(HeapMetadata const *metadata,
|
|
HeapObject *object) {
|
|
object->metadata = metadata;
|
|
object->refCounts.initForNotFreeing();
|
|
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_initStackObject);
|
|
return object;
|
|
}
|
|
|
|
struct InitStaticObjectContext {
|
|
HeapObject *object;
|
|
HeapMetadata const *metadata;
|
|
};
|
|
|
|
// Callback for swift_once.
|
|
static void initStaticObjectWithContext(void *OpaqueCtx) {
|
|
InitStaticObjectContext *Ctx = (InitStaticObjectContext *)OpaqueCtx;
|
|
Ctx->object->metadata = Ctx->metadata;
|
|
Ctx->object->refCounts.initForNotFreeing();
|
|
}
|
|
|
|
// TODO: We could generate inline code for the fast-path, i.e. the metadata
|
|
// pointer is already set. That would be a performance/codesize tradeoff.
|
|
HeapObject *
|
|
swift::swift_initStaticObject(HeapMetadata const *metadata,
|
|
HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_initStaticObject);
|
|
// The token is located at a negative offset from the object header.
|
|
swift_once_t *token = ((swift_once_t *)object) - 1;
|
|
|
|
// We have to initialize the header atomically. Otherwise we could reset the
|
|
// refcount to 1 while another thread already incremented it - and would
|
|
// decrement it to 0 afterwards.
|
|
InitStaticObjectContext Ctx = { object, metadata };
|
|
swift_once(token, initStaticObjectWithContext, &Ctx);
|
|
|
|
return object;
|
|
}
|
|
|
|
void
|
|
swift::swift_verifyEndOfLifetime(HeapObject *object) {
|
|
if (object->refCounts.getCount() != 0)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Stack object escaped\n");
|
|
|
|
if (object->refCounts.getUnownedCount() != 1)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Unowned reference to stack object\n");
|
|
|
|
if (object->refCounts.getWeakCount() != 0)
|
|
swift::fatalError(/* flags = */ 0,
|
|
"Fatal error: Weak reference to stack object\n");
|
|
}
|
|
|
|
/// \brief Allocate a reference-counted object on the heap that
|
|
/// occupies <size> bytes of maximally-aligned storage. The object is
|
|
/// uninitialized except for its header.
|
|
SWIFT_CC(swift)
|
|
SWIFT_RUNTIME_EXPORT
|
|
HeapObject* swift_bufferAllocate(
|
|
HeapMetadata const* bufferType, size_t size, size_t alignMask)
|
|
{
|
|
return swift::SWIFT_RT_ENTRY_CALL(swift_allocObject)(bufferType, size,
|
|
alignMask);
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
intptr_t swift_bufferHeaderSize() { return sizeof(HeapObject); }
|
|
|
|
namespace {
|
|
/// Heap object destructor for a generic box allocated with swift_allocBox.
|
|
static SWIFT_CC(swift) void destroyGenericBox(SWIFT_CONTEXT HeapObject *o) {
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
// Destroy the object inside.
|
|
auto *value = metadata->project(o);
|
|
metadata->BoxedType->vw_destroy(value);
|
|
|
|
// Deallocate the box.
|
|
SWIFT_RT_ENTRY_CALL(swift_deallocObject) (o, metadata->getAllocSize(),
|
|
metadata->getAllocAlignMask());
|
|
}
|
|
|
|
class BoxCacheEntry {
|
|
public:
|
|
FullMetadata<GenericBoxHeapMetadata> Data;
|
|
|
|
BoxCacheEntry(const Metadata *type)
|
|
: Data{HeapMetadataHeader{{destroyGenericBox}, {/*vwtable*/ nullptr}},
|
|
GenericBoxHeapMetadata{MetadataKind::HeapGenericLocalVariable,
|
|
GenericBoxHeapMetadata::getHeaderOffset(type),
|
|
type}} {
|
|
}
|
|
|
|
intptr_t getKeyIntValueForDump() {
|
|
return reinterpret_cast<intptr_t>(Data.BoxedType);
|
|
}
|
|
|
|
int compareWithKey(const Metadata *type) const {
|
|
return comparePointers(type, Data.BoxedType);
|
|
}
|
|
|
|
static size_t getExtraAllocationSize(const Metadata *key) {
|
|
return 0;
|
|
}
|
|
size_t getExtraAllocationSize() const {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static SimpleGlobalCache<BoxCacheEntry> Boxes;
|
|
|
|
BoxPair::Return swift::swift_allocBox(const Metadata *type) {
|
|
return SWIFT_RT_ENTRY_REF(swift_allocBox)(type);
|
|
}
|
|
|
|
BoxPair::Return swift::swift_makeBoxUnique(OpaqueValue *buffer, const Metadata *type,
|
|
size_t alignMask) {
|
|
auto *inlineBuffer = reinterpret_cast<ValueBuffer*>(buffer);
|
|
HeapObject *box = reinterpret_cast<HeapObject *>(inlineBuffer->PrivateData[0]);
|
|
|
|
if (!swift_isUniquelyReferenced_nonNull_native(box)) {
|
|
auto refAndObjectAddr = BoxPair(swift_allocBox(type));
|
|
// Compute the address of the old object.
|
|
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
|
|
auto *oldObjectAddr = reinterpret_cast<OpaqueValue *>(
|
|
reinterpret_cast<char *>(box) + headerOffset);
|
|
// Copy the data.
|
|
type->vw_initializeWithCopy(refAndObjectAddr.second, oldObjectAddr);
|
|
inlineBuffer->PrivateData[0] = refAndObjectAddr.first;
|
|
// Release ownership of the old box.
|
|
swift_release(box);
|
|
return refAndObjectAddr;
|
|
} else {
|
|
auto headerOffset = sizeof(HeapObject) + alignMask & ~alignMask;
|
|
auto *objectAddr = reinterpret_cast<OpaqueValue *>(
|
|
reinterpret_cast<char *>(box) + headerOffset);
|
|
return BoxPair{box, objectAddr};
|
|
}
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
BoxPair::Return SWIFT_RT_ENTRY_IMPL(swift_allocBox)(const Metadata *type) {
|
|
// Get the heap metadata for the box.
|
|
auto metadata = &Boxes.getOrInsert(type).first->Data;
|
|
|
|
// Allocate and project the box.
|
|
auto allocation = SWIFT_RT_ENTRY_CALL(swift_allocObject)(
|
|
metadata, metadata->getAllocSize(), metadata->getAllocAlignMask());
|
|
auto projection = metadata->project(allocation);
|
|
|
|
return BoxPair{allocation, projection};
|
|
}
|
|
|
|
void swift::swift_deallocBox(HeapObject *o) {
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
SWIFT_RT_ENTRY_CALL(swift_deallocObject)(o, metadata->getAllocSize(),
|
|
metadata->getAllocAlignMask());
|
|
}
|
|
|
|
OpaqueValue *swift::swift_projectBox(HeapObject *o) {
|
|
// The compiler will use a nil reference as a way to avoid allocating memory
|
|
// for boxes of empty type. The address of an empty value is always undefined,
|
|
// so we can just return nil back in this case.
|
|
if (!o)
|
|
return nullptr;
|
|
auto metadata = static_cast<const GenericBoxHeapMetadata *>(o->metadata);
|
|
return metadata->project(o);
|
|
}
|
|
|
|
namespace { // Begin anonymous namespace.
|
|
|
|
struct _SwiftEmptyBoxStorage {
|
|
HeapObject header;
|
|
};
|
|
|
|
swift::HeapLocalVariableMetadata _emptyBoxStorageMetadata;
|
|
|
|
/// The singleton empty box storage object.
|
|
_SwiftEmptyBoxStorage _EmptyBoxStorage = {
|
|
// HeapObject header;
|
|
{
|
|
&_emptyBoxStorageMetadata,
|
|
}
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
HeapObject *swift::swift_allocEmptyBox() {
|
|
auto heapObject = reinterpret_cast<HeapObject*>(&_EmptyBoxStorage);
|
|
SWIFT_RT_ENTRY_CALL(swift_retain)(heapObject);
|
|
return heapObject;
|
|
}
|
|
|
|
// Forward-declare this, but define it after swift_release.
|
|
extern "C" LLVM_LIBRARY_VISIBILITY LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED
|
|
void _swift_release_dealloc(HeapObject *object) SWIFT_CC(RegisterPreservingCC_IMPL);
|
|
|
|
HeapObject *swift::swift_retain(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_retain)(object);
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_retain(HeapObject *object) {
|
|
return SWIFT_RT_ENTRY_REF(swift_nonatomic_retain)(object);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C" HeapObject *
|
|
SWIFT_RT_ENTRY_IMPL(swift_nonatomic_retain)(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.incrementNonAtomic(1);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_nonatomic_release(HeapObject *object) {
|
|
return SWIFT_RT_ENTRY_REF(swift_nonatomic_release)(object);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
void SWIFT_RT_ENTRY_IMPL(swift_nonatomic_release)(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinitNonAtomic(1);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
HeapObject *SWIFT_RT_ENTRY_IMPL(swift_retain)(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_retain);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.increment(1);
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_retain_n(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_retain_n)(object, n);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
HeapObject *SWIFT_RT_ENTRY_IMPL(swift_retain_n)(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_retain_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.increment(n);
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_retain_n(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_nonatomic_retain_n)(object, n);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C" HeapObject *
|
|
SWIFT_RT_ENTRY_IMPL(swift_nonatomic_retain_n)(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_retain_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.incrementNonAtomic(n);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_release(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_ENTRY_REF(swift_release)(object);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
void SWIFT_RT_ENTRY_IMPL(swift_release)(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_release);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinit(1);
|
|
}
|
|
|
|
void swift::swift_release_n(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_release_n)(object, n);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
void SWIFT_RT_ENTRY_IMPL(swift_release_n)(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_release_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinit(n);
|
|
}
|
|
|
|
void swift::swift_setDeallocating(HeapObject *object) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_setDeallocating);
|
|
object->refCounts.decrementFromOneNonAtomic();
|
|
}
|
|
|
|
void swift::swift_nonatomic_release_n(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_nonatomic_release_n)(object, n);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
void SWIFT_RT_ENTRY_IMPL(swift_nonatomic_release_n)(HeapObject *object, uint32_t n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_release_n);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndMaybeDeinitNonAtomic(n);
|
|
}
|
|
|
|
size_t swift::swift_retainCount(HeapObject *object) {
|
|
return object->refCounts.getCount();
|
|
}
|
|
|
|
size_t swift::swift_unownedRetainCount(HeapObject *object) {
|
|
return object->refCounts.getUnownedCount();
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetain(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnowned(1);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_unownedRelease(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFree(1)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
|
|
SWIFT_RT_ENTRY_CALL(swift_slowDealloc)
|
|
(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
void *swift::swift_nonatomic_unownedRetain(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnownedNonAtomic(1);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRelease(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(1)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
|
|
SWIFT_RT_ENTRY_CALL(swift_slowDealloc)
|
|
(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetain_n(HeapObject *object, int n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetain_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnowned(n);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_unownedRelease_n(HeapObject *object, int n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFree(n)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
SWIFT_RT_ENTRY_CALL(swift_slowDealloc)
|
|
(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_unownedRetain_n(HeapObject *object, int n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetain_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
|
|
object->refCounts.incrementUnownedNonAtomic(n);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRelease_n(HeapObject *object, int n)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRelease_n);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
|
|
// Only class objects can be unowned-retained and unowned-released.
|
|
assert(object->metadata->isClassObject());
|
|
assert(static_cast<const ClassMetadata*>(object->metadata)->isTypeMetadata());
|
|
|
|
if (object->refCounts.decrementUnownedShouldFreeNonAtomic(n)) {
|
|
auto classMetadata = static_cast<const ClassMetadata*>(object->metadata);
|
|
SWIFT_RT_ENTRY_CALL(swift_slowDealloc)
|
|
(object, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
}
|
|
|
|
HeapObject *swift::swift_tryPin(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_tryPin);
|
|
assert(isValidPointerForNativeRetain(object));
|
|
|
|
// Try to set the flag. If this succeeds, the caller will be
|
|
// responsible for clearing it.
|
|
if (object->refCounts.tryIncrementAndPin())
|
|
return object;
|
|
|
|
// If setting the flag failed, it's because it was already set.
|
|
// Return nil so that the object will be deallocated later.
|
|
return nullptr;
|
|
}
|
|
|
|
void swift::swift_unpin(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unpin);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndUnpinAndMaybeDeinit();
|
|
}
|
|
|
|
HeapObject *swift::swift_tryRetain(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
return SWIFT_RT_ENTRY_REF(swift_tryRetain)(object);
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_tryPin(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_tryPin);
|
|
assert(object);
|
|
|
|
// Try to set the flag. If this succeeds, the caller will be
|
|
// responsible for clearing it.
|
|
if (object->refCounts.tryIncrementAndPinNonAtomic())
|
|
return object;
|
|
|
|
// If setting the flag failed, it's because it was already set.
|
|
// Return nil so that the object will be deallocated later.
|
|
return nullptr;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unpin(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unpin);
|
|
if (isValidPointerForNativeRetain(object))
|
|
object->refCounts.decrementAndUnpinAndMaybeDeinitNonAtomic();
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
HeapObject *SWIFT_RT_ENTRY_IMPL(swift_tryRetain)(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_tryRetain);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return nullptr;
|
|
|
|
if (object->refCounts.tryIncrement()) return object;
|
|
else return nullptr;
|
|
}
|
|
|
|
SWIFT_RUNTIME_EXPORT
|
|
bool swift_isDeallocating(HeapObject *object) {
|
|
return SWIFT_RT_ENTRY_REF(swift_isDeallocating)(object);
|
|
}
|
|
|
|
SWIFT_RT_ENTRY_IMPL_VISIBILITY
|
|
extern "C"
|
|
bool SWIFT_RT_ENTRY_IMPL(swift_isDeallocating)(HeapObject *object) {
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return false;
|
|
return object->refCounts.isDeiniting();
|
|
}
|
|
|
|
HeapObject *swift::swift_unownedRetainStrong(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrong);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrement())
|
|
swift::swift_abortRetainUnowned(object);
|
|
return object;
|
|
}
|
|
|
|
HeapObject *swift::swift_nonatomic_unownedRetainStrong(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrong);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return object;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrementNonAtomic())
|
|
swift::swift_abortRetainUnowned(object);
|
|
return object;
|
|
}
|
|
|
|
void swift::swift_unownedRetainStrongAndRelease(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_unownedRetainStrongAndRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrement())
|
|
swift::swift_abortRetainUnowned(object);
|
|
|
|
// This should never cause a deallocation.
|
|
bool dealloc = object->refCounts.decrementUnownedShouldFree(1);
|
|
assert(!dealloc && "retain-strong-and-release caused dealloc?");
|
|
(void) dealloc;
|
|
}
|
|
|
|
void swift::swift_nonatomic_unownedRetainStrongAndRelease(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_nonatomic_unownedRetainStrongAndRelease);
|
|
if (!isValidPointerForNativeRetain(object))
|
|
return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (! object->refCounts.tryIncrementNonAtomic())
|
|
swift::swift_abortRetainUnowned(object);
|
|
|
|
// This should never cause a deallocation.
|
|
bool dealloc = object->refCounts.decrementUnownedShouldFreeNonAtomic(1);
|
|
assert(!dealloc && "retain-strong-and-release caused dealloc?");
|
|
(void) dealloc;
|
|
}
|
|
|
|
void swift::swift_unownedCheck(HeapObject *object) {
|
|
if (!isValidPointerForNativeRetain(object)) return;
|
|
assert(object->refCounts.getUnownedCount() &&
|
|
"object is not currently unowned-retained");
|
|
|
|
if (object->refCounts.isDeiniting())
|
|
swift::swift_abortRetainUnowned(object);
|
|
}
|
|
|
|
// Declared extern "C" LLVM_LIBRARY_VISIBILITY in RefCount.h
|
|
void _swift_release_dealloc(HeapObject *object)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
asFullMetadata(object->metadata)->destroy(object);
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
/// Perform the root -dealloc operation for a class instance.
|
|
void swift::swift_rootObjCDealloc(HeapObject *self) {
|
|
auto metadata = self->metadata;
|
|
assert(metadata->isClassObject());
|
|
auto classMetadata = static_cast<const ClassMetadata*>(metadata);
|
|
assert(classMetadata->isTypeMetadata());
|
|
swift_deallocClassInstance(self, classMetadata->getInstanceSize(),
|
|
classMetadata->getInstanceAlignMask());
|
|
}
|
|
#endif
|
|
|
|
void swift::swift_deallocClassInstance(HeapObject *object,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
// We need to let the ObjC runtime clean up any associated objects or weak
|
|
// references associated with this object.
|
|
objc_destructInstance((id)object);
|
|
#endif
|
|
SWIFT_RT_ENTRY_CALL(swift_deallocObject)
|
|
(object, allocatedSize,
|
|
allocatedAlignMask);
|
|
}
|
|
|
|
/// Variant of the above used in constructor failure paths.
|
|
SWIFT_RUNTIME_EXPORT
|
|
void swift_deallocPartialClassInstance(HeapObject *object,
|
|
HeapMetadata const *metadata,
|
|
size_t allocatedSize,
|
|
size_t allocatedAlignMask) {
|
|
if (!object)
|
|
return;
|
|
|
|
// Destroy ivars
|
|
auto *classMetadata = _swift_getClassOfAllocated(object)->getClassObject();
|
|
assert(classMetadata && "Not a class?");
|
|
while (classMetadata != metadata) {
|
|
#if SWIFT_OBJC_INTEROP
|
|
// If we have hit a pure Objective-C class, we won't see another ivar
|
|
// destroyer.
|
|
if (classMetadata->isPureObjC()) {
|
|
// Set the class to the pure Objective-C superclass, so that when dealloc
|
|
// runs, it starts at that superclass.
|
|
object_setClass((id)object, class_const_cast(classMetadata));
|
|
|
|
// Release the object.
|
|
objc_release((id)object);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (auto fn = classMetadata->getIVarDestroyer())
|
|
fn(object);
|
|
|
|
classMetadata = classMetadata->SuperClass->getClassObject();
|
|
assert(classMetadata && "Given metatype not a superclass of object type?");
|
|
}
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
// If this class doesn't use Swift-native reference counting, use
|
|
// objc_release instead.
|
|
if (!usesNativeSwiftReferenceCounting(classMetadata)) {
|
|
// Find the pure Objective-C superclass.
|
|
while (!classMetadata->isPureObjC())
|
|
classMetadata = classMetadata->SuperClass->getClassObject();
|
|
|
|
// Set the class to the pure Objective-C superclass, so that when dealloc
|
|
// runs, it starts at that superclass.
|
|
object_setClass((id)object, class_const_cast(classMetadata));
|
|
|
|
// Release the object.
|
|
objc_release((id)object);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// The strong reference count should be +1 -- tear down the object
|
|
bool shouldDeallocate = object->refCounts.decrementShouldDeinit(1);
|
|
assert(shouldDeallocate);
|
|
(void) shouldDeallocate;
|
|
swift_deallocClassInstance(object, allocatedSize, allocatedAlignMask);
|
|
}
|
|
|
|
#if !defined(__APPLE__) && defined(SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS)
|
|
static inline void memset_pattern8(void *b, const void *pattern8, size_t len) {
|
|
char *ptr = static_cast<char *>(b);
|
|
while (len >= 8) {
|
|
memcpy(ptr, pattern8, 8);
|
|
ptr += 8;
|
|
len -= 8;
|
|
}
|
|
memcpy(ptr, pattern8, len);
|
|
}
|
|
#endif
|
|
|
|
void swift::swift_deallocObject(HeapObject *object, size_t allocatedSize,
|
|
size_t allocatedAlignMask)
|
|
SWIFT_CC(RegisterPreservingCC_IMPL) {
|
|
assert(isAlignmentMask(allocatedAlignMask));
|
|
assert(object->refCounts.isDeiniting());
|
|
SWIFT_RT_TRACK_INVOCATION(object, swift_deallocObject);
|
|
#ifdef SWIFT_RUNTIME_CLOBBER_FREED_OBJECTS
|
|
memset_pattern8((uint8_t *)object + sizeof(HeapObject),
|
|
"\xAB\xAD\x1D\xEA\xF4\xEE\xD0\bB9",
|
|
allocatedSize - sizeof(HeapObject));
|
|
#endif
|
|
|
|
// If we are tracking leaks, stop tracking this object.
|
|
SWIFT_LEAKS_STOP_TRACKING_OBJECT(object);
|
|
|
|
|
|
// Drop the initial weak retain of the object.
|
|
//
|
|
// If the outstanding weak retain count is 1 (i.e. only the initial
|
|
// weak retain), we can immediately call swift_slowDealloc. This is
|
|
// useful both as a way to eliminate an unnecessary atomic
|
|
// operation, and as a way to avoid calling swift_unownedRelease on an
|
|
// object that might be a class object, which simplifies the logic
|
|
// required in swift_unownedRelease for determining the size of the
|
|
// object.
|
|
//
|
|
// If we see that there is an outstanding weak retain of the object,
|
|
// we need to fall back on swift_release, because it's possible for
|
|
// us to race against a weak retain or a weak release. But if the
|
|
// outstanding weak retain count is 1, then anyone attempting to
|
|
// increase the weak reference count is inherently racing against
|
|
// deallocation and thus in undefined-behavior territory. And
|
|
// we can even do this with a normal load! Here's why:
|
|
//
|
|
// 1. There is an invariant that, if the strong reference count
|
|
// is > 0, then the weak reference count is > 1.
|
|
//
|
|
// 2. The above lets us say simply that, in the absence of
|
|
// races, once a reference count reaches 0, there are no points
|
|
// which happen-after where the reference count is > 0.
|
|
//
|
|
// 3. To not race, a strong retain must happen-before a point
|
|
// where the strong reference count is > 0, and a weak retain
|
|
// must happen-before a point where the weak reference count
|
|
// is > 0.
|
|
//
|
|
// 4. Changes to either the strong and weak reference counts occur
|
|
// in a total order with respect to each other. This can
|
|
// potentially be done with a weaker memory ordering than
|
|
// sequentially consistent if the architecture provides stronger
|
|
// ordering for memory guaranteed to be co-allocated on a cache
|
|
// line (which the reference count fields are).
|
|
//
|
|
// 5. This function happens-after a point where the strong
|
|
// reference count was 0.
|
|
//
|
|
// 6. Therefore, if a normal load in this function sees a weak
|
|
// reference count of 1, it cannot be racing with a weak retain
|
|
// that is not racing with deallocation:
|
|
//
|
|
// - A weak retain must happen-before a point where the weak
|
|
// reference count is > 0.
|
|
//
|
|
// - This function logically decrements the weak reference
|
|
// count. If it is possible for it to see a weak reference
|
|
// count of 1, then at the end of this function, the
|
|
// weak reference count will logically be 0.
|
|
//
|
|
// - There can be no points after that point where the
|
|
// weak reference count will be > 0.
|
|
//
|
|
// - Therefore either the weak retain must happen-before this
|
|
// function, or this function cannot see a weak reference
|
|
// count of 1, or there is a race.
|
|
//
|
|
// Note that it is okay for there to be a race involving a weak
|
|
// *release* which happens after the strong reference count drops to
|
|
// 0. However, this is harmless: if our load fails to see the
|
|
// release, we will fall back on swift_unownedRelease, which does an
|
|
// atomic decrement (and has the ability to reconstruct
|
|
// allocatedSize and allocatedAlignMask).
|
|
//
|
|
// Note: This shortcut is NOT an optimization.
|
|
// Some allocations passed to swift_deallocObject() are not compatible
|
|
// with swift_unownedRelease() because they do not have ClassMetadata.
|
|
|
|
if (object->refCounts.canBeFreedNow()) {
|
|
// object state DEINITING -> DEAD
|
|
SWIFT_RT_ENTRY_CALL(swift_slowDealloc)
|
|
(object, allocatedSize,
|
|
allocatedAlignMask);
|
|
} else {
|
|
// object state DEINITING -> DEINITED
|
|
SWIFT_RT_ENTRY_CALL(swift_unownedRelease)(object);
|
|
}
|
|
}
|
|
|
|
WeakReference *swift::swift_weakInit(WeakReference *ref, HeapObject *value) {
|
|
ref->nativeInit(value);
|
|
return ref;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakAssign(WeakReference *ref, HeapObject *value) {
|
|
ref->nativeAssign(value);
|
|
return ref;
|
|
}
|
|
|
|
HeapObject *swift::swift_weakLoadStrong(WeakReference *ref) {
|
|
return ref->nativeLoadStrong();
|
|
}
|
|
|
|
HeapObject *swift::swift_weakTakeStrong(WeakReference *ref) {
|
|
return ref->nativeTakeStrong();
|
|
}
|
|
|
|
void swift::swift_weakDestroy(WeakReference *ref) {
|
|
ref->nativeDestroy();
|
|
}
|
|
|
|
WeakReference *swift::swift_weakCopyInit(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeCopyInit(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakTakeInit(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeTakeInit(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakCopyAssign(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeCopyAssign(src);
|
|
return dest;
|
|
}
|
|
|
|
WeakReference *swift::swift_weakTakeAssign(WeakReference *dest,
|
|
WeakReference *src) {
|
|
dest->nativeTakeAssign(src);
|
|
return dest;
|
|
}
|
|
|