Files
swift-mirror/lib/Serialization/Deserialization.cpp
Robert Widmann 592e90af9b Add Sugar for Variadics
We used to represent the interface type of variadic parameters directly
with ArraySliceType. This was awfully convenient for the constraint
solver since it could just canonicalize and open [T] to Array<$T>
wherever it saw a variadic parameter. However, this both destroys the
sugaring of T... and locks the representation to Array<T>. In the
interest of generalizing this in the future, introduce
VariadicSequenceType. For now, it canonicalizes to Array<T> just like
the old representation. But, as you can guess, this is a new staging
point for teaching the solver how to munge variadic generic type bindings.

rdar://81628287
2021-08-06 12:51:39 -07:00

6813 lines
236 KiB
C++

//===--- Deserialization.cpp - Loading a serialized AST -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "BCReadingExtras.h"
#include "DeserializationErrors.h"
#include "ModuleFile.h"
#include "ModuleFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AutoDiff.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignAsyncConvention.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/ClangImporter/SwiftAbstractBasicReader.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "clang/AST/DeclTemplate.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "Serialization"
STATISTIC(NumDeclsLoaded, "# of decls deserialized");
STATISTIC(NumMemberListsLoaded,
"# of nominals/extensions whose members were loaded");
STATISTIC(NumNormalProtocolConformancesLoaded,
"# of normal protocol conformances deserialized");
STATISTIC(NumNormalProtocolConformancesCompleted,
"# of normal protocol conformances completed");
STATISTIC(NumNestedTypeShortcuts,
"# of nested types resolved without full lookup");
using namespace swift;
using namespace swift::serialization;
using llvm::Expected;
namespace {
struct DeclAndOffset {
const Decl *D;
uint64_t offset;
};
static raw_ostream &operator<<(raw_ostream &os, DeclAndOffset &&pair) {
return os << Decl::getKindName(pair.D->getKind())
<< "Decl @ " << pair.offset;
}
class PrettyDeclDeserialization : public llvm::PrettyStackTraceEntry {
const ModuleFile *MF;
const ModuleFile::Serialized<Decl*> &DeclOrOffset;
uint64_t offset;
decls_block::RecordKind Kind;
public:
PrettyDeclDeserialization(ModuleFile *module,
const ModuleFile::Serialized<Decl*> &declOrOffset,
decls_block::RecordKind kind)
: MF(module), DeclOrOffset(declOrOffset), offset(declOrOffset),
Kind(kind) {
}
static const char *getRecordKindString(decls_block::RecordKind Kind) {
switch (Kind) {
#define RECORD(Id) case decls_block::Id: return #Id;
#include "DeclTypeRecordNodes.def"
}
llvm_unreachable("Unhandled RecordKind in switch.");
}
void print(raw_ostream &os) const override {
if (!DeclOrOffset.isComplete()) {
os << "While deserializing decl @ " << offset << " ("
<< getRecordKindString(Kind) << ")";
} else {
os << "While deserializing ";
if (auto VD = dyn_cast<ValueDecl>(DeclOrOffset.get())) {
os << "'" << VD->getBaseName() << "' (" << DeclAndOffset{VD, offset}
<< ")";
} else if (auto ED = dyn_cast<ExtensionDecl>(DeclOrOffset.get())) {
os << "extension of '" << ED->getExtendedType() << "' ("
<< DeclAndOffset{ED, offset} << ")";
} else {
os << DeclAndOffset{DeclOrOffset.get(), offset};
}
}
os << " in '" << MF->getName() << "'\n";
}
};
class PrettySupplementalDeclNameTrace : public llvm::PrettyStackTraceEntry {
DeclName name;
public:
PrettySupplementalDeclNameTrace(DeclName name)
: name(name) { }
void print(raw_ostream &os) const override {
os << " ...decl is named '" << name << "'\n";
}
};
class PrettyXRefTrace :
public llvm::PrettyStackTraceEntry,
public XRefTracePath {
public:
explicit PrettyXRefTrace(ModuleDecl &M) : XRefTracePath(M) {}
void print(raw_ostream &os) const override {
XRefTracePath::print(os, "\t");
}
};
} // end anonymous namespace
const char DeclDeserializationError::ID = '\0';
void DeclDeserializationError::anchor() {}
const char XRefError::ID = '\0';
void XRefError::anchor() {}
const char XRefNonLoadedModuleError::ID = '\0';
void XRefNonLoadedModuleError::anchor() {}
const char OverrideError::ID = '\0';
void OverrideError::anchor() {}
const char TypeError::ID = '\0';
void TypeError::anchor() {}
const char ExtensionError::ID = '\0';
void ExtensionError::anchor() {}
const char DeclAttributesDidNotMatch::ID = '\0';
void DeclAttributesDidNotMatch::anchor() {}
/// Skips a single record in the bitstream.
///
/// Destroys the stream position if the next entry is not a record.
static void skipRecord(llvm::BitstreamCursor &cursor, unsigned recordKind) {
auto next = llvm::cantFail<llvm::BitstreamEntry>(
cursor.advance(AF_DontPopBlockAtEnd));
assert(next.Kind == llvm::BitstreamEntry::Record);
unsigned kind = llvm::cantFail<unsigned>(cursor.skipRecord(next.ID));
assert(kind == recordKind);
(void)kind;
}
void ModuleFile::fatal(llvm::Error error) const {
if (FileContext)
getContext().Diags.diagnose(SourceLoc(), diag::serialization_fatal,
Core->Name);
Core->fatal(std::move(error));
}
void ModuleFile::outputDiagnosticInfo(llvm::raw_ostream &os) const {
Core->outputDiagnosticInfo(os);
}
static Optional<swift::AccessorKind>
getActualAccessorKind(uint8_t raw) {
switch (serialization::AccessorKind(raw)) {
#define ACCESSOR(ID) \
case serialization::AccessorKind::ID: return swift::AccessorKind::ID;
#include "swift/AST/AccessorKinds.def"
}
return None;
}
/// Translate from the serialization DefaultArgumentKind enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::DefaultArgumentKind>
getActualDefaultArgKind(uint8_t raw) {
switch (static_cast<serialization::DefaultArgumentKind>(raw)) {
#define CASE(X) \
case serialization::DefaultArgumentKind::X: \
return swift::DefaultArgumentKind::X;
CASE(None)
CASE(Normal)
CASE(Inherited)
CASE(Column)
CASE(FileID)
CASE(FileIDSpelledAsFile)
CASE(FilePath)
CASE(FilePathSpelledAsFile)
CASE(Line)
CASE(Function)
CASE(DSOHandle)
CASE(NilLiteral)
CASE(EmptyArray)
CASE(EmptyDictionary)
CASE(StoredProperty)
#undef CASE
}
return None;
}
static Optional<StableSerializationPath::ExternalPath::ComponentKind>
getActualClangDeclPathComponentKind(uint64_t raw) {
switch (static_cast<serialization::ClangDeclPathComponentKind>(raw)) {
#define CASE(ID) \
case serialization::ClangDeclPathComponentKind::ID: \
return StableSerializationPath::ExternalPath::ID;
CASE(Record)
CASE(Enum)
CASE(Namespace)
CASE(Typedef)
CASE(TypedefAnonDecl)
CASE(ObjCInterface)
CASE(ObjCProtocol)
#undef CASE
}
return None;
}
ParameterList *ModuleFile::readParameterList() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
unsigned recordID =
fatalIfUnexpected(DeclTypeCursor.readRecord(entry.ID, scratch));
assert(recordID == PARAMETERLIST);
(void) recordID;
ArrayRef<uint64_t> rawMemberIDs;
decls_block::ParameterListLayout::readRecord(scratch, rawMemberIDs);
SmallVector<ParamDecl *, 8> params;
for (DeclID paramID : rawMemberIDs)
params.push_back(cast<ParamDecl>(getDecl(paramID)));
return ParameterList::create(getContext(), params);
}
Expected<Pattern *> ModuleFile::readPattern(DeclContext *owningDC) {
// Currently, the only case in which this function can fail (return an error)
// is when reading a pattern for a single variable declaration.
using namespace decls_block;
auto readPatternUnchecked = [this](DeclContext *owningDC) -> Pattern * {
Expected<Pattern *> deserialized = readPattern(owningDC);
if (!deserialized) {
fatal(deserialized.takeError());
}
assert(deserialized.get());
return deserialized.get();
};
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
llvm::BitstreamEntry next =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (next.Kind != llvm::BitstreamEntry::Record)
fatal();
/// Local function to record the type of this pattern.
auto recordPatternType = [&](Pattern *pattern, Type type) {
if (type->hasTypeParameter())
pattern->setDelayedInterfaceType(type, owningDC);
else
pattern->setType(type);
};
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch));
switch (kind) {
case decls_block::PAREN_PATTERN: {
Pattern *subPattern = readPatternUnchecked(owningDC);
auto result = ParenPattern::createImplicit(getContext(), subPattern);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(ParenType::get(getContext(),
interfaceType), owningDC);
else
result->setType(ParenType::get(getContext(), subPattern->getType()));
restoreOffset.reset();
return result;
}
case decls_block::TUPLE_PATTERN: {
TypeID tupleTypeID;
unsigned count;
TuplePatternLayout::readRecord(scratch, tupleTypeID, count);
SmallVector<TuplePatternElt, 8> elements;
for ( ; count > 0; --count) {
scratch.clear();
next = fatalIfUnexpected(DeclTypeCursor.advance());
assert(next.Kind == llvm::BitstreamEntry::Record);
kind = fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch));
assert(kind == decls_block::TUPLE_PATTERN_ELT);
// FIXME: Add something for this record or remove it.
IdentifierID labelID;
TuplePatternEltLayout::readRecord(scratch, labelID);
Identifier label = getIdentifier(labelID);
Pattern *subPattern = readPatternUnchecked(owningDC);
elements.push_back(TuplePatternElt(label, SourceLoc(), subPattern));
}
auto result = TuplePattern::createImplicit(getContext(), elements);
recordPatternType(result, getType(tupleTypeID));
restoreOffset.reset();
return result;
}
case decls_block::NAMED_PATTERN: {
DeclID varID;
TypeID typeID;
NamedPatternLayout::readRecord(scratch, varID, typeID);
auto deserialized = getDeclChecked(varID);
if (!deserialized) {
// Pass through the error. It's too bad that it affects the whole pattern,
// but that's what we get.
return deserialized.takeError();
}
auto var = cast<VarDecl>(deserialized.get());
auto result = NamedPattern::createImplicit(getContext(), var);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::ANY_PATTERN: {
TypeID typeID;
AnyPatternLayout::readRecord(scratch, typeID);
auto result = AnyPattern::createImplicit(getContext());
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::TYPED_PATTERN: {
TypeID typeID;
TypedPatternLayout::readRecord(scratch, typeID);
Expected<Pattern *> subPattern = readPattern(owningDC);
if (!subPattern) {
// Pass through any errors.
return subPattern;
}
auto type = getType(typeID);
auto result = TypedPattern::createImplicit(getContext(),
subPattern.get(), type);
recordPatternType(result, type);
restoreOffset.reset();
return result;
}
case decls_block::VAR_PATTERN: {
bool isLet;
BindingPatternLayout::readRecord(scratch, isLet);
Pattern *subPattern = readPatternUnchecked(owningDC);
auto result =
BindingPattern::createImplicit(getContext(), isLet, subPattern);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(interfaceType, owningDC);
else
result->setType(subPattern->getType());
restoreOffset.reset();
return result;
}
default:
return nullptr;
}
}
SILLayout *ModuleFile::readSILLayout(llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
llvm::BitstreamEntry next =
fatalIfUnexpected(Cursor.advance(AF_DontPopBlockAtEnd));
assert(next.Kind == llvm::BitstreamEntry::Record);
unsigned kind = fatalIfUnexpected(Cursor.readRecord(next.ID, scratch));
switch (kind) {
case decls_block::SIL_LAYOUT: {
GenericSignatureID rawGenericSig;
unsigned numFields;
ArrayRef<uint64_t> types;
decls_block::SILLayoutLayout::readRecord(scratch, rawGenericSig,
numFields, types);
SmallVector<SILField, 4> fields;
for (auto fieldInfo : types.slice(0, numFields)) {
bool isMutable = fieldInfo & 0x80000000U;
auto typeId = fieldInfo & 0x7FFFFFFFU;
fields.push_back(
SILField(getType(typeId)->getCanonicalType(),
isMutable));
}
CanGenericSignature canSig;
if (auto sig = getGenericSignature(rawGenericSig))
canSig = sig.getCanonicalSignature();
return SILLayout::get(getContext(), canSig, fields);
}
default:
fatal();
}
}
ProtocolConformanceRef ModuleFile::readConformance(
llvm::BitstreamCursor &Cursor,
GenericEnvironment *genericEnv) {
auto conformance = readConformanceChecked(Cursor, genericEnv);
if (!conformance)
fatal(conformance.takeError());
return conformance.get();
}
Expected<ProtocolConformanceRef>
ModuleFile::readConformanceChecked(llvm::BitstreamCursor &Cursor,
GenericEnvironment *genericEnv) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
llvm::BitstreamEntry next =
fatalIfUnexpected(Cursor.advance(AF_DontPopBlockAtEnd));
assert(next.Kind == llvm::BitstreamEntry::Record);
if (auto *Stats = getContext().Stats)
++Stats->getFrontendCounters().NumConformancesDeserialized;
unsigned kind = fatalIfUnexpected(Cursor.readRecord(next.ID, scratch));
switch (kind) {
case INVALID_PROTOCOL_CONFORMANCE: {
return ProtocolConformanceRef::forInvalid();
}
case ABSTRACT_PROTOCOL_CONFORMANCE: {
DeclID protoID;
AbstractProtocolConformanceLayout::readRecord(scratch, protoID);
auto decl = getDeclChecked(protoID);
if (!decl)
return decl.takeError();
auto proto = cast<ProtocolDecl>(decl.get());
return ProtocolConformanceRef(proto);
}
case SELF_PROTOCOL_CONFORMANCE: {
DeclID protoID;
SelfProtocolConformanceLayout::readRecord(scratch, protoID);
auto decl = getDeclChecked(protoID);
if (!decl)
return decl.takeError();
auto proto = cast<ProtocolDecl>(decl.get());
auto conformance = getContext().getSelfConformance(proto);
return ProtocolConformanceRef(conformance);
}
case SPECIALIZED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
SubstitutionMapID substitutionMapID;
SpecializedProtocolConformanceLayout::readRecord(scratch, conformingTypeID,
substitutionMapID);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading specialized conformance for",
conformingType);
auto subMapOrError = getSubstitutionMapChecked(substitutionMapID);
if (!subMapOrError)
return subMapOrError.takeError();
auto subMap = subMapOrError.get();
ProtocolConformanceRef genericConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to", genericConformance.getRequirement());
assert(genericConformance.isConcrete() && "Abstract generic conformance?");
auto conformance =
ctx.getSpecializedConformance(conformingType,
genericConformance.getConcrete(),
subMap);
return ProtocolConformanceRef(conformance);
}
case INHERITED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
InheritedProtocolConformanceLayout::readRecord(scratch, conformingTypeID);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading inherited conformance for",
conformingType);
ProtocolConformanceRef inheritedConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to",
inheritedConformance.getRequirement());
assert(inheritedConformance.isConcrete() &&
"Abstract inherited conformance?");
auto conformance =
ctx.getInheritedConformance(conformingType,
inheritedConformance.getConcrete());
return ProtocolConformanceRef(conformance);
}
case BUILTIN_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
DeclID protoID;
GenericSignatureID genericSigID;
unsigned builtinConformanceKind;
BuiltinProtocolConformanceLayout::readRecord(scratch, conformingTypeID,
protoID, genericSigID,
builtinConformanceKind);
Type conformingType = getType(conformingTypeID);
auto decl = getDeclChecked(protoID);
if (!decl)
return decl.takeError();
auto proto = cast<ProtocolDecl>(decl.get());
auto genericSig = getGenericSignatureChecked(genericSigID);
if (!genericSig)
return genericSig.takeError();
// Read the conditional requirements.
SmallVector<Requirement, 4> conditionalRequirements;
auto error = readGenericRequirementsChecked(
conditionalRequirements, Cursor);
if (error)
return std::move(error);
auto conformance = getContext().getBuiltinConformance(
conformingType, proto, *genericSig, conditionalRequirements,
static_cast<BuiltinConformanceKind>(builtinConformanceKind));
return ProtocolConformanceRef(conformance);
}
case NORMAL_PROTOCOL_CONFORMANCE_ID: {
NormalConformanceID conformanceID;
NormalProtocolConformanceIdLayout::readRecord(scratch, conformanceID);
auto conformance = readNormalConformanceChecked(conformanceID);
if (!conformance)
return conformance.takeError();
return ProtocolConformanceRef(conformance.get());
}
case PROTOCOL_CONFORMANCE_XREF: {
DeclID protoID;
DeclID nominalID;
ModuleID moduleID;
ProtocolConformanceXrefLayout::readRecord(scratch, protoID, nominalID,
moduleID);
auto maybeNominal = getDeclChecked(nominalID);
if (!maybeNominal)
return maybeNominal.takeError();
auto nominal = cast<NominalTypeDecl>(maybeNominal.get());
PrettyStackTraceDecl trace("cross-referencing conformance for", nominal);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
PrettyStackTraceDecl traceTo("... to", proto);
auto module = getModule(moduleID);
// FIXME: If the module hasn't been loaded, we probably don't want to fall
// back to the current module like this.
if (!module)
module = getAssociatedModule();
SmallVector<ProtocolConformance *, 2> conformances;
nominal->lookupConformance(module, proto, conformances);
PrettyStackTraceModuleFile traceMsg(
"If you're seeing a crash here, check that your SDK and dependencies "
"are at least as new as the versions used to build", *this);
// This would normally be an assertion but it's more useful to print the
// PrettyStackTrace here even in no-asserts builds.
if (conformances.empty())
abort();
return ProtocolConformanceRef(conformances.front());
}
// Not a protocol conformance.
default:
fatal();
}
}
Expected<NormalProtocolConformance *> ModuleFile::readNormalConformanceChecked(
NormalConformanceID conformanceID) {
auto &conformanceEntry = NormalConformances[conformanceID-1];
if (conformanceEntry.isComplete()) {
return conformanceEntry.get();
}
using namespace decls_block;
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(conformanceEntry));
llvm::BitstreamEntry entry = fatalIfUnexpected(DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, conformanceCount, isUnchecked;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(entry.ID, scratch));
if (kind != NORMAL_PROTOCOL_CONFORMANCE)
fatal();
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, typeCount,
valueCount, conformanceCount,
isUnchecked,
rawIDs);
ASTContext &ctx = getContext();
auto doOrError = getDeclContextChecked(contextID);
if (!doOrError)
return doOrError.takeError();
DeclContext *dc = doOrError.get();
assert(!isa<ClangModuleUnit>(dc->getModuleScopeContext())
&& "should not have serialized a conformance from a clang module");
Type conformingType = dc->getDeclaredInterfaceType();
PrettyStackTraceType trace(ctx, "reading conformance for", conformingType);
auto protoOrError = getDeclChecked(protoID);
if (!protoOrError)
return protoOrError.takeError();
auto proto = cast<ProtocolDecl>(protoOrError.get());
PrettyStackTraceDecl traceTo("... to", proto);
++NumNormalProtocolConformancesLoaded;
auto conformance = ctx.getConformance(conformingType, proto, SourceLoc(), dc,
ProtocolConformanceState::Incomplete,
isUnchecked);
// Record this conformance.
if (conformanceEntry.isComplete())
return conformance;
uint64_t offset = conformanceEntry;
conformanceEntry = conformance;
dc->getSelfNominalTypeDecl()->registerProtocolConformance(conformance);
// If the conformance is complete, we're done.
if (conformance->isComplete())
return conformance;
conformance->setState(ProtocolConformanceState::Complete);
conformance->setLazyLoader(this, offset);
return conformance;
}
GenericParamList *ModuleFile::maybeReadGenericParams(DeclContext *DC) {
using namespace decls_block;
assert(DC && "need a context for the decls in the list");
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
llvm::BitstreamEntry next =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch, &blobData));
if (kind != GENERIC_PARAM_LIST)
return nullptr;
lastRecordOffset.reset();
SmallVector<GenericTypeParamDecl *, 8> params;
ArrayRef<uint64_t> paramIDs;
GenericParamListLayout::readRecord(scratch, paramIDs);
for (DeclID nextParamID : paramIDs) {
auto genericParam = cast<GenericTypeParamDecl>(getDecl(nextParamID));
params.push_back(genericParam);
}
// Don't create empty generic parameter lists. (This should never happen in
// practice, but it doesn't hurt to be defensive.)
if (params.empty())
return nullptr;
return GenericParamList::create(getContext(), SourceLoc(),
params, SourceLoc(), { },
SourceLoc());
}
void ModuleFile::readGenericRequirements(
SmallVectorImpl<Requirement> &requirements,
llvm::BitstreamCursor &Cursor) {
auto error = readGenericRequirementsChecked(requirements, Cursor);
if (error)
fatal(std::move(error));
}
llvm::Error ModuleFile::readGenericRequirementsChecked(
SmallVectorImpl<Requirement> &requirements,
llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
llvm::BitstreamEntry entry =
fatalIfUnexpected(Cursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = fatalIfUnexpected(
Cursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
case GENERIC_REQUIREMENT: {
uint8_t rawKind;
uint64_t rawTypeIDs[2];
GenericRequirementLayout::readRecord(scratch, rawKind,
rawTypeIDs[0], rawTypeIDs[1]);
switch (rawKind) {
case GenericRequirementKind::Conformance: {
auto subject = getTypeChecked(rawTypeIDs[0]);
if (!subject)
return subject.takeError();
auto constraint = getTypeChecked(rawTypeIDs[1]);
if (!constraint)
return constraint.takeError();
requirements.push_back(Requirement(RequirementKind::Conformance,
subject.get(), constraint.get()));
break;
}
case GenericRequirementKind::Superclass: {
auto subject = getTypeChecked(rawTypeIDs[0]);
if (!subject)
return subject.takeError();
auto constraint = getTypeChecked(rawTypeIDs[1]);
if (!constraint)
return constraint.takeError();
requirements.push_back(Requirement(RequirementKind::Superclass,
subject.get(), constraint.get()));
break;
}
case GenericRequirementKind::SameType: {
auto first = getTypeChecked(rawTypeIDs[0]);
if (!first)
return first.takeError();
auto second = getTypeChecked(rawTypeIDs[1]);
if (!second)
return second.takeError();
requirements.push_back(Requirement(RequirementKind::SameType,
first.get(), second.get()));
break;
}
default:
// Unknown requirement kind.
fatal();
}
break;
}
case LAYOUT_REQUIREMENT: {
uint8_t rawKind;
uint64_t rawTypeID;
uint32_t size;
uint32_t alignment;
LayoutRequirementLayout::readRecord(scratch, rawKind, rawTypeID,
size, alignment);
auto first = getTypeChecked(rawTypeID);
if (!first)
return first.takeError();
LayoutConstraint layout;
LayoutConstraintKind kind = LayoutConstraintKind::UnknownLayout;
switch (rawKind) {
default:
// Unknown layout requirement kind.
fatal();
case LayoutRequirementKind::NativeRefCountedObject:
kind = LayoutConstraintKind::NativeRefCountedObject;
break;
case LayoutRequirementKind::RefCountedObject:
kind = LayoutConstraintKind::RefCountedObject;
break;
case LayoutRequirementKind::Trivial:
kind = LayoutConstraintKind::Trivial;
break;
case LayoutRequirementKind::TrivialOfExactSize:
kind = LayoutConstraintKind::TrivialOfExactSize;
break;
case LayoutRequirementKind::TrivialOfAtMostSize:
kind = LayoutConstraintKind::TrivialOfAtMostSize;
break;
case LayoutRequirementKind::Class:
kind = LayoutConstraintKind::Class;
break;
case LayoutRequirementKind::NativeClass:
kind = LayoutConstraintKind::NativeClass;
break;
case LayoutRequirementKind::UnknownLayout:
kind = LayoutConstraintKind::UnknownLayout;
break;
}
ASTContext &ctx = getContext();
if (kind != LayoutConstraintKind::TrivialOfAtMostSize &&
kind != LayoutConstraintKind::TrivialOfExactSize)
layout = LayoutConstraint::getLayoutConstraint(kind, ctx);
else
layout =
LayoutConstraint::getLayoutConstraint(kind, size, alignment, ctx);
requirements.push_back(
Requirement(RequirementKind::Layout, first.get(), layout));
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
return llvm::Error::success();
}
void ModuleFile::readAssociatedTypes(
SmallVectorImpl<AssociatedTypeDecl *> &assocTypes,
llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
while (true) {
lastRecordOffset.reset();
llvm::BitstreamEntry entry =
fatalIfUnexpected(Cursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = fatalIfUnexpected(
Cursor.readRecord(entry.ID, scratch, &blobData));
if (recordID != ASSOCIATED_TYPE)
break;
DeclID declID;
AssociatedTypeLayout::readRecord(scratch, declID);
assocTypes.push_back(cast<AssociatedTypeDecl>(getDecl(declID)));
}
}
/// Advances past any records that might be part of a requirement signature.
static llvm::Error skipGenericRequirements(llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
while (true) {
Expected<llvm::BitstreamEntry> maybeEntry =
Cursor.advance(AF_DontPopBlockAtEnd);
if (!maybeEntry)
return maybeEntry.takeError();
llvm::BitstreamEntry entry = maybeEntry.get();
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
Expected<unsigned> maybeRecordID = Cursor.skipRecord(entry.ID);
if (!maybeRecordID)
return maybeRecordID.takeError();
switch (maybeRecordID.get()) {
case GENERIC_REQUIREMENT:
case LAYOUT_REQUIREMENT:
break;
default:
// This record is not a generic requirement.
return llvm::Error::success();
}
lastRecordOffset.reset();
}
return llvm::Error::success();
}
/// Advances past any lazy associated type member records.
static llvm::Error skipAssociatedTypeMembers(llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
while (true) {
Expected<llvm::BitstreamEntry> maybeEntry =
Cursor.advance(AF_DontPopBlockAtEnd);
if (!maybeEntry)
return maybeEntry.takeError();
llvm::BitstreamEntry entry = maybeEntry.get();
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
Expected<unsigned> maybeRecordID = Cursor.skipRecord(entry.ID);
if (!maybeRecordID)
return maybeRecordID.takeError();
switch (maybeRecordID.get()) {
case ASSOCIATED_TYPE:
break;
default:
// This record is not an associated type.
return llvm::Error::success();
}
lastRecordOffset.reset();
}
return llvm::Error::success();
}
GenericSignature ModuleFile::getGenericSignature(
serialization::GenericSignatureID ID) {
auto signature = getGenericSignatureChecked(ID);
if (!signature)
fatal(signature.takeError());
return signature.get();
}
Expected<GenericSignature>
ModuleFile::getGenericSignatureChecked(serialization::GenericSignatureID ID) {
using namespace decls_block;
// Zero is a sentinel for having no generic signature.
if (ID == 0) return nullptr;
assert(ID <= GenericSignatures.size() &&
"invalid GenericSignature ID");
auto &sigOffset = GenericSignatures[ID-1];
// If we've already deserialized this generic signature, return it.
if (sigOffset.isComplete())
return sigOffset.get();
// Read the generic signature.
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(sigOffset));
// Read the parameter types.
SmallVector<GenericTypeParamType *, 4> paramTypes;
StringRef blobData;
SmallVector<uint64_t, 8> scratch;
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
case GENERIC_SIGNATURE: {
ArrayRef<uint64_t> rawParamIDs;
GenericSignatureLayout::readRecord(scratch, rawParamIDs);
for (unsigned i = 0, n = rawParamIDs.size(); i != n; ++i) {
auto paramTy = getType(rawParamIDs[i])->castTo<GenericTypeParamType>();
paramTypes.push_back(paramTy);
}
break;
}
case SIL_GENERIC_SIGNATURE: {
ArrayRef<uint64_t> rawParamIDs;
SILGenericSignatureLayout::readRecord(scratch, rawParamIDs);
if (rawParamIDs.size() % 2 != 0)
fatal();
for (unsigned i = 0, n = rawParamIDs.size(); i != n; i += 2) {
Identifier name = getIdentifier(rawParamIDs[i]);
auto paramTy = getType(rawParamIDs[i+1])->castTo<GenericTypeParamType>();
if (!name.empty()) {
auto paramDecl =
createDecl<GenericTypeParamDecl>(getAssociatedModule(),
name,
SourceLoc(),
paramTy->getDepth(),
paramTy->getIndex());
paramTy = paramDecl->getDeclaredInterfaceType()
->castTo<GenericTypeParamType>();
}
paramTypes.push_back(paramTy);
}
break;
}
default:
// Not a generic signature; no way to recover.
fatal();
}
// Read the generic requirements.
SmallVector<Requirement, 4> requirements;
auto error = readGenericRequirementsChecked(requirements, DeclTypeCursor);
if (error)
return std::move(error);
// If we've already deserialized this generic signature, start over to return
// it directly.
// FIXME: Is this kind of re-entrancy actually possible?
if (sigOffset.isComplete())
return getGenericSignature(ID);
// Construct the generic signature from the loaded parameters and
// requirements.
auto signature = GenericSignature::get(paramTypes, requirements);
sigOffset = signature;
return signature;
}
SubstitutionMap ModuleFile::getSubstitutionMap(
serialization::SubstitutionMapID id) {
auto map = getSubstitutionMapChecked(id);
if (!map)
fatal(map.takeError());
return map.get();
}
Expected<SubstitutionMap>
ModuleFile::getSubstitutionMapChecked(serialization::SubstitutionMapID id) {
using namespace decls_block;
// Zero is a sentinel for having an empty substitution map.
if (id == 0) return SubstitutionMap();
assert(id <= SubstitutionMaps.size() && "invalid SubstitutionMap ID");
auto &substitutionsOrOffset = SubstitutionMaps[id-1];
// If we've already deserialized this substitution map, return it.
if (substitutionsOrOffset.isComplete()) {
return substitutionsOrOffset.get();
}
// Read the substitution map.
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(substitutionsOrOffset));
// Read the substitution map.
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
StringRef blobData;
SmallVector<uint64_t, 8> scratch;
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
if (recordID != SUBSTITUTION_MAP)
fatal();
GenericSignatureID genericSigID;
uint64_t numConformances;
ArrayRef<uint64_t> replacementTypeIDs;
SubstitutionMapLayout::readRecord(scratch, genericSigID, numConformances,
replacementTypeIDs);
// Generic signature.
auto genericSigOrError = getGenericSignatureChecked(genericSigID);
if (!genericSigOrError)
return genericSigOrError.takeError();
auto genericSig = genericSigOrError.get();
if (!genericSig)
fatal();
// Load the replacement types.
SmallVector<Type, 4> replacementTypes;
replacementTypes.reserve(replacementTypeIDs.size());
for (auto typeID : replacementTypeIDs) {
replacementTypes.push_back(getType(typeID));
}
// Read the conformances.
SmallVector<ProtocolConformanceRef, 4> conformances;
conformances.reserve(numConformances);
for (unsigned i : range(numConformances)) {
(void)i;
auto conformanceOrError = readConformanceChecked(DeclTypeCursor);
if (!conformanceOrError)
return conformanceOrError.takeError();
conformances.push_back(conformanceOrError.get());
}
// Form the substitution map and record it.
auto substitutions =
SubstitutionMap::get(genericSig, ArrayRef<Type>(replacementTypes),
ArrayRef<ProtocolConformanceRef>(conformances));
substitutionsOrOffset = substitutions;
return substitutions;
}
bool ModuleFile::readDefaultWitnessTable(ProtocolDecl *proto) {
using namespace decls_block;
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
return true;
SmallVector<uint64_t, 16> witnessIDBuffer;
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(entry.ID, witnessIDBuffer));
assert(kind == DEFAULT_WITNESS_TABLE);
(void)kind;
ArrayRef<uint64_t> rawWitnessIDs;
decls_block::DefaultWitnessTableLayout::readRecord(
witnessIDBuffer, rawWitnessIDs);
if (rawWitnessIDs.empty())
return false;
unsigned e = rawWitnessIDs.size();
assert(e % 2 == 0 && "malformed default witness table");
(void) e;
for (unsigned i = 0, e = rawWitnessIDs.size(); i < e; i += 2) {
ValueDecl *requirement = cast<ValueDecl>(getDecl(rawWitnessIDs[i]));
assert(requirement && "unable to deserialize next requirement");
ValueDecl *witness = cast<ValueDecl>(getDecl(rawWitnessIDs[i + 1]));
assert(witness && "unable to deserialize next witness");
assert(requirement->getDeclContext() == proto);
proto->setDefaultWitness(requirement, witness);
}
return false;
}
static Optional<swift::CtorInitializerKind>
getActualCtorInitializerKind(uint8_t raw) {
switch (serialization::CtorInitializerKind(raw)) {
#define CASE(NAME) \
case serialization::CtorInitializerKind::NAME: \
return swift::CtorInitializerKind::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
return None;
}
static bool isReExportedToModule(const ValueDecl *value,
const ModuleDecl *expectedModule) {
const DeclContext *valueDC = value->getDeclContext();
auto fromClangModule
= dyn_cast<ClangModuleUnit>(valueDC->getModuleScopeContext());
if (!fromClangModule)
return false;
StringRef exportedName = fromClangModule->getExportedModuleName();
auto toClangModule
= dyn_cast<ClangModuleUnit>(expectedModule->getFiles().front());
if (toClangModule)
return exportedName == toClangModule->getExportedModuleName();
return exportedName == expectedModule->getName().str();
}
/// Remove values from \p values that don't match the expected type or module.
///
/// Any of \p expectedTy, \p expectedModule, or \p expectedGenericSig can be
/// omitted, in which case any type or module is accepted. Values imported
/// from Clang can also appear in any module.
static void filterValues(Type expectedTy, ModuleDecl *expectedModule,
CanGenericSignature expectedGenericSig, bool isType,
bool inProtocolExt, bool importedFromClang,
bool isStatic,
Optional<swift::CtorInitializerKind> ctorInit,
SmallVectorImpl<ValueDecl *> &values) {
CanType canTy;
if (expectedTy)
canTy = expectedTy->getCanonicalType();
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
// Ignore anything that was parsed (vs. deserialized), because a serialized
// module cannot refer to it.
if (value->getDeclContext()->getParentSourceFile())
return true;
if (isType != isa<TypeDecl>(value))
return true;
// If we're expecting a type, make sure this decl has the expected type.
if (canTy && !value->getInterfaceType()->isEqual(canTy))
return true;
if (value->isStatic() != isStatic)
return true;
if (value->hasClangNode() != importedFromClang)
return true;
if (value->getAttrs().hasAttribute<ForbidSerializingReferenceAttr>())
return true;
// FIXME: Should be able to move a value from an extension in a derived
// module to the original definition in a base module.
if (expectedModule && !value->hasClangNode() &&
value->getModuleContext() != expectedModule &&
!isReExportedToModule(value, expectedModule))
return true;
// If we're expecting a member within a constrained extension with a
// particular generic signature, match that signature.
if (expectedGenericSig &&
value->getDeclContext()
->getGenericSignatureOfContext()
.getCanonicalSignature() != expectedGenericSig)
return true;
// If we don't expect a specific generic signature, ignore anything from a
// constrained extension.
if (!expectedGenericSig &&
isa<ExtensionDecl>(value->getDeclContext()) &&
cast<ExtensionDecl>(value->getDeclContext())->isConstrainedExtension())
return true;
// If we're looking at members of a protocol or protocol extension,
// filter by whether we expect to find something in a protocol extension or
// not. This lets us distinguish between a protocol member and a protocol
// extension member that have the same type.
if (value->getDeclContext()->getSelfProtocolDecl() &&
(bool)value->getDeclContext()->getExtendedProtocolDecl()
!= inProtocolExt)
return true;
// If we're expecting an initializer with a specific kind, and this is not
// an initializer with that kind, remove it.
if (ctorInit) {
if (!isa<ConstructorDecl>(value) ||
cast<ConstructorDecl>(value)->getInitKind() != *ctorInit)
return true;
}
return false;
});
values.erase(newEnd, values.end());
}
/// Look for nested types in all files of \p extensionModule except from the \p thisFile.
static TypeDecl *
findNestedTypeDeclInModule(FileUnit *thisFile, ModuleDecl *extensionModule,
Identifier name, NominalTypeDecl *parent) {
assert(extensionModule && "NULL is not a valid module");
for (FileUnit *file : extensionModule->getFiles()) {
if (file == thisFile)
continue;
if (auto nestedType = file->lookupNestedType(name, parent)) {
return nestedType;
}
}
return nullptr;
}
/// Look for nested types in all files of \p extensionModule.
static TypeDecl *
findNestedTypeDeclInModule(ModuleDecl *extensionModule,
Identifier name, NominalTypeDecl *parent) {
return findNestedTypeDeclInModule(nullptr, extensionModule, name, parent);
}
Expected<Decl *>
ModuleFile::resolveCrossReference(ModuleID MID, uint32_t pathLen) {
using namespace decls_block;
ModuleDecl *baseModule = getModule(MID);
if (!baseModule) {
return llvm::make_error<XRefNonLoadedModuleError>(getIdentifier(MID));
}
assert(baseModule && "missing dependency");
PrettyXRefTrace pathTrace(*baseModule);
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
SmallVector<ValueDecl *, 8> values;
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
// Read the first path piece. This one is special because lookup is performed
// against the base module, rather than against the previous link in the path.
// In particular, operator path pieces represent actual operators here, but
// filters on operator functions when they appear later on.
scratch.clear();
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
case XREF_TYPE_PATH_PIECE:
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
IdentifierID privateDiscriminator = 0;
TypeID TID = 0;
bool isType = (recordID == XREF_TYPE_PATH_PIECE);
bool inProtocolExt = false;
bool importedFromClang = false;
bool isStatic = false;
if (isType)
XRefTypePathPieceLayout::readRecord(scratch, IID, privateDiscriminator,
inProtocolExt, importedFromClang);
else
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt,
importedFromClang, isStatic);
DeclBaseName name = getDeclBaseName(IID);
pathTrace.addValue(name);
if (privateDiscriminator)
pathTrace.addValue(getIdentifier(privateDiscriminator));
Type filterTy;
if (!isType) {
auto maybeType = getTypeChecked(TID);
if (!maybeType) {
// FIXME: Don't throw away the inner error's information.
consumeError(maybeType.takeError());
return llvm::make_error<XRefError>("couldn't decode type",
pathTrace, name);
}
filterTy = maybeType.get();
pathTrace.addType(filterTy);
}
if (privateDiscriminator) {
baseModule->lookupMember(values, baseModule, name,
getIdentifier(privateDiscriminator));
} else {
baseModule->lookupQualified(baseModule, DeclNameRef(name),
NL_QualifiedDefault,
values);
}
filterValues(filterTy, nullptr, nullptr, isType, inProtocolExt,
importedFromClang, isStatic, None, values);
break;
}
case XREF_OPAQUE_RETURN_TYPE_PATH_PIECE: {
IdentifierID DefiningDeclNameID;
XRefOpaqueReturnTypePathPieceLayout::readRecord(scratch, DefiningDeclNameID);
auto name = getIdentifier(DefiningDeclNameID);
pathTrace.addOpaqueReturnType(name);
if (auto opaque = baseModule->lookupOpaqueResultType(name.str())) {
values.push_back(opaque);
}
break;
}
case XREF_EXTENSION_PATH_PIECE:
llvm_unreachable("can only extend a nominal");
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
IdentifierID IID;
uint8_t rawOpKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, IID, rawOpKind);
Identifier opName = getIdentifier(IID);
pathTrace.addOperator(opName);
auto &ctx = getContext();
auto desc = OperatorLookupDescriptor::forModule(baseModule, opName);
switch (rawOpKind) {
case OperatorKind::Infix:
case OperatorKind::Prefix:
case OperatorKind::Postfix: {
auto req = DirectOperatorLookupRequest{
desc, getASTOperatorFixity(static_cast<OperatorKind>(rawOpKind))};
auto results = evaluateOrDefault(ctx.evaluator, req, {});
if (results.size() != 1) {
return llvm::make_error<XRefError>("operator not found", pathTrace,
opName);
}
return results[0];
}
case OperatorKind::PrecedenceGroup: {
auto results = evaluateOrDefault(
ctx.evaluator, DirectPrecedenceGroupLookupRequest{desc}, {});
if (results.size() != 1) {
return llvm::make_error<XRefError>("precedencegroup not found",
pathTrace, opName);
}
return results[0];
}
default:
// Unknown operator kind.
fatal();
}
llvm_unreachable("Unhandled case in switch!");
}
case XREF_GENERIC_PARAM_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE:
llvm_unreachable("only in a nominal or function");
default:
// Unknown xref kind.
pathTrace.addUnknown(recordID);
fatal();
}
auto getXRefDeclNameForError = [&]() -> DeclName {
DeclName result = pathTrace.getLastName();
while (--pathLen) {
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
return Identifier();
scratch.clear();
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
IdentifierID IID;
XRefTypePathPieceLayout::readRecord(scratch, IID, None, None, None);
result = getIdentifier(IID);
break;
}
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
XRefValuePathPieceLayout::readRecord(scratch, None, IID, None, None,
None);
result = getIdentifier(IID);
break;
}
case XREF_OPAQUE_RETURN_TYPE_PATH_PIECE: {
IdentifierID IID;
XRefOpaqueReturnTypePathPieceLayout::readRecord(scratch, IID);
auto mangledName = getIdentifier(IID);
SmallString<64> buf;
{
llvm::raw_svector_ostream os(buf);
os << "<<opaque return type of ";
os << mangledName.str();
os << ">>";
}
result = getContext().getIdentifier(buf);
break;
}
case XREF_INITIALIZER_PATH_PIECE:
result = DeclBaseName::createConstructor();
break;
case XREF_EXTENSION_PATH_PIECE:
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE:
break;
case XREF_GENERIC_PARAM_PATH_PIECE:
// Can't get the name without deserializing.
result = Identifier();
break;
default:
// Unknown encoding.
return Identifier();
}
}
return result;
};
if (values.empty()) {
// Couldn't resolve the reference. Try to explain the problem and leave it
// up to the caller to recover if possible.
// Look for types and value decls in other modules. This extra information
// is mostly for compiler engineers to understand a likely solution at a
// quick glance.
SmallVector<char> strScratch;
SmallVector<std::string, 2> notes;
auto declName = getXRefDeclNameForError();
if (recordID == XREF_TYPE_PATH_PIECE ||
recordID == XREF_VALUE_PATH_PIECE) {
auto &ctx = getContext();
for (auto nameAndModule : ctx.getLoadedModules()) {
auto baseModule = nameAndModule.second;
IdentifierID IID;
IdentifierID privateDiscriminator = 0;
TypeID TID = 0;
bool isType = (recordID == XREF_TYPE_PATH_PIECE);
bool inProtocolExt = false;
bool importedFromClang = false;
bool isStatic = false;
if (isType) {
XRefTypePathPieceLayout::readRecord(scratch, IID, privateDiscriminator,
inProtocolExt, importedFromClang);
} else {
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt,
importedFromClang, isStatic);
}
DeclBaseName name = getDeclBaseName(IID);
Type filterTy;
if (!isType) {
auto maybeType = getTypeChecked(TID);
// Any error here would have been handled previously.
if (maybeType) {
filterTy = maybeType.get();
}
}
values.clear();
if (privateDiscriminator) {
baseModule->lookupMember(values, baseModule, name,
getIdentifier(privateDiscriminator));
} else {
baseModule->lookupQualified(baseModule, DeclNameRef(name),
NL_QualifiedDefault,
values);
}
bool hadAMatchBeforeFiltering = !values.empty();
filterValues(filterTy, nullptr, nullptr, isType, inProtocolExt,
importedFromClang, isStatic, None, values);
strScratch.clear();
if (!values.empty()) {
// Found a full match in a different module. It should be a different
// one because otherwise it would have succeeded on the first search.
// This is usually caused by the use of poorly modularized headers.
auto line = "There is a matching '" +
declName.getString(strScratch).str() +
"' in module '" +
std::string(nameAndModule.first.str()) +
"'. If this is imported from clang, please make sure " +
"the header is part of a single clang module.";
notes.emplace_back(line);
} else if (hadAMatchBeforeFiltering) {
// Found a match that was filtered out. This may be from the same
// expected module if there's a type difference. This can be caused
// by the use of different Swift language versions between a library
// with serialized SIL and a client.
auto line = "'" +
declName.getString(strScratch).str() +
"' in module '" +
std::string(nameAndModule.first.str()) +
"' was filtered out.";
notes.emplace_back(line);
}
}
}
return llvm::make_error<XRefError>("top-level value not found", pathTrace,
declName, notes);
}
// Filters for values discovered in the remaining path pieces.
ModuleDecl *M = nullptr;
CanGenericSignature genericSig = CanGenericSignature();
// For remaining path pieces, filter or drill down into the results we have.
while (--pathLen) {
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
scratch.clear();
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
if (values.size() == 1 && isa<NominalTypeDecl>(values.front())) {
// Fast path for nested types that avoids deserializing all
// members of the parent type.
IdentifierID IID;
IdentifierID privateDiscriminator;
bool importedFromClang = false;
bool inProtocolExt = false;
XRefTypePathPieceLayout::readRecord(scratch, IID, privateDiscriminator,
inProtocolExt, importedFromClang);
if (privateDiscriminator)
goto giveUpFastPath;
Identifier memberName = getIdentifier(IID);
pathTrace.addValue(memberName);
auto *baseType = cast<NominalTypeDecl>(values.front());
ModuleDecl *extensionModule = M;
if (!extensionModule)
extensionModule = baseType->getModuleContext();
// Fault in extensions, then ask every file in the module.
// We include the current file in the search because the cross reference
// may involve a nested type of this file.
(void)baseType->getExtensions();
auto *nestedType =
findNestedTypeDeclInModule(extensionModule, memberName, baseType);
// For clang module units, also search tables in the overlays.
if (!nestedType) {
if (auto LF =
dyn_cast<LoadedFile>(baseType->getModuleScopeContext())) {
if (auto overlayModule = LF->getOverlayModule()) {
nestedType = findNestedTypeDeclInModule(getFile(), overlayModule,
memberName, baseType);
} else if (LF->getParentModule() != extensionModule) {
nestedType = findNestedTypeDeclInModule(getFile(),
LF->getParentModule(),
memberName, baseType);
}
}
}
if (nestedType) {
SmallVector<ValueDecl *, 1> singleValueBuffer{nestedType};
filterValues(/*expectedTy*/Type(), extensionModule, genericSig,
/*isType*/true, inProtocolExt, importedFromClang,
/*isStatic*/false, /*ctorInit*/None, singleValueBuffer);
if (!singleValueBuffer.empty()) {
values.assign({nestedType});
++NumNestedTypeShortcuts;
break;
}
}
pathTrace.removeLast();
}
giveUpFastPath:
LLVM_FALLTHROUGH;
}
case XREF_VALUE_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE: {
TypeID TID = 0;
DeclBaseName memberName;
Identifier privateDiscriminator;
Optional<swift::CtorInitializerKind> ctorInit;
bool isType = false;
bool inProtocolExt = false;
bool importedFromClang = false;
bool isStatic = false;
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
IdentifierID IID, discriminatorID;
XRefTypePathPieceLayout::readRecord(scratch, IID, discriminatorID,
inProtocolExt, importedFromClang);
memberName = getDeclBaseName(IID);
privateDiscriminator = getIdentifier(discriminatorID);
isType = true;
break;
}
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt,
importedFromClang, isStatic);
memberName = getDeclBaseName(IID);
break;
}
case XREF_INITIALIZER_PATH_PIECE: {
uint8_t kind;
XRefInitializerPathPieceLayout::readRecord(scratch, TID, inProtocolExt,
importedFromClang, kind);
memberName = DeclBaseName::createConstructor();
ctorInit = getActualCtorInitializerKind(kind);
break;
}
default:
llvm_unreachable("Unhandled path piece");
}
pathTrace.addValue(memberName);
if (!privateDiscriminator.empty())
pathTrace.addPrivateDiscriminator(privateDiscriminator);
Type filterTy;
if (!isType) {
auto maybeType = getTypeChecked(TID);
if (!maybeType) {
// FIXME: Don't throw away the inner error's information.
consumeError(maybeType.takeError());
return llvm::make_error<XRefError>("couldn't decode type",
pathTrace, memberName);
}
filterTy = maybeType.get();
pathTrace.addType(filterTy);
}
if (values.size() != 1) {
return llvm::make_error<XRefError>("multiple matching base values",
pathTrace,
getXRefDeclNameForError());
}
auto nominal = dyn_cast<NominalTypeDecl>(values.front());
values.clear();
if (!nominal) {
return llvm::make_error<XRefError>("base is not a nominal type",
pathTrace,
getXRefDeclNameForError());
}
if (memberName.getKind() == DeclBaseName::Kind::Destructor) {
assert(isa<ClassDecl>(nominal));
// Force creation of an implicit destructor
auto CD = dyn_cast<ClassDecl>(nominal);
values.push_back(CD->getDestructor());
break;
}
if (!privateDiscriminator.empty()) {
ModuleDecl *searchModule = M;
if (!searchModule)
searchModule = nominal->getModuleContext();
searchModule->lookupMember(values, nominal, memberName,
privateDiscriminator);
} else {
auto members = nominal->lookupDirect(memberName);
values.append(members.begin(), members.end());
}
filterValues(filterTy, M, genericSig, isType, inProtocolExt,
importedFromClang, isStatic, ctorInit, values);
break;
}
case XREF_EXTENSION_PATH_PIECE: {
ModuleID ownerID;
GenericSignatureID rawGenericSig;
XRefExtensionPathPieceLayout::readRecord(scratch, ownerID, rawGenericSig);
M = getModule(ownerID);
if (!M) {
return llvm::make_error<XRefError>("module is not loaded",
pathTrace, getIdentifier(ownerID));
}
pathTrace.addExtension(M);
// Read the generic signature, if we have one.
genericSig = CanGenericSignature(getGenericSignature(rawGenericSig));
continue;
}
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
uint8_t rawKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, None,
rawKind);
if (values.empty())
break;
if (!values.front()->getBaseName().isOperator()) {
pathTrace.addAccessor(rawKind);
if (auto storage = dyn_cast<AbstractStorageDecl>(values.front())) {
auto actualKind = getActualAccessorKind(rawKind);
if (!actualKind) {
// Unknown accessor kind.
fatal();
}
values.front() = storage->getAccessor(*actualKind);
if (!values.front()) {
return llvm::make_error<XRefError>("missing accessor",
pathTrace,
getXRefDeclNameForError());
}
}
break;
}
pathTrace.addOperatorFilter(rawKind);
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
auto fn = dyn_cast<FuncDecl>(value);
if (!fn)
return true;
if (!fn->getOperatorDecl())
return true;
if (getStableFixity(fn->getOperatorDecl()->getFixity()) != rawKind)
return true;
return false;
});
values.erase(newEnd, values.end());
break;
}
case XREF_GENERIC_PARAM_PATH_PIECE: {
if (values.size() != 1) {
return llvm::make_error<XRefError>("multiple matching base values",
pathTrace,
getXRefDeclNameForError());
}
uint32_t depth, paramIndex;
XRefGenericParamPathPieceLayout::readRecord(scratch, depth, paramIndex);
pathTrace.addGenericParam(paramIndex);
ValueDecl *base = values.front();
GenericSignature currentSig;
if (auto nominal = dyn_cast<NominalTypeDecl>(base)) {
if (genericSig) {
// Find an extension in the requested module that has the
// correct generic signature.
for (auto ext : nominal->getExtensions()) {
if (ext->getModuleContext() == M &&
ext->getGenericSignature().getCanonicalSignature() ==
genericSig) {
currentSig = ext->getGenericSignature();
break;
}
}
assert(currentSig && "Couldn't find constrained extension");
} else {
// Simple case: use the nominal type's generic parameters.
currentSig = nominal->getGenericSignature();
}
} else if (auto alias = dyn_cast<TypeAliasDecl>(base)) {
currentSig = alias->getGenericSignature();
} else if (auto fn = dyn_cast<AbstractFunctionDecl>(base)) {
currentSig = fn->getGenericSignature();
} else if (auto subscript = dyn_cast<SubscriptDecl>(base)) {
currentSig = subscript->getGenericSignature();
} else if (auto opaque = dyn_cast<OpaqueTypeDecl>(base)) {
currentSig = opaque->getGenericSignature();
}
if (!currentSig) {
return llvm::make_error<XRefError>(
"cross-reference to generic param for non-generic type",
pathTrace, getXRefDeclNameForError());
}
bool found = false;
for (auto paramTy : currentSig.getGenericParams()) {
if (paramTy->getIndex() == paramIndex &&
paramTy->getDepth() == depth) {
values.clear();
values.push_back(paramTy->getDecl());
found = true;
break;
}
}
if (!found) {
return llvm::make_error<XRefError>(
"invalid generic argument index or depth",
pathTrace, getXRefDeclNameForError());
}
break;
}
case XREF_OPAQUE_RETURN_TYPE_PATH_PIECE: {
values.clear();
IdentifierID DefiningDeclNameID;
XRefOpaqueReturnTypePathPieceLayout::readRecord(scratch, DefiningDeclNameID);
auto name = getIdentifier(DefiningDeclNameID);
pathTrace.addOpaqueReturnType(name);
auto lookupModule = M ? M : baseModule;
if (auto opaqueTy = lookupModule->lookupOpaqueResultType(name.str())) {
values.push_back(opaqueTy);
}
break;
}
default:
// Unknown xref path piece.
pathTrace.addUnknown(recordID);
fatal();
}
Optional<PrettyStackTraceModuleFile> traceMsg;
if (M != getAssociatedModule()) {
traceMsg.emplace("If you're seeing a crash here, check that your SDK "
"and dependencies match the versions used to build",
*this);
}
if (values.empty()) {
return llvm::make_error<XRefError>("result not found", pathTrace,
getXRefDeclNameForError());
}
// Reset the module filter.
M = nullptr;
genericSig = nullptr;
}
// Make sure we /used/ the last module filter we got.
// This catches the case where the last path piece we saw was an Extension
// path piece, which is not a valid way to end a path. (Cross-references to
// extensions are not allowed because they cannot be uniquely named.)
if (M)
fatal();
// When all is said and done, we should have a single value here to return.
if (values.size() != 1) {
return llvm::make_error<XRefError>("result is ambiguous", pathTrace,
getXRefDeclNameForError());
}
assert(values.front() != nullptr);
return values.front();
}
DeclBaseName ModuleFile::getDeclBaseName(IdentifierID IID) {
if (IID == 0)
return Identifier();
if (IID < NUM_SPECIAL_IDS) {
switch (static_cast<SpecialIdentifierID>(static_cast<uint8_t>(IID))) {
case BUILTIN_MODULE_ID:
case CURRENT_MODULE_ID:
case OBJC_HEADER_MODULE_ID:
llvm_unreachable("Cannot get DeclBaseName of special module id");
case SUBSCRIPT_ID:
return DeclBaseName::createSubscript();
case serialization::CONSTRUCTOR_ID:
return DeclBaseName::createConstructor();
case serialization::DESTRUCTOR_ID:
return DeclBaseName::createDestructor();
case NUM_SPECIAL_IDS:
llvm_unreachable("implementation detail only");
}
}
size_t rawID = IID - NUM_SPECIAL_IDS;
assert(rawID < Identifiers.size() && "invalid identifier ID");
auto &identRecord = Identifiers[rawID];
if (identRecord.Ident.empty()) {
StringRef text = getIdentifierText(IID);
identRecord.Ident = getContext().getIdentifier(text);
}
return identRecord.Ident;
}
Identifier ModuleFile::getIdentifier(IdentifierID IID) {
auto name = getDeclBaseName(IID);
assert(!name.isSpecial());
return name.getIdentifier();
}
StringRef ModuleFile::getIdentifierText(IdentifierID IID) {
if (IID == 0)
return StringRef();
assert(IID >= NUM_SPECIAL_IDS);
size_t rawID = IID - NUM_SPECIAL_IDS;
assert(rawID < Identifiers.size() && "invalid identifier ID");
auto identRecord = Identifiers[rawID];
if (!identRecord.Ident.empty())
return identRecord.Ident.str();
return Core->getIdentifierText(IID);
}
DeclContext *ModuleFile::getLocalDeclContext(LocalDeclContextID DCID) {
assert(DCID != 0 && "invalid local DeclContext ID 0");
auto &declContextOrOffset = LocalDeclContexts[DCID-1];
if (declContextOrOffset.isComplete())
return declContextOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(declContextOrOffset));
llvm::BitstreamEntry entry = fatalIfUnexpected(DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch(recordID) {
case decls_block::ABSTRACT_CLOSURE_EXPR_CONTEXT: {
TypeID closureTypeID;
unsigned discriminator = 0;
bool implicit = false;
DeclContextID parentID;
decls_block::AbstractClosureExprLayout::readRecord(scratch,
closureTypeID,
implicit,
discriminator,
parentID);
DeclContext *parent = getDeclContext(parentID);
auto type = getType(closureTypeID);
declContextOrOffset = new (ctx)
SerializedAbstractClosureExpr(type, implicit, discriminator, parent);
break;
}
case decls_block::TOP_LEVEL_CODE_DECL_CONTEXT: {
DeclContextID parentID;
decls_block::TopLevelCodeDeclContextLayout::readRecord(scratch,
parentID);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx) SerializedTopLevelCodeDeclContext(parent);
break;
}
case decls_block::PATTERN_BINDING_INITIALIZER_CONTEXT: {
DeclID bindingID;
uint32_t bindingIndex;
decls_block::PatternBindingInitializerLayout::readRecord(scratch,
bindingID,
bindingIndex);
auto decl = getDecl(bindingID);
PatternBindingDecl *binding = cast<PatternBindingDecl>(decl);
if (!declContextOrOffset.isComplete())
declContextOrOffset = new (ctx)
SerializedPatternBindingInitializer(binding, bindingIndex);
if (!blobData.empty())
binding->setInitStringRepresentation(bindingIndex, blobData);
break;
}
case decls_block::DEFAULT_ARGUMENT_INITIALIZER_CONTEXT: {
DeclContextID parentID;
unsigned index = 0;
decls_block::DefaultArgumentInitializerLayout::readRecord(scratch,
parentID,
index);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx)
SerializedDefaultArgumentInitializer(index, parent);
break;
}
default:
llvm_unreachable("Unknown record ID found when reading local DeclContext.");
}
return declContextOrOffset;
}
DeclContext *ModuleFile::getDeclContext(DeclContextID DCID) {
auto deserialized = getDeclContextChecked(DCID);
if (!deserialized) {
fatal(deserialized.takeError());
}
return deserialized.get();
}
Expected<DeclContext *> ModuleFile::getDeclContextChecked(DeclContextID DCID) {
if (!DCID)
return FileContext;
if (Optional<LocalDeclContextID> contextID = DCID.getAsLocalDeclContextID())
return getLocalDeclContext(contextID.getValue());
auto deserialized = getDeclChecked(DCID.getAsDeclID().getValue());
if (!deserialized)
return deserialized.takeError();
auto D = deserialized.get();
if (auto GTD = dyn_cast<GenericTypeDecl>(D))
return GTD;
if (auto ED = dyn_cast<ExtensionDecl>(D))
return ED;
if (auto AFD = dyn_cast<AbstractFunctionDecl>(D))
return AFD;
if (auto SD = dyn_cast<SubscriptDecl>(D))
return SD;
if (auto EED = dyn_cast<EnumElementDecl>(D))
return EED;
llvm_unreachable("Unknown Decl : DeclContext kind");
}
ModuleDecl *ModuleFile::getModule(ModuleID MID) {
if (MID < NUM_SPECIAL_IDS) {
switch (static_cast<SpecialIdentifierID>(static_cast<uint8_t>(MID))) {
case BUILTIN_MODULE_ID:
return getContext().TheBuiltinModule;
case CURRENT_MODULE_ID:
return FileContext->getParentModule();
case OBJC_HEADER_MODULE_ID: {
auto clangImporter =
static_cast<ClangImporter *>(getContext().getClangModuleLoader());
return clangImporter->getImportedHeaderModule();
}
case SUBSCRIPT_ID:
case CONSTRUCTOR_ID:
case DESTRUCTOR_ID:
llvm_unreachable("Modules cannot be named with special names");
case NUM_SPECIAL_IDS:
llvm_unreachable("implementation detail only");
}
}
return getModule(ImportPath::Module::Builder(getIdentifier(MID)).get(),
getContext().LangOpts.AllowDeserializingImplementationOnly);
}
ModuleDecl *ModuleFile::getModule(ImportPath::Module name,
bool allowLoading) {
if (name.empty() || name.front().Item.empty())
return getContext().TheBuiltinModule;
// FIXME: duplicated from ImportResolver::getModule
if (name.size() == 1 &&
name.front().Item == FileContext->getParentModule()->getName()) {
if (!UnderlyingModule && allowLoading) {
auto importer = getContext().getClangModuleLoader();
assert(importer && "no way to import shadowed module");
UnderlyingModule =
importer->loadModule(SourceLoc(), name.getTopLevelPath());
}
return UnderlyingModule;
}
if (allowLoading)
return getContext().getModule(name);
return getContext().getLoadedModule(name);
}
/// Translate from the Serialization associativity enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::Associativity> getActualAssociativity(uint8_t assoc) {
switch (assoc) {
case serialization::Associativity::LeftAssociative:
return swift::Associativity::Left;
case serialization::Associativity::RightAssociative:
return swift::Associativity::Right;
case serialization::Associativity::NonAssociative:
return swift::Associativity::None;
default:
return None;
}
}
static Optional<swift::StaticSpellingKind>
getActualStaticSpellingKind(uint8_t raw) {
switch (serialization::StaticSpellingKind(raw)) {
case serialization::StaticSpellingKind::None:
return swift::StaticSpellingKind::None;
case serialization::StaticSpellingKind::KeywordStatic:
return swift::StaticSpellingKind::KeywordStatic;
case serialization::StaticSpellingKind::KeywordClass:
return swift::StaticSpellingKind::KeywordClass;
}
return None;
}
static bool isDeclAttrRecord(unsigned ID) {
using namespace decls_block;
switch (ID) {
#define DECL_ATTR(NAME, CLASS, ...) case CLASS##_DECL_ATTR: return true;
#include "DeclTypeRecordNodes.def"
default: return false;
}
}
static Optional<swift::AccessLevel> getActualAccessLevel(uint8_t raw) {
switch (serialization::AccessLevel(raw)) {
#define CASE(NAME) \
case serialization::AccessLevel::NAME: \
return swift::AccessLevel::NAME;
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Public)
CASE(Open)
#undef CASE
}
return None;
}
static Optional<swift::SelfAccessKind>
getActualSelfAccessKind(uint8_t raw) {
switch (serialization::SelfAccessKind(raw)) {
case serialization::SelfAccessKind::NonMutating:
return swift::SelfAccessKind::NonMutating;
case serialization::SelfAccessKind::Mutating:
return swift::SelfAccessKind::Mutating;
case serialization::SelfAccessKind::Consuming:
return swift::SelfAccessKind::Consuming;
}
return None;
}
/// Translate from the serialization VarDeclSpecifier enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::ParamDecl::Specifier>
getActualParamDeclSpecifier(serialization::ParamDeclSpecifier raw) {
switch (raw) {
#define CASE(ID) \
case serialization::ParamDeclSpecifier::ID: \
return swift::ParamDecl::Specifier::ID;
CASE(Default)
CASE(InOut)
CASE(Shared)
CASE(Owned)
}
#undef CASE
return None;
}
static Optional<swift::VarDecl::Introducer>
getActualVarDeclIntroducer(serialization::VarDeclIntroducer raw) {
switch (raw) {
#define CASE(ID) \
case serialization::VarDeclIntroducer::ID: \
return swift::VarDecl::Introducer::ID;
CASE(Let)
CASE(Var)
}
#undef CASE
return None;
}
static Optional<swift::OpaqueReadOwnership>
getActualOpaqueReadOwnership(unsigned rawKind) {
switch (serialization::OpaqueReadOwnership(rawKind)) {
#define CASE(KIND) \
case serialization::OpaqueReadOwnership::KIND: \
return swift::OpaqueReadOwnership::KIND;
CASE(Owned)
CASE(Borrowed)
CASE(OwnedOrBorrowed)
#undef CASE
}
return None;
}
static Optional<swift::ReadImplKind>
getActualReadImplKind(unsigned rawKind) {
switch (serialization::ReadImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::ReadImplKind::KIND: \
return swift::ReadImplKind::KIND;
CASE(Stored)
CASE(Get)
CASE(Inherited)
CASE(Address)
CASE(Read)
#undef CASE
}
return None;
}
static Optional<swift::WriteImplKind>
getActualWriteImplKind(unsigned rawKind) {
switch (serialization::WriteImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::WriteImplKind::KIND: \
return swift::WriteImplKind::KIND;
CASE(Immutable)
CASE(Stored)
CASE(Set)
CASE(StoredWithObservers)
CASE(InheritedWithObservers)
CASE(MutableAddress)
CASE(Modify)
#undef CASE
}
return None;
}
static Optional<swift::ReadWriteImplKind>
getActualReadWriteImplKind(unsigned rawKind) {
switch (serialization::ReadWriteImplKind(rawKind)) {
#define CASE(KIND) \
case serialization::ReadWriteImplKind::KIND: \
return swift::ReadWriteImplKind::KIND;
CASE(Immutable)
CASE(Stored)
CASE(MutableAddress)
CASE(MaterializeToTemporary)
CASE(Modify)
CASE(StoredWithDidSet)
CASE(InheritedWithDidSet)
#undef CASE
}
return None;
}
/// Translate from the serialization DifferentiabilityKind enumerators, which
/// are guaranteed to be stable, to the AST ones.
static Optional<swift::AutoDiffDerivativeFunctionKind>
getActualAutoDiffDerivativeFunctionKind(uint8_t raw) {
switch (serialization::AutoDiffDerivativeFunctionKind(raw)) {
#define CASE(ID) \
case serialization::AutoDiffDerivativeFunctionKind::ID: \
return {swift::AutoDiffDerivativeFunctionKind::ID};
CASE(JVP)
CASE(VJP)
#undef CASE
}
return None;
}
/// Translate from the Serialization differentiability kind enum values to the
/// AST strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::DifferentiabilityKind>
getActualDifferentiabilityKind(uint8_t diffKind) {
switch (diffKind) {
#define CASE(THE_DK) \
case (uint8_t)serialization::DifferentiabilityKind::THE_DK: \
return swift::DifferentiabilityKind::THE_DK;
CASE(NonDifferentiable)
CASE(Forward)
CASE(Reverse)
CASE(Normal)
CASE(Linear)
#undef CASE
default:
return None;
}
}
void ModuleFile::configureStorage(AbstractStorageDecl *decl,
uint8_t rawOpaqueReadOwnership,
uint8_t rawReadImplKind,
uint8_t rawWriteImplKind,
uint8_t rawReadWriteImplKind,
AccessorRecord &rawIDs) {
auto opaqueReadOwnership =
getActualOpaqueReadOwnership(rawOpaqueReadOwnership);
if (!opaqueReadOwnership)
return;
decl->setOpaqueReadOwnership(*opaqueReadOwnership);
auto readImpl = getActualReadImplKind(rawReadImplKind);
if (!readImpl) return;
auto writeImpl = getActualWriteImplKind(rawWriteImplKind);
if (!writeImpl) return;
auto readWriteImpl = getActualReadWriteImplKind(rawReadWriteImplKind);
if (!readWriteImpl) return;
SmallVector<AccessorDecl*, 8> accessors;
for (DeclID id : rawIDs.IDs) {
auto accessor = dyn_cast_or_null<AccessorDecl>(getDecl(id));
if (!accessor) return;
accessors.push_back(accessor);
}
auto implInfo = StorageImplInfo(*readImpl, *writeImpl, *readWriteImpl);
decl->setImplInfo(implInfo);
if (implInfo.isSimpleStored() && accessors.empty())
return;
// We currently don't serialize these locations.
SourceLoc beginLoc, endLoc;
decl->setAccessors(beginLoc, accessors, endLoc);
}
template <typename T, typename ...Args>
T *ModuleFile::createDecl(Args &&... args) {
// Note that this method is not used for all decl kinds.
static_assert(std::is_base_of<Decl, T>::value, "not a Decl");
return new (getContext()) T(std::forward<Args>(args)...);
}
static const uint64_t lazyConformanceContextDataPositionMask = 0xFFFFFFFFFFFF;
/// Decode the context data for lazily-loaded conformances.
static std::pair<uint64_t, uint64_t> decodeLazyConformanceContextData(
uint64_t contextData) {
return std::make_pair(contextData >> 48,
contextData & lazyConformanceContextDataPositionMask);
}
/// Encode the context data for lazily-loaded conformances.
static uint64_t encodeLazyConformanceContextData(uint64_t numProtocols,
uint64_t bitPosition) {
assert(numProtocols < 0xFFFF);
assert(bitPosition < lazyConformanceContextDataPositionMask);
return (numProtocols << 48) | bitPosition;
}
template <typename DERIVED>
static bool attributeChainContains(DeclAttribute *attr) {
DeclAttributes tempAttrs;
tempAttrs.setRawAttributeChain(attr);
static_assert(std::is_trivially_destructible<DeclAttributes>::value,
"must not try to destroy the attribute chain");
return tempAttrs.hasAttribute<DERIVED>();
}
// Set original declaration and parameter indices in `@differentiable`
// attributes.
//
// Serializing/deserializing the original declaration DeclID in
// `@differentiable` attributes does not work because it causes
// `@differentiable` attribute deserialization to enter an infinite loop.
//
// Instead, call this ad-hoc function after deserializing a declaration to set
// the original declaration and parameter indices for its `@differentiable`
// attributes.
static void setOriginalDeclarationAndParameterIndicesInDifferentiableAttributes(
Decl *decl, DeclAttribute *attrs,
llvm::DenseMap<DifferentiableAttr *, IndexSubset *>
&diffAttrParamIndicesMap) {
DeclAttributes tempAttrs;
tempAttrs.setRawAttributeChain(attrs);
for (auto *attr : tempAttrs.getAttributes<DifferentiableAttr>()) {
auto *diffAttr = const_cast<DifferentiableAttr *>(attr);
diffAttr->setOriginalDeclaration(decl);
diffAttr->setParameterIndices(diffAttrParamIndicesMap[diffAttr]);
}
}
Decl *ModuleFile::getDecl(DeclID DID) {
Expected<Decl *> deserialized = getDeclChecked(DID);
if (!deserialized) {
fatal(deserialized.takeError());
}
return deserialized.get();
}
/// Used to split up methods that would otherwise live in ModuleFile.
namespace swift {
class DeclDeserializer {
template <typename T>
using Serialized = ModuleFile::Serialized<T>;
using TypeID = serialization::TypeID;
ModuleFile &MF;
ASTContext &ctx;
Serialized<Decl *> &declOrOffset;
bool IsInvalid = false;
DeclAttribute *DAttrs = nullptr;
DeclAttribute **AttrsNext = &DAttrs;
Identifier privateDiscriminator;
unsigned localDiscriminator = 0;
StringRef filenameForPrivate;
// Auxiliary map for deserializing `@differentiable` attributes.
llvm::DenseMap<DifferentiableAttr *, IndexSubset *> diffAttrParamIndicesMap;
void AddAttribute(DeclAttribute *Attr) {
// Advance the linked list.
// This isn't just using DeclAttributes because that would result in the
// attributes getting reversed.
// FIXME: If we reverse them at serialization time we could get rid of this.
*AttrsNext = Attr;
AttrsNext = Attr->getMutableNext();
};
void handleInherited(llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl,
ArrayRef<uint64_t> rawInheritedIDs) {
SmallVector<InheritedEntry, 2> inheritedTypes;
for (auto rawID : rawInheritedIDs) {
// The low bit indicates "@unchecked".
bool isUnchecked = rawID & 0x01;
TypeID typeID = rawID >> 1;
auto maybeType = MF.getTypeChecked(typeID);
if (!maybeType) {
llvm::consumeError(maybeType.takeError());
continue;
}
inheritedTypes.push_back(
InheritedEntry(TypeLoc::withoutLoc(maybeType.get()), isUnchecked));
}
auto inherited = ctx.AllocateCopy(inheritedTypes);
if (auto *typeDecl = decl.dyn_cast<TypeDecl *>())
typeDecl->setInherited(inherited);
else
decl.get<ExtensionDecl *>()->setInherited(inherited);
}
public:
DeclDeserializer(ModuleFile &MF, Serialized<Decl *> &declOrOffset)
: MF(MF), ctx(MF.getContext()), declOrOffset(declOrOffset) {}
~DeclDeserializer() {
if (!declOrOffset.isComplete()) {
// We failed to deserialize this declaration.
return;
}
Decl *decl = declOrOffset.get();
if (!decl)
return;
if (IsInvalid) {
decl->setInvalidBit();
DeclName name;
if (auto *VD = dyn_cast<ValueDecl>(decl)) {
name = VD->getName();
}
auto diagId = MF.allowCompilerErrors()
? diag::serialization_allowing_invalid_decl
: diag::serialization_invalid_decl;
ctx.Diags.diagnose(SourceLoc(), diagId, name,
decl->getDescriptiveKind(),
MF.getAssociatedModule()->getNameStr());
}
if (DAttrs)
decl->getAttrs().setRawAttributeChain(DAttrs);
if (auto value = dyn_cast<ValueDecl>(decl)) {
if (!privateDiscriminator.empty())
MF.PrivateDiscriminatorsByValue[value] = privateDiscriminator;
if (localDiscriminator != 0)
value->setLocalDiscriminator(localDiscriminator);
if (!filenameForPrivate.empty())
MF.FilenamesForPrivateValues[value] = filenameForPrivate;
}
}
/// Deserializes records common to all decls from \c MF.DeclTypesCursor (ie.
/// the invalid flag, attributes, and discriminators)
llvm::Error deserializeDeclCommon();
Expected<Decl *> getDeclCheckedImpl(
llvm::function_ref<bool(DeclAttributes)> matchAttributes = nullptr);
Expected<Decl *> deserializeTypeAlias(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
TypeID underlyingTypeID, interfaceTypeID;
bool isImplicit;
GenericSignatureID genericSigID;
uint8_t rawAccessLevel;
ArrayRef<uint64_t> dependencyIDs;
decls_block::TypeAliasLayout::readRecord(scratch, nameID, contextID,
underlyingTypeID, interfaceTypeID,
isImplicit, genericSigID,
rawAccessLevel, dependencyIDs);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID : dependencyIDs) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DC = MF.getDeclContext(contextID);
auto genericParams = MF.maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto alias = MF.createDecl<TypeAliasDecl>(SourceLoc(), SourceLoc(), name,
SourceLoc(), genericParams, DC);
declOrOffset = alias;
auto genericSig = MF.getGenericSignature(genericSigID);
alias->setGenericSignature(genericSig);
auto underlying = MF.getType(underlyingTypeID);
alias->setUnderlyingType(underlying);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
alias->setAccess(*accessLevel);
else
MF.fatal();
if (isImplicit)
alias->setImplicit();
return alias;
}
Expected<Decl *>
deserializeGenericTypeParamDecl(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
bool isImplicit;
unsigned depth;
unsigned index;
decls_block::GenericTypeParamDeclLayout::readRecord(scratch, nameID,
isImplicit,
depth,
index);
// Always create GenericTypeParamDecls in the associated file; the real
// context will reparent them.
auto *DC = MF.getFile();
auto genericParam = MF.createDecl<GenericTypeParamDecl>(
DC, MF.getIdentifier(nameID), SourceLoc(), depth, index);
declOrOffset = genericParam;
if (isImplicit)
genericParam->setImplicit();
return genericParam;
}
Expected<Decl *>
deserializeAssociatedTypeDecl(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
TypeID defaultDefinitionID;
bool isImplicit;
ArrayRef<uint64_t> rawOverriddenIDs;
decls_block::AssociatedTypeDeclLayout::readRecord(scratch, nameID,
contextID,
defaultDefinitionID,
isImplicit,
rawOverriddenIDs);
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// The where-clause information is pushed up into the protocol
// (specifically, into its requirement signature) and
// serialized/deserialized there, so the actual Decl doesn't need to store
// it.
TrailingWhereClause *trailingWhere = nullptr;
auto assocType = MF.createDecl<AssociatedTypeDecl>(
DC, SourceLoc(), MF.getIdentifier(nameID), SourceLoc(), trailingWhere,
&MF, defaultDefinitionID);
declOrOffset = assocType;
assert(!assocType->getDeclaredInterfaceType()->hasError() &&
"erroneous associated type");
AccessLevel parentAccess = cast<ProtocolDecl>(DC)->getFormalAccess();
assocType->setAccess(std::max(parentAccess, AccessLevel::Internal));
if (isImplicit)
assocType->setImplicit();
// Overridden associated types.
SmallVector<ValueDecl *, 2> overriddenAssocTypes;
for (auto overriddenID : rawOverriddenIDs) {
if (auto overriddenAssocType =
dyn_cast_or_null<AssociatedTypeDecl>(MF.getDecl(overriddenID))) {
overriddenAssocTypes.push_back(overriddenAssocType);
}
}
assocType->setOverriddenDecls(overriddenAssocTypes);
return assocType;
}
Expected<Decl *> deserializeStruct(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
bool isObjC;
GenericSignatureID genericSigID;
uint8_t rawAccessLevel;
unsigned numConformances, numInheritedTypes;
ArrayRef<uint64_t> rawInheritedAndDependencyIDs;
decls_block::StructLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, genericSigID,
rawAccessLevel,
numConformances, numInheritedTypes,
rawInheritedAndDependencyIDs);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID :
rawInheritedAndDependencyIDs.slice(numInheritedTypes)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = MF.maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theStruct = MF.createDecl<StructDecl>(SourceLoc(), name, SourceLoc(),
None, genericParams, DC);
declOrOffset = theStruct;
// Read the generic environment.
theStruct->setGenericSignature(MF.getGenericSignature(genericSigID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
theStruct->setAccess(*accessLevel);
else
MF.fatal();
theStruct->setAddedImplicitInitializers();
if (isImplicit)
theStruct->setImplicit();
theStruct->setIsObjC(isObjC);
handleInherited(theStruct,
rawInheritedAndDependencyIDs.slice(0, numInheritedTypes));
theStruct->setMemberLoader(&MF, MF.DeclTypeCursor.GetCurrentBitNo());
skipRecord(MF.DeclTypeCursor, decls_block::MEMBERS);
theStruct->setConformanceLoader(
&MF,
encodeLazyConformanceContextData(numConformances,
MF.DeclTypeCursor.GetCurrentBitNo()));
return theStruct;
}
Expected<Decl *> deserializeConstructor(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclContextID contextID;
bool isIUO, isFailable;
bool isImplicit, isObjC, hasStubImplementation, throws, async;
GenericSignatureID genericSigID;
uint8_t storedInitKind, rawAccessLevel;
DeclID overriddenID;
bool needsNewVTableEntry, firstTimeRequired;
unsigned numArgNames;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::ConstructorLayout::readRecord(scratch, contextID,
isFailable, isIUO, isImplicit,
isObjC, hasStubImplementation,
async, throws, storedInitKind,
genericSigID,
overriddenID,
rawAccessLevel,
needsNewVTableEntry,
firstTimeRequired,
numArgNames,
argNameAndDependencyIDs);
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(0, numArgNames))
argNames.push_back(MF.getIdentifier(argNameID));
DeclName name(ctx, DeclBaseName::createConstructor(), argNames);
PrettySupplementalDeclNameTrace trace(name);
Optional<swift::CtorInitializerKind> initKind =
getActualCtorInitializerKind(storedInitKind);
DeclDeserializationError::Flags errorFlags;
unsigned numVTableEntries = 0;
if (initKind == CtorInitializerKind::Designated)
errorFlags |= DeclDeserializationError::DesignatedInitializer;
if (needsNewVTableEntry) {
numVTableEntries = 1;
DeclAttributes attrs;
attrs.setRawAttributeChain(DAttrs);
}
auto overridden = MF.getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(
name, errorFlags, numVTableEntries);
}
for (auto dependencyID : argNameAndDependencyIDs.slice(numArgNames)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()),
errorFlags, numVTableEntries);
}
}
auto parent = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *genericParams = MF.maybeReadGenericParams(parent);
if (declOrOffset.isComplete())
return declOrOffset;
auto ctor = MF.createDecl<ConstructorDecl>(name, SourceLoc(), isFailable,
/*FailabilityLoc=*/SourceLoc(),
/*Async=*/async,
/*AsyncLoc=*/SourceLoc(),
/*Throws=*/throws,
/*ThrowsLoc=*/SourceLoc(),
/*BodyParams=*/nullptr,
genericParams, parent);
declOrOffset = ctor;
ctor->setGenericSignature(MF.getGenericSignature(genericSigID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
ctor->setAccess(*accessLevel);
else
MF.fatal();
auto *bodyParams = MF.readParameterList();
assert(bodyParams && "missing parameters for constructor");
ctor->setParameters(bodyParams);
if (auto errorConvention = MF.maybeReadForeignErrorConvention())
ctor->setForeignErrorConvention(*errorConvention);
if (auto asyncConvention = MF.maybeReadForeignAsyncConvention())
ctor->setForeignAsyncConvention(*asyncConvention);
if (auto bodyText = MF.maybeReadInlinableBodyText())
ctor->setBodyStringRepresentation(*bodyText);
if (isImplicit)
ctor->setImplicit();
ctor->setIsObjC(isObjC);
if (hasStubImplementation)
ctor->setStubImplementation(true);
if (initKind.hasValue())
ctx.evaluator.cacheOutput(InitKindRequest{ctor},
std::move(initKind.getValue()));
ctx.evaluator.cacheOutput(NeedsNewVTableEntryRequest{ctor},
std::move(needsNewVTableEntry));
ctor->setOverriddenDecl(cast_or_null<ConstructorDecl>(overridden.get()));
if (auto *overridden = ctor->getOverriddenDecl()) {
if (!attributeChainContains<RequiredAttr>(DAttrs) ||
!overridden->isRequired()) {
// FIXME: why is a convenience init considered overridden when the
// overriding init can't be marked overriding in source?
if (!overridden->isConvenienceInit())
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
}
ctor->setImplicitlyUnwrappedOptional(isIUO);
return ctor;
}
Expected<Decl *> deserializeVar(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC, isStatic;
uint8_t rawIntroducer;
bool isGetterMutating, isSetterMutating;
bool isLazyStorageProperty;
bool isTopLevelGlobal;
DeclID lazyStorageID;
unsigned numAccessors, numBackingProperties;
uint8_t readImpl, writeImpl, readWriteImpl, opaqueReadOwnership;
uint8_t rawAccessLevel, rawSetterAccessLevel;
TypeID interfaceTypeID;
bool isIUO;
ModuleFile::AccessorRecord accessors;
DeclID overriddenID, opaqueReturnTypeID;
unsigned numVTableEntries;
ArrayRef<uint64_t> arrayFieldIDs;
decls_block::VarLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, isStatic, rawIntroducer,
isGetterMutating, isSetterMutating,
isLazyStorageProperty,
isTopLevelGlobal,
lazyStorageID,
opaqueReadOwnership,
readImpl, writeImpl, readWriteImpl,
numAccessors,
interfaceTypeID,
isIUO,
overriddenID,
rawAccessLevel, rawSetterAccessLevel,
opaqueReturnTypeID,
numBackingProperties,
numVTableEntries,
arrayFieldIDs);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
auto getErrorFlags = [&]() {
// Stored properties in classes still impact class object layout because
// their offset is computed and stored in the field offset vector.
DeclDeserializationError::Flags errorFlags;
if (!isStatic) {
auto actualReadImpl = getActualReadImplKind(readImpl);
if (actualReadImpl && *actualReadImpl == ReadImplKind::Stored) {
errorFlags |= DeclDeserializationError::Flag::NeedsFieldOffsetVectorEntry;
}
}
return errorFlags;
};
Expected<Decl *> overridden = MF.getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
return llvm::make_error<OverrideError>(
name, getErrorFlags(), numVTableEntries);
}
// Extract the accessor IDs.
for (DeclID accessorID : arrayFieldIDs.slice(0, numAccessors)) {
accessors.IDs.push_back(accessorID);
}
arrayFieldIDs = arrayFieldIDs.slice(numAccessors);
// Extract the backing property IDs.
auto backingPropertyIDs = arrayFieldIDs.slice(0, numBackingProperties);
arrayFieldIDs = arrayFieldIDs.slice(numBackingProperties);
for (TypeID dependencyID : arrayFieldIDs) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()),
getErrorFlags(), numVTableEntries);
}
}
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto introducer = getActualVarDeclIntroducer(
(serialization::VarDeclIntroducer) rawIntroducer);
if (!introducer)
MF.fatal();
auto var = MF.createDecl<VarDecl>(/*IsStatic*/ isStatic, *introducer,
SourceLoc(), name, DC);
var->setIsGetterMutating(isGetterMutating);
var->setIsSetterMutating(isSetterMutating);
declOrOffset = var;
auto interfaceTypeOrError = MF.getTypeChecked(interfaceTypeID);
if (!interfaceTypeOrError)
return interfaceTypeOrError.takeError();
Type interfaceType = interfaceTypeOrError.get();
var->setInterfaceType(interfaceType);
var->setImplicitlyUnwrappedOptional(isIUO);
if (auto referenceStorage = interfaceType->getAs<ReferenceStorageType>())
AddAttribute(
new (ctx) ReferenceOwnershipAttr(referenceStorage->getOwnership()));
MF.configureStorage(var, opaqueReadOwnership,
readImpl, writeImpl, readWriteImpl, accessors);
auto accessLevel = getActualAccessLevel(rawAccessLevel);
if (!accessLevel)
MF.fatal();
var->setAccess(*accessLevel);
if (var->isSettable(nullptr)) {
auto setterAccess = getActualAccessLevel(rawSetterAccessLevel);
if (!setterAccess)
MF.fatal();
var->setSetterAccess(*setterAccess);
// If we have a less-accessible setter, honor that by adding the
// setter access attribute.
if (*setterAccess < *accessLevel) {
AddAttribute(
new (ctx) SetterAccessAttr(SourceLoc(), SourceLoc(),
*setterAccess, /*implicit*/true));
}
}
if (isImplicit)
var->setImplicit();
var->setIsObjC(isObjC);
var->setOverriddenDecl(cast_or_null<VarDecl>(overridden.get()));
if (var->getOverriddenDecl())
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
// Add the @_hasStorage attribute if this var has storage.
if (var->hasStorage())
AddAttribute(new (ctx) HasStorageAttr(/*isImplicit:*/true));
if (opaqueReturnTypeID) {
ctx.evaluator.cacheOutput(
OpaqueResultTypeRequest{var},
cast<OpaqueTypeDecl>(MF.getDecl(opaqueReturnTypeID)));
}
// If this is a lazy property, record its backing storage.
if (lazyStorageID) {
VarDecl *storage = cast<VarDecl>(MF.getDecl(lazyStorageID));
ctx.evaluator.cacheOutput(
LazyStoragePropertyRequest{var}, std::move(storage));
}
var->setLazyStorageProperty(isLazyStorageProperty);
var->setTopLevelGlobal(isTopLevelGlobal);
// If there are any backing properties, record them.
if (numBackingProperties > 0) {
auto backingDecl = MF.getDeclChecked(backingPropertyIDs[0]);
if (!backingDecl) {
// FIXME: This is actually wrong. We can't just drop stored properties
// willy-nilly if the struct is @frozen.
consumeError(backingDecl.takeError());
return var;
}
VarDecl *backingVar = cast<VarDecl>(backingDecl.get());
VarDecl *projectionVar = nullptr;
if (numBackingProperties > 1) {
projectionVar = cast<VarDecl>(MF.getDecl(backingPropertyIDs[1]));
}
PropertyWrapperAuxiliaryVariables vars(backingVar, projectionVar);
ctx.evaluator.cacheOutput(
PropertyWrapperAuxiliaryVariablesRequest{var}, std::move(vars));
ctx.evaluator.cacheOutput(
PropertyWrapperInitializerInfoRequest{var},
PropertyWrapperInitializerInfo());
ctx.evaluator.cacheOutput(
PropertyWrapperBackingPropertyTypeRequest{var},
backingVar->getInterfaceType());
backingVar->setOriginalWrappedProperty(var);
if (projectionVar)
projectionVar->setOriginalWrappedProperty(var);
}
return var;
}
Expected<Decl *> deserializeParam(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID argNameID, paramNameID;
DeclContextID contextID;
unsigned rawSpecifier;
TypeID interfaceTypeID;
bool isIUO;
bool isVariadic;
bool isAutoClosure;
uint8_t rawDefaultArg;
decls_block::ParamLayout::readRecord(scratch, argNameID, paramNameID,
contextID, rawSpecifier,
interfaceTypeID, isIUO, isVariadic,
isAutoClosure, rawDefaultArg);
auto argName = MF.getIdentifier(argNameID);
auto paramName = MF.getIdentifier(paramNameID);
PrettySupplementalDeclNameTrace trace(paramName);
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto specifier = getActualParamDeclSpecifier(
(serialization::ParamDeclSpecifier)rawSpecifier);
if (!specifier)
MF.fatal();
auto param = MF.createDecl<ParamDecl>(SourceLoc(), SourceLoc(), argName,
SourceLoc(), paramName, DC);
param->setSpecifier(*specifier);
declOrOffset = param;
auto paramTy = MF.getType(interfaceTypeID);
if (paramTy->hasError() && !MF.allowCompilerErrors()) {
// FIXME: This should never happen, because we don't serialize
// error types.
DC->printContext(llvm::errs());
paramTy->dump(llvm::errs());
MF.fatal();
}
param->setInterfaceType(paramTy);
param->setImplicitlyUnwrappedOptional(isIUO);
param->setVariadic(isVariadic);
param->setAutoClosure(isAutoClosure);
// Decode the default argument kind.
// FIXME: Default argument expression, if available.
if (auto defaultArg = getActualDefaultArgKind(rawDefaultArg)) {
param->setDefaultArgumentKind(*defaultArg);
if (!blobData.empty())
param->setDefaultValueStringRepresentation(blobData);
}
return param;
}
Expected<Decl *> deserializeAnyFunc(ArrayRef<uint64_t> scratch,
StringRef blobData,
bool isAccessor) {
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t rawStaticSpelling, rawAccessLevel, rawMutModifier;
uint8_t rawAccessorKind;
bool isObjC, hasForcedStaticDispatch, async, throws;
unsigned numNameComponentsBiased;
GenericSignatureID genericSigID;
TypeID resultInterfaceTypeID;
bool isIUO;
DeclID associatedDeclID;
DeclID overriddenID;
DeclID accessorStorageDeclID;
bool overriddenAffectsABI, needsNewVTableEntry, isTransparent;
DeclID opaqueReturnTypeID;
bool isUserAccessible;
ArrayRef<uint64_t> nameAndDependencyIDs;
if (!isAccessor) {
decls_block::FuncLayout::readRecord(scratch, contextID, isImplicit,
isStatic, rawStaticSpelling, isObjC,
rawMutModifier,
hasForcedStaticDispatch,
async, throws,
genericSigID,
resultInterfaceTypeID,
isIUO,
associatedDeclID, overriddenID,
overriddenAffectsABI,
numNameComponentsBiased,
rawAccessLevel,
needsNewVTableEntry,
opaqueReturnTypeID,
isUserAccessible,
nameAndDependencyIDs);
} else {
decls_block::AccessorLayout::readRecord(scratch, contextID, isImplicit,
isStatic, rawStaticSpelling, isObjC,
rawMutModifier,
hasForcedStaticDispatch,
async, throws,
genericSigID,
resultInterfaceTypeID,
isIUO,
overriddenID,
overriddenAffectsABI,
accessorStorageDeclID,
rawAccessorKind,
rawAccessLevel,
needsNewVTableEntry,
isTransparent,
nameAndDependencyIDs);
}
DeclDeserializationError::Flags errorFlags;
unsigned numVTableEntries = needsNewVTableEntry ? 1 : 0;
// Parse the accessor-specific fields.
AbstractStorageDecl *storage = nullptr;
AccessorKind accessorKind;
if (isAccessor) {
auto storageResult = MF.getDeclChecked(accessorStorageDeclID);
if (!storageResult ||
!(storage =
dyn_cast_or_null<AbstractStorageDecl>(storageResult.get()))) {
// FIXME: "TypeError" isn't exactly correct for this.
return llvm::make_error<TypeError>(
DeclName(), takeErrorInfo(storageResult.takeError()),
errorFlags, numVTableEntries);
}
if (auto accessorKindResult = getActualAccessorKind(rawAccessorKind))
accessorKind = *accessorKindResult;
else
MF.fatal();
// Deserializing the storage declaration will cause a recurrence
// into this code. When we come out, don't create the accessor twice.
// TODO: find some better way of breaking this cycle, like lazily
// deserializing the accessors.
if (auto accessor = storage->getAccessor(accessorKind))
return accessor;
}
// Resolve the name ids.
DeclName name;
ArrayRef<uint64_t> dependencyIDs;
if (isAccessor) {
dependencyIDs = nameAndDependencyIDs;
} else {
Identifier baseName = MF.getIdentifier(nameAndDependencyIDs.front());
if (numNameComponentsBiased != 0) {
SmallVector<Identifier, 2> names;
for (auto nameID : nameAndDependencyIDs.slice(1,
numNameComponentsBiased-1)){
names.push_back(MF.getIdentifier(nameID));
}
name = DeclName(ctx, baseName, names);
dependencyIDs = nameAndDependencyIDs.slice(numNameComponentsBiased);
} else {
name = baseName;
dependencyIDs = nameAndDependencyIDs.drop_front();
}
}
PrettySupplementalDeclNameTrace trace(name);
Expected<Decl *> overriddenOrError = MF.getDeclChecked(overriddenID);
Decl *overridden;
if (overriddenOrError) {
overridden = overriddenOrError.get();
} else {
llvm::consumeError(overriddenOrError.takeError());
if (overriddenAffectsABI || !ctx.LangOpts.EnableDeserializationRecovery) {
return llvm::make_error<OverrideError>(
name, errorFlags, numVTableEntries);
}
overridden = nullptr;
}
for (TypeID dependencyID : dependencyIDs) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()),
errorFlags, numVTableEntries);
}
}
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// Read generic params before reading the type, because the type may
// reference generic parameters, and we want them to have a dummy
// DeclContext for now.
GenericParamList *genericParams = MF.maybeReadGenericParams(DC);
auto staticSpelling = getActualStaticSpellingKind(rawStaticSpelling);
if (!staticSpelling.hasValue())
MF.fatal();
if (declOrOffset.isComplete())
return declOrOffset;
const auto resultType = MF.getType(resultInterfaceTypeID);
if (declOrOffset.isComplete())
return declOrOffset;
FuncDecl *fn;
if (!isAccessor) {
fn = FuncDecl::createDeserialized(ctx, staticSpelling.getValue(), name,
async, throws, genericParams,
resultType, DC);
} else {
auto *accessor = AccessorDecl::createDeserialized(
ctx, accessorKind, storage, staticSpelling.getValue(),
async, throws, genericParams, resultType, DC);
accessor->setIsTransparent(isTransparent);
fn = accessor;
}
declOrOffset = fn;
fn->setGenericSignature(MF.getGenericSignature(genericSigID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
fn->setAccess(*accessLevel);
else
MF.fatal();
if (auto SelfAccessKind = getActualSelfAccessKind(rawMutModifier))
fn->setSelfAccessKind(*SelfAccessKind);
else
MF.fatal();
if (!isAccessor) {
if (Decl *associated = MF.getDecl(associatedDeclID)) {
if (auto op = dyn_cast<OperatorDecl>(associated)) {
ctx.evaluator.cacheOutput(FunctionOperatorRequest{fn},
std::move(op));
if (isa<PrefixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PrefixAttr(/*implicit*/false));
else if (isa<PostfixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PostfixAttr(/*implicit*/false));
// Note that an explicit 'infix' is not required.
}
// Otherwise, unknown associated decl kind.
}
}
fn->setStatic(isStatic);
fn->setImplicitlyUnwrappedOptional(isIUO);
ParameterList *paramList = MF.readParameterList();
fn->setParameters(paramList);
if (auto errorConvention = MF.maybeReadForeignErrorConvention())
fn->setForeignErrorConvention(*errorConvention);
if (auto asyncConvention = MF.maybeReadForeignAsyncConvention())
fn->setForeignAsyncConvention(*asyncConvention);
if (auto bodyText = MF.maybeReadInlinableBodyText())
fn->setBodyStringRepresentation(*bodyText);
fn->setOverriddenDecl(cast_or_null<FuncDecl>(overridden));
if (fn->getOverriddenDecl())
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
if (isImplicit)
fn->setImplicit();
fn->setIsObjC(isObjC);
fn->setForcedStaticDispatch(hasForcedStaticDispatch);
ctx.evaluator.cacheOutput(NeedsNewVTableEntryRequest{fn},
std::move(needsNewVTableEntry));
if (opaqueReturnTypeID) {
ctx.evaluator.cacheOutput(
OpaqueResultTypeRequest{fn},
cast<OpaqueTypeDecl>(MF.getDecl(opaqueReturnTypeID)));
}
if (!isAccessor)
fn->setUserAccessible(isUserAccessible);
return fn;
}
Expected<Decl *> deserializeFunc(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return deserializeAnyFunc(scratch, blobData, /*isAccessor*/false);
}
Expected<Decl *> deserializeAccessor(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return deserializeAnyFunc(scratch, blobData, /*isAccessor*/true);
}
Expected<Decl *> deserializeOpaqueType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID namingDeclID;
DeclContextID contextID;
GenericSignatureID interfaceSigID;
TypeID interfaceTypeID;
GenericSignatureID genericSigID;
SubstitutionMapID underlyingTypeID;
uint8_t rawAccessLevel;
decls_block::OpaqueTypeLayout::readRecord(scratch, contextID,
namingDeclID, interfaceSigID,
interfaceTypeID, genericSigID,
underlyingTypeID, rawAccessLevel);
auto declContext = MF.getDeclContext(contextID);
auto interfaceSig = MF.getGenericSignature(interfaceSigID);
auto interfaceType = MF.getType(interfaceTypeID)
->castTo<GenericTypeParamType>();
// Check for reentrancy.
if (declOrOffset.isComplete())
return cast<OpaqueTypeDecl>(declOrOffset.get());
// Create the decl.
auto opaqueDecl = new (ctx)
OpaqueTypeDecl(/*NamingDecl*/ nullptr,
/*GenericParams*/ nullptr, declContext, interfaceSig,
/*UnderlyingInterfaceTypeRepr*/ nullptr, interfaceType);
declOrOffset = opaqueDecl;
auto namingDecl = cast<ValueDecl>(MF.getDecl(namingDeclID));
opaqueDecl->setNamingDecl(namingDecl);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
opaqueDecl->setAccess(*accessLevel);
else
MF.fatal();
if (auto genericParams = MF.maybeReadGenericParams(opaqueDecl)) {
ctx.evaluator.cacheOutput(GenericParamListRequest{opaqueDecl},
std::move(genericParams));
}
auto genericSig = MF.getGenericSignature(genericSigID);
if (genericSig)
opaqueDecl->setGenericSignature(genericSig);
if (underlyingTypeID) {
auto subMapOrError = MF.getSubstitutionMapChecked(underlyingTypeID);
if (!subMapOrError)
return subMapOrError.takeError();
opaqueDecl->setUnderlyingTypeSubstitutions(subMapOrError.get());
}
SubstitutionMap subs;
if (genericSig) {
subs = genericSig->getIdentitySubstitutionMap();
}
// TODO [OPAQUE SUPPORT]: multiple opaque types
auto opaqueTy = OpaqueTypeArchetypeType::get(opaqueDecl, 0, subs);
auto metatype = MetatypeType::get(opaqueTy);
opaqueDecl->setInterfaceType(metatype);
return opaqueDecl;
}
Expected<Decl *> deserializePatternBinding(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t RawStaticSpelling;
unsigned numPatterns;
ArrayRef<uint64_t> initContextIDs;
decls_block::PatternBindingLayout::readRecord(scratch, contextID,
isImplicit,
isStatic,
RawStaticSpelling,
numPatterns,
initContextIDs);
auto StaticSpelling = getActualStaticSpellingKind(RawStaticSpelling);
if (!StaticSpelling.hasValue())
MF.fatal();
auto dc = MF.getDeclContext(contextID);
SmallVector<std::pair<Pattern *, DeclContextID>, 4> patterns;
for (unsigned i = 0; i != numPatterns; ++i) {
auto pattern = MF.readPattern(dc);
if (!pattern) {
// Silently drop the pattern...
llvm::consumeError(pattern.takeError());
// ...but continue to read any further patterns we're expecting.
continue;
}
patterns.emplace_back(pattern.get(), DeclContextID());
if (!initContextIDs.empty()) {
patterns.back().second =
DeclContextID::getFromOpaqueValue(initContextIDs[i]);
}
}
auto binding =
PatternBindingDecl::createDeserialized(ctx, SourceLoc(),
StaticSpelling.getValue(),
SourceLoc(), patterns.size(), dc);
declOrOffset = binding;
binding->setStatic(isStatic);
if (isImplicit)
binding->setImplicit();
for (unsigned i = 0; i != patterns.size(); ++i) {
DeclContext *initContext = MF.getDeclContext(patterns[i].second);
binding->setPattern(i, patterns[i].first, initContext);
}
return binding;
}
Expected<Decl *> deserializeProtocol(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isClassBounded, isObjC, existentialTypeSupported;
uint8_t rawAccessLevel;
unsigned numInheritedTypes;
ArrayRef<uint64_t> rawInheritedAndDependencyIDs;
decls_block::ProtocolLayout::readRecord(scratch, nameID, contextID,
isImplicit, isClassBounded, isObjC,
existentialTypeSupported,
rawAccessLevel, numInheritedTypes,
rawInheritedAndDependencyIDs);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID :
rawInheritedAndDependencyIDs.slice(numInheritedTypes)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto proto = MF.createDecl<ProtocolDecl>(DC, SourceLoc(), SourceLoc(), name,
None, /*TrailingWhere=*/nullptr);
declOrOffset = proto;
ctx.evaluator.cacheOutput(ProtocolRequiresClassRequest{proto},
std::move(isClassBounded));
ctx.evaluator.cacheOutput(ExistentialTypeSupportedRequest{proto},
std::move(existentialTypeSupported));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
proto->setAccess(*accessLevel);
else
MF.fatal();
auto genericParams = MF.maybeReadGenericParams(DC);
assert(genericParams && "protocol with no generic parameters?");
ctx.evaluator.cacheOutput(GenericParamListRequest{proto},
std::move(genericParams));
handleInherited(proto,
rawInheritedAndDependencyIDs.slice(0, numInheritedTypes));
if (isImplicit)
proto->setImplicit();
proto->setIsObjC(isObjC);
proto->setLazyRequirementSignature(&MF,
MF.DeclTypeCursor.GetCurrentBitNo());
if (llvm::Error Err = skipGenericRequirements(MF.DeclTypeCursor))
MF.fatal(std::move(Err));
proto->setLazyAssociatedTypeMembers(&MF,
MF.DeclTypeCursor.GetCurrentBitNo());
if (llvm::Error Err = skipAssociatedTypeMembers(MF.DeclTypeCursor))
MF.fatal(std::move(Err));
proto->setMemberLoader(&MF, MF.DeclTypeCursor.GetCurrentBitNo());
return proto;
}
template <typename OperatorLayout, typename OperatorDecl>
Expected<Decl *> deserializeUnaryOperator(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
OperatorLayout::readRecord(scratch, nameID, contextID);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
auto DC = MF.getDeclContext(contextID);
auto result = MF.createDecl<OperatorDecl>(
DC, SourceLoc(), name, SourceLoc());
declOrOffset = result;
return result;
}
Expected<Decl *> deserializePrefixOperator(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return deserializeUnaryOperator<decls_block::PrefixOperatorLayout,
PrefixOperatorDecl>(scratch, blobData);
}
Expected<Decl *> deserializePostfixOperator(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return deserializeUnaryOperator<decls_block::PostfixOperatorLayout,
PostfixOperatorDecl>(scratch, blobData);
}
Expected<Decl *> deserializeInfixOperator(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
DeclID precedenceGroupID;
decls_block::InfixOperatorLayout::readRecord(scratch, nameID, contextID,
precedenceGroupID);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
Expected<Decl *> precedenceGroup = MF.getDeclChecked(precedenceGroupID);
if (!precedenceGroup)
return precedenceGroup.takeError();
auto DC = MF.getDeclContext(contextID);
auto result = MF.createDecl<InfixOperatorDecl>(
DC, SourceLoc(), name, SourceLoc(), SourceLoc(), Identifier(),
SourceLoc());
ctx.evaluator.cacheOutput(
OperatorPrecedenceGroupRequest{result},
std::move(cast_or_null<PrecedenceGroupDecl>(precedenceGroup.get())));
declOrOffset = result;
return result;
}
Expected<Decl *> deserializePrecedenceGroup(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
uint8_t rawAssociativity;
bool assignment;
unsigned numHigherThan;
ArrayRef<uint64_t> rawRelations;
decls_block::PrecedenceGroupLayout::readRecord(scratch, nameID, contextID,
rawAssociativity,
assignment, numHigherThan,
rawRelations);
auto DC = MF.getDeclContext(contextID);
auto associativity = getActualAssociativity(rawAssociativity);
if (!associativity.hasValue())
MF.fatal();
if (numHigherThan > rawRelations.size())
MF.fatal();
SmallVector<PrecedenceGroupDecl::Relation, 4> higherThan;
for (auto relID : rawRelations.slice(0, numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(MF.getDecl(relID));
if (!rel)
MF.fatal();
higherThan.push_back({SourceLoc(), rel->getName(), rel});
}
SmallVector<PrecedenceGroupDecl::Relation, 4> lowerThan;
for (auto relID : rawRelations.slice(numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(MF.getDecl(relID));
if (!rel)
MF.fatal();
lowerThan.push_back({SourceLoc(), rel->getName(), rel});
}
declOrOffset = PrecedenceGroupDecl::create(DC, SourceLoc(), SourceLoc(),
MF.getIdentifier(nameID),
SourceLoc(),
SourceLoc(), SourceLoc(),
*associativity,
SourceLoc(), SourceLoc(),
assignment,
SourceLoc(), higherThan,
SourceLoc(), lowerThan,
SourceLoc());
return declOrOffset.get();
}
Expected<Decl *> deserializeClass(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC;
bool isExplicitActorDecl;
bool inheritsSuperclassInitializers;
bool hasMissingDesignatedInits;
GenericSignatureID genericSigID;
TypeID superclassID;
uint8_t rawAccessLevel;
unsigned numConformances, numInheritedTypes;
ArrayRef<uint64_t> rawInheritedAndDependencyIDs;
decls_block::ClassLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC,
isExplicitActorDecl,
inheritsSuperclassInitializers,
hasMissingDesignatedInits,
genericSigID, superclassID,
rawAccessLevel, numConformances,
numInheritedTypes,
rawInheritedAndDependencyIDs);
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID :
rawInheritedAndDependencyIDs.slice(numInheritedTypes)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = MF.maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theClass = MF.createDecl<ClassDecl>(SourceLoc(), name, SourceLoc(),
None, genericParams, DC,
isExplicitActorDecl);
declOrOffset = theClass;
theClass->setGenericSignature(MF.getGenericSignature(genericSigID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
theClass->setAccess(*accessLevel);
else
MF.fatal();
theClass->setAddedImplicitInitializers();
if (isImplicit)
theClass->setImplicit();
theClass->setIsObjC(isObjC);
theClass->setSuperclass(MF.getType(superclassID));
ctx.evaluator.cacheOutput(InheritsSuperclassInitializersRequest{theClass},
std::move(inheritsSuperclassInitializers));
ctx.evaluator.cacheOutput(HasMissingDesignatedInitializersRequest{theClass},
std::move(hasMissingDesignatedInits));
handleInherited(theClass,
rawInheritedAndDependencyIDs.slice(0, numInheritedTypes));
theClass->setMemberLoader(&MF, MF.DeclTypeCursor.GetCurrentBitNo());
skipRecord(MF.DeclTypeCursor, decls_block::MEMBERS);
theClass->setConformanceLoader(
&MF,
encodeLazyConformanceContextData(numConformances,
MF.DeclTypeCursor.GetCurrentBitNo()));
return theClass;
}
Expected<Decl *> deserializeEnum(ArrayRef<uint64_t> scratch,
StringRef blobData) {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
bool isObjC;
GenericSignatureID genericSigID;
TypeID rawTypeID;
uint8_t rawAccessLevel;
unsigned numConformances, numInherited;
ArrayRef<uint64_t> rawInheritedAndDependencyIDs;
decls_block::EnumLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, genericSigID,
rawTypeID, rawAccessLevel,
numConformances, numInherited,
rawInheritedAndDependencyIDs);
if (declOrOffset.isComplete())
return declOrOffset;
Identifier name = MF.getIdentifier(nameID);
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID :
rawInheritedAndDependencyIDs.slice(numInherited)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
auto DCOrError = MF.getDeclContextChecked(contextID);
if (!DCOrError)
return DCOrError.takeError();
auto DC = DCOrError.get();
auto genericParams = MF.maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theEnum = MF.createDecl<EnumDecl>(SourceLoc(), name, SourceLoc(), None,
genericParams, DC);
declOrOffset = theEnum;
theEnum->setGenericSignature(MF.getGenericSignature(genericSigID));
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
theEnum->setAccess(*accessLevel);
else
MF.fatal();
theEnum->setAddedImplicitInitializers();
// @objc enums have all their raw values checked.
if (isObjC) {
theEnum->setHasFixedRawValues();
}
if (isImplicit)
theEnum->setImplicit();
theEnum->setIsObjC(isObjC);
theEnum->setRawType(MF.getType(rawTypeID));
auto rawInheritedIDs = rawInheritedAndDependencyIDs.slice(0, numInherited);
handleInherited(theEnum, rawInheritedIDs);
theEnum->setMemberLoader(&MF, MF.DeclTypeCursor.GetCurrentBitNo());
skipRecord(MF.DeclTypeCursor, decls_block::MEMBERS);
theEnum->setConformanceLoader(
&MF,
encodeLazyConformanceContextData(numConformances,
MF.DeclTypeCursor.GetCurrentBitNo()));
return theEnum;
}
Expected<Decl *> deserializeEnumElement(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclContextID contextID;
bool isImplicit, hasPayload, isRawValueImplicit, isNegative;
unsigned rawValueKindID;
IdentifierID rawValueData;
unsigned numArgNames;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::EnumElementLayout::readRecord(scratch, contextID,
isImplicit, hasPayload,
rawValueKindID,
isRawValueImplicit, isNegative,
rawValueData,
numArgNames,
argNameAndDependencyIDs);
// Resolve the name ids.
Identifier baseName = MF.getIdentifier(argNameAndDependencyIDs.front());
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(1, numArgNames-1))
argNames.push_back(MF.getIdentifier(argNameID));
DeclName compoundName(ctx, baseName, argNames);
DeclName name = argNames.empty() ? baseName : compoundName;
PrettySupplementalDeclNameTrace trace(name);
for (TypeID dependencyID : argNameAndDependencyIDs.slice(numArgNames)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
// Enum elements never introduce missing members in their parent enum.
//
// A frozen enum cannot be laid out if its missing cases anyway,
// so the dependency mechanism ensures the entire enum fails to
// deserialize.
//
// For a resilient enum, we don't care and just drop the element
// and continue.
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()));
}
}
DeclContext *DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto elem = MF.createDecl<EnumElementDecl>(SourceLoc(),
name,
nullptr,
SourceLoc(),
nullptr,
DC);
declOrOffset = elem;
// Read payload parameter list, if it exists.
if (hasPayload) {
auto *paramList = MF.readParameterList();
elem->setParameterList(paramList);
}
// Deserialize the literal raw value, if any.
switch ((EnumElementRawValueKind)rawValueKindID) {
case EnumElementRawValueKind::None:
break;
case EnumElementRawValueKind::IntegerLiteral: {
auto literalText = MF.getIdentifierText(rawValueData);
auto literal = new (ctx) IntegerLiteralExpr(literalText, SourceLoc(),
isRawValueImplicit);
if (isNegative)
literal->setNegative(SourceLoc());
elem->setRawValueExpr(literal);
}
}
if (isImplicit)
elem->setImplicit();
elem->setAccess(std::max(cast<EnumDecl>(DC)->getFormalAccess(),
AccessLevel::Internal));
return elem;
}
Expected<Decl *> deserializeSubscript(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclContextID contextID;
bool isImplicit, isObjC, isGetterMutating, isSetterMutating;
GenericSignatureID genericSigID;
TypeID elemInterfaceTypeID;
bool isIUO;
ModuleFile::AccessorRecord accessors;
DeclID overriddenID, opaqueReturnTypeID;
uint8_t rawAccessLevel, rawSetterAccessLevel, rawStaticSpelling;
uint8_t opaqueReadOwnership, readImpl, writeImpl, readWriteImpl;
unsigned numArgNames, numAccessors;
unsigned numVTableEntries;
ArrayRef<uint64_t> argNameAndDependencyIDs;
decls_block::SubscriptLayout::readRecord(scratch, contextID,
isImplicit, isObjC,
isGetterMutating, isSetterMutating,
opaqueReadOwnership,
readImpl, writeImpl, readWriteImpl,
numAccessors,
genericSigID,
elemInterfaceTypeID,
isIUO,
overriddenID, rawAccessLevel,
rawSetterAccessLevel,
rawStaticSpelling, numArgNames,
opaqueReturnTypeID,
numVTableEntries,
argNameAndDependencyIDs);
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameAndDependencyIDs.slice(0, numArgNames))
argNames.push_back(MF.getIdentifier(argNameID));
DeclName name(ctx, DeclBaseName::createSubscript(), argNames);
PrettySupplementalDeclNameTrace trace(name);
argNameAndDependencyIDs = argNameAndDependencyIDs.slice(numArgNames);
// Exctract the accessor IDs.
for (DeclID accessorID : argNameAndDependencyIDs.slice(0, numAccessors)) {
accessors.IDs.push_back(accessorID);
}
argNameAndDependencyIDs = argNameAndDependencyIDs.slice(numAccessors);
Expected<Decl *> overridden = MF.getDeclChecked(overriddenID);
if (!overridden) {
llvm::consumeError(overridden.takeError());
DeclDeserializationError::Flags errorFlags;
return llvm::make_error<OverrideError>(
name, errorFlags, numVTableEntries);
}
for (TypeID dependencyID : argNameAndDependencyIDs) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
DeclDeserializationError::Flags errorFlags;
return llvm::make_error<TypeError>(
name, takeErrorInfo(dependency.takeError()),
errorFlags, numVTableEntries);
}
}
auto parent = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *genericParams = MF.maybeReadGenericParams(parent);
if (declOrOffset.isComplete())
return declOrOffset;
auto staticSpelling = getActualStaticSpellingKind(rawStaticSpelling);
if (!staticSpelling.hasValue())
MF.fatal();
const auto elemInterfaceType = MF.getType(elemInterfaceTypeID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *const subscript = SubscriptDecl::createDeserialized(
ctx, name, *staticSpelling, elemInterfaceType, parent, genericParams);
subscript->setIsGetterMutating(isGetterMutating);
subscript->setIsSetterMutating(isSetterMutating);
declOrOffset = subscript;
subscript->setGenericSignature(MF.getGenericSignature(genericSigID));
subscript->setIndices(MF.readParameterList());
MF.configureStorage(subscript, opaqueReadOwnership,
readImpl, writeImpl, readWriteImpl, accessors);
if (auto accessLevel = getActualAccessLevel(rawAccessLevel))
subscript->setAccess(*accessLevel);
else
MF.fatal();
if (subscript->supportsMutation()) {
if (auto setterAccess = getActualAccessLevel(rawSetterAccessLevel))
subscript->setSetterAccess(*setterAccess);
else
MF.fatal();
}
subscript->setImplicitlyUnwrappedOptional(isIUO);
if (isImplicit)
subscript->setImplicit();
subscript->setIsObjC(isObjC);
subscript->setOverriddenDecl(cast_or_null<SubscriptDecl>(overridden.get()));
if (subscript->getOverriddenDecl())
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
if (opaqueReturnTypeID) {
ctx.evaluator.cacheOutput(
OpaqueResultTypeRequest{subscript},
cast<OpaqueTypeDecl>(MF.getDecl(opaqueReturnTypeID)));
}
return subscript;
}
Expected<Decl *> deserializeExtension(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID extendedTypeID;
DeclID extendedNominalID;
DeclContextID contextID;
bool isImplicit;
GenericSignatureID genericSigID;
unsigned numConformances, numInherited;
ArrayRef<uint64_t> inheritedAndDependencyIDs;
decls_block::ExtensionLayout::readRecord(scratch, extendedTypeID,
extendedNominalID, contextID,
isImplicit, genericSigID,
numConformances, numInherited,
inheritedAndDependencyIDs);
auto DC = MF.getDeclContext(contextID);
for (TypeID dependencyID : inheritedAndDependencyIDs.slice(numInherited)) {
auto dependency = MF.getTypeChecked(dependencyID);
if (!dependency) {
return llvm::make_error<ExtensionError>(
takeErrorInfo(dependency.takeError()));
}
}
if (declOrOffset.isComplete())
return declOrOffset;
auto extension = ExtensionDecl::create(ctx, SourceLoc(), nullptr, { },
DC, nullptr);
declOrOffset = extension;
// Generic parameter lists are written from outermost to innermost.
// Keep reading until we run out of generic parameter lists.
GenericParamList *outerParams = nullptr;
while (auto *genericParams = MF.maybeReadGenericParams(DC)) {
genericParams->setOuterParameters(outerParams);
// Set up the DeclContexts for the GenericTypeParamDecls in the list.
for (auto param : *genericParams)
param->setDeclContext(extension);
outerParams = genericParams;
}
ctx.evaluator.cacheOutput(GenericParamListRequest{extension},
std::move(outerParams));
extension->setGenericSignature(MF.getGenericSignature(genericSigID));
auto extendedType = MF.getType(extendedTypeID);
ctx.evaluator.cacheOutput(ExtendedTypeRequest{extension},
std::move(extendedType));
auto nominal = dyn_cast_or_null<NominalTypeDecl>(MF.getDecl(extendedNominalID));
ctx.evaluator.cacheOutput(ExtendedNominalRequest{extension},
std::move(nominal));
if (isImplicit)
extension->setImplicit();
auto rawInheritedIDs = inheritedAndDependencyIDs.slice(0, numInherited);
handleInherited(extension, rawInheritedIDs);
extension->setMemberLoader(&MF, MF.DeclTypeCursor.GetCurrentBitNo());
skipRecord(MF.DeclTypeCursor, decls_block::MEMBERS);
extension->setConformanceLoader(
&MF,
encodeLazyConformanceContextData(numConformances,
MF.DeclTypeCursor.GetCurrentBitNo()));
if (nominal) {
nominal->addExtension(extension);
}
#ifndef NDEBUG
if (outerParams) {
unsigned paramCount = 0;
for (auto *paramList = outerParams;
paramList != nullptr;
paramList = paramList->getOuterParameters()) {
paramCount += paramList->size();
}
assert(paramCount ==
extension->getGenericSignature().getGenericParams().size());
}
#endif
return extension;
}
Expected<Decl *> deserializeDestructor(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclContextID contextID;
bool isImplicit, isObjC;
GenericSignatureID genericSigID;
decls_block::DestructorLayout::readRecord(scratch, contextID,
isImplicit, isObjC,
genericSigID);
DeclContext *DC = MF.getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto dtor = MF.createDecl<DestructorDecl>(SourceLoc(), DC);
declOrOffset = dtor;
if (auto bodyText = MF.maybeReadInlinableBodyText())
dtor->setBodyStringRepresentation(*bodyText);
dtor->setGenericSignature(MF.getGenericSignature(genericSigID));
dtor->setAccess(std::max(cast<ClassDecl>(DC)->getFormalAccess(),
AccessLevel::Internal));
if (isImplicit)
dtor->setImplicit();
dtor->setIsObjC(isObjC);
return dtor;
}
};
}
Expected<Decl *>
ModuleFile::getDeclChecked(
DeclID DID,
llvm::function_ref<bool(DeclAttributes)> matchAttributes) {
if (DID == 0)
return nullptr;
assert(DID <= Decls.size() && "invalid decl ID");
auto &declOrOffset = Decls[DID-1];
if (!declOrOffset.isComplete()) {
++NumDeclsLoaded;
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(declOrOffset));
Expected<Decl *> deserialized =
DeclDeserializer(*this, declOrOffset).getDeclCheckedImpl(
matchAttributes);
if (!deserialized)
return deserialized;
} else if (matchAttributes) {
// Decl was cached but we may need to filter it
if (!matchAttributes(declOrOffset.get()->getAttrs()))
return llvm::make_error<DeclAttributesDidNotMatch>();
}
// Tag every deserialized ValueDecl coming out of getDeclChecked with its ID.
assert(declOrOffset.isComplete());
if (auto *IDC = dyn_cast_or_null<IterableDeclContext>(declOrOffset.get())) {
// Only set the DeclID on the returned Decl if it's one that was loaded
// and _wasn't_ one that had its DeclID set elsewhere (a followed XREF).
if (IDC->wasDeserialized() &&
static_cast<uint32_t>(IDC->getDeclID()) == 0) {
IDC->setDeclID(DID);
}
}
return declOrOffset;
}
llvm::Error DeclDeserializer::deserializeDeclCommon() {
using namespace decls_block;
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
while (true) {
BCOffsetRAII restoreOffset(MF.DeclTypeCursor);
llvm::BitstreamEntry entry =
MF.fatalIfUnexpected(MF.DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
MF.fatal();
}
unsigned recordID = MF.fatalIfUnexpected(
MF.DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
if (recordID == ERROR_FLAG) {
assert(!IsInvalid && "Error flag written multiple times");
IsInvalid = true;
} else if (isDeclAttrRecord(recordID)) {
DeclAttribute *Attr = nullptr;
bool skipAttr = false;
switch (recordID) {
case decls_block::SILGenName_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SILGenNameDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SILGenNameAttr(blobData, isImplicit);
break;
}
case decls_block::CDecl_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::CDeclDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) CDeclAttr(blobData, isImplicit);
break;
}
case decls_block::Alignment_DECL_ATTR: {
bool isImplicit;
unsigned alignment;
serialization::decls_block::AlignmentDeclAttrLayout::readRecord(
scratch, isImplicit, alignment);
Attr = new (ctx) AlignmentAttr(alignment, SourceLoc(), SourceRange(),
isImplicit);
break;
}
case decls_block::SwiftNativeObjCRuntimeBase_DECL_ATTR: {
bool isImplicit;
IdentifierID nameID;
serialization::decls_block::SwiftNativeObjCRuntimeBaseDeclAttrLayout
::readRecord(scratch, isImplicit, nameID);
auto name = MF.getIdentifier(nameID);
Attr = new (ctx) SwiftNativeObjCRuntimeBaseAttr(name, SourceLoc(),
SourceRange(),
isImplicit);
break;
}
case decls_block::Semantics_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SemanticsDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SemanticsAttr(blobData, isImplicit);
break;
}
case decls_block::Inline_DECL_ATTR: {
unsigned kind;
serialization::decls_block::InlineDeclAttrLayout::readRecord(
scratch, kind);
Attr = new (ctx) InlineAttr((InlineKind)kind);
break;
}
case decls_block::Optimize_DECL_ATTR: {
unsigned kind;
serialization::decls_block::OptimizeDeclAttrLayout::readRecord(
scratch, kind);
Attr = new (ctx) OptimizeAttr((OptimizationMode)kind);
break;
}
case decls_block::Effects_DECL_ATTR: {
unsigned kind;
serialization::decls_block::EffectsDeclAttrLayout::readRecord(scratch,
kind);
Attr = new (ctx) EffectsAttr((EffectsKind)kind);
break;
}
case decls_block::OriginallyDefinedIn_DECL_ATTR: {
bool isImplicit;
unsigned Platform;
DEF_VER_TUPLE_PIECES(MovedVer);
// Decode the record, pulling the version tuple information.
serialization::decls_block::OriginallyDefinedInDeclAttrLayout::readRecord(
scratch,
isImplicit,
LIST_VER_TUPLE_PIECES(MovedVer),
Platform);
llvm::VersionTuple MovedVer;
DECODE_VER_TUPLE(MovedVer)
auto ModuleNameEnd = blobData.find('\0');
assert(ModuleNameEnd != StringRef::npos);
auto ModuleName = blobData.slice(0, ModuleNameEnd);
Attr = new (ctx) OriginallyDefinedInAttr(SourceLoc(), SourceRange(),
ModuleName,
(PlatformKind)Platform,
MovedVer,
isImplicit);
break;
}
case decls_block::Available_DECL_ATTR: {
bool isImplicit;
bool isUnavailable;
bool isDeprecated;
bool isPackageDescriptionVersionSpecific;
DEF_VER_TUPLE_PIECES(Introduced);
DEF_VER_TUPLE_PIECES(Deprecated);
DEF_VER_TUPLE_PIECES(Obsoleted);
DeclID renameDeclID;
unsigned platform, messageSize, renameSize;
// Decode the record, pulling the version tuple information.
serialization::decls_block::AvailableDeclAttrLayout::readRecord(
scratch, isImplicit, isUnavailable, isDeprecated,
isPackageDescriptionVersionSpecific,
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
platform, renameDeclID, messageSize, renameSize);
ValueDecl *renameDecl = nullptr;
if (renameDeclID) {
renameDecl = cast<ValueDecl>(MF.getDecl(renameDeclID));
}
StringRef message = blobData.substr(0, messageSize);
blobData = blobData.substr(messageSize);
StringRef rename = blobData.substr(0, renameSize);
llvm::VersionTuple Introduced, Deprecated, Obsoleted;
DECODE_VER_TUPLE(Introduced)
DECODE_VER_TUPLE(Deprecated)
DECODE_VER_TUPLE(Obsoleted)
PlatformAgnosticAvailabilityKind platformAgnostic;
if (isUnavailable)
platformAgnostic = PlatformAgnosticAvailabilityKind::Unavailable;
else if (isDeprecated)
platformAgnostic = PlatformAgnosticAvailabilityKind::Deprecated;
else if (((PlatformKind)platform) == PlatformKind::none &&
(!Introduced.empty() ||
!Deprecated.empty() ||
!Obsoleted.empty()))
platformAgnostic = isPackageDescriptionVersionSpecific ?
PlatformAgnosticAvailabilityKind::PackageDescriptionVersionSpecific:
PlatformAgnosticAvailabilityKind::SwiftVersionSpecific;
else
platformAgnostic = PlatformAgnosticAvailabilityKind::None;
Attr = new (ctx) AvailableAttr(
SourceLoc(), SourceRange(),
(PlatformKind)platform, message, rename, renameDecl,
Introduced, SourceRange(),
Deprecated, SourceRange(),
Obsoleted, SourceRange(),
platformAgnostic, isImplicit);
break;
}
case decls_block::ObjC_DECL_ATTR: {
bool isImplicit;
bool isImplicitName;
bool isSwift3Inferred;
uint64_t numArgs;
ArrayRef<uint64_t> rawPieceIDs;
serialization::decls_block::ObjCDeclAttrLayout::readRecord(
scratch, isImplicit, isSwift3Inferred, isImplicitName, numArgs,
rawPieceIDs);
SmallVector<Identifier, 4> pieces;
for (auto pieceID : rawPieceIDs)
pieces.push_back(MF.getIdentifier(pieceID));
if (numArgs == 0)
Attr = ObjCAttr::create(ctx, None, isImplicitName);
else
Attr = ObjCAttr::create(ctx, ObjCSelector(ctx, numArgs-1, pieces),
isImplicitName);
Attr->setImplicit(isImplicit);
cast<ObjCAttr>(Attr)->setSwift3Inferred(isSwift3Inferred);
break;
}
case decls_block::Specialize_DECL_ATTR: {
unsigned exported;
SpecializeAttr::SpecializationKind specializationKind;
unsigned specializationKindVal;
GenericSignatureID specializedSigID;
ArrayRef<uint64_t> rawPieceIDs;
uint64_t numArgs;
uint64_t numSPIGroups;
DeclID targetFunID;
serialization::decls_block::SpecializeDeclAttrLayout::readRecord(
scratch, exported, specializationKindVal, specializedSigID,
targetFunID, numArgs, numSPIGroups, rawPieceIDs);
assert(rawPieceIDs.size() == numArgs + numSPIGroups ||
rawPieceIDs.size() == (numArgs - 1 + numSPIGroups));
specializationKind = specializationKindVal
? SpecializeAttr::SpecializationKind::Partial
: SpecializeAttr::SpecializationKind::Full;
// The 'target' parameter.
DeclNameRef replacedFunctionName;
if (numArgs) {
bool numArgumentLabels = (numArgs == 1) ? 0 : numArgs - 2;
auto baseName = MF.getDeclBaseName(rawPieceIDs[0]);
SmallVector<Identifier, 4> pieces;
if (numArgumentLabels) {
for (auto pieceID : rawPieceIDs.slice(1, numArgumentLabels))
pieces.push_back(MF.getIdentifier(pieceID));
}
replacedFunctionName = (numArgs == 1)
? DeclNameRef({baseName}) // simple name
: DeclNameRef({ctx, baseName, pieces});
}
SmallVector<Identifier, 4> spis;
if (numSPIGroups) {
auto numTargetFunctionPiecesToSkip =
(rawPieceIDs.size() == numArgs + numSPIGroups) ? numArgs
: numArgs - 1;
for (auto id : rawPieceIDs.slice(numTargetFunctionPiecesToSkip))
spis.push_back(MF.getIdentifier(id));
}
auto specializedSig = MF.getGenericSignature(specializedSigID);
Attr = SpecializeAttr::create(ctx, exported != 0, specializationKind,
spis, specializedSig,
replacedFunctionName, &MF, targetFunID);
break;
}
case decls_block::DynamicReplacement_DECL_ATTR: {
bool isImplicit;
uint64_t numArgs;
ArrayRef<uint64_t> rawPieceIDs;
DeclID replacedFunID;
serialization::decls_block::DynamicReplacementDeclAttrLayout::
readRecord(scratch, isImplicit, replacedFunID, numArgs, rawPieceIDs);
auto baseName = MF.getDeclBaseName(rawPieceIDs[0]);
SmallVector<Identifier, 4> pieces;
for (auto pieceID : rawPieceIDs.slice(1))
pieces.push_back(MF.getIdentifier(pieceID));
assert(numArgs != 0);
assert(!isImplicit && "Need to update for implicit");
Attr = DynamicReplacementAttr::create(
ctx, DeclNameRef({ ctx, baseName, pieces }), &MF, replacedFunID);
break;
}
case decls_block::TypeEraser_DECL_ATTR: {
bool isImplicit;
TypeID typeEraserID;
serialization::decls_block::TypeEraserDeclAttrLayout::readRecord(
scratch, isImplicit, typeEraserID);
assert(!isImplicit);
Attr = TypeEraserAttr::create(ctx, &MF, typeEraserID);
break;
}
case decls_block::Custom_DECL_ATTR: {
bool isImplicit;
bool isArgUnsafe;
TypeID typeID;
serialization::decls_block::CustomDeclAttrLayout::readRecord(
scratch, isImplicit, typeID, isArgUnsafe);
Expected<Type> deserialized = MF.getTypeChecked(typeID);
if (!deserialized) {
if (deserialized.errorIsA<XRefNonLoadedModuleError>() ||
MF.allowCompilerErrors()) {
// A custom attribute defined behind an implementation-only import
// is safe to drop when it can't be deserialized.
// rdar://problem/56599179. When allowing errors we're doing a best
// effort to create a module, so ignore in that case as well.
consumeError(deserialized.takeError());
skipAttr = true;
} else
return deserialized.takeError();
} else if (!deserialized.get() && MF.allowCompilerErrors()) {
// Serialized an invalid attribute, just skip it when allowing errors
skipAttr = true;
} else {
auto *TE = TypeExpr::createImplicit(deserialized.get(), ctx);
auto custom = CustomAttr::create(ctx, SourceLoc(), TE, isImplicit);
custom->setArgIsUnsafe(isArgUnsafe);
Attr = custom;
}
break;
}
case decls_block::ProjectedValueProperty_DECL_ATTR: {
bool isImplicit;
IdentifierID nameID;
serialization::decls_block::ProjectedValuePropertyDeclAttrLayout
::readRecord(scratch, isImplicit, nameID);
auto name = MF.getIdentifier(nameID);
Attr = new (ctx) ProjectedValuePropertyAttr(
name, SourceLoc(), SourceRange(), isImplicit);
break;
}
case decls_block::Differentiable_DECL_ATTR: {
bool isImplicit;
uint64_t rawDiffKind;
GenericSignatureID derivativeGenSigId;
ArrayRef<uint64_t> parameters;
serialization::decls_block::DifferentiableDeclAttrLayout::readRecord(
scratch, isImplicit, rawDiffKind, derivativeGenSigId,
parameters);
auto diffKind = getActualDifferentiabilityKind(rawDiffKind);
if (!diffKind)
MF.fatal();
auto derivativeGenSig = MF.getGenericSignature(derivativeGenSigId);
llvm::SmallBitVector parametersBitVector(parameters.size());
for (unsigned i : indices(parameters))
parametersBitVector[i] = parameters[i];
auto *indices = IndexSubset::get(ctx, parametersBitVector);
auto *diffAttr = DifferentiableAttr::create(
ctx, isImplicit, SourceLoc(), SourceRange(), *diffKind,
/*parsedParameters*/ {}, /*trailingWhereClause*/ nullptr);
// Cache parameter indices so that they can set later.
// `DifferentiableAttr::setParameterIndices` cannot be called here
// because it requires `DifferentiableAttr::setOriginalDeclaration` to
// be called first. `DifferentiableAttr::setOriginalDeclaration` cannot
// be called here because the original declaration is not accessible in
// this function (`DeclDeserializer::deserializeDeclCommon`).
diffAttrParamIndicesMap[diffAttr] = indices;
diffAttr->setDerivativeGenericSignature(derivativeGenSig);
Attr = diffAttr;
break;
}
case decls_block::Derivative_DECL_ATTR: {
bool isImplicit;
uint64_t origNameId;
bool hasAccessorKind;
uint64_t rawAccessorKind;
DeclID origDeclId;
uint64_t rawDerivativeKind;
ArrayRef<uint64_t> parameters;
serialization::decls_block::DerivativeDeclAttrLayout::readRecord(
scratch, isImplicit, origNameId, hasAccessorKind, rawAccessorKind,
origDeclId, rawDerivativeKind, parameters);
Optional<AccessorKind> accessorKind = None;
if (hasAccessorKind) {
auto maybeAccessorKind = getActualAccessorKind(rawAccessorKind);
if (!maybeAccessorKind)
MF.fatal();
accessorKind = *maybeAccessorKind;
}
DeclNameRefWithLoc origName{DeclNameRef(MF.getDeclBaseName(origNameId)),
DeclNameLoc(), accessorKind};
auto derivativeKind =
getActualAutoDiffDerivativeFunctionKind(rawDerivativeKind);
if (!derivativeKind)
MF.fatal();
llvm::SmallBitVector parametersBitVector(parameters.size());
for (unsigned i : indices(parameters))
parametersBitVector[i] = parameters[i];
auto *indices = IndexSubset::get(ctx, parametersBitVector);
auto *derivativeAttr =
DerivativeAttr::create(ctx, isImplicit, SourceLoc(), SourceRange(),
/*baseType*/ nullptr, origName, indices);
derivativeAttr->setOriginalFunctionResolver(&MF, origDeclId);
derivativeAttr->setDerivativeKind(*derivativeKind);
Attr = derivativeAttr;
break;
}
case decls_block::Transpose_DECL_ATTR: {
bool isImplicit;
uint64_t origNameId;
DeclID origDeclId;
ArrayRef<uint64_t> parameters;
serialization::decls_block::TransposeDeclAttrLayout::readRecord(
scratch, isImplicit, origNameId, origDeclId, parameters);
DeclNameRefWithLoc origName{
DeclNameRef(MF.getDeclBaseName(origNameId)), DeclNameLoc(), None};
auto *origDecl = cast<AbstractFunctionDecl>(MF.getDecl(origDeclId));
llvm::SmallBitVector parametersBitVector(parameters.size());
for (unsigned i : indices(parameters))
parametersBitVector[i] = parameters[i];
auto *indices = IndexSubset::get(ctx, parametersBitVector);
auto *transposeAttr =
TransposeAttr::create(ctx, isImplicit, SourceLoc(), SourceRange(),
/*baseTypeRepr*/ nullptr, origName, indices);
transposeAttr->setOriginalFunction(origDecl);
Attr = transposeAttr;
break;
}
case decls_block::SPIAccessControl_DECL_ATTR: {
ArrayRef<uint64_t> spiIds;
serialization::decls_block::SPIAccessControlDeclAttrLayout::readRecord(
scratch, spiIds);
SmallVector<Identifier, 4> spis;
for (auto id : spiIds)
spis.push_back(MF.getIdentifier(id));
Attr = SPIAccessControlAttr::create(ctx, SourceLoc(),
SourceRange(), spis);
break;
}
#define SIMPLE_DECL_ATTR(NAME, CLASS, ...) \
case decls_block::CLASS##_DECL_ATTR: { \
bool isImplicit; \
serialization::decls_block::CLASS##DeclAttrLayout::readRecord( \
scratch, isImplicit); \
Attr = new (ctx) CLASS##Attr(isImplicit); \
break; \
}
#include "swift/AST/Attr.def"
default:
// We don't know how to deserialize this kind of attribute.
MF.fatal();
}
if (!skipAttr) {
if (!Attr)
return llvm::Error::success();
AddAttribute(Attr);
}
} else if (recordID == decls_block::PRIVATE_DISCRIMINATOR) {
IdentifierID discriminatorID;
decls_block::PrivateDiscriminatorLayout::readRecord(scratch,
discriminatorID);
privateDiscriminator = MF.getIdentifier(discriminatorID);
} else if (recordID == decls_block::LOCAL_DISCRIMINATOR) {
unsigned discriminator;
decls_block::LocalDiscriminatorLayout::readRecord(scratch, discriminator);
localDiscriminator = discriminator;
} else if (recordID == decls_block::FILENAME_FOR_PRIVATE) {
IdentifierID filenameID;
decls_block::FilenameForPrivateLayout::readRecord(scratch, filenameID);
filenameForPrivate = MF.getIdentifierText(filenameID);
} else {
return llvm::Error::success();
}
// Prepare to read the next record.
restoreOffset.cancel();
scratch.clear();
}
}
Expected<Decl *>
DeclDeserializer::getDeclCheckedImpl(
llvm::function_ref<bool(DeclAttributes)> matchAttributes) {
auto commonError = deserializeDeclCommon();
if (commonError)
return std::move(commonError);
if (matchAttributes) {
// Deserialize the full decl only if matchAttributes finds a match.
DeclAttributes attrs = DeclAttributes();
attrs.setRawAttributeChain(DAttrs);
if (!matchAttributes(attrs))
return llvm::make_error<DeclAttributesDidNotMatch>();
}
if (auto s = ctx.Stats)
++s->getFrontendCounters().NumDeclsDeserialized;
// FIXME: @_dynamicReplacement(for:) includes a reference to another decl,
// usually in the same type, and that can result in this decl being
// re-entrantly deserialized. If that happens, don't fail here.
if (declOrOffset.isComplete())
return declOrOffset;
llvm::BitstreamEntry entry =
MF.fatalIfUnexpected(MF.DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
MF.fatal();
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = MF.fatalIfUnexpected(
MF.DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
PrettyDeclDeserialization stackTraceEntry(
&MF, declOrOffset, static_cast<decls_block::RecordKind>(recordID));
switch (recordID) {
#define CASE(RECORD_NAME) \
case decls_block::RECORD_NAME##Layout::Code: {\
auto decl = deserialize##RECORD_NAME(scratch, blobData); \
if (decl) { \
/* \
// Set original declaration and parameter indices in `@differentiable` \
// attributes. \
*/ \
setOriginalDeclarationAndParameterIndicesInDifferentiableAttributes(\
decl.get(), DAttrs, diffAttrParamIndicesMap); \
} \
return decl; \
}
CASE(TypeAlias)
CASE(GenericTypeParamDecl)
CASE(AssociatedTypeDecl)
CASE(Struct)
CASE(Constructor)
CASE(Var)
CASE(Param)
CASE(Func)
CASE(OpaqueType)
CASE(Accessor)
CASE(PatternBinding)
CASE(Protocol)
CASE(PrefixOperator)
CASE(PostfixOperator)
CASE(InfixOperator)
CASE(PrecedenceGroup)
CASE(Class)
CASE(Enum)
CASE(EnumElement)
CASE(Subscript)
CASE(Extension)
CASE(Destructor)
#undef CASE
case decls_block::XREF: {
assert(DAttrs == nullptr);
ModuleID baseModuleID;
uint32_t pathLen;
decls_block::XRefLayout::readRecord(scratch, baseModuleID, pathLen);
auto resolved = MF.resolveCrossReference(baseModuleID, pathLen);
if (resolved)
declOrOffset = resolved.get();
return resolved;
}
default:
// We don't know how to deserialize this kind of decl.
MF.fatal();
}
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::FunctionType::Representation>
getActualFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::FunctionTypeRepresentation::THE_CC: \
return swift::FunctionType::Representation::THE_CC;
CASE(Swift)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
#undef CASE
default:
return None;
}
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::SILFunctionType::Representation>
getActualSILFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::SILFunctionTypeRepresentation::THE_CC: \
return swift::SILFunctionType::Representation::THE_CC;
CASE(Thick)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
CASE(Method)
CASE(ObjCMethod)
CASE(WitnessMethod)
#undef CASE
default:
return None;
}
}
/// Translate from the Serialization coroutine kind enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::SILCoroutineKind>
getActualSILCoroutineKind(uint8_t rep) {
switch (rep) {
#define CASE(KIND) \
case (uint8_t)serialization::SILCoroutineKind::KIND: \
return swift::SILCoroutineKind::KIND;
CASE(None)
CASE(YieldOnce)
CASE(YieldMany)
#undef CASE
default:
return None;
}
}
/// Translate from the serialization ReferenceOwnership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::ReferenceOwnership>
getActualReferenceOwnership(serialization::ReferenceOwnership raw) {
switch (raw) {
case serialization::ReferenceOwnership::Strong:
return swift::ReferenceOwnership::Strong;
#define REF_STORAGE(Name, ...) \
case serialization::ReferenceOwnership::Name: \
return swift::ReferenceOwnership::Name;
#include "swift/AST/ReferenceStorage.def"
}
return None;
}
/// Translate from the serialization ValueOwnership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::ValueOwnership>
getActualValueOwnership(serialization::ValueOwnership raw) {
switch (raw) {
#define CASE(ID) \
case serialization::ValueOwnership::ID: \
return swift::ValueOwnership::ID;
CASE(Default)
CASE(InOut)
CASE(Shared)
CASE(Owned)
#undef CASE
}
return None;
}
/// Translate from the serialization ParameterConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ParameterConvention> getActualParameterConvention(uint8_t raw) {
switch (serialization::ParameterConvention(raw)) {
#define CASE(ID) \
case serialization::ParameterConvention::ID: \
return swift::ParameterConvention::ID;
CASE(Indirect_In)
CASE(Indirect_Inout)
CASE(Indirect_InoutAliasable)
CASE(Indirect_In_Guaranteed)
CASE(Indirect_In_Constant)
CASE(Direct_Owned)
CASE(Direct_Unowned)
CASE(Direct_Guaranteed)
#undef CASE
}
return None;
}
/// Translate from the serialization SILParameterDifferentiability enumerators,
/// which are guaranteed to be stable, to the AST ones.
static Optional<swift::SILParameterDifferentiability>
getActualSILParameterDifferentiability(uint8_t raw) {
switch (serialization::SILParameterDifferentiability(raw)) {
#define CASE(ID) \
case serialization::SILParameterDifferentiability::ID: \
return swift::SILParameterDifferentiability::ID;
CASE(DifferentiableOrNotApplicable)
CASE(NotDifferentiable)
#undef CASE
}
return None;
}
/// Translate from the serialization ResultConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ResultConvention> getActualResultConvention(uint8_t raw) {
switch (serialization::ResultConvention(raw)) {
#define CASE(ID) \
case serialization::ResultConvention::ID: return swift::ResultConvention::ID;
CASE(Indirect)
CASE(Owned)
CASE(Unowned)
CASE(UnownedInnerPointer)
CASE(Autoreleased)
#undef CASE
}
return None;
}
/// Translate from the serialization SILResultDifferentiability enumerators,
/// which are guaranteed to be stable, to the AST ones.
static Optional<swift::SILResultDifferentiability>
getActualSILResultDifferentiability(uint8_t raw) {
switch (serialization::SILResultDifferentiability(raw)) {
#define CASE(ID) \
case serialization::SILResultDifferentiability::ID: \
return swift::SILResultDifferentiability::ID;
CASE(DifferentiableOrNotApplicable)
CASE(NotDifferentiable)
#undef CASE
}
return None;
}
Type ModuleFile::getType(TypeID TID) {
Expected<Type> deserialized = getTypeChecked(TID);
if (!deserialized) {
fatal(deserialized.takeError());
}
return deserialized.get();
}
namespace swift {
class TypeDeserializer {
using TypeID = serialization::TypeID;
ModuleFile &MF;
ASTContext &ctx;
public:
explicit TypeDeserializer(ModuleFile &MF)
: MF(MF), ctx(MF.getContext()) {}
Expected<Type> getTypeCheckedImpl();
Expected<Type> deserializeBuiltinAliasType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID underlyingID;
TypeID canonicalTypeID;
decls_block::BuiltinAliasTypeLayout::readRecord(scratch, underlyingID,
canonicalTypeID);
auto aliasOrError = MF.getDeclChecked(underlyingID);
if (!aliasOrError)
return aliasOrError.takeError();
auto alias = dyn_cast<TypeAliasDecl>(aliasOrError.get());
if (ctx.LangOpts.EnableDeserializationRecovery) {
Expected<Type> expectedType = MF.getTypeChecked(canonicalTypeID);
if (!expectedType)
return expectedType.takeError();
if (expectedType.get()) {
if (!alias ||
!alias->getDeclaredInterfaceType()->isEqual(expectedType.get())) {
// Fall back to the canonical type.
return expectedType.get();
}
}
}
// Look through compatibility aliases that are now unavailable.
if (alias->getAttrs().isUnavailable(ctx) &&
alias->isCompatibilityAlias()) {
return alias->getUnderlyingType();
}
return alias->getDeclaredInterfaceType();
}
Expected<Type> deserializeTypeAliasType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID typealiasID;
TypeID parentTypeID;
TypeID underlyingTypeID;
TypeID substitutedTypeID;
SubstitutionMapID substitutionsID;
decls_block::TypeAliasTypeLayout::readRecord(scratch, typealiasID,
parentTypeID,
underlyingTypeID,
substitutedTypeID,
substitutionsID);
TypeAliasDecl *alias = nullptr;
Type underlyingType;
if (ctx.LangOpts.EnableDeserializationRecovery) {
auto underlyingTypeOrError = MF.getTypeChecked(underlyingTypeID);
if (!underlyingTypeOrError) {
// If we can't deserialize the underlying type, we can't be sure the
// actual typealias hasn't changed.
return underlyingTypeOrError.takeError();
}
underlyingType = underlyingTypeOrError.get();
if (auto aliasOrError = MF.getDeclChecked(typealiasID)) {
alias = dyn_cast<TypeAliasDecl>(aliasOrError.get());
} else {
// We're going to recover by falling back to the underlying type, so
// just ignore the error.
llvm::consumeError(aliasOrError.takeError());
}
if (!alias ||
!alias->getDeclaredInterfaceType()->isEqual(underlyingType)) {
// Fall back to the canonical type.
return underlyingType;
}
} else {
alias = dyn_cast<TypeAliasDecl>(MF.getDecl(typealiasID));
underlyingType = MF.getType(underlyingTypeID);
}
// Read the substituted type.
auto substitutedTypeOrError = MF.getTypeChecked(substitutedTypeID);
if (!substitutedTypeOrError)
return substitutedTypeOrError.takeError();
auto substitutedType = substitutedTypeOrError.get();
// Read the substitutions.
auto subMapOrError = MF.getSubstitutionMapChecked(substitutionsID);
if (!subMapOrError)
return subMapOrError.takeError();
auto parentTypeOrError = MF.getTypeChecked(parentTypeID);
if (!parentTypeOrError)
return underlyingType;
// Look through compatibility aliases that are now unavailable.
if (alias &&
alias->getAttrs().isUnavailable(ctx) &&
alias->isCompatibilityAlias()) {
return alias->getUnderlyingType().subst(subMapOrError.get());
}
auto parentType = parentTypeOrError.get();
return TypeAliasType::get(alias, parentType, subMapOrError.get(),
substitutedType);
}
Expected<Type> deserializeNominalType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID declID;
TypeID parentID;
decls_block::NominalTypeLayout::readRecord(scratch, declID, parentID);
Expected<Type> parentTy = MF.getTypeChecked(parentID);
if (!parentTy)
return parentTy.takeError();
auto nominalOrError = MF.getDeclChecked(declID);
if (!nominalOrError)
return nominalOrError.takeError();
// Look through compatibility aliases.
if (auto *alias = dyn_cast<TypeAliasDecl>(nominalOrError.get())) {
// Reminder: TypeBase::getAs will look through sugar. But we don't want to
// do that here, so we do isa<> checks on the TypeBase itself instead of
// using the Type wrapper.
const TypeBase *underlyingTy = nullptr;
while (alias->isCompatibilityAlias()) {
underlyingTy = alias->getUnderlyingType().getPointer();
// If the underlying type is itself a typealias, it might be another
// compatibility alias, meaning we need to go around the loop again.
auto aliasTy = dyn_cast<TypeAliasType>(underlyingTy);
if (!aliasTy)
break;
alias = aliasTy->getDecl();
}
// We only want to use the type we found if it's a simple non-generic
// nominal type.
if (auto simpleNominalTy = dyn_cast_or_null<NominalType>(underlyingTy)) {
nominalOrError = simpleNominalTy->getDecl();
(void)!nominalOrError; // "Check" the llvm::Expected<> value.
}
}
auto nominal = dyn_cast<NominalTypeDecl>(nominalOrError.get());
if (!nominal) {
XRefTracePath tinyTrace{*nominalOrError.get()->getModuleContext()};
const DeclName fullName =
cast<ValueDecl>(nominalOrError.get())->getName();
tinyTrace.addValue(fullName.getBaseIdentifier());
return llvm::make_error<XRefError>("declaration is not a nominal type",
tinyTrace, fullName);
}
return NominalType::get(nominal, parentTy.get(), ctx);
}
Expected<Type> deserializeParenType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID underlyingID;
decls_block::ParenTypeLayout::readRecord(scratch, underlyingID);
auto underlyingTy = MF.getTypeChecked(underlyingID);
if (!underlyingTy)
return underlyingTy.takeError();
return ParenType::get(ctx, underlyingTy.get());
}
Expected<Type> deserializeTupleType(SmallVectorImpl<uint64_t> &scratch,
StringRef blobData) {
// The tuple record itself is empty. Read all trailing elements.
SmallVector<TupleTypeElt, 8> elements;
while (true) {
llvm::BitstreamEntry entry =
MF.fatalIfUnexpected(MF.DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = MF.fatalIfUnexpected(
MF.DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
if (recordID != decls_block::TUPLE_TYPE_ELT)
break;
IdentifierID nameID;
TypeID typeID;
decls_block::TupleTypeEltLayout::readRecord(scratch, nameID, typeID);
auto elementTy = MF.getTypeChecked(typeID);
if (!elementTy)
return elementTy.takeError();
elements.emplace_back(elementTy.get(), MF.getIdentifier(nameID));
}
return TupleType::get(elements, ctx);
}
Expected<Type> deserializeAnyFunctionType(SmallVectorImpl<uint64_t> &scratch,
StringRef blobData,
bool isGeneric) {
TypeID resultID;
uint8_t rawRepresentation, rawDiffKind;
bool noescape = false, concurrent, async, throws;
GenericSignature genericSig;
TypeID clangTypeID;
TypeID globalActorTypeID;
if (!isGeneric) {
decls_block::FunctionTypeLayout::readRecord(
scratch, resultID, rawRepresentation, clangTypeID,
noescape, concurrent, async, throws, rawDiffKind, globalActorTypeID);
} else {
GenericSignatureID rawGenericSig;
decls_block::GenericFunctionTypeLayout::readRecord(
scratch, resultID, rawRepresentation, concurrent, async, throws,
rawDiffKind, globalActorTypeID, rawGenericSig);
genericSig = MF.getGenericSignature(rawGenericSig);
clangTypeID = 0;
}
auto representation = getActualFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue())
MF.fatal();
auto diffKind = getActualDifferentiabilityKind(rawDiffKind);
if (!diffKind.hasValue())
MF.fatal();
const clang::Type *clangFunctionType = nullptr;
if (clangTypeID) {
auto loadedClangType = MF.getClangType(clangTypeID);
if (!loadedClangType)
return loadedClangType.takeError();
clangFunctionType = loadedClangType.get();
}
Type globalActor;
if (globalActorTypeID) {
auto globalActorTy = MF.getTypeChecked(globalActorTypeID);
if (!globalActorTy)
return globalActorTy.takeError();
globalActor = globalActorTy.get();
}
auto info = FunctionType::ExtInfoBuilder(*representation, noescape, throws,
*diffKind, clangFunctionType,
globalActor)
.withConcurrent(concurrent)
.withAsync(async)
.build();
auto resultTy = MF.getTypeChecked(resultID);
if (!resultTy)
return resultTy.takeError();
SmallVector<AnyFunctionType::Param, 8> params;
while (true) {
llvm::BitstreamEntry entry =
MF.fatalIfUnexpected(MF.DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = MF.fatalIfUnexpected(
MF.DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
if (recordID != decls_block::FUNCTION_PARAM)
break;
IdentifierID labelID;
IdentifierID internalLabelID;
TypeID typeID;
bool isVariadic, isAutoClosure, isNonEphemeral, isIsolated;
bool isNoDerivative;
unsigned rawOwnership;
decls_block::FunctionParamLayout::readRecord(
scratch, labelID, internalLabelID, typeID, isVariadic, isAutoClosure,
isNonEphemeral, rawOwnership, isIsolated, isNoDerivative);
auto ownership =
getActualValueOwnership((serialization::ValueOwnership)rawOwnership);
if (!ownership)
MF.fatal();
auto paramTy = MF.getTypeChecked(typeID);
if (!paramTy)
return paramTy.takeError();
params.emplace_back(paramTy.get(), MF.getIdentifier(labelID),
ParameterTypeFlags(isVariadic, isAutoClosure,
isNonEphemeral, *ownership,
isIsolated, isNoDerivative),
MF.getIdentifier(internalLabelID));
}
if (!isGeneric) {
assert(genericSig.isNull());
return FunctionType::get(params, resultTy.get(), info);
}
assert(!genericSig.isNull());
return GenericFunctionType::get(genericSig, params, resultTy.get(), info);
}
Expected<Type> deserializeFunctionType(SmallVectorImpl<uint64_t> &scratch,
StringRef blobData) {
return deserializeAnyFunctionType(scratch, blobData, /*isGeneric*/false);
}
Expected<Type>
deserializeGenericFunctionType(SmallVectorImpl<uint64_t> &scratch,
StringRef blobData) {
return deserializeAnyFunctionType(scratch, blobData, /*isGeneric*/true);
}
template <typename Layout, typename ASTType, bool CanBeThin>
Expected<Type> deserializeAnyMetatypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID instanceID;
uint8_t repr;
Layout::readRecord(scratch, instanceID, repr);
auto instanceType = MF.getTypeChecked(instanceID);
if (!instanceType)
return instanceType.takeError();
switch (repr) {
case serialization::MetatypeRepresentation::MR_None:
return ASTType::get(instanceType.get());
case serialization::MetatypeRepresentation::MR_Thin:
if (!CanBeThin)
MF.fatal();
return ASTType::get(instanceType.get(),
MetatypeRepresentation::Thin);
case serialization::MetatypeRepresentation::MR_Thick:
return ASTType::get(instanceType.get(),
MetatypeRepresentation::Thick);
case serialization::MetatypeRepresentation::MR_ObjC:
return ASTType::get(instanceType.get(),
MetatypeRepresentation::ObjC);
default:
MF.fatal();
}
}
Expected<Type>
deserializeExistentialMetatypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return
deserializeAnyMetatypeType<decls_block::ExistentialMetatypeTypeLayout,
ExistentialMetatypeType, /*CanBeThin*/false>(
scratch, blobData);
}
Expected<Type> deserializeMetatypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
return deserializeAnyMetatypeType<decls_block::MetatypeTypeLayout,
MetatypeType, /*CanBeThin*/true>(
scratch, blobData);
}
Expected<Type> deserializeDynamicSelfType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID selfID;
decls_block::DynamicSelfTypeLayout::readRecord(scratch, selfID);
return DynamicSelfType::get(MF.getType(selfID), ctx);
}
Expected<Type> deserializeReferenceStorageType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
uint8_t rawOwnership;
TypeID objectTypeID;
decls_block::ReferenceStorageTypeLayout::readRecord(scratch, rawOwnership,
objectTypeID);
auto ownership = getActualReferenceOwnership(
(serialization::ReferenceOwnership)rawOwnership);
if (!ownership.hasValue())
MF.fatal();
auto objectTy = MF.getTypeChecked(objectTypeID);
if (!objectTy)
return objectTy.takeError();
return ReferenceStorageType::get(objectTy.get(), ownership.getValue(), ctx);
}
Expected<Type> deserializePrimaryArchetypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
GenericSignatureID sigID;
unsigned depth, index;
decls_block::PrimaryArchetypeTypeLayout::readRecord(scratch, sigID,
depth, index);
auto sig = MF.getGenericSignature(sigID);
if (!sig)
MF.fatal();
Type interfaceType = GenericTypeParamType::get(depth, index, ctx);
Type contextType = sig.getGenericEnvironment()
->mapTypeIntoContext(interfaceType);
if (contextType->hasError())
MF.fatal();
return contextType;
}
Expected<Type> deserializeOpenedArchetypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID existentialID;
decls_block::OpenedArchetypeTypeLayout::readRecord(scratch,
existentialID);
return OpenedArchetypeType::get(MF.getType(existentialID));
}
Expected<Type> deserializeOpaqueArchetypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID opaqueDeclID;
SubstitutionMapID subsID;
decls_block::OpaqueArchetypeTypeLayout::readRecord(scratch,
opaqueDeclID, subsID);
auto opaqueTypeOrError = MF.getDeclChecked(opaqueDeclID);
if (!opaqueTypeOrError)
return opaqueTypeOrError.takeError();
auto opaqueDecl = cast<OpaqueTypeDecl>(opaqueTypeOrError.get());
auto subsOrError = MF.getSubstitutionMapChecked(subsID);
if (!subsOrError)
return subsOrError.takeError();
// TODO [OPAQUE SUPPORT]: to support multiple opaque types we will probably
// have to serialize the ordinal, which is always 0 for now
return OpaqueTypeArchetypeType::get(opaqueDecl, 0, subsOrError.get());
}
Expected<Type> deserializeNestedArchetypeType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID rootID, interfaceTyID;
decls_block::NestedArchetypeTypeLayout::readRecord(scratch,
rootID, interfaceTyID);
auto rootTy = MF.getType(rootID)->castTo<ArchetypeType>();
auto interfaceTy = MF.getType(interfaceTyID)->castTo<DependentMemberType>();
return rootTy->getGenericEnvironment()->mapTypeIntoContext(interfaceTy);
}
Expected<Type> deserializeGenericTypeParamType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID declIDOrDepth;
unsigned indexPlusOne;
decls_block::GenericTypeParamTypeLayout::readRecord(scratch, declIDOrDepth,
indexPlusOne);
if (indexPlusOne == 0) {
auto genericParam
= dyn_cast_or_null<GenericTypeParamDecl>(MF.getDecl(declIDOrDepth));
if (!genericParam)
MF.fatal();
return genericParam->getDeclaredInterfaceType();
}
return GenericTypeParamType::get(declIDOrDepth,indexPlusOne-1,ctx);
}
Expected<Type> deserializeProtocolCompositionType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
bool hasExplicitAnyObject;
ArrayRef<uint64_t> rawProtocolIDs;
decls_block::ProtocolCompositionTypeLayout::readRecord(scratch,
hasExplicitAnyObject,
rawProtocolIDs);
SmallVector<Type, 4> protocols;
for (TypeID protoID : rawProtocolIDs) {
auto protoTy = MF.getTypeChecked(protoID);
if (!protoTy)
return protoTy.takeError();
protocols.push_back(protoTy.get());
}
return ProtocolCompositionType::get(ctx, protocols, hasExplicitAnyObject);
}
Expected<Type> deserializeDependentMemberType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID baseID;
DeclID assocTypeID;
decls_block::DependentMemberTypeLayout::readRecord(scratch, baseID,
assocTypeID);
auto assocType = MF.getDeclChecked(assocTypeID);
if (!assocType)
return assocType.takeError();
return DependentMemberType::get(
MF.getType(baseID),
cast<AssociatedTypeDecl>(assocType.get()));
}
Expected<Type> deserializeBoundGenericType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID declID;
TypeID parentID;
ArrayRef<uint64_t> rawArgumentIDs;
decls_block::BoundGenericTypeLayout::readRecord(scratch, declID, parentID,
rawArgumentIDs);
auto nominalOrError = MF.getDeclChecked(declID);
if (!nominalOrError)
return nominalOrError.takeError();
auto nominal = cast<NominalTypeDecl>(nominalOrError.get());
// FIXME: Check this?
auto parentTy = MF.getType(parentID);
SmallVector<Type, 8> genericArgs;
for (TypeID ID : rawArgumentIDs) {
auto argTy = MF.getTypeChecked(ID);
if (!argTy)
return argTy.takeError();
genericArgs.push_back(argTy.get());
}
if (auto clangDecl = nominal->getClangDecl()) {
if (auto ctd = dyn_cast<clang::ClassTemplateDecl>(clangDecl)) {
auto clangImporter = static_cast<ClangImporter *>(
nominal->getASTContext().getClangModuleLoader());
SmallVector<Type, 2> typesOfGenericArgs;
for (auto arg : genericArgs) {
typesOfGenericArgs.push_back(arg);
}
SmallVector<clang::TemplateArgument, 2> templateArguments;
std::unique_ptr<TemplateInstantiationError> error =
ctx.getClangTemplateArguments(ctd->getTemplateParameters(),
typesOfGenericArgs,
templateArguments);
auto instantiation = clangImporter->instantiateCXXClassTemplate(
const_cast<clang::ClassTemplateDecl *>(ctd), templateArguments);
instantiation->setTemplateInstantiationType(
BoundGenericType::get(nominal, parentTy, genericArgs));
return instantiation->getDeclaredInterfaceType();
}
}
return BoundGenericType::get(nominal, parentTy, genericArgs);
}
Expected<Type> deserializeSILBlockStorageType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID captureID;
decls_block::SILBlockStorageTypeLayout::readRecord(scratch, captureID);
return SILBlockStorageType::get(MF.getType(captureID)->getCanonicalType());
}
Expected<Type> deserializeSILBoxType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
SILLayoutID layoutID;
SubstitutionMapID subMapID;
decls_block::SILBoxTypeLayout::readRecord(scratch, layoutID, subMapID);
// Get the layout.
auto getLayout = [this](SILLayoutID layoutID) -> SILLayout * {
assert(layoutID > 0 && layoutID <= MF.SILLayouts.size()
&& "invalid layout ID");
auto &layoutOrOffset = MF.SILLayouts[layoutID - 1];
if (layoutOrOffset.isComplete()) {
return layoutOrOffset;
}
BCOffsetRAII saveOffset(MF.DeclTypeCursor);
MF.fatalIfNotSuccess(MF.DeclTypeCursor.JumpToBit(layoutOrOffset));
auto layout = MF.readSILLayout(MF.DeclTypeCursor);
if (!layout)
MF.fatal();
layoutOrOffset = layout;
return layout;
};
auto layout = getLayout(layoutID);
if (!layout)
return nullptr;
auto subMapOrError = MF.getSubstitutionMapChecked(subMapID);
if (!subMapOrError)
return subMapOrError.takeError();
return SILBoxType::get(ctx, layout, subMapOrError.get());
}
Expected<Type> deserializeSILFunctionType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
bool async;
uint8_t rawCoroutineKind;
uint8_t rawCalleeConvention;
uint8_t rawRepresentation;
uint8_t rawDiffKind;
bool pseudogeneric = false;
bool concurrent;
bool noescape;
bool hasErrorResult;
unsigned numParams;
unsigned numYields;
unsigned numResults;
GenericSignatureID rawInvocationGenericSig;
SubstitutionMapID rawInvocationSubs;
SubstitutionMapID rawPatternSubs;
ArrayRef<uint64_t> variableData;
ClangTypeID clangFunctionTypeID;
decls_block::SILFunctionTypeLayout::readRecord(scratch,
concurrent,
async,
rawCoroutineKind,
rawCalleeConvention,
rawRepresentation,
pseudogeneric,
noescape,
rawDiffKind,
hasErrorResult,
numParams,
numYields,
numResults,
rawInvocationGenericSig,
rawInvocationSubs,
rawPatternSubs,
clangFunctionTypeID,
variableData);
// Process the ExtInfo.
auto representation
= getActualSILFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue())
MF.fatal();
auto diffKind = getActualDifferentiabilityKind(rawDiffKind);
if (!diffKind.hasValue())
MF.fatal();
const clang::Type *clangFunctionType = nullptr;
if (clangFunctionTypeID) {
auto clangType = MF.getClangType(clangFunctionTypeID);
if (!clangType)
return clangType.takeError();
clangFunctionType = clangType.get();
}
auto extInfo =
SILFunctionType::ExtInfoBuilder(*representation, pseudogeneric,
noescape, concurrent, async, *diffKind,
clangFunctionType)
.build();
// Process the coroutine kind.
auto coroutineKind = getActualSILCoroutineKind(rawCoroutineKind);
if (!coroutineKind.hasValue())
MF.fatal();
// Process the callee convention.
auto calleeConvention = getActualParameterConvention(rawCalleeConvention);
if (!calleeConvention.hasValue())
MF.fatal();
auto processParameter =
[&](TypeID typeID, uint64_t rawConvention,
uint64_t rawDifferentiability) -> llvm::Expected<SILParameterInfo> {
auto convention = getActualParameterConvention(rawConvention);
if (!convention)
MF.fatal();
auto type = MF.getTypeChecked(typeID);
if (!type)
return type.takeError();
auto differentiability =
swift::SILParameterDifferentiability::DifferentiableOrNotApplicable;
if (diffKind != DifferentiabilityKind::NonDifferentiable) {
auto differentiabilityOpt =
getActualSILParameterDifferentiability(rawDifferentiability);
if (!differentiabilityOpt)
MF.fatal();
differentiability = *differentiabilityOpt;
}
return SILParameterInfo(type.get()->getCanonicalType(), *convention,
differentiability);
};
auto processYield = [&](TypeID typeID, uint64_t rawConvention)
-> llvm::Expected<SILYieldInfo> {
auto convention = getActualParameterConvention(rawConvention);
if (!convention)
MF.fatal();
auto type = MF.getTypeChecked(typeID);
if (!type)
return type.takeError();
return SILYieldInfo(type.get()->getCanonicalType(), *convention);
};
auto processResult =
[&](TypeID typeID, uint64_t rawConvention,
uint64_t rawDifferentiability) -> llvm::Expected<SILResultInfo> {
auto convention = getActualResultConvention(rawConvention);
if (!convention)
MF.fatal();
auto type = MF.getTypeChecked(typeID);
if (!type)
return type.takeError();
auto differentiability =
swift::SILResultDifferentiability::DifferentiableOrNotApplicable;
if (diffKind != DifferentiabilityKind::NonDifferentiable) {
auto differentiabilityOpt =
getActualSILResultDifferentiability(rawDifferentiability);
if (!differentiabilityOpt)
MF.fatal();
differentiability = *differentiabilityOpt;
}
return SILResultInfo(type.get()->getCanonicalType(), *convention,
differentiability);
};
// Bounds check. FIXME: overflow
unsigned entriesPerParam =
diffKind != DifferentiabilityKind::NonDifferentiable ? 3 : 2;
if (entriesPerParam * numParams + 2 * numResults +
2 * unsigned(hasErrorResult) >
variableData.size()) {
MF.fatal();
}
unsigned nextVariableDataIndex = 0;
// Process the parameters.
SmallVector<SILParameterInfo, 8> allParams;
allParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
uint64_t rawDifferentiability = 0;
if (diffKind != DifferentiabilityKind::NonDifferentiable)
rawDifferentiability = variableData[nextVariableDataIndex++];
auto param =
processParameter(typeID, rawConvention, rawDifferentiability);
if (!param)
return param.takeError();
allParams.push_back(param.get());
}
// Process the yields.
SmallVector<SILYieldInfo, 8> allYields;
allYields.reserve(numYields);
for (unsigned i = 0; i != numYields; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto yield = processYield(typeID, rawConvention);
if (!yield)
return yield.takeError();
allYields.push_back(yield.get());
}
// Process the results.
SmallVector<SILResultInfo, 8> allResults;
allParams.reserve(numResults);
for (unsigned i = 0; i != numResults; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
uint64_t rawDifferentiability = 0;
if (diffKind != DifferentiabilityKind::NonDifferentiable)
rawDifferentiability = variableData[nextVariableDataIndex++];
auto result = processResult(typeID, rawConvention, rawDifferentiability);
if (!result)
return result.takeError();
allResults.push_back(result.get());
}
// Process the error result.
Optional<SILResultInfo> errorResult;
if (hasErrorResult) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
uint64_t rawDifferentiability = 0;
auto maybeErrorResult =
processResult(typeID, rawConvention, rawDifferentiability);
if (!maybeErrorResult)
return maybeErrorResult.takeError();
errorResult = maybeErrorResult.get();
}
ProtocolConformanceRef witnessMethodConformance;
if (*representation == SILFunctionTypeRepresentation::WitnessMethod) {
witnessMethodConformance = MF.readConformance(MF.DeclTypeCursor);
}
GenericSignature invocationSig =
MF.getGenericSignature(rawInvocationGenericSig);
auto invocationSubsOrErr = MF.getSubstitutionMapChecked(rawInvocationSubs);
if (!invocationSubsOrErr)
return invocationSubsOrErr.takeError();
auto patternSubsOrErr = MF.getSubstitutionMapChecked(rawPatternSubs);
if (!patternSubsOrErr)
return patternSubsOrErr.takeError();
return SILFunctionType::get(invocationSig, extInfo, coroutineKind.getValue(),
calleeConvention.getValue(),
allParams, allYields, allResults,
errorResult,
patternSubsOrErr.get().getCanonical(),
invocationSubsOrErr.get().getCanonical(),
ctx, witnessMethodConformance);
}
Expected<Type> deserializeArraySliceType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID baseID;
decls_block::ArraySliceTypeLayout::readRecord(scratch, baseID);
auto baseTy = MF.getTypeChecked(baseID);
if (!baseTy)
return baseTy.takeError();
return ArraySliceType::get(baseTy.get());
}
Expected<Type> deserializeDictionaryType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID keyID, valueID;
decls_block::DictionaryTypeLayout::readRecord(scratch, keyID, valueID);
auto keyTy = MF.getTypeChecked(keyID);
if (!keyTy)
return keyTy.takeError();
auto valueTy = MF.getTypeChecked(valueID);
if (!valueTy)
return valueTy.takeError();
return DictionaryType::get(keyTy.get(), valueTy.get());
}
Expected<Type> deserializeOptionalType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID baseID;
decls_block::OptionalTypeLayout::readRecord(scratch, baseID);
auto baseTy = MF.getTypeChecked(baseID);
if (!baseTy)
return baseTy.takeError();
return OptionalType::get(baseTy.get());
}
Expected<Type> deserializeVariadicSequenceType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID baseID;
decls_block::VariadicSequenceTypeLayout::readRecord(scratch, baseID);
auto baseTy = MF.getTypeChecked(baseID);
if (!baseTy)
return baseTy.takeError();
return VariadicSequenceType::get(baseTy.get());
}
Expected<Type> deserializeUnboundGenericType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
DeclID genericID;
TypeID parentID;
decls_block::UnboundGenericTypeLayout::readRecord(scratch,
genericID, parentID);
auto nominalOrError = MF.getDeclChecked(genericID);
if (!nominalOrError)
return nominalOrError.takeError();
auto genericDecl = cast<GenericTypeDecl>(nominalOrError.get());
// FIXME: Check this?
auto parentTy = MF.getType(parentID);
return UnboundGenericType::get(genericDecl, parentTy, ctx);
}
Expected<Type> deserializeErrorType(ArrayRef<uint64_t> scratch,
StringRef blobData) {
TypeID origID;
decls_block::ErrorTypeLayout::readRecord(scratch, origID);
auto origTyOrError = MF.getTypeChecked(origID);
if (!origTyOrError)
return origTyOrError.takeError();
auto origTy = *origTyOrError;
auto diagId = MF.allowCompilerErrors()
? diag::serialization_allowing_error_type
: diag::serialization_error_type;
// Generally not a super useful diagnostic, so only output once if there
// hasn't been any other diagnostic yet to ensure nothing slips by and
// causes SILGen to crash.
if (!ctx.hadError()) {
ctx.Diags.diagnose(SourceLoc(), diagId, StringRef(origTy.getString()),
MF.getAssociatedModule()->getNameStr());
}
if (!origTy)
return ErrorType::get(ctx);
return ErrorType::get(origTy);
}
};
}
Expected<Type> ModuleFile::getTypeChecked(TypeID TID) {
if (TID == 0)
return Type();
assert(TID <= Types.size() && "invalid type ID");
auto &typeOrOffset = Types[TID-1];
if (typeOrOffset.isComplete())
return typeOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(typeOrOffset));
auto result = TypeDeserializer(*this).getTypeCheckedImpl();
if (!result)
return result;
typeOrOffset = result.get();
#ifndef NDEBUG
PrettyStackTraceType trace(getContext(), "deserializing", typeOrOffset.get());
if (typeOrOffset.get()->hasError() && !allowCompilerErrors()) {
typeOrOffset.get()->dump(llvm::errs());
llvm_unreachable("deserialization produced an invalid type "
"(rdar://problem/30382791)");
}
#endif
return typeOrOffset.get();
}
Expected<Type> TypeDeserializer::getTypeCheckedImpl() {
if (auto s = ctx.Stats)
++s->getFrontendCounters().NumTypesDeserialized;
llvm::BitstreamEntry entry =
MF.fatalIfUnexpected(MF.DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize types represented by sub-blocks.
MF.fatal();
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = MF.fatalIfUnexpected(
MF.DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
switch (recordID) {
#define CASE(RECORD_NAME) \
case decls_block::RECORD_NAME##TypeLayout::Code: \
return deserialize##RECORD_NAME##Type(scratch, blobData);
CASE(BuiltinAlias)
CASE(TypeAlias)
CASE(Nominal)
CASE(Paren)
CASE(Tuple)
CASE(Function)
CASE(GenericFunction)
CASE(ExistentialMetatype)
CASE(Metatype)
CASE(DynamicSelf)
CASE(ReferenceStorage)
CASE(PrimaryArchetype)
CASE(OpaqueArchetype)
CASE(OpenedArchetype)
CASE(NestedArchetype)
CASE(GenericTypeParam)
CASE(ProtocolComposition)
CASE(DependentMember)
CASE(BoundGeneric)
CASE(SILBlockStorage)
CASE(SILBox)
CASE(SILFunction)
CASE(ArraySlice)
CASE(Dictionary)
CASE(Optional)
CASE(VariadicSequence)
CASE(UnboundGeneric)
CASE(Error)
#undef CASE
default:
// We don't know how to deserialize this kind of type.
MF.fatal();
}
}
namespace {
class SwiftToClangBasicReader :
public swift::DataStreamBasicReader<SwiftToClangBasicReader> {
ModuleFile &MF;
ClangModuleLoader &ClangLoader;
ArrayRef<uint64_t> Record;
public:
SwiftToClangBasicReader(ModuleFile &MF, ClangModuleLoader &clangLoader,
ArrayRef<uint64_t> record)
: DataStreamBasicReader(clangLoader.getClangASTContext()),
MF(MF), ClangLoader(clangLoader), Record(record) {}
uint64_t readUInt64() {
uint64_t value = Record[0];
Record = Record.drop_front();
return value;
}
Identifier readSwiftIdentifier() {
return MF.getIdentifier(IdentifierID(readUInt64()));
}
clang::IdentifierInfo *readIdentifier() {
Identifier swiftIdent = readSwiftIdentifier();
return &getASTContext().Idents.get(swiftIdent.str());
}
clang::Stmt *readStmtRef() {
// Should only be allowed with null statements.
return nullptr;
}
clang::Decl *readDeclRef() {
uint64_t refKind = readUInt64();
// Null reference.
if (refKind == 0) return nullptr;
// Swift declaration.
if (refKind == 1) {
swift::Decl *swiftDecl = MF.getDecl(DeclID(readUInt64()));
return const_cast<clang::Decl*>(
ClangLoader.resolveStableSerializationPath(swiftDecl));
}
// External path.
if (refKind == 2) {
using ExternalPath = StableSerializationPath::ExternalPath;
ExternalPath path;
uint64_t length = readUInt64();
path.Path.reserve(length);
for (uint64_t i = 0; i != length; ++i) {
auto kind = getActualClangDeclPathComponentKind(readUInt64());
if (!kind) return nullptr;
Identifier name = ExternalPath::requiresIdentifier(*kind)
? readSwiftIdentifier()
: Identifier();
path.add(*kind, name);
}
return const_cast<clang::Decl*>(
ClangLoader.resolveStableSerializationPath(std::move(path)));
}
// Unknown kind?
return nullptr;
}
};
} // end anonymous namespace
llvm::Expected<const clang::Type *>
ModuleFile::getClangType(ClangTypeID TID) {
if (!getContext().LangOpts.UseClangFunctionTypes)
return nullptr;
if (TID == 0)
return nullptr;
assert(TID <= ClangTypes.size() && "invalid type ID");
auto &typeOrOffset = ClangTypes[TID-1];
if (typeOrOffset.isComplete())
return typeOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(typeOrOffset));
llvm::BitstreamEntry entry =
fatalIfUnexpected(DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record) {
fatal();
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = fatalIfUnexpected(
DeclTypeCursor.readRecord(entry.ID, scratch, &blobData));
if (recordID != decls_block::CLANG_TYPE)
fatal();
auto &clangLoader = *getContext().getClangModuleLoader();
auto clangType =
SwiftToClangBasicReader(*this, clangLoader, scratch).readTypeRef()
.getTypePtr();
typeOrOffset = clangType;
return clangType;
}
Decl *handleErrorAndSupplyMissingClassMember(ASTContext &context,
llvm::Error &&error,
ClassDecl *containingClass) {
Decl *suppliedMissingMember = nullptr;
auto handleMissingClassMember = [&](const DeclDeserializationError &error) {
if (error.isDesignatedInitializer())
context.evaluator.cacheOutput(
HasMissingDesignatedInitializersRequest{containingClass}, true);
if (error.getNumberOfVTableEntries() > 0)
containingClass->setHasMissingVTableEntries();
suppliedMissingMember = MissingMemberDecl::create(
context, containingClass, error.getName(),
error.getNumberOfVTableEntries(),
error.needsFieldOffsetVectorEntry());
};
llvm::handleAllErrors(std::move(error), handleMissingClassMember);
return suppliedMissingMember;
}
Decl *handleErrorAndSupplyMissingProtoMember(ASTContext &context,
llvm::Error &&error,
ProtocolDecl *containingProto) {
Decl *suppliedMissingMember = nullptr;
auto handleMissingProtocolMember =
[&](const DeclDeserializationError &error) {
assert(error.needsFieldOffsetVectorEntry() == 0);
if (error.getNumberOfVTableEntries() > 0)
containingProto->setHasMissingRequirements(true);
suppliedMissingMember = MissingMemberDecl::create(
context, containingProto, error.getName(),
error.getNumberOfVTableEntries(), 0);
};
llvm::handleAllErrors(std::move(error), handleMissingProtocolMember);
return suppliedMissingMember;
}
Decl *handleErrorAndSupplyMissingMiscMember(llvm::Error &&error) {
llvm::consumeError(std::move(error));
return nullptr;
}
Decl *handleErrorAndSupplyMissingMember(ASTContext &context, Decl *container,
llvm::Error &&error) {
// Drop the member if it had a problem.
// FIXME: Handle overridable members in class extensions too, someday.
if (auto *containingClass = dyn_cast<ClassDecl>(container)) {
return handleErrorAndSupplyMissingClassMember(context, std::move(error),
containingClass);
}
if (auto *containingProto = dyn_cast<ProtocolDecl>(container)) {
return handleErrorAndSupplyMissingProtoMember(context, std::move(error),
containingProto);
}
return handleErrorAndSupplyMissingMiscMember(std::move(error));
}
void ModuleFile::loadAllMembers(Decl *container, uint64_t contextData) {
PrettyStackTraceDecl trace("loading members for", container);
++NumMemberListsLoaded;
IterableDeclContext *IDC;
if (auto *nominal = dyn_cast<NominalTypeDecl>(container))
IDC = nominal;
else
IDC = cast<ExtensionDecl>(container);
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(contextData));
llvm::BitstreamEntry entry = fatalIfUnexpected(DeclTypeCursor.advance());
if (entry.Kind != llvm::BitstreamEntry::Record)
fatal();
SmallVector<uint64_t, 16> memberIDBuffer;
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(entry.ID, memberIDBuffer));
assert(kind == decls_block::MEMBERS);
(void)kind;
ArrayRef<uint64_t> rawMemberIDs;
decls_block::MembersLayout::readRecord(memberIDBuffer, rawMemberIDs);
if (rawMemberIDs.empty())
return;
SmallVector<Decl *, 16> members;
members.reserve(rawMemberIDs.size());
for (DeclID rawID : rawMemberIDs) {
Expected<Decl *> next = getDeclChecked(rawID);
if (next) {
assert(next.get() && "unchecked error deserializing next member");
members.push_back(next.get());
} else {
if (!getContext().LangOpts.EnableDeserializationRecovery)
fatal(next.takeError());
Decl *suppliedMissingMember = handleErrorAndSupplyMissingMember(
getContext(), container, next.takeError());
if (suppliedMissingMember)
members.push_back(suppliedMissingMember);
}
}
for (auto member : members)
IDC->addMember(member);
if (auto *proto = dyn_cast<ProtocolDecl>(container)) {
PrettyStackTraceDecl trace("reading default witness table for", proto);
bool Err = readDefaultWitnessTable(proto);
assert(!Err && "unable to read default witness table");
(void)Err;
}
}
static llvm::Error consumeErrorIfXRefNonLoadedModule(llvm::Error &&error) {
// Missing module errors are most likely caused by an
// implementation-only import hiding types and decls.
// rdar://problem/60291019
if (error.isA<XRefNonLoadedModuleError>()) {
consumeError(std::move(error));
return llvm::Error::success();
}
// Some of these errors may manifest as a TypeError with an
// XRefNonLoadedModuleError underneath. Catch those as well.
// rdar://66491720
if (error.isA<TypeError>()) {
auto errorInfo = takeErrorInfo(std::move(error));
auto *TE = static_cast<TypeError*>(errorInfo.get());
if (TE->underlyingReasonIsA<XRefNonLoadedModuleError>()) {
consumeError(std::move(errorInfo));
return llvm::Error::success();
}
return std::move(errorInfo);
}
return std::move(error);
}
void
ModuleFile::loadAllConformances(const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance*> &conformances) {
PrettyStackTraceDecl trace("loading conformances for", D);
uint64_t numConformances;
uint64_t bitPosition;
std::tie(numConformances, bitPosition)
= decodeLazyConformanceContextData(contextData);
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(bitPosition));
while (numConformances--) {
auto conformance = readConformanceChecked(DeclTypeCursor);
if (!conformance) {
auto unconsumedError =
consumeErrorIfXRefNonLoadedModule(conformance.takeError());
if (unconsumedError) {
// Ignore if allowing errors, it's just doing a best effort to produce
// *some* module anyway.
if (allowCompilerErrors())
consumeError(std::move(unconsumedError));
else
fatal(std::move(unconsumedError));
}
continue;
}
if (conformance.get().isConcrete())
conformances.push_back(conformance.get().getConcrete());
}
}
Type
ModuleFile::loadAssociatedTypeDefault(const swift::AssociatedTypeDecl *ATD,
uint64_t contextData) {
return getType(contextData);
}
ValueDecl *ModuleFile::loadDynamicallyReplacedFunctionDecl(
const DynamicReplacementAttr *DRA, uint64_t contextData) {
return cast<ValueDecl>(getDecl(contextData));
}
AbstractFunctionDecl *
ModuleFile::loadReferencedFunctionDecl(const DerivativeAttr *DA,
uint64_t contextData) {
return cast<AbstractFunctionDecl>(getDecl(contextData));
}
ValueDecl *ModuleFile::loadTargetFunctionDecl(const SpecializeAttr *attr,
uint64_t contextData) {
if (contextData == 0)
return nullptr;
return cast<AbstractFunctionDecl>(getDecl(contextData));
}
Type ModuleFile::loadTypeEraserType(const TypeEraserAttr *TRA,
uint64_t contextData) {
return getType(contextData);
}
void ModuleFile::finishNormalConformance(NormalProtocolConformance *conformance,
uint64_t contextData) {
using namespace decls_block;
PrettyStackTraceModuleFile traceModule(*this);
PrettyStackTraceConformance trace("finishing conformance for",
conformance);
++NumNormalProtocolConformancesCompleted;
assert(conformance->isComplete());
conformance->setState(ProtocolConformanceState::Incomplete);
SWIFT_DEFER { conformance->setState(ProtocolConformanceState::Complete); };
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(contextData));
llvm::BitstreamEntry entry = fatalIfUnexpected(DeclTypeCursor.advance());
assert(entry.Kind == llvm::BitstreamEntry::Record &&
"registered lazy loader incorrectly");
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, conformanceCount, isUnchecked;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind =
fatalIfUnexpected(DeclTypeCursor.readRecord(entry.ID, scratch));
(void) kind;
assert(kind == NORMAL_PROTOCOL_CONFORMANCE &&
"registered lazy loader incorrectly");
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, typeCount,
valueCount, conformanceCount,
isUnchecked, rawIDs);
// Read requirement signature conformances.
const ProtocolDecl *proto = conformance->getProtocol();
SmallVector<ProtocolConformanceRef, 4> reqConformances;
if (proto->isObjC() && getContext().LangOpts.EnableDeserializationRecovery) {
// Don't crash if inherited protocols are added or removed.
// This is limited to Objective-C protocols because we know their only
// conformance requirements are on Self. This isn't actually a /safe/ change
// even in Objective-C, but we mostly just don't want to crash.
llvm::SmallDenseMap<ProtocolDecl *, ProtocolConformanceRef, 16>
conformancesForProtocols;
while (conformanceCount--) {
ProtocolConformanceRef nextConformance = readConformance(DeclTypeCursor);
ProtocolDecl *confProto = nextConformance.getRequirement();
conformancesForProtocols[confProto] = nextConformance;
}
for (const auto &req : proto->getRequirementSignature()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
ProtocolDecl *proto = req.getProtocolDecl();
auto iter = conformancesForProtocols.find(proto);
if (iter != conformancesForProtocols.end()) {
reqConformances.push_back(iter->getSecond());
} else {
// Put in an abstract conformance as a placeholder. This is a lie, but
// there's not much better we can do. We're relying on the fact that
// the rest of the compiler doesn't actually need to check the
// conformance to an Objective-C protocol for anything important.
// There are no associated types and we don't emit a Swift conformance
// record.
reqConformances.push_back(ProtocolConformanceRef(proto));
}
}
} else {
auto isConformanceReq = [](const Requirement &req) {
return req.getKind() == RequirementKind::Conformance;
};
if (!allowCompilerErrors() &&
conformanceCount != llvm::count_if(proto->getRequirementSignature(),
isConformanceReq)) {
fatal(llvm::make_error<llvm::StringError>(
"serialized conformances do not match requirement signature",
llvm::inconvertibleErrorCode()));
}
while (conformanceCount--) {
auto conformance = readConformanceChecked(DeclTypeCursor);
if (conformance) {
reqConformances.push_back(conformance.get());
} else if (allowCompilerErrors()) {
consumeError(conformance.takeError());
reqConformances.push_back(ProtocolConformanceRef::forInvalid());
} else {
fatal(conformance.takeError());
}
}
}
conformance->setSignatureConformances(reqConformances);
ArrayRef<uint64_t>::iterator rawIDIter = rawIDs.begin();
TypeWitnessMap typeWitnesses;
while (typeCount--) {
// FIXME: We don't actually want to allocate an archetype here; we just
// want to get an access path within the protocol.
auto first = cast<AssociatedTypeDecl>(getDecl(*rawIDIter++));
auto secondOrError = getTypeChecked(*rawIDIter++);
Type second;
if (secondOrError) {
second = *secondOrError;
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
second = ErrorType::get(getContext());
consumeError(secondOrError.takeError());
} else {
fatal(secondOrError.takeError());
}
auto thirdOrError = getDeclChecked(*rawIDIter++);
TypeDecl *third;
if (thirdOrError) {
third = cast_or_null<TypeDecl>(*thirdOrError);
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
third = nullptr;
consumeError(thirdOrError.takeError());
} else {
fatal(thirdOrError.takeError());
}
if (third &&
isa<TypeAliasDecl>(third) &&
third->getModuleContext() != getAssociatedModule() &&
!third->getDeclaredInterfaceType()->isEqual(second)) {
// Conservatively drop references to typealiases in other modules
// that may have changed. This may also drop references to typealiases
// that /haven't/ changed but just happen to have generics in them, but
// in practice having a declaration here isn't actually required by the
// rest of the compiler.
third = nullptr;
}
typeWitnesses[first] = {second, third};
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Set type witnesses.
for (auto typeWitness : typeWitnesses) {
conformance->setTypeWitness(typeWitness.first,
typeWitness.second.getWitnessType(),
typeWitness.second.getWitnessDecl());
}
// An imported requirement may have changed type between Swift versions.
// In this situation we need to do a post-pass to fill in missing
// requirements with opaque witnesses.
bool needToFillInOpaqueValueWitnesses = false;
while (valueCount--) {
ValueDecl *req;
auto trySetWitness = [&](Witness w) {
if (req)
conformance->setWitness(req, w);
};
auto deserializedReq = getDeclChecked(*rawIDIter++);
if (deserializedReq) {
req = cast_or_null<ValueDecl>(*deserializedReq);
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
consumeError(deserializedReq.takeError());
req = nullptr;
needToFillInOpaqueValueWitnesses = true;
} else {
fatal(deserializedReq.takeError());
}
bool isOpaque = false;
ValueDecl *witness;
auto deserializedWitness = getDeclChecked(*rawIDIter++);
if (deserializedWitness) {
witness = cast_or_null<ValueDecl>(*deserializedWitness);
// Across language compatibility versions, the witnessing decl may have
// changed its signature as seen by the current compatibility version.
// In that case, we want the conformance to still be available, but
// we can't make use of the relationship to the underlying decl.
} else if (getContext().LangOpts.EnableDeserializationRecovery) {
consumeError(deserializedWitness.takeError());
isOpaque = true;
witness = nullptr;
} else {
fatal(deserializedWitness.takeError());
}
assert(!req || isOpaque || witness ||
req->getAttrs().hasAttribute<OptionalAttr>() ||
req->getAttrs().isUnavailable(getContext()));
if (!witness && !isOpaque) {
trySetWitness(Witness());
continue;
}
auto trySetOpaqueWitness = [&]{
if (!req)
return;
conformance->setWitness(req, Witness::forOpaque(req));
};
// Witness substitutions.
auto witnessSubstitutions = getSubstitutionMapChecked(*rawIDIter++);
if (!witnessSubstitutions) {
// Missing module errors are most likely caused by an
// implementation-only import hiding types and decls.
// rdar://problem/52837313. Ignore completely if allowing
// errors - we're just doing a best effort to create the
// module in that case.
if (witnessSubstitutions.errorIsA<XRefNonLoadedModuleError>() ||
allowCompilerErrors()) {
consumeError(witnessSubstitutions.takeError());
isOpaque = true;
}
else
fatal(witnessSubstitutions.takeError());
}
// Handle opaque witnesses that couldn't be deserialized.
if (isOpaque) {
trySetOpaqueWitness();
continue;
}
// Set the witness.
trySetWitness(Witness::forDeserialized(witness, witnessSubstitutions.get()));
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Fill in opaque value witnesses if we need to.
if (needToFillInOpaqueValueWitnesses) {
for (auto member : proto->getMembers()) {
// We only care about non-associated-type requirements.
auto valueMember = dyn_cast<ValueDecl>(member);
if (!valueMember || !valueMember->isProtocolRequirement()
|| isa<AssociatedTypeDecl>(valueMember))
continue;
if (!conformance->hasWitness(valueMember))
conformance->setWitness(valueMember, Witness::forOpaque(valueMember));
}
}
}
void ModuleFile::loadRequirementSignature(const ProtocolDecl *decl,
uint64_t contextData,
SmallVectorImpl<Requirement> &reqs) {
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(contextData));
readGenericRequirements(reqs, DeclTypeCursor);
}
void ModuleFile::loadAssociatedTypes(const ProtocolDecl *decl,
uint64_t contextData,
SmallVectorImpl<AssociatedTypeDecl *> &assocTypes) {
BCOffsetRAII restoreOffset(DeclTypeCursor);
fatalIfNotSuccess(DeclTypeCursor.JumpToBit(contextData));
readAssociatedTypes(assocTypes, DeclTypeCursor);
}
static Optional<ForeignErrorConvention::Kind>
decodeRawStableForeignErrorConventionKind(uint8_t kind) {
switch (kind) {
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroResult):
return ForeignErrorConvention::ZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonZeroResult):
return ForeignErrorConvention::NonZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroPreservedResult):
return ForeignErrorConvention::ZeroPreservedResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NilResult):
return ForeignErrorConvention::NilResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonNilError):
return ForeignErrorConvention::NonNilError;
default:
return None;
}
}
Optional<StringRef> ModuleFile::maybeReadInlinableBodyText() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
StringRef blobData;
llvm::BitstreamEntry next =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (next.Kind != llvm::BitstreamEntry::Record)
return None;
unsigned recKind =
fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch, &blobData));
if (recKind != INLINABLE_BODY_TEXT)
return None;
restoreOffset.reset();
return blobData;
}
Optional<ForeignErrorConvention> ModuleFile::maybeReadForeignErrorConvention() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
llvm::BitstreamEntry next =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (next.Kind != llvm::BitstreamEntry::Record)
return None;
unsigned recKind =
fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch));
switch (recKind) {
case FOREIGN_ERROR_CONVENTION:
restoreOffset.reset();
break;
default:
return None;
}
uint8_t rawKind;
bool isOwned;
bool isReplaced;
unsigned errorParameterIndex;
TypeID errorParameterTypeID;
TypeID resultTypeID;
ForeignErrorConventionLayout::readRecord(scratch, rawKind,
isOwned, isReplaced,
errorParameterIndex,
errorParameterTypeID,
resultTypeID);
ForeignErrorConvention::Kind kind;
if (auto optKind = decodeRawStableForeignErrorConventionKind(rawKind))
kind = *optKind;
else
fatal();
Type errorParameterType = getType(errorParameterTypeID);
CanType canErrorParameterType;
if (errorParameterType)
canErrorParameterType = errorParameterType->getCanonicalType();
Type resultType = getType(resultTypeID);
CanType canResultType;
if (resultType)
canResultType = resultType->getCanonicalType();
auto owned = isOwned ? ForeignErrorConvention::IsOwned
: ForeignErrorConvention::IsNotOwned;
auto replaced = ForeignErrorConvention::IsReplaced_t(isOwned);
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConvention::getZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConvention::getNonZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConvention::getZeroPreservedResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NilResult:
return ForeignErrorConvention::getNilResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NonNilError:
return ForeignErrorConvention::getNonNilError(errorParameterIndex,
owned, replaced,
canErrorParameterType);
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}
Optional<ForeignAsyncConvention> ModuleFile::maybeReadForeignAsyncConvention() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
llvm::BitstreamEntry next =
fatalIfUnexpected(DeclTypeCursor.advance(AF_DontPopBlockAtEnd));
if (next.Kind != llvm::BitstreamEntry::Record)
return None;
unsigned recKind =
fatalIfUnexpected(DeclTypeCursor.readRecord(next.ID, scratch));
switch (recKind) {
case FOREIGN_ASYNC_CONVENTION:
restoreOffset.reset();
break;
default:
return None;
}
TypeID completionHandlerTypeID;
unsigned completionHandlerParameterIndex;
unsigned rawErrorParameterIndex;
unsigned rawErrorFlagParameterIndex;
bool errorFlagPolarity;
ForeignAsyncConventionLayout::readRecord(scratch,
completionHandlerTypeID,
completionHandlerParameterIndex,
rawErrorParameterIndex,
rawErrorFlagParameterIndex,
errorFlagPolarity);
Type completionHandlerType = getType(completionHandlerTypeID);
CanType canCompletionHandlerType;
if (completionHandlerType)
canCompletionHandlerType = completionHandlerType->getCanonicalType();
// Decode the error and flag parameters.
Optional<unsigned> completionHandlerErrorParamIndex;
if (rawErrorParameterIndex > 0)
completionHandlerErrorParamIndex = rawErrorParameterIndex - 1;
Optional<unsigned> completionHandlerErrorFlagParamIndex;
if (rawErrorFlagParameterIndex > 0)
completionHandlerErrorFlagParamIndex = rawErrorFlagParameterIndex - 1;
return ForeignAsyncConvention(
canCompletionHandlerType, completionHandlerParameterIndex,
completionHandlerErrorParamIndex,
completionHandlerErrorFlagParamIndex,
errorFlagPolarity);
}