mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Now that the property map stores a reference to the RewriteSystem, defining the buildPropertyMap() method on PropertyMap feels cleaner, and allows more of the property map's internals to be private.
584 lines
18 KiB
C++
584 lines
18 KiB
C++
//===--- RequirementMachine.cpp - Generics with term rewriting ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/PrettyStackTrace.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include <vector>
|
|
|
|
#include "RequirementMachine.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
namespace {
|
|
|
|
/// A utility class for bulding a rewrite system from the top-level requirements
|
|
/// of a generic signature, and all protocol requirement signatures from all
|
|
/// transitively-referenced protocols.
|
|
struct RewriteSystemBuilder {
|
|
RewriteContext &Context;
|
|
bool Dump;
|
|
|
|
/// The keys are the unique protocols we've added so far. The value indicates
|
|
/// whether the protocol's SCC is an initial component for the rewrite system.
|
|
///
|
|
/// A rewrite system built from a generic signature does not have any initial
|
|
/// protocols.
|
|
///
|
|
/// A rewrite system built from a protocol SCC has the protocols of the SCC
|
|
/// itself as initial protocols.
|
|
///
|
|
/// If a protocol is an initial protocol, we use its structural requirements
|
|
/// instead of its requirement signature as the basis of its rewrite rules.
|
|
///
|
|
/// This is what breaks the cycle in requirement signature computation for a
|
|
/// group of interdependent protocols.
|
|
llvm::DenseMap<const ProtocolDecl *, bool> ProtocolMap;
|
|
std::vector<const ProtocolDecl *> Protocols;
|
|
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> AssociatedTypeRules;
|
|
std::vector<std::pair<MutableTerm, MutableTerm>> RequirementRules;
|
|
|
|
CanType getConcreteSubstitutionSchema(CanType concreteType,
|
|
const ProtocolDecl *proto,
|
|
SmallVectorImpl<Term> &result);
|
|
|
|
RewriteSystemBuilder(RewriteContext &ctx, bool dump)
|
|
: Context(ctx), Dump(dump) {}
|
|
void addGenericSignature(CanGenericSignature sig);
|
|
void addProtocols(ArrayRef<const ProtocolDecl *> proto);
|
|
void addProtocol(const ProtocolDecl *proto,
|
|
bool initialComponent);
|
|
void addAssociatedType(const AssociatedTypeDecl *type,
|
|
const ProtocolDecl *proto);
|
|
void addRequirement(const Requirement &req,
|
|
const ProtocolDecl *proto);
|
|
void processProtocolDependencies();
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
/// Given a concrete type that may contain type parameters in structural positions,
|
|
/// collect all the structural type parameter components, and replace them all with
|
|
/// fresh generic parameters. The fresh generic parameters all have a depth of 0,
|
|
/// and the index is an index into the 'result' array.
|
|
///
|
|
/// For example, given the concrete type Foo<X.Y, Array<Z>>, this produces the
|
|
/// result type Foo<τ_0_0, Array<τ_0_1>>, with result array {X.Y, Z}.
|
|
CanType
|
|
RewriteSystemBuilder::getConcreteSubstitutionSchema(CanType concreteType,
|
|
const ProtocolDecl *proto,
|
|
SmallVectorImpl<Term> &result) {
|
|
assert(!concreteType->isTypeParameter() && "Must have a concrete type here");
|
|
|
|
if (!concreteType->hasTypeParameter())
|
|
return concreteType;
|
|
|
|
return CanType(concreteType.transformRec(
|
|
[&](Type t) -> Optional<Type> {
|
|
if (!t->isTypeParameter())
|
|
return None;
|
|
|
|
unsigned index = result.size();
|
|
result.push_back(Context.getTermForType(CanType(t), proto));
|
|
|
|
return CanGenericTypeParamType::get(/*depth=*/0, index, Context.getASTContext());
|
|
}));
|
|
}
|
|
|
|
void RewriteSystemBuilder::addGenericSignature(CanGenericSignature sig) {
|
|
// Collect all protocols transitively referenced from the generic signature's
|
|
// requirements.
|
|
for (auto req : sig.getRequirements()) {
|
|
if (req.getKind() == RequirementKind::Conformance) {
|
|
addProtocol(req.getProtocolDecl(), /*initialComponent=*/false);
|
|
}
|
|
}
|
|
|
|
processProtocolDependencies();
|
|
|
|
// Add rewrite rules for all requirements in the top-level signature.
|
|
for (const auto &req : sig.getRequirements())
|
|
addRequirement(req, /*proto=*/nullptr);
|
|
}
|
|
|
|
void RewriteSystemBuilder::addProtocols(ArrayRef<const ProtocolDecl *> protos) {
|
|
// Collect all protocols transitively referenced from this connected component
|
|
// of the protocol dependency graph.
|
|
for (auto proto : protos) {
|
|
addProtocol(proto, /*initialComponent=*/true);
|
|
}
|
|
|
|
processProtocolDependencies();
|
|
}
|
|
|
|
/// For an associated type T in a protocol P, we add a rewrite rule:
|
|
///
|
|
/// [P].T => [P:T]
|
|
///
|
|
/// Intuitively, this means "if a type conforms to P, it has a nested type
|
|
/// named T".
|
|
void RewriteSystemBuilder::addAssociatedType(const AssociatedTypeDecl *type,
|
|
const ProtocolDecl *proto) {
|
|
MutableTerm lhs;
|
|
lhs.add(Symbol::forProtocol(proto, Context));
|
|
lhs.add(Symbol::forName(type->getName(), Context));
|
|
|
|
MutableTerm rhs;
|
|
rhs.add(Symbol::forAssociatedType(proto, type->getName(), Context));
|
|
|
|
AssociatedTypeRules.emplace_back(lhs, rhs);
|
|
}
|
|
|
|
/// Lowers a generic requirement to a rewrite rule.
|
|
///
|
|
/// If \p proto is null, this is a generic requirement from the top-level
|
|
/// generic signature. The added rewrite rule will be rooted in a generic
|
|
/// parameter symbol.
|
|
///
|
|
/// If \p proto is non-null, this is a generic requirement in the protocol's
|
|
/// requirement signature. The added rewrite rule will be rooted in a
|
|
/// protocol symbol.
|
|
void RewriteSystemBuilder::addRequirement(const Requirement &req,
|
|
const ProtocolDecl *proto) {
|
|
if (Dump) {
|
|
llvm::dbgs() << "+ ";
|
|
req.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Compute the left hand side.
|
|
auto subjectType = CanType(req.getFirstType());
|
|
auto subjectTerm = Context.getMutableTermForType(subjectType, proto);
|
|
|
|
// Compute the right hand side.
|
|
MutableTerm constraintTerm;
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementKind::Conformance: {
|
|
// A conformance requirement T : P becomes a rewrite rule
|
|
//
|
|
// T.[P] == T
|
|
//
|
|
// Intuitively, this means "any type ending with T conforms to P".
|
|
auto *proto = req.getProtocolDecl();
|
|
|
|
constraintTerm = subjectTerm;
|
|
constraintTerm.add(Symbol::forProtocol(proto, Context));
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::Superclass: {
|
|
// A superclass requirement T : C<X, Y> becomes a rewrite rule
|
|
//
|
|
// T.[superclass: C<X, Y>] => T
|
|
//
|
|
// Together with a rewrite rule
|
|
//
|
|
// T.[layout: L] => T
|
|
//
|
|
// Where 'L' is either AnyObject or _NativeObject, depending on the
|
|
// ancestry of C.
|
|
auto otherType = CanType(req.getSecondType());
|
|
|
|
SmallVector<Term, 1> substitutions;
|
|
otherType = getConcreteSubstitutionSchema(otherType, proto,
|
|
substitutions);
|
|
|
|
constraintTerm = subjectTerm;
|
|
constraintTerm.add(Symbol::forSuperclass(otherType, substitutions,
|
|
Context));
|
|
RequirementRules.emplace_back(subjectTerm, constraintTerm);
|
|
|
|
constraintTerm = subjectTerm;
|
|
auto layout =
|
|
LayoutConstraint::getLayoutConstraint(
|
|
otherType->getClassOrBoundGenericClass()->usesObjCObjectModel()
|
|
? LayoutConstraintKind::Class
|
|
: LayoutConstraintKind::NativeClass,
|
|
Context.getASTContext());
|
|
constraintTerm.add(Symbol::forLayout(layout, Context));
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::Layout: {
|
|
// A layout requirement T : L becomes a rewrite rule
|
|
//
|
|
// T.[layout: L] == T
|
|
constraintTerm = subjectTerm;
|
|
constraintTerm.add(Symbol::forLayout(req.getLayoutConstraint(),
|
|
Context));
|
|
break;
|
|
}
|
|
|
|
case RequirementKind::SameType: {
|
|
auto otherType = CanType(req.getSecondType());
|
|
|
|
if (!otherType->isTypeParameter()) {
|
|
// A concrete same-type requirement T == C<X, Y> becomes a
|
|
// rewrite rule
|
|
//
|
|
// T.[concrete: C<X, Y>] => T
|
|
SmallVector<Term, 1> substitutions;
|
|
otherType = getConcreteSubstitutionSchema(otherType, proto,
|
|
substitutions);
|
|
|
|
constraintTerm = subjectTerm;
|
|
constraintTerm.add(Symbol::forConcreteType(otherType, substitutions,
|
|
Context));
|
|
break;
|
|
}
|
|
|
|
constraintTerm = Context.getMutableTermForType(otherType, proto);
|
|
break;
|
|
}
|
|
}
|
|
|
|
RequirementRules.emplace_back(subjectTerm, constraintTerm);
|
|
}
|
|
|
|
/// Record information about a protocol if we have no seen it yet.
|
|
void RewriteSystemBuilder::addProtocol(const ProtocolDecl *proto,
|
|
bool initialComponent) {
|
|
if (ProtocolMap.count(proto) > 0)
|
|
return;
|
|
|
|
ProtocolMap[proto] = initialComponent;
|
|
Protocols.push_back(proto);
|
|
}
|
|
|
|
void RewriteSystemBuilder::processProtocolDependencies() {
|
|
unsigned i = 0;
|
|
while (i < Protocols.size()) {
|
|
auto *proto = Protocols[i++];
|
|
for (auto *depProto : proto->getProtocolDependencies()) {
|
|
addProtocol(depProto, /*initialComponent=*/false);
|
|
}
|
|
}
|
|
|
|
// Add rewrite rules for each protocol.
|
|
for (auto *proto : Protocols) {
|
|
if (Dump) {
|
|
llvm::dbgs() << "protocol " << proto->getName() << " {\n";
|
|
}
|
|
|
|
MutableTerm lhs;
|
|
lhs.add(Symbol::forProtocol(proto, Context));
|
|
lhs.add(Symbol::forProtocol(proto, Context));
|
|
|
|
MutableTerm rhs;
|
|
rhs.add(Symbol::forProtocol(proto, Context));
|
|
|
|
AssociatedTypeRules.emplace_back(lhs, rhs);
|
|
|
|
for (auto *assocType : proto->getAssociatedTypeMembers())
|
|
addAssociatedType(assocType, proto);
|
|
|
|
for (auto *inheritedProto : Context.getInheritedProtocols(proto)) {
|
|
for (auto *assocType : inheritedProto->getAssociatedTypeMembers())
|
|
addAssociatedType(assocType, proto);
|
|
}
|
|
|
|
// If this protocol is part of the initial connected component, we're
|
|
// building requirement signatures for all protocols in this component,
|
|
// and so we must start with the structural requirements.
|
|
//
|
|
// Otherwise, we should either already have a requirement signature, or
|
|
// we can trigger the computation of the requirement signatures of the
|
|
// next component recursively.
|
|
if (ProtocolMap[proto]) {
|
|
for (auto req : proto->getStructuralRequirements())
|
|
addRequirement(req.req.getCanonical(), proto);
|
|
} else {
|
|
for (auto req : proto->getRequirementSignature())
|
|
addRequirement(req.getCanonical(), proto);
|
|
}
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void RequirementMachine::verify(const MutableTerm &term) const {
|
|
#ifndef NDEBUG
|
|
// If the term is in the generic parameter domain, ensure we have a valid
|
|
// generic parameter.
|
|
if (term.begin()->getKind() == Symbol::Kind::GenericParam) {
|
|
auto *genericParam = term.begin()->getGenericParam();
|
|
auto genericParams = Sig.getGenericParams();
|
|
auto found = std::find(genericParams.begin(),
|
|
genericParams.end(),
|
|
genericParam);
|
|
if (found == genericParams.end()) {
|
|
llvm::errs() << "Bad generic parameter in " << term << "\n";
|
|
dump(llvm::errs());
|
|
abort();
|
|
}
|
|
}
|
|
|
|
MutableTerm erased;
|
|
|
|
// First, "erase" resolved associated types from the term, and try
|
|
// to simplify it again.
|
|
for (auto symbol : term) {
|
|
if (erased.empty()) {
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
erased.add(symbol);
|
|
continue;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forProtocol(symbol.getProtocols()[0], Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
llvm::errs() << "Bad initial symbol in " << term << "\n";
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Name:
|
|
assert(!erased.empty());
|
|
erased.add(symbol);
|
|
break;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forName(symbol.getName(), Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
llvm::errs() << "Bad interior symbol " << symbol << " in " << term << "\n";
|
|
abort();
|
|
break;
|
|
}
|
|
}
|
|
|
|
MutableTerm simplified = erased;
|
|
System.simplify(simplified);
|
|
|
|
// We should end up with the same term.
|
|
if (simplified != term) {
|
|
llvm::errs() << "Term verification failed\n";
|
|
llvm::errs() << "Initial term: " << term << "\n";
|
|
llvm::errs() << "Erased term: " << erased << "\n";
|
|
llvm::errs() << "Simplified term: " << simplified << "\n";
|
|
llvm::errs() << "\n";
|
|
dump(llvm::errs());
|
|
abort();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void RequirementMachine::dump(llvm::raw_ostream &out) const {
|
|
out << "Requirement machine for ";
|
|
if (Sig)
|
|
out << Sig;
|
|
else {
|
|
out << "[";
|
|
for (auto *proto : Protos) {
|
|
out << " " << proto->getName();
|
|
}
|
|
out << " ]";
|
|
}
|
|
out << "\n";
|
|
|
|
System.dump(out);
|
|
Map.dump(out);
|
|
|
|
out << "Conformance access paths: {\n";
|
|
for (auto pair : ConformanceAccessPaths) {
|
|
out << "- " << pair.first.first << " : ";
|
|
out << pair.first.second->getName() << " => ";
|
|
pair.second.print(out);
|
|
out << "\n";
|
|
}
|
|
out << "}\n";
|
|
}
|
|
|
|
RequirementMachine::RequirementMachine(RewriteContext &ctx)
|
|
: Context(ctx), System(ctx), Map(System) {
|
|
auto &langOpts = ctx.getASTContext().LangOpts;
|
|
Dump = langOpts.DumpRequirementMachine;
|
|
RequirementMachineStepLimit = langOpts.RequirementMachineStepLimit;
|
|
RequirementMachineDepthLimit = langOpts.RequirementMachineDepthLimit;
|
|
Stats = ctx.getASTContext().Stats;
|
|
}
|
|
|
|
RequirementMachine::~RequirementMachine() {}
|
|
|
|
/// Build a requirement machine for the requirements of a generic signature.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
void RequirementMachine::initWithGenericSignature(CanGenericSignature sig) {
|
|
Sig = sig;
|
|
|
|
PrettyStackTraceGenericSignature debugStack("building rewrite system for", sig);
|
|
|
|
auto &ctx = Context.getASTContext();
|
|
auto *Stats = ctx.Stats;
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumRequirementMachines;
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding generic signature " << sig << " {\n";
|
|
}
|
|
|
|
// Collect the top-level requirements, and all transtively-referenced
|
|
// protocol requirement signatures.
|
|
RewriteSystemBuilder builder(Context, Dump);
|
|
builder.addGenericSignature(sig);
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system, also
|
|
// providing the protocol graph to use for the linear order on terms.
|
|
System.initialize(/*recordLoops=*/false,
|
|
std::move(builder.AssociatedTypeRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
computeCompletion(RewriteSystem::DisallowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
}
|
|
|
|
/// Build a requirement machine for the structural requirements of a set
|
|
/// of protocols, which are understood to form a strongly-connected component
|
|
/// (SCC) of the protocol dependency graph.
|
|
///
|
|
/// This must only be called exactly once, before any other operations are
|
|
/// performed on this requirement machine.
|
|
void RequirementMachine::initWithProtocols(ArrayRef<const ProtocolDecl *> protos) {
|
|
Protos = protos;
|
|
|
|
auto &ctx = Context.getASTContext();
|
|
auto *Stats = ctx.Stats;
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumRequirementMachines;
|
|
|
|
FrontendStatsTracer tracer(Stats, "build-rewrite-system");
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "Adding protocols";
|
|
for (auto *proto : protos) {
|
|
llvm::dbgs() << " " << proto->getName();
|
|
}
|
|
llvm::dbgs() << " {\n";
|
|
}
|
|
|
|
RewriteSystemBuilder builder(Context, Dump);
|
|
builder.addProtocols(protos);
|
|
|
|
// Add the initial set of rewrite rules to the rewrite system, also
|
|
// providing the protocol graph to use for the linear order on terms.
|
|
System.initialize(/*recordLoops=*/true,
|
|
std::move(builder.AssociatedTypeRules),
|
|
std::move(builder.RequirementRules));
|
|
|
|
// FIXME: Only if the protocols were written in source, though.
|
|
computeCompletion(RewriteSystem::AllowInvalidRequirements);
|
|
|
|
if (Dump) {
|
|
llvm::dbgs() << "}\n";
|
|
}
|
|
}
|
|
|
|
/// Attempt to obtain a confluent rewrite system using the completion
|
|
/// procedure.
|
|
void RequirementMachine::computeCompletion(RewriteSystem::ValidityPolicy policy) {
|
|
while (true) {
|
|
// First, run the Knuth-Bendix algorithm to resolve overlapping rules.
|
|
auto result = System.computeConfluentCompletion(
|
|
RequirementMachineStepLimit,
|
|
RequirementMachineDepthLimit);
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineCompletionSteps += result.second;
|
|
}
|
|
|
|
// Check for failure.
|
|
auto checkCompletionResult = [&]() {
|
|
switch (result.first) {
|
|
case CompletionResult::Success:
|
|
break;
|
|
|
|
case CompletionResult::MaxIterations:
|
|
llvm::errs() << "Generic signature " << Sig
|
|
<< " exceeds maximum completion step count\n";
|
|
System.dump(llvm::errs());
|
|
abort();
|
|
|
|
case CompletionResult::MaxDepth:
|
|
llvm::errs() << "Generic signature " << Sig
|
|
<< " exceeds maximum completion depth\n";
|
|
System.dump(llvm::errs());
|
|
abort();
|
|
}
|
|
};
|
|
|
|
checkCompletionResult();
|
|
|
|
// Check invariants.
|
|
System.verifyRewriteRules(policy);
|
|
|
|
// Build the property map, which also performs concrete term
|
|
// unification; if this added any new rules, run the completion
|
|
// procedure again.
|
|
result = Map.buildPropertyMap(
|
|
RequirementMachineStepLimit,
|
|
RequirementMachineDepthLimit);
|
|
|
|
if (Stats) {
|
|
Stats->getFrontendCounters()
|
|
.NumRequirementMachineUnifiedConcreteTerms += result.second;
|
|
}
|
|
|
|
checkCompletionResult();
|
|
|
|
// If buildPropertyMap() added new rules, we run another round of
|
|
// Knuth-Bendix, and build the property map again.
|
|
if (result.second == 0)
|
|
break;
|
|
}
|
|
|
|
if (Dump) {
|
|
dump(llvm::dbgs());
|
|
}
|
|
|
|
assert(!Complete);
|
|
Complete = true;
|
|
}
|
|
|
|
bool RequirementMachine::isComplete() const {
|
|
return Complete;
|
|
}
|